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Abstract

The aim of this paper is to develop strategies to estimate the sparsity degree of a signal from compressive projections,
without the burden of recovery. We consider both the noise-free and the noisy settings, and we show how to extend
the proposed framework to the case of non-exactly sparse signals. The proposed method employs γ -sparsified
randommatrices and is based on a maximum likelihood (ML) approach, exploiting the property that the acquired
measurements are distributed according to a mixture model whose parameters depend on the signal sparsity. In the
presence of noise, given the complexity of ML estimation, the probability model is approximated with a two-component
Gaussian mixture (2-GMM), which can be easily learned via expectation-maximization.
Besides the design of the method, this paper makes two novel contributions. First, in the absence of noise, sufficient
conditions on the number of measurements are provided for almost sure exact estimation in different regimes of
behavior, defined by the scaling of the measurements sparsity γ and the signal sparsity. In the presence of noise, our
second contribution is to prove that the 2-GMM approximation is accurate in the large system limit for a proper
choice of γ parameter. Simulations validate our predictions and show that the proposed algorithms outperform the
state-of-the-art methods for sparsity estimation. Finally, the estimation strategy is applied to non-exactly sparse
signals. The results are very encouraging, suggesting further extension to more general frameworks.

Keywords: Sparsity recovery, Compressed sensing, High-dimensional statistical inference, Gaussian mixture models,
Maximum likelihood, Sparse randommatrices

1 Introduction
Compressed sensing (CS) [1, 2] is a novel signal acquisi-
tion technique that recovers an unknown signal from a
small set of linearmeasurements. According to CS, if a sig-
nal having dimension n is known to be sparse, i.e., it has
only k � n non-zero entries when represented by a suit-
able basis, then it can be efficiently recovered using only
m � n linear combinations of the signal entries, provided
that these linear projections are sufficiently incoherent
with respect to the signal basis.
In most of CS applications, it is usually assumed that

an upper bound on the sparsity degree k is known before
acquiring the signal. However, some signals may have a
time-varying sparsity, as in spectrum sensing [3], or spa-
tially varying sparsity, as in the case of block-based image
acquisition [4]. Since the number of linear measurements
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required for the recovery depends on the sparsity degree
of the signal [5], the knowledge of k is crucial to fully
exploit the potential of CS.
In many recovery algorithms, the optimal tuning of

parameters requires the knowledge of the degree of spar-
sity of the signal. For example, in Lasso techniques [6],
a parameter λ related to k has to be chosen [7], whereas
for greedy algorithms, such as orthogonal matching pur-
suit (OMP) [8] or compressive sampling matching pursuit
(CoSaMP) [9], the performance and the number of itera-
tions depend on k.
The ability to estimate the signal sparsity degree directly

from a small number of linear measurements can repre-
sent an important tool in several promising applications.
One of the most obvious applications is the possibility to
dynamically adapt the number of measurements acquired
by a CS instrument, e.g., an imager, to the estimated
signal sparsity. We can envisage a system that acquires
linear measurements in a sequential way and continu-
ously updates the estimated sparsity according to the new
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measurements. The acquisition can stop as soon as the
number of acquired measurements is enough to guaran-
tee the correct reconstruction of a signal based on the
estimated sparsity.
Other applications may include the possibility of com-

paring the support of two sparse signals from their mea-
surements. Due to the linearity of the sparse signal model,
the degree of overlap between the supports of two sparse
signal can be estimated by measuring the sparsity degree
of their sum (or difference) [10]. Finally, sparsity estima-
tion can be used to decide whether a signal can be repre-
sented in a sparse way according to a specific basis, which
can be used to select the most suitable basis allowing the
sparsest representation.

1.1 Related work
The problem of estimating the sparsity degree has begun
to be recognized as a major gap between theory and prac-
tice [11–13], and the literature on the subject is very
recent.
In some papers, the joint problem of signal reconstruc-

tion and sparsity degree estimation is investigated, in
particular for time-varying settings. The following itera-
tive approach is considered: given an initial upper bound
for the sparsity degree, at a generic time step t, the sig-
nal is reconstructed and sparsity degree is estimated; such
estimation is then used at time t + 1 to assess the number
of measurements sufficient for reconstruction. The sem-
inal work [14] investigates the problem in the framework
of spectrum sensing for cognitive radios and proposes an
iterativemethod that at each time step performs two oper-
ations: (a) the signal is recovered via Lasso, and (b) the
sparsity degree is estimated as the number of recovery
components withmagnitude larger than an empirically set
threshold. The efficiency of this procedure is validated via
numerical simulations.
Some authors propose sequential acquisition tech-

niques in which the number of measurements is
dynamically adapted until a satisfactory reconstruction
performance is achieved [15–19]. Even if the reconstruc-
tion can take into account the previously recovered signal,
these methods require to solve a minimization problem
at each newly acquired measurement and may prove too
complex when the underlying signal is not sparse, or if
one is only interested in assessing the sparsity degree of a
signal under a certain basis without reconstructing it.
In other papers, the sparsity degree estimation is only

considered, which generally requires less measurements
than signal reconstruction. In [13], sparsity degree is esti-
mated through an eigenvalue-based method, for wide-
band cognitive radios applications. In this work, the
signal reconstruction is not required, while in practice,
the used number of measurements was quite large. In
[20], the sparsity of the signal is lower-bounded through

the numerical sparsity, i.e., the ratio between the �1 and
�2 norms of the signal, where these quantities can be
estimated from random projections obtained using
Cauchy-distributed and Gaussian-distributed matrices,
respectively. A limitation of this approach is that it is
not suitable for adaptive acquisition since measurements
taken with Cauchy-distributed matrices cannot be used
later for signal reconstruction. In [21], this approach is
extended to a family of entropy-based sparsity measures
of kind (‖x‖q/‖x‖1)q/(1−q) with q ∈[ 0, 2], for which esti-
mators are designed and theoretically estimated in terms
of limiting distributions. In [22], the authors propose to
estimate the sparsity of an image before its acquisition,
by calculating the image complexity. However, the pro-
posed method is based on the image pixel values and
needs a separate estimation that does not depend on
the measurements. Further, in [23], the minimum num-
ber of measurements to recovery, the sparsity degree was
theoretically investigated.
Finally, we notice that the problem of estimating the

sparsity degree of a vector is partially connected to the
problem of estimating the number of distinct elements
in data streams [24, 25], which has been largely studied
in the last decades due to its diverse applications. The
analogy lies in the fact that the sparsity degree problem
could be seen as the estimation of the number of elements
distinct from zero. Moreover, many efficient algorithms
to estimate the number of distinct elements are based
on random hashing (see [25] for a review) to reduce
the storage space, which is our concern as well. How-
ever, the problem of distinct elements considers vectors
a = (a1, . . . , an) with ai ∈ Q, whereQ is a finite set, which
is intrinsically different from our model where the signal
x has real-valued components. Therefore, the strategies
conceived for this problem cannot be applied for our
purpose.

1.2 Our contribution
In this paper, we propose a technique for directly estimat-
ing the sparsity degree of a signal from its linear mea-
surements, without recovery. The method relies on the
fact that measurements obtained by projecting the signal
according to a γ -sparsified randommatrix are distributed
according to a mixture density whose parameters depend
on k. This is an extension of the algorithm in [26], which
works only in the case of noise-free, exactly k-sparse
signals. First, we analyze the case of noise-free, exactly k-
sparse signals as a special case, and we provide theoretical
guarantees regarding the consistency of the proposed esti-
mator and its asymptotic behavior under different regimes
of the parameters k and γ . Then, we analyze the more
generic case of noise, including the non-exactly sparse
signals, and we propose to approximate the measure-
mentmodel by a two-component Gaussianmixturemodel
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(2-GMM), whose parameters can be easily estimated via
expectation-maximization (EM) techniques. In this case,
we prove that there is a regime of behavior, defined
by the scaling of the measurement sparsity γ and the
sparsity degree k, where this approximation is accu-
rate. An interesting property of the proposed method
is that measurements acquired using a γ -sparsified ran-
dom matrix also enable signal reconstruction, with only
a slight performance degradation with respect to dense
matrices [27, 28].
Some preliminary results, limited to the sparsity esti-

mation of noisy, exactly k-sparse ternary signals, have
appeared in [29]. In this paper, we extend the results
in [29] from both a theoretical and a practical point of
view, by considering any k-sparse signal and extending the
model to non-exactly sparse signals.

1.3 Outline of the paper
The paper is organized as follows. Section 2 presents
the notation and a brief review of CS-related results.
The sparsity estimation problem is formally introduced
in Section 3, where we discuss the optimal estimator,
whereas the main properties of the optimal estimator
in the noise-free setting are outlined in Section 4. In
Section 5, we introduce the proposed iterative algorithm
for dealing with the noisy setting, together with some
approximate performance bounds. Finally, the proposed
estimators are experimentally validated in Section 6, while
concluding remarks are given in Section 7.

2 Preliminaries
In this section, we define some notation, we review the CS
fundamentals, and we briefly discuss the use of sparsified
matrices in the CS literature.

2.1 Notation
Throughout this paper, we use the following notation. We
denote column vectors with small letters, and matrices
with capital letters. If x ∈ R

n, we denote its jth element
with xj and, given S ⊆[ n] := {1, . . . , n}, by x|S, the sub-
vector of x corresponding to the indices in S. The support
set of x is defined by supp(x) = {i ∈[ n] : xi �= 0} and we
use ‖x‖0 = |supp(x)|. Finally, the symbol ‖x‖ with no sub-
script has always to be intended as the Euclidean norm of
the vector x.
This paper makes frequent use of the following notation

for asymptotics of real sequences (an)n∈N and (bn)n∈N: (i)
an = O(bn) for n → ∞ if there exists a positive con-
stant c ∈ (0,+∞) and n0 ∈ N such that an ≤ cbn for all
n > n0, (ii) an = �(bn) for n → ∞ if there exists a con-
stant c′ ∈ (0,+∞) and n1 ∈ N such that an ≥ c′bn for all
n > n0, (iii) an = �(bn) for n → ∞ if an = O(bn) and
an = �(bn), and (iii) an = o(bn) for n → ∞ means that
limn→∞ |an/bn| = 0.

Given a random variable, we denote the probability
density function with f .

2.2 Sparse signal recovery using sparse random
projections

Let x ∈ R
n be an unknown deterministic signal. CS

[30] aims to recover a signal from a small number of
non-adaptive linear measurements of the form

y = Ax + η. (1)

where y ∈ R
m is a vector of observations, A ∈ R

m×n is
the sensing matrix with m < n, η ∈ R

m is an additive
Gaussian noise N

(
0, σ 2Im×m

)
, and Im×m is the identity

matrix withm rows, andm is the columns. Since the solu-
tion to (1) is not unique, the signal is typically assumed to
be sparse, i.e., it can be represented with k non-zero coef-
ficients, or compressible, in the sense that it can be well
approximated by a vector having only k non-zero coeffi-
cients. In the following, we refer to k as the signal sparsity
degree and we denote the set of signals with exactly k
non-zero components as 	k = {v ∈ R

n : ‖v‖0 ≤ k}.
The literature describes a wide variety of approaches to

select the sparsest solution to the affine system in (1). In
particular, a large amount of work in CS investigates the
performance of �1 relaxation for sparse approximation.
The problem of recovery can be analyzed in determinis-

tic settings, where the measurement matrix A is fixed, or
in random settings in which A is drawn randomly from a
sub-Gaussian ensemble. Past work on random designs has
focused onmatrices drawn from ensemble of dense matri-
ces, i.e., each row of A has n non-zero entries with high
probability. However, in various applications, sparse sens-
ing matrices are more desirable [31]. Furthermore, sparse
measurement matrices require significantly less storage
space, and algorithms adapted to suchmatrices have lower
computational complexity [32, 33]. In [27], the authors
study what sparsity degree is permitted in the sensing
matrices without increasing the number of observations
required for support recovery.
In this paper, we consider γ -sparsified matrices [27], in

which the entries of the matrix A are independently and
identically distributed according to

Aij ∼
{
N
(
0, 1

γ

)
w.p. γ ,

δ0 w.p. 1 − γ
(2)

where δ0 denotes a Dirac delta centered at zero.
Since weak signal entries could be confused with noise,

in [27], the support recovery is studied also as a function
of the minimum (in magnitude) non-zero value of x:

λ := min
i∈supp(x)

|xi|. (3)

Consequently, for a fixed λ > 0, let us define:

Xk(λ) = {x ∈ 	k : |xi| ≥ λ}. (4)
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For this class of signals, the following result has been
proved.

Theorem 1 (Corollary 2 in [27]) Let the measurements
matrix A ∈ R

m be drawn with i.i.d. elements from the
γ -sparsified Gaussian ensemble. Then, a necessary con-
dition for asymptotically reliable recovery over the signal
class Xk(λ) is

m ≥ max{g1(n, k, λ, γ ), g2(n, k, λ, γ )} (5)

where

g1(n, k, λ, γ ) ≥ log
(n
k
)− 1

1
2γ k log

(
1 + λ2k/σ 2)+ 1

2 log
(
2πe

(
γ k + 1

12
))

(6)

g2(n, k, λ, γ ) ≥ log (n − k + 1) − 1
1
2γ log

(
1 + λ2/

(
σ 2γ

))
.

(7)

In particular, Theorem 1 says that if γ k → ∞ as n →
∞, then the number of measurements is of the same order
as that for dense sensing matrices. In sharp contrast, if
γ k → 0 sufficiently fast as n → ∞, then the number
of measurements of any decoder increases dramatically.
Finally, if γ k = �(1) and λ2k = �(1), then at least
max{�(k log(n/k)),�(k log(n−k)/ log k)}measurements
are necessary for estimating the support of the signal.
Several recovery algorithms are based on the use

of sparse sensing matrices. In particular, count-minute
sketch algorithms need about 10 to 15 times more mea-
surements than �1-decoding and sparse matching pursuit
needs about half of the measurements of count-min
sketch. Other sketch algorithms include [34] that can be
as accurate as �1 decoding with dense matrices under
the condition γ k = �(1) with the same order of
measurements.

3 Sparsity estimation problem: mathematical
formulation

Our goal is to estimate k from the measurements
y = Ax, where A is a γ -sparsified matrix, without the bur-
den of reconstructing x. Specifically, we aim at providing
conditions on the triplet (n,m, k) as well as on x and A
under which the estimation of signal sparsity is accurate
with high probability. The theoretical results that we pro-
vide also hold true for high dimensional settings, that is,
(n,m, k), and are allowed to tend to infinity.
Given a rule for computing estimates of the signal spar-

sity, we will measure the error between the estimate
k̂(m, n) and the true sparsity degree k using the relative
error:

e
(
k, k̂
)
:=
∣∣∣k − k̂

∣∣∣/k. (8)

We say that the sparsity estimator k̂ is asymptotically
weakly consistent when e

(
k, k̂
)
converges in probability to

0 as m, n → ∞. If we replace convergence in probability
with almost sure convergence, then the estimator is said
to be strongly consistent.
If the signals are not exactly sparse but compressible, i.e.,

they admit a representation with few large components
in magnitude; in CS literature, the recovery guarantees
are expressed in terms of the sparsity degree of the best-k
approximation [30, 35] defined as follows

x̂k = argmin
z∈	k

‖x − z‖. (9)

For this reason, the sparsity of a not exactly sparse signal
is defined as the number of components containing most
of the energy up to a relative error τ

kτ = min{s ∈[ n] : ‖x − x̂s‖2 ≤ τ‖x‖2}. (10)

Then, defining e = x − x̂kτ
, we write

y = Ax = A
(
x̂kτ

+ e
) = Âxkτ

+ η (11)

where η = Ae. It should be noticed that each component
ηi is distributed as is a mixture of Gaussians. We make the
following approximation: ηi ∼ N

(
0, σ 2) with

σ 2 = E
[
η2i
] = ‖e‖2 ≤ τ‖x‖2. (12)

In the noiseless case, by linearity of expectation, we have

E

[
1
m

m∑

i=1
y2i

]

= 1
m

m∑

i=1
E
[
y2i
]

= 1
m

m∑

i=1
E

⎡

⎣
n∑

j=1
A2
ijx

2
j + 2

∑

j<k
AijAikxjxk

⎤

⎦

from which

1
m

m∑

i=1
E
[
y2i
] = 1

m

m∑

i=1

n∑

j=1
E

[
A2
ij

]
x2j

+ 2
∑

j<k
E
[
Aij
]
E [Aik] xjxk = ‖x‖2

where the last inequality follows from E
[
Aij
] = 0 and

E

[
A2
ij

]
= 1 for all i, j. Then, the model describing the

measurements can be approximated by (1) with σ 2 ≈
τ‖y‖2/m. We underline that this argument is true for all
sensing matrices drawn from the ensemble in (2), and at
this time, we do not make any additional assumption on
the number of measurements.
Given (y,A) and assuming that the perturbation is addi-

tive Gaussian, the ML estimator of the signal sparsity can
be obtained via the following exhaustive search:

argmin
s∈[n]

{
min

T⊆[n]:|T |=s,{x:supp(x)=T}
‖Ax − y‖22

}
. (13)
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However, this optimization problem is NP hard and the
search of the solution requires an exponential time in
the signal length n (one optimization problem for all
subsets of [n] of size s and for all s, which amounts to∑n

s=1
(n
s
) = 2n − 1).

Given supp(x), if A is chosen from the ensemble of
γ -sparsified matrices, any measurement

yi =
∑

j∈[n]
Aijxj + ηi (14)

is a random variable whose density function is a mixture
of Gaussians with 2k components. The result follows from
the following argument. Let S be the overlap between the
support of ith row of A and supp(x). It is easy to see that
given S then yi ∼ N(0,αS) where αS = ‖xS‖2/γ + σ 2.
Without any further assumption, taking into account all
possible overlaps between the support of the ith row of
A and support of the signal x with cardinality s ≤ k,
we can have in principle

∑
s≤k
(k
s
) = 2k different type of

Gaussians. We conclude that yi is a Gaussian mixture with
2k components. If the non-zero elements of the signal have
all equal values in magnitude, then the number of compo-
nents of the Gaussian mixture reduces dramatically to k.
Given the set ofm independent and identically distributed
samples y = (y1, . . . , ym)�, the sparsity estimation can be
recast into the problem of evaluating the number of mix-
ture components and parameters. However, also in the
simple case where k is known, the estimation of the finite
mixture density function does not admit a closed-form
solution, and the computational complexity is practically
unfeasible.

4 Method: noise-free setting
In this section, we show that in the absence of noise (i.e.,
‖η‖ = 0), ‖y‖0 is a sufficient statistic for the underlying
parameter k. We show that the performance of the pro-
posed estimators of the sparsity degree depends on the
SNR = λ2k/σ 2 and that the traditional measure ‖x‖2/σ 2

has no significant effect in the estimation of the sparsity
degree.
Even in the absence of noise, since A is chosen from the

ensemble of γ -sparsified matrices, any measurement yi =∑
j∈[n] Aijxj is still a random variable. The ML solution

provides the following estimator of the signal sparsity.

Proposition 1 Let us define

ω�
i = 1 (yi �= 0) = 1

⎛

⎝
∑

j∈[n]
Aijxj �= 0

⎞

⎠ . (15)

Then, the ML estimate of the signal sparsity is

k̂o =
log
(
1 − ‖ω�‖0

m

)

log(1 − γ )
. (16)

The estimator derived in proposition 1 has already been
proposed in [26] for estimating the degree of sparsity. In
the following, we will denote the estimator in (16) as oracle
estimator since it is equivalent to estimating k in the pres-
ence of an oracle who knows which entries in y are only
due to noise. In our analysis, we prove that the oracle esti-
mator is asymptotically strongly consistent, i.e, with the
property that as the number of measurements increases
indefinitely, the resulting sequence of estimates converges
almost surely to the true sparsity degree (see Theorem 2).
This means that the density functions of the estimators
become more and more concentrated near the true value
of the sparsity degree.
Given a sequence of events {Em}m∈N, we denote with

lim supm→∞ Em the set of outcomes that occur infinitely
many times. More formally,

lim sup
m→∞

Em =
∞⋂

m=1

∞⋃

�≥m
E� (17)

Theorem 2 Let pk = 1 − (1 − γ )k, then

P

(
e
(
k̂o, k

)
> ε
)

≤ 2e−2mξ2k , (18)

where ξk = (1 − pk)
(
1 − eε log(1−pk)

)
.Moreover, let Em be

the sequence of events

Em =

⎧
⎪⎪⎨

⎪⎪⎩
e(̂ko, k) ≥

log
(
1 −

√
ρ

1−pk

√
logm
m

)

log(1 − pk)

⎫
⎪⎪⎬

⎪⎪⎭
(19)

with m ∈ N and ρ > 1/2, then

P

(
lim sup
m→∞

Em
)

= 0. (20)

Remark 1 From Theorem 2, we deduce that almost
surely (i.e., with probability 1) the relative error between
the estimated sparsity and the true value of the sparsity
degree is

e
(
k̂o, k

)
= O

(√
logm
m

)

(21)

for all but finitely many m.

4.1 Asymptotic analysis of ML estimator
We analyze now the performance of the oracle estimator
in the large system limit, when n, k, andm tend to infinity.
Since we are dealing with sparse signals, we assume that
the sparsity degree k scales at most linearly in the sig-
nal length, i.e., the relative sparsity k/n ≤ ρ is kept
bounded with ρ � 1. The following theorem shows suffi-
cient conditions on the number of measurements for weak
consistency in different regimes of behavior, defined by
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the scaling of the measurement sparsity γ and the signal
sparsity k.

Theorem 3 Let ψ(k) = γ k = o(k) as k → ∞ and
define the function g(k) as follows:

a) if ψ(k) → ∞ as k → ∞, then g(k) = �
(
e2ψ(k));

b) if ψ(k) = �(1) as k → ∞, then g(k) → ∞ for
k → ∞;

c) if ψ(k) = o(1) as k → ∞, then
g(k) = �

(
ψ(k)−2(1+ε)

)
, for any ε > 0.

If the number of measurements is such that m
logm ≥ g(k),

then

P

(
e
(
k̂o, k

)
≥ εk

) k→∞−→ 0, (22)

where

εk =
log
(
1 −

√
ρ

1−pk

√
logm
m

)

log(1 − pk)
k→∞−→ 0 (23)

for some constant ρ > 1/2.

In the following theorem, we show that, under stricter
conditions, strong consistency is also ensured.

Theorem 4 Let ψ(k) = γ k and define the function g(k)
as in Theorem 3. If the number of measurements is such
that

m ≥ max
{
k, min

{
� ∈ N :

�

log �
≥ g(k)

}}
(24)

then

P

(
lim sup
k→∞

e
(
k̂o, k

)
= 0
)

=1. (25)

Remark 2 Theorems 3 and 4 characterize the regimes
in which measurement sparsity begins to improve the esti-
mation of the signal sparsity. The function ψ(k) = γ k
represents the average number of non-zeros in each row of
A that align with the support of the signal x. This analy-
sis reveals three cases of interest, corresponding to whether
measurement sparsity has no effect, a small effect, or a sig-
nificant effect on the number of measurements sufficient
for asymptotic consistency. If ψ(k) = �(1) as k → ∞,
then m = �(k) measurements are sufficient for the con-
centration result. In sharp contrast, if ψ(k) → ∞ as
k → ∞, then the number of measurements guaranteeing
the asymptotic consistency is exponential inψ(k), meaning
that, in order to be sure to get an unbiased estimator with
k measurements, we need ψ(k) ≤ 1

2
(
log k − log(log k)

)
.

If ψ(k) → 0, then the condition ψ(k) ≥ 2+ε

√
log(k)

k with
ε > 0 is sufficient to get an unbiased estimator with k
measurements.

Remark 3 Theorems 3 and 4 suggest that in order to
obtain a good estimation of the sparsity degree, we need
sufficiently sparse matrices, but not too sparse. On the
other hand, at the same time, the use of sparser matri-
ces requires more measurements for a successful recov-
ery of the signal. If we combine the results obtained in
Theorems 3 and 4 with those provided in Theorem 1, we
notice there is a large range for γ (provided by c ≤ ψ(k) ≤
1
2
(
log k − log(log k)

)
with c > 0) where both sparsity esti-

mation and the recovery can be successful. We will provide
more details on how to choose γ for specific applications in
Section 6.

The proofs of Theorems 3 and 4 are postponed to the
Appendix.

5 Method: noisy setting
As already noticed, in the generic noisy setting, the esti-
mation of signal sparsity via an exhaustive ML is unfea-
sible. A possible approach is to resort to the well-known
EM algorithm [36]. This algorithm can find ML solutions
to problems involving observed and hidden variables, and
in the general, setting is known to converge to a local
maximum of the likelihood.
In this section, we prove that, under suitable condi-

tions, the distribution of the measurements can be well
approximated by a two-component Gaussian mixture that
can be easily learned by EM algorithm. Finally, we show
that the case of not-exactly sparse signals can be well
approximated by the same model.

5.1 2-GMM approximation for large system limit
Our main goal is to show that the Gaussian mixture
model that describes the measurements can be simpli-
fied in the large system limit as n, k → ∞. The next
theorem reveals that there is a regime of behavior, defined
by the scaling of the measurement sparsity γ and the
signal sparsity k, where the measurements can be approx-
imately described by a two-component Gaussian mixture
model (2-GMM). We state this fact formally below. Recall
that, given two density functions f , g, their Kolmogorov
distance is defined as

‖f − g‖K = sup
t∈R

∣∣∣
∣

∫ t

−∞
f (ζ )dζ −

∫ t

−∞
g(ζ )dζ

∣
∣∣∣ . (26)

Theorem 5 Let supp(x) = k and φ
(
ζ |σ 2) be the prob-

ability density function of a normally distributed random
variable with expected value 0 and variance σ 2, i.e.,

φ
(
ζ |σ 2) = 1

σ
√
2π

e− ζ2
2σ2 .
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Given a set S, let αS = ‖xS‖2/γ + σ 2 and pS =
(1 − γ )k−|S|γ |S|. Let us consider the density functions (the
subscript is to emphasize the dependence on parameter k)

fk(ζ ) =
∑

S⊆supp(x)
pSφ(ζ |αS) (27)

f 2-GMM
k (ζ ) = (1−pk)φ

(
ζ |σ 2)+pkφ

(
ζ

∣∣∣σ 2 + ‖x‖2
pk

)
.

(28)

Then, there exists a constant C ∈ R such that

∥∥∥fk − f 2-GMM
k

∥∥∥
K

≤ Cγ 2

λ4

⎛

⎝
∑n

i=1 x4i
γ

+
∑

i�=j
x2i x

2
j − ‖x‖4

pk

⎞

⎠ .

(29)

The proof of Theorem 5 is postponed to the Appendix.
As a simple consequence, we obtain that, under suitable
conditions, the approximation error depends on ψ(k).

Corollary 1 Let ψ(k) = γ k and fk , f 2-GMM
k be the

sequence of density functions defined in (27) and (28).
Then, there exists a constant C′ ∈ R such that
∥∥
∥fk − f 2-GMM

k

∥∥
∥
K

≤ C′
(

λmax
λmin

)4 (
ψ(k) + ψ(k)2

)
. (30)

with C′ ≈ 0.03, λmax = max
i:xi �=0

|xi|, λmin = min
i:xi �=0

|xi|.

Corollary 1 shows that the error in the approxima-
tion can be controlled by parameter ψ(k). Some consid-
erations are in order. Consider for example a k-sparse
signal with all non-zero components equal in modulus,
i.e., with λmax = λmin. Then, the bound reduces to∥∥∥fk − f 2−GMM

k

∥∥∥
K

≤ C
(
ψ(k) + ψ(k)2

)
. We can see that

if ψ(k) = γ k → 0, then the Kolmogorov distance goes
to zero. However, as suggested by Theorem 1, we expect
to need more measurements m to perform a good esti-
mation of the sparsity degree. The best regime is when
ψ(k) = �(1) as k → ∞: in that case, the distance remains
bounded and we expect that a number of measurements
proportional to k is sufficient for the sparsity estimation
(suppose, for example, that γ = 3/k. Then, we expect∥∥∥fk − f 2−GMM

k

∥
∥∥
K

< 0.36). For signals with λmax �= λmin

similar considerations can be done if λmax and λmin scale
similarly as a function of k.

5.2 Sparsity estimation via EM
Using the approximation in Theorem 5, we recast the
problem of inferring the signal sparsity as the problem
of estimating the parameters of a two-component Gaus-
sian mixture, whose joint density function of y ∈ R

m and
hidden class variables z ∈ {0, 1}m is given by

f (yi, zi|α,β , p) = (1− p)(1− zi)φ(yi|α) + pziφ(yi|β) (31)

with i ∈ [m]. Starting from an initial guess of mixture
parameters α(0),β(0), andp(0), the algorithm that we pro-
pose (named EM-Sp and summarized in Algorithm 1)
computes, at each iteration t ∈ N, the posterior
distribution

πi(t) = P(zi = 1|α(t),β(t), p(t)) (32)

(E-Step) and re-estimates the mixture parameters
(M-Step) until a stopping criterion is satisfied. Finally, the
estimation of the signal sparsity is provided by

k̂ = log(1 − pfinal)/ log(1 − γ ). (33)

Algorithm 1 EM-Sp [29]
Require: Measurements y ∈ R

n, parameter γ

1: Initialization: α(0),β(0), p(0)
2: for t = 0, 1, . . . , StopIter do
3: E-step: for i = 1, . . . ,m, compute the posterior

probabilities

πi(t + 1) =
p(t)√
β(t)e

−y2i /(2β(t))

1−p(t)√
α(t) e

−y2i /(2α(t)) + p(t)√
β(t)e

−y2i /(2β(t))

(34)

4: M-Step: compute the mixture parameters

p(t + 1) =
∑m

i=1 πi(t + 1)
m

, (35)

k(t + 1) = log (1 − p(t + 1))
log(1 − γ )

(36)

α(t + 1) =
∑m

i=1(1 − πi(t + 1))y2i∑m
i=1(1 − πi(t + 1))

, (37)

β(t + 1) =
∑m

i=1 πi(t + 1)y2i∑m
i=1 πi(t + 1)

. (38)

5: end for

The sequence of signal sparsity estimations k(t) gener-
ated by Algorithm 1 converges to a limit point. For brevity,
we omit the proof, which can be readily derived from stan-
dard convergence arguments for dynamical systems [37].
In the following, we will denote Algorithm 1 as EM-Sparse
(EM-Sp).

5.3 The Cramér-Rao bound for 2-GMM
The Cramér-Rao (CR) bound is a popular lower bound
on the variance of estimators of deterministic parame-
ters. Given a parameter ξ and an unbiased estimator ξ̂ ,
let f (x; ξ) be the likelihood function. The CR bound is
given by
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CR(̂ξ ) = 1

E

(
∂ log(f (x;ξ))

∂ξ

)2 (39)

that is, the inverse of the Fisher information.
The EM-Sp algorithm, for measurements that can be

exactly modeled as a 2-GMM, and for a large number
of measurements, would be asymptotically optimal and
unbiased and achieve a performance very close to the CR
bound. However, because of the presence of noise in the
data and the approximation of the 2-GMM model, we
expect that the estimator provided by EM-Sp algorithm
will be biased. A theoretical analysis of the bias in terms
of these two factors is hard to carry out. In the following,
we analyze the performance of EM-Sp in the estimation of
the 2-GMM parameters via the CR bound, which gives us
an indication of howmuch the non-idealities of the model
affect the performance of the proposed estimator.
Let us consider a 2-GMM framework, in which two

zero-mean Gaussians with known variances α and β are
given, and let us call p the mixture parameter. The likeli-
hood function is f (x; p) = (1 − p)φ(x|α) + pφ(x|β), and

CR(̂p) = 1

E

(
φ(x|β)−φ(x|α)

(1−p)φ(x|α)+pφ(x|β)

)2 (40)

is the CR bound for the ML estimator p̂ of p. The stochas-
tic mean cannot be computed in a closed form, but can be
approximated with a Monte Carlo method.
CR(̂p) represents a benchmark to evaluate the accu-

racy of our estimation of p via EM-Sp, as will be done in
Section 6.2.

6 Results and discussion
In this section, we illustrate the performance of
the proposed estimators through extensive numerical
simulations1. We present experiments both in the noise-
free setting and in non-ideal settings, where signals are
not exactly sparse or measurements are affected by noise.

Finally, an application where sparsity estimation improves
the efficiency of signal recovery in CS is proposed.

6.1 Noise-free measurements
We start testing signals that are exactly sparse and mea-
surements that are not affected by additive noise.
We evaluate the estimation accuracy in terms of empir-

ical probability of correct estimation: a run is considered
successful if e

(
k, k̂
)

< 5 × 10−2 where k̂ is the estimated
sparsity. In Fig. 1, we show results averaged over 1000
random instances, obtained by generating different sens-
ingmatrices from the γ -sparsifiedGaussian ensemble.We
underline that the values of the non-zero entries of the
signals (which are drawn from a standard Gaussian distri-
bution for this experiment) do not affect the performance
in the noise-free case. Similarly, the length n of the signal
plays no role in the estimation (see Proposition 1).
The empirical probability of correct estimation is stud-

ied as a function of m and k for three different regimes of
parameter ψ(k) defined in Remark 2 (see Fig. 1) :

a) ψ(k) = 1
2 (log(k) − log(log k));

b) ψ(k) = 1;
c) ψ(k) = 3

√
log k/k.

According to Theorem 3 (see also Remark 2), whenm ≥ k,
the relative error between the estimated sparsity and the
true value of the sparsity degree tends to zero almost
surely (i.e., with probability 1). This can be appreciated
also in the numerical results in Fig. 1, where the linem = k
is drawn for simplicity. Moreover, we can see that for any
fixed k, the error decreases whenm increases.

6.2 Noisy measurements
In the second experiment, we show the performance
of the EM-Sp algorithm when measurements are noisy
according to the model proposed in (1) and we com-
pare to the numerical sparsity estimator [20]. In order

a b c
Fig. 1 Noise-free setting: empirical probability of success sparsity estimation as a function of sparsity degree k and number of measurements.

a ψ(k) = 1
2 log

(
k

log k

)
b ψ(k) = 1 c ψ(k) = 3

√
log k
k
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Fig. 2 Experiment 2: MRE (in log-scale) of EM-Sp and Lopes’s estimator as a function of the sparsity degree k and the number of measurementsm,
SNR =10 dB

to have a fair comparison, we perform this test on
ternary signals in {−λ, 0, λ}n for which sparsity and
numerical sparsity coincide. We then consider random
sparse signals with non-zero entries uniformly chosen
in {λ,−λ}, λ ∈ R, and SNR = λ2k/σ 2 (see defini-
tion in Section 3). Moreover, we set ψ(k) constant in
order to focus on the effects of the additive noise in the
estimation.
We remark that we compare only to [20] because,

as illustrated in Section 1.1, the other proposed algo-
rithms for sparsity degree estimation are based on signal
reconstruction [14] (requiring a larger number of mea-
surements and increased complexity, which would give

an unfair comparison) or are conceived for very specific
applications [13, 22].
In Fig. 2, we show the mean relative error (MRE)

defined as

MRE = E

[
e
(
k, k̂
)]

(41)

for different values of k and m in settings with
SNR = 10 dB and ψ(k) = 1/10. We appreciate that,
in the considered framework, EM-Sp always outperforms
the method based on the numerical sparsity estimation.
In Fig. 3, we set k = 1000, ψ(k) = 1/3, and we vary the

SNR from 0 to 40 dB, while m ∈ {800, 1000, 2000, 5000}.
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Fig. 3 Experiment 2: MRE (in log-scale) of EM-Sp and numerical sparsity estimator as a function of the SNR, for differentm’s, k = 1000
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Again, we see that EM-Sp outperforms [20]. We spec-
ify that a few tens of iterations are sufficient for the
convergence of EM-Sp.
Finally, we compare the performance of EM-Sp with an

oracle estimator designed as follows: we assume to know
exactly the variances α and β and we generate measure-
ments yi distributed according to 2-GMM (1−p)φ(yi|α)+
pφ(yi|β), for i = 1, . . . ,m; given the sequence y, α, and
β , we then compute the ML estimate of p via EM. We
name this estimator EM oracle. Comparing the estimates
of p of EM-Sp and EM oracle, we can check if our
2-GMM approximation is reliable. We clearly expect that
EM oracle performs better, as the measurements are really
generated according to a 2-GMM, and also the true α

and β are exploited. However, our results show that the
2-GMM approximation is trustworthy. In Fig. 4, we depict
the sample variance of the estimator p̂ of p (obtained from
1000 runs) of EM-Sp and EM oracle. We show also the
CR bound (see Section 5.3), which represents a perfor-
mance lower bound for the estimation of p. As explained
in Section 5.3, the stochastic mean required in the CR
bound for 2-GMM cannot be analytically computer and is
here evaluated via Monte Carlo.
In both graphs of Fig. 4, we set k = 1000, m = k in

Fig. 4a, and ψ(k) = 1/10 in Fig. 4b. We notice that in
the considered regimes, EM oracle and CR bound are very
close and not really affected by the SNR. Regarding EM-Sp,
we observe that (a) keeping k, γ fixed, EM-Sp gets closer

a

b
Fig. 4 Noisy setting: comparison with oracle EM and Cramér-Rao (CR) bound. a k = 1000,ψ(k) = 1/10 b k = m = 1000
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to the optimum as the SNR increases; and (b) keeping k,m
fixed, we can find an optimal γ that allows us to get very
close to the optimum.

6.3 Compressibility of real signals
In this section, we test our EM-Sp algorithm to eval-
uate the compressibility of real signals. Specifically, we
consider images which are approximately sparse in the
discrete cosine transform (DCT) domain, that is, they
are well represented by few DCT coefficients. Our aim
is to estimate the number k of significant DCT coeffi-
cients. More precisely, we seek the minimum k such that
the best-k approximation x̂k has a relative error smaller
approximately τ , namely ‖̂xk − x‖22 ≤ τ‖x‖22. Since DCT
coefficients of natural images usually have a power-law
decay of the form xi ≈ c/i, the following approximation
holds

‖̂xk − x‖22
‖x‖22

≈
∫ n
k x−2dx
∫ n
1 x−2dx

∝ k−1 (42)

and since according to theoretical derivation γ ∝ 1/k, we
fix γ ∝ τ . Tuning γ proportionally to τ allows to adapt
better the sparsity of the sensing matrix to the expected
signal sparsity: for larger τ ’s, we expect smaller k′s, which
call for larger γ to have the sufficient matrix density to
pick the non-zero entries.
In the proposed experiments, we fix γ = cτ with

c = 5·10−2 and we initialize πi(0) = 1
2 for all i = 1, . . . ,m,

while we set β and α respectively as the signal energy and

the noise energy (namely, the error of the best-k approxi-

mation), evaluated from the measurements: β = ‖y‖2
2

m and
α = τβ .
In Fig. 5, we depict the results on three n = 256 × 256

images (shown in Fig. 6) represented in the DCT basis
(DCT is performed on 8× 8 blocks). Specifically, we show
original and estimated sparsity (the y-axis represents the
ratio k/n), averaged on 100 random sensing matrices. The
images have been chosen with different compressibilities,
to test our method in different settings. We appreciate
that for all the images and across different values of τ , we
are able to estimate k with a small error. This experiment
shows then that EM-Sp can be practically used to estimate
the compressibility of real signals.

6.4 Sparsity estimation for signal recovery
We have already remarked that the knowledge of the
sparsity degree k is widely used for signal recovery in
CS. In this section, we consider CoSaMP [9], an algo-
rithm which can recover a sparse signal (exactly or with
a bounded error, in the absence and in the presence of
noise, respectively) if a sufficient number of measure-
ments m is provided, and assuming the knowledge an
upper bound kmax for k. Our aim is to show that EM-
Sp can be used as a pre-processing for CoSaMP when
k is not known; specifically, we estimate k to design the
number of measurements necessary for CoSaMP recov-
ery. Subsequently, we denote this joint procedure as
EM-SP/CoSaMP.
We compare CoSaMP with EM-Sp/CoSaMP in the fol-

lowing setting. We consider a family S of signals of length
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Fig. 5 Experiment 3: compressibility of real signals, with non-exactly sparse representations. We estimate k such that ‖̂xk−x‖22
‖x‖22

< τ , where x and x̂k

respectively are the non-exactly sparse representation and its best-k approximation
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Fig. 6 Non-exactly sparse signals: images with approximately sparse DCT representation: pattern, Lena, and aerial

n = 1600 and (unknown) sparsity k ∈ {20, 200} (then,
kmax = 200). The value of k and the position of the non-
zero coefficients are generated uniformly at random, and
the non-zero values are drawn from a standard Gaussian
distribution. Since k is not known, the number of
measurements needed by CoSaMP has to be dimensioned
on kmax: assuming SNR = 30 dB, from the literature,
we get that mC = 4kmax are sufficient to get a
satisfactory recovery using dense Gaussian sensing matri-
ces. In our specific setting, we always observe a mean
relative error MRErec = ‖x − x̂‖2 / ‖x‖2 < 5.5 × 10−2

(for each k ∈ {20, 200}, 100 random runs have been
performed).

We propose now the following procedure.

1 First sensing stage and sparsity estimation: we take
mS � mC measurements via γ -sparsified matrix in

(2), and we provide an estimate k̂ of k using
Algorithm 1.

2 Second sensing stage and recovery: we add a
sufficient number of measurements (dimensioned
over k̂) and then perform CoSaMP recovery.

Specifically, the following assessments have been proved
to be suitable for our example:

• We estimate k with EM-Sp frommS = kmax
2

sparsified measurements, with γ = 6/kmax;
• Since underestimates of k are critical for CoSaMP,

we consider k̂ equal to 2 times the estimate provided
by EM-Sp;

• We addmA = 4̂k Gaussian measurements, and we
run CoSaMP with the so-obtained sensing matrix
withmS + mA rows. WhenmS + mA > mC , we
reduce the total number of measurements tomC .
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Fig. 7 Recovery experiment with unknown k: EM-Sp/CoSaMP saves a significant number of measurements with respect to pure CoSaMP
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We show the results averaged over 100 random
experiments. In Fig. 7, we compare the number of
measurements used for recovery, as a function of
the sparsity degree k: a substantial gain is obtained
in terms of measurements by EM-Sp/CoSaMP, with
no significant accuracy loss. In Fig. 8, we can see
that CoSaMP and EM-Sp/CoSaMP algorithms achieve
similar MRErec.

7 Conclusions
In this paper, we have proposed an iterative algorithm
for the estimation of the signal sparsity starting from
compressive and noisy projections obtained via sparse
random matrices. As a first theoretical contribution, we
have demonstrated that the estimator is consistent in the
noise-free setting and we characterized its asymptotic
behavior for different regimes of the involved parameters,
namely the sparsity degree k, the number of measure-
ments m, and the sensing matrix sparsity parameter γ .
Then, we have showed that in the noisy setting, the pro-
jections can be approximated using a 2-GMM, for which
the EM algorithm provides an asymptotically optimal
estimator.
Numerical results confirm that the 2-GMM approach

is effective for different signal models and outperforms
methods known in the literature, with no substantial
increase of complexity. The proposed algorithm can rep-
resent a useful tool in several applications, including
the estimation of signal sparsity before reconstruction
in a sequential acquisition framework, or the estima-
tion of support overlap between correlated signals. An
important property of the proposed method is that it
does not rely on the knowledge of the actual sensing

matrix, but only on its sparsity parameter γ . This
enables applications in which one is not interested in
signal reconstruction, but only in embedding the spar-
sity degree of the underlying signal in a more compact
representation.

Endnote
1 The code to reproduce the simulations proposed in

this section is available at https://github.com/sophie27/
sparsityestimation

Appendix
Proofs of results in Section 4
Proof of Proposition 1
It should be noticed thatP(ω�

i = 0) = (1−γ )θn, where θ ∈
[0, 1] is the parameter to be optimized. Since the rows of
thematrixA are independent, 5 so areω�

i , and considering
that the event ω�

i = 0 is equivalent to the event that the
support of ith row of A is orthogonal to the support of
signal x, the ML estimation computes

θ̂o = argmax
θ∈[0,1]

log f (ω�|θ) =
m∑

i=1
f (ω�

i |θ) (43)

=argmax
θ∈[0,1]

m∑

i=1
log
[(
1−(1 − γ )θn

)ω�
i (1 − γ )θn(1−ω�

i )
]

(44)

from which

θ̂o =
log
(
1 − ‖ω�‖0

m

)

n log(1 − γ )
. (45)

We conclude that k̂o = θ̂on.

https://github.com/sophie27/sparsityestimation
https://github.com/sophie27/sparsityestimation
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Proof of Theorem 2
Let us consider ω�

i as defined in (15) and let p̂k =
‖ω�‖0
m where the index emphasizes the dependence on the

sparsity degree. We thus have:

P

(
e(̂ko, k) > ε

)
= P

⎛

⎝

∣∣∣̂ko − k
∣∣∣

k
> ε

⎞

⎠

= P

(∣∣log (1 − p̂k) − log(1 − pk)
∣∣

∣∣k log(1 − γ )
∣∣ > ε

)

.

(46)

Since
∣∣k log(1 − γ )

∣∣ = ∣∣log(1 − γ )k
∣∣ = − log(1 − pk),

we obtain

P

(
e
(
k̂o, k

)
> ε
)

= P

(∣∣∣∣log
(
1 − p̂k
1 − pk

)∣∣∣∣ > −ε log(1 − pk)
)

(47)

= P

(∣∣∣∣log
(
1 + pk − p̂k

1 − pk

)∣∣∣∣ > −ε log(1 − pk)
)

(48)

= P

(
log
(
1 + pk − p̂k

1 − pk

)
> −ε log(1 − pk)

)
(49)

+ P

(
log
(
1 + pk − p̂k

1 − pk

)
< ε log(1 − pk)

)
(50)

= P

(
pk − p̂k >

(
e−ε log(1−pk ) − 1

)
(1 − pk)

)
(51)

+ P

(
pk − p̂k <

(
eε log(1−pk ) − 1

)
(1 − pk)

)

(52)

≤ P
(∣∣pk − p̂k

∣∣ > ξk
)

(53)

with

ξk =(1−pk)min
{(

e−ε log(1−pk) − 1
)
,
(
1 − eε log(1−pk)

)}

(54)

= (1 − pk)
(
1 − eε log(1−pk)

)
. (55)

It should be noticed that pk = E
[
p̂k
]
, hence apply-

ing the Chernoff-Hoeffding theorem [38], the above tail
probability is upper bounded as

P

(
e
(
k̂o, k

)
> ε
)

≤ 2e−2mξ2k (56)

and we obtain the first part of the statement. Choosing

ε =
log
(
1 −

√
ρ

1−pk

√
logm
m

)

log(1 − pk)
(57)

for some ρ > 1/2, we get

P

(
e
(
k̂o, k

)
> ε
)

≤ 2e−2m(1−pk)2
(
1−eε log(1−pk)

)2

(58)

= 2e
−2m(1−pk)2

⎛

⎝1−e
log
(
1−

√
ρ

1−pk

√
logm
m

)⎞

⎠

2

(59)

= 2e−2ρ logm = 2
m2ρ (60)

and from Borel-Cantelli Lemma [39], we conclude that

P

(
lim sup
k→∞

{
e
(
k̂o, k

)
≥ εk

})
= 0.

Proof of Theorem 3
From Theorem 2, we have

P

({
e
(
k̂o, k

)
≥ εk

})
≤ 2

m2ρ ,

and combining the hypothesism/ log(m) ≥ g(k), we get

P

({
e
(
k̂o, k

)
≥ εk

})
≤ 2

(g(k))2ρ(logm)2ρ
≤ 1

(g(k))2ρ

where the last inequality is obtained noticing that
logm ≥ 2 definitely as m → ∞. We distinguish now the
different cases

a) If ψ(k) → ∞ as k → ∞, then the function g is
defined as g(k) = �

(
e2ψ(k)) from which we get that

also g(k) → ∞
b) If ψ(k) = �(1) as k → ∞, then the function g is

defined as g(k) → ∞ for k → ∞ from which we get
that also g(k) → ∞;

c) If ψ(k) = o(1) as k → ∞, then the function g is
defined as g(k) = �

(
ψ(k)−2(1+ε)

)
, for any ε > 0

from which we get that also g(k) → ∞
Since in all cases (a), (b), and (c), the function g(k) → ∞,
we conclude P

({
e
(
k̂o, k

)
≥ εk

})
−→ 0 and the Eq. (22)

can be deduced.
We now prove that εk tends to zero as k → ∞. Notice

that being ψ(k) = o(k) as k → ∞

pk : = 1 − (1 − γ )k = 1 −
(
1 − ψ(k)

k

)k
∼ 1 − e−ψ(k)

(61)

as k → ∞. We have

εk =
log
(
1 −

√
ρ

1−pk

√
logm
m

)

log(1 − pk)
(62)

∼
log
(
1 − √

ρeψ(k)
√

logm
m

)

−ψ(k)
. (63)
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We have

a) If ψ(k) → ∞ then εk = O
(
ψ(k)−1);

b) If ψ(k) = �(1) then εk = O
(
g(k)−1/2);

c) If ψ(k) → 0 then εk = O (ψ(k)ε).

We conclude that in all three cases (a), (b), and (c) the
threshold εk

k→∞−→ 0.

Proof of Theorem 4
Let εk be defined as in (23). From Lemma 2, we have, for
some ρ > 1/2,

P

({
e
(
k̂o, k

)
≥ εk

})
≤ 2

m2ρ ≤ 1
k2ρ

(64)

where the last inequality is obtained noticing that

m ≥ max
{
k, min

{
� ∈ N :

�

log �
≥ g(k)

}}
≥ k (65)

definitely. Since 2ρ > 1, from the Borel-Cantelli lemma,
we deduce that

P

(
lim sup
k→∞

{
e
(
k̂o, k

)
≥ εk

})
= 0. (66)

Being log(m)/m ≥ g(k), then εk → 0 as k → ∞, and
we conclude that

P

(
lim sup
k→∞

e
(
k̂o, k

)
= 0
)

= 1. (67)

Proof of Theorem 5
In this section, we prove Theorem 5.

Lemma 1 Let A be chosen from the γ -sparsified
Gaussian ensemble uniformly at random and y be given in
(14), pk = 1 − (1 − γ )k, and ω = 1(Ax �= 0) then

E
[
Var(yi)|ωi = 1

] = ‖x‖2
pk

+ σ 2

Var
[
Var(yi)|ωi = 1

] = 1
pk

⎛

⎝
∑n

�=1 x4�
γ

+ 2
∑

�>j
x2�x

2
j − ‖x‖4

pk

⎞

⎠

Proof We recall yi =∑n
j=1 Aijxj +ηi with ηi ∼ N

(
0, σ 2).

As already noticed throughout the paper, the measure-
ment yi is a mixture of Gaussians with zero mean and
variance depending on the overlap between the support of
the ith row of A and supp(x). Suppose that S ⊆ supp(x)
is this overlap which happens with probability pS =

(1− γ )k−|S|γ |S|, then the variance of the Gaussian is given
by αS = ‖xS‖2

γ
+ σ 2. Standard computations lead to

E
[
Var(yi)|ωi = 1

] =
∑

S⊆supp(x):S �=∅

pS
pk

(‖xS‖2
γ

+ σ 2
)

(68)

=
∑

S⊆supp(x):S �=∅

(1 − γ )k−|S|γ |S|

pk

(‖xS‖2
γ

)
+ σ 2

(69)

= 1
pk

∑

S⊆supp(x):S �=∅
(1 − γ )k−|S|γ |S|−1

∑

�∈S
x2� + σ 2.

(70)

We notice that, fixed a component � ∈ supp(x), we have
exactly

(k−1
s−1
)
possible sets of cardinality s containing �, i.e.,

the number of selections of the remaining s − 1 objects
among k − 1 positions. This observation and the fact
x� = 0,∀� /∈ supp(x) leads to

E
[
Var(yi)|ωi = 1

] = 1
pk

n∑

�=1

k∑

s=1
(1 − γ )k−sγ s−1

(
k − 1
s − 1

)
x2� + σ 2 (71)

= 1
pk

n∑

�=1

k−1∑

s=0
(1 − γ )k−s−1γ s

(
k − 1
s

)
x2� + σ 2 (72)

= 1
pk

n∑

�=1
x2� + σ 2. (73)

We compute now

Var
[
Var(yi)|ωi = 1

]
(74)

=
∑

S⊆supp(x)

pS
pk

( ‖xS‖2
γ

+ σ 2
)2

−
( ‖x‖2

pk
+ σ 2

)2
(75)

=
∑

S⊆supp(x)

pS
pk

( ‖xS‖4
γ 2 + 2‖xS‖2σ 2

γ
+ σ 4

)
(76)

−
(

‖x‖4
p2k

+ 2
‖x‖2
pk

σ 2 + σ 4
)

(77)

=
∑

S⊆supp(x)

pS
pk

‖xS‖4
γ 2 − ‖x‖4

p2k
(78)

= 1
pk

⎛

⎝
∑

S⊆supp(x)
(1 − γ )k−|S|γ |S| ‖xS‖4

γ 2 − ‖x‖4
pk

⎞

⎠ (79)

=
∑

S⊆supp(x)

(1 − γ )k−|S|γ |S|−2

pk

∑

�∈S
x4� (80)

+
∑

S⊆supp(x)

(1 − γ )k−|S|γ |S|−2

pk

∑

��=j∈S
x2�x

2
j − ‖x‖4

p2k
(81)

As before we notice that, fixed the component �, we have
exactly

(k−1
s−1
)
possible sets of cardinality s containing �.

Analogously, the couple �, jwith � �= j is contained in
(k−2
s−2
)

possible sets of cardinality s. We thus have
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Var
[
Var(yi)|ωi = 1

]
(82)

=
k∑

s=1

(1 − γ )k−sγ s−2

pk

(
k − 1
s − 1

) n∑

�=1
x4� (83)

+
k∑

s=2

(1 − γ )k−sγ s−2

pk

(
k − 2
s − 2

)∑

i�=j
x2�x

2
j − ‖x‖4

p2k
.

(84)

We conclude

Var
[
Var(yi)|ωi = 1

]
(85)

= 1
pk

⎛

⎝
∑n

�=1 x4�
γ

+
∑

i�=j
x2�x

2
j − ‖x‖4

pk

⎞

⎠ (86)

Proof of Theorem 5
Let ψ(k) = γ k and consider the sequence of probability
density functions

fk(ζ ) =
∑

S⊆supp(x)
pSφ (ζ |αS)

f 2-GMM
k (ζ ) = (1 − pk)φ

(
ζ |σ 2)+ pkφ

(
ζ

∣∣∣σ 2 + ‖x‖2
pk

)
,

where αS = ‖xS‖2
γ

+ σ 2 and pS = (1 − γ )k−|S|γ |S|. Let
ᾱ = E

[
Var(yi)|ωi = 1

] = σ 2 + ‖x‖2
pk (see Lemma 1) and

denote S the set of possible subsets of supp(x), we thus
have

∥
∥∥fk − f 2-GMM

k

∥∥
∥
K

= sup
t∈R

∣∣∣∣∣∣

∑

S∈S\{∅}
pS
∫ t

−∞
φ (ζ |αS) − pk

∫ t

−∞
φ (ζ |ᾱ)

∣∣∣∣∣
∣

= pk
2

sup
t∈R

∣∣∣∣∣
∣

∑

S∈S\{∅}

pS
pk

erf
(

t√
2αS

)
− erf

(
t√
2ᾱ

)
∣
∣∣∣∣
∣

(87)

where erf is the Gauss error function. Let g : R2 → R be
the function

g(t,α) := erf
(

t√
2α

)
(88)

and by the Lagrange Theorem [40], we obtain

g(t,α) = g(t, ᾱ)+ ∂g
∂α

(t, ᾱ)(α−ᾱ)+ 1
2

∂2g
∂α2 (t, ξ)(α−ᾱ)2

(89)

with ξ(α) ∈ (min{ᾱ,α}, max{α, ᾱ}). It should be noticed
that the first-order term in Taylor’s expansion of g(t;α)

vanishes due to conditional mean result from Theorem 2

∑

S∈S\{∅}

pS
pk

g(t,αS) (90)

= g(t, ᾱ) + 1
2
∑

S∈S\{∅}

pS
pk

[
∂2g
∂α2 (t, ξ(αS))(αS − ᾱ)2

]

(91)

with ξ(αS) ∈ (min{ᾱ,α}, max{α, ᾱ}) ⊆ (λ2/γ , ‖x‖2/γ ).
Putting this expression into (87), we obtain

∥∥∥fk − f 2-GMM
k

∥∥∥
K

(92)

≤
∣∣∣∣∣∣

pk
4

∑

S∈S\{∅}

pS
pk

[
∂2g
∂α2 (t, ξ(αS))(αS − ᾱ)2

]
∣∣∣∣∣∣

(93)

≤ pk
4

∑

S∈S\{∅}

pS
pk

∣∣∣∣
∂2g
∂α2 (t, ξ(αS))

∣∣∣∣ (αS − ᾱ)2 (94)

≤ pk
4
Gmax

∑

S∈S\{∅}

pS
pk

(αS − ᾱ)2 (95)

where

Gmax = max
ξ∈[λ2/γ ,‖x‖2/γ ]

sup
t∈R

∣∣∣
∣
∂2g
∂α2 (t, ξ)

∣∣∣∣ (96)

and
∂2g
∂α2 (t, ξ) = 1

2
√
2π

e
−t2
2ξ

t
ξ5/2

(
3 − t2

ξ

)
(97)

Through standard computations, we see that the maxi-
mizing value is obtained for t =

√
(3 − √

6)ξ

Gmax = max
ξ∈[λ2/γ ,‖x‖2/γ ]

sup
t∈R

∣∣∣
∣

1
2
√
2π

e
−t2
2ξ

t
ξ5/2

(
3 − t2

ξ

)∣∣∣∣

(98)

= C max
ξ∈[λ2/γ ,‖x‖2/γ ]

ξ−2 = C
γ 2

λ4
. (99)

with

C =

√(
3 − √

6
)√

3

2
√

π
e

−(3−
√
6)

2 . (100)

Finally, considering
∑

S∈S\{∅}

pS
pk

(αS − ᾱ)2 = Var
[
Var(yi)|ωi = 1

]
(101)

and using Lemma 1, we conclude
∥∥∥fk − f 2-GMM

k

∥∥∥
K

(102)

≤ C′γ 2

λ4

⎛

⎝
∑n

i=1 x4i
γ

+
∑

i�=j
x2i x

2
j − ‖x‖4

pk

⎞

⎠ (103)

with C′ = C/4.
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Proof of Corollary 1
From Theorem 5, we have

∥∥∥fk − f 2-GMM
k

∥∥∥
K

≤ Cγ 2

λ4

⎛

⎝
∑n

i=1 x4i
γ

+
∑

i�=j
x2i x

2
j − ‖x‖4

pk

⎞

⎠

(104)

≤ C
(

λmax
λmin

)4
(ψ(k) + ψ(k)2). (105)

where λmin = mini |xi| and λmax = max{i: xi �=0} |xi|. The
assertion is proved with C′ = C (λmax/λmin)

4.
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