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Abstract—Fog computing enables a multitude of resource-
constrained end devices (e.g., sensors and actuators) to benefit
from the presence of fog nodes in their close vicinity, which can
provide the required computing and storage facilities instead of
relying on a distant Cloud infrastructure. However, guaranteeing
stable communication between end devices and fog nodes is
often not trivial. Indeed, in some application scenarios such as
mining operations, building sites, precision agriculture, and more,
communication occurs over Challenged Networks e.g., because
of the absence of a fixed and reliable network infrastructure.
This paper analyzes the applicability of Fog Computing in a real
Industrial Internet of Things (IIoT) environment, providing an
architecture that enables disruption-tolerant communication over
Challenged Networks and evaluating the achieved performance
on an open-source prototype implementation.

I. INTRODUCTION

Fog Computing is gaining momentum by extending the
Cloud paradigm to the edge of the network, thus enabling
end devices (e.g., IoT devices) to benefit from computing and
storage facilities in their close vicinity, through the deployment
of fog nodes at the edge of the network.

However, guaranteeing stable communication between end
devices and fog nodes is not trivial in Industrial IoT (IIoT)
scenarios, such as mining operations, building sites, precision
agriculture, and more, where end devices may be fleets of
heavy-duty vehicles, construction equipment, tractors or even
smart agriculture sensors, which may not always be connected
to a fixed and reliable network infrastructure. Usually, these
devices (i) generate data (e.g., sensor measurements) during
their operating cycle, that have to be sent to applications
running on fog nodes and (ii) need for periodic updates (e.g.,
firmware, work plans) from the Fog.

As shown in Figure 1, operations are usually performed
on challenging environments, where communication occurs
over small-range wireless channels (Wireless Mesh Network)
and the network infrastructure presents the characteristics of
Challenged Networks; therefore, end devices may spend long
periods (even their entire operating cycle) in remote locations,
without the possibility to directly communicate with a fog
node, not even to the Cloud.

Operating in these environments, often end devices are able
to delivery generated data and receive updates only when
they return close to a fog node, e.g., at the end of their
operating cycle. Although in this scenario a real-time transfer

Fig. 1: Example of a dynamically evolving Wireless Mesh Network connecting
multiple construction devices.

of information is not strictly needed, being able to constantly
propagate data and receive updates with a certain delay bound
would bring considerable advantages, such as (i) fewer storage
resources needed on end devices to store data; (ii) fog applica-
tions may constantly perform analytic operations on new data;
(iii) vehicles may operate for a significant longer time, even
days, without going back to their base (i.e., near a fog node).

In this paper we investigate the applicability of Fog Comput-
ing in a real IIoT environment, proposing an architecture that
enables communication between end devices and fog nodes
without requiring a fixed network infrastructure. Furthermore,
fog applications running on end devices (e.g., data producers)
are kept unchanged, independently from the actual network
connectivity. This potentially enables an entire class of exist-
ing applications to operate also on unconventional scenarios
such as challenged networks. To this end, we focus a smart
agriculture scenario, where a fleet of machineries sends data
and receives updates to/from the fog nodes over the MQTT
publish/subscribe standard protocol [1], commonly adopted by
widespread IIoT applications. In particular, our contribution
are as follows.
Architectural Contribution. We propose a communication
architecture that enables the delivery of data originally trans-
mitted with the MQTT protocol over possible challenged
networks operating between end devices and fog nodes; the
propagation exploits occasional contacts occurring between
machineries during their movements to establish opportunistic
connections and exchange data; in this way, data is conveyed
toward the fog node by means of the store-carry-and-forward



paradigm implemented by a Delay/Disruption Tolerant Net-
works (DTN). Our architecture also ensures transparency with
respect to existing IIoT applications that make use of MQTT
APIs, which do not need to be modified.
System Contribution. We present the open source proof-
of-concept implementation [2] of a system that exploits our
communication architecture.
Experimental Contribution. Performance of our approach
has been evaluated through measurements over both a phys-
ical prototype and a virtualized system, finding encouraging
results and demonstrating advantages and applicability of this
paradigm in IIoT environments.

The reminder of this paper is organized as follows. Next
section highlights our contribution compared to the existing
work. Section III presents the proposed communication ar-
chitecture, while our prototype implementation is detailed in
Section IV. Section V presents our evaluation results and
Section VI concludes the paper.

II. RELATED WORK

Although the applicability of Fog Computing in IoT scenar-
ios has deserved a considerable amount of attention [3], there
are still many open research topics, particularly with respect to
industrial use cases [4], [5]. The state-of-the-art IoT in indus-
tries is summarized in [6], where authors describe key applica-
tions and identify the following as main technical challenges:
service discovery methods and object naming services [4],
[5], scalability on the number of connected things [5]; het-
erogeneity of underlying communication protocols [7]; lack of
architectures for sensor networks communication, resilience to
physical network disruption, and node peering [8].

The relevance of Fog Computing in IIoT is addressed
in some recent works [9], [10]. In [9] authors identifies
the main IIoT challenges, demonstrating Fog Computing as
a key enabling technology to address them, also detailing
the main infrastructure components. [10] proposes a Fog
Computing-based architecture to make information become
timely accessible anywhere in industrial automation systems.
However, just few works on Fog Computing/IoT address the
problem of connectivity on challenged networks. To this end,
[11], [12] propose to extend IoT connectivity over disrupted
environments with the help of the DTN approach. Particularly,
[11] provides an implementation of Constrained Application
Protocol (CoAP) over DTN to enable IoT devices based on
CoAP to operate on a disrupted environment, while [12]
analyzes the behavior of MQTT for Sensor Networks (MQTT-
SN) over a DTN implementation.

This paper extends the existing work with a real experi-
mental setup, focusing (i) on transparency toward existing IIoT
applications regarding communication protocols APIs, and (ii)
definition of the actual physical network setup.

III. COMMUNICATION SYSTEM ARCHITECTURE

This section presents a communication system architecture
that enables the MQTT data propagation between end devices
and fog nodes over challenged networks.

Data 
Producer

MQTT 
Broker

MQTT/DTN 
Device Gateway

MQTT/DTN
Fog Gateway

DTN (Delay/Disruption Tolerant Network)

Fig. 2: Overall communication architecture: data is wrapped in DTN bundles
and propagated through the store-carry-and-forward paradigm.

A. Overall Approach

Our approach models both fog nodes and end devices (i.e.,
operating machinery) as nodes of a DTN. Thus, the store-
carry-and-forward paradigm, exploits the continuous move-
ment of the operating machinery to enable data flowing toward
the destination. Data is delivered by the DTN protocol, which
extends the existing network stack (e.g. TCP/IP, Bluetooth,
etc.) with a bundle protocol layer that encapsulates application
messages; these are delivered hop-by-hop to another DTN
node based on tunable forwarding behaviors, such as epidemic
(data is replicated on all encountered nodes), prophet (data
is forwarded only in the direction that looks the best), and
more [13]. Nodes of the DTN are identified by an End-
point Identifier (EID) (e.g., dtn://device1), while each
application is identified by extending the local EID with an
application token (e.g., dtn://device1/app1).

An high level view of our communication architecture is
depicted in Figure 2; in particular, it shows the communication
between an originating vehicle (on the left) and the target Fog
Computing node (on the right), which hosts the MQTT Broker.
In order to deliver produced data to the MQTT Broker, each
vehicle sends a data bundle to other peers through a small-
range wireless connection. This process is repeated by the
second vehicle when it detects other opportunistic connections,
until the data carrier enters in range of the fog node, hence
the data bundle is delivered to the destination (together with
other bundles possibly collected in the meanwhile).

As shown in the figure, in order to preserve transparency
on end applications, namely to allow them to interact with
the MQTT primitives without being aware of the underlying
(not connected) network, each node features a gateway that
conveys MQTT messages over the DTN.

B. General Architecture

We describe our system architecture distinguishing between
upstream communication (Device-to-Fog) and downstream
communication (Fog-To-Device).
Upstream communication. Sensors operating on end devices
produce information that needs to be collected and routed
toward fog nodes, located at the edge of the network.

Figure 3 details both the architecture of an end device that
produces and publishes data and the architecture of the fog
node where a broker receives published data. Both devices
feature a DTN Daemon that extends the network stack with
the support for the DTN bundle protocol and a Convergence
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Fig. 3: Upstream communication system overview.

Layer Adapter that enables DTN communication over the TCP
stack (TCP-CLA). Each end device hosts an MQTT Publisher,
i.e., the application that generates data through equipped
sensors, and an MQTT/DTN Device Gateway. The role of the
latter is twofold: it (i) emulates a local MQTT Broker thus
allowing the application to transparently connect and publish
data, apparently relying only to the MQTT protocol, and (ii)
encapsulates received messages into bundles with destination
dtn://fog-node/broker, which are delivered to the
DTN Daemon. Bundles are then pushed on the output queue,
thus making them ready to be forwarded to other mobile
devices. On the other hand, the fog node hosts the data re-
ceiver, i.e., a MQTT/DTN Fog Gateway and an MQTT Broker.
Similarly to the counterpart on the end device, the gateway
acts as bridge between the MQTT protocol and the DTN stack:
it (i) registers the application token, namely “broker”, on the
DTN Daemon in order to “extract” all bundles with destination
dtn://fog-node/broker from the DTN and (ii) sends
data received in this way to the the broker, by performing an
MQTT publish that preserves the original MQTT payload.

This approach introduces an abstraction layer that enables
transparency on applications: the producer continues to gener-
ate data using the usual MQTT protocol, without being aware
of how messages are propagated toward the broker. The only
required change on end devices is to configure the broker
address as localhost, which could even be avoided by
running a TCP transparent proxy on the end device itself.
Downstream communication. In this case, data flows from
the MQTT Broker to MQTT Subscribers on the end devices.
Messages may be either data generated by other end devices
(and collected through upstream communication) or sent from
Fog/Cloud control applications (e.g., firmware updates). Note
that downstream messages may have multiple destinations, as
there may be more than one subscriber on the same topic (e.g.,
firmware update on a specific model of end device).

Despite in this case the main data stream goes from the
fog node to the end devices, some information are needed
to travel toward the fog node (namely, MQTT connection
and subscribe messages sent by end devices applications). For
this, a mechanism analogous to the upstream communication
method described so far is used, enabling the MQTT/DTN
Fog Gateway to know which are the topics subscribed for
each device, so that it can act as a client towards the broker,
hence performing a subscribe for all topics of interest.

As shown in Figure 4, in this case the role of the two
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Fig. 4: Downstream communication system overview.

gateways is inverted. On the fog node, the MQTT/DTN Fog
Gateway receives publish messages from the broker; for each
message received in this way, it potentially pushes multiple
bundles on the DTN (Figure 4, step 6), one for each end device
destination (i.e., all the subscribers). On each end device,
an MQTT/DTN Device Gateway emulates the broker, thus
allowing the final application to subscribe on desired topics
even when a connection with the fog node is not available;
whenever the gateway pulls a bundle out from the DTN,
the enclosed MQTT message is delivered to the subscriber
application.

Again, both the application on board of the end device
and the broker operate on an abstracted MQTT layer that
enables transparency and allows them to send MQTT protocol
messages regardless of the presence of a network connection.

C. Proof-of-concept: Telemetry System

The above upstream communication architecture has been
used to design a telemetry system addressing a real use case
scenario: a fleet of vehicles are equipped with sensors that,
periodically, measure temperature, humidity and acidity of the
ground (thus we call them Sensing End Devices); the stream
of data generated this way is collected by a nearby fog node,
where some applications perform preliminary analytic before
to send aggregated data to the Cloud.

The architecture of our PoC telemetry system is depicted in
Figure 5. A fog node is located in a particular point of interest
(e.g., base station) and is equipped with a WiFi access point;
each end device is able to communicate directly with the fog
node when his location is within the range of coverage of the
WiFi network. In this case, the end device delivers to the final
destination (i.e., the MQTT Broker on the fog node) all the
bundles collected through the DTN layer. Two fog applications
are attached to the MQTT Broker and consume incoming data:
(i) a monitoring application, which enables local visualization
of raw data, and (ii) a filtering and aggregation application,
which performs preliminary analytics on raw data and pub-
lishes cleaned data on a different MQTT queue. Similarly,
but with a larger granularity, the Cloud collects cleaned data
from all the fog nodes, in order to aggregate and analyze
measurement from multiple locations and enable monitoring,
work planning and production optimization.

IV. PROTOTYPE IMPLEMENTATION

This section presents a prototype of the above Telemetry
System, which is based on a fog node provided by Nebbiolo
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Fig. 5: Overview of the telemetry system realized as a Proof-Of-Concept of
the proposed communication architecture.

Technologies [14] and a number of Raspberry Pi as sensing
end devices, plus a remote virtual machine in the Cloud.

A. Sensing End Device

Each sensing end device is a Raspberry Pi (Model B+, with
512 MB of RAM), equipped with a Raspbian GNU/Linux
9.1, kernel 4.9.41 and an additional WiFi dongle based on
the Realtek RTL8188EU; the MQTT protocol implementation
is based on the Paho MQTT project [15].
Network Configuration. Opportunistic wireless communi-
cations between two close end devices has been performed
through the WiFi technology in IBSS (a.k.a. Ad-Hoc) mode.

To enable the Ad-Hoc connection on the network adapter,
the Realtek driver available for the Raspberry Pi have been
slightly modified, due to the presence of some bugs on the
implementation of the IBSS protocol (bug fixes have been
release on a forked repository, available at [16]). In particular,
the bugs related to the IBSS merge algorithm, which addresses
the case when two devices configured in IBSS mode on the
same network are not able to communicate if they become
reciprocally visible after a long period of remoteness. This
happens because the IBSS mode operates through BSSID
negotiation among nodes of the same Ad-Hoc network; when
some devices join the network after a previous negotiation, all
peers need to realign and chose a common BSSID. The WiFi
Direct technology was also considered in place of the WiFi
Ad-Hoc mode, but it was dropped because of the necessity to
define master (formally, group owner) and slave roles, which
is not straightforward when two arbitrary end devices connect
together; in addition, it required also a DHCP server on the
master, which features a very similar problem.

In our setup, the wireless interface of each end device is
configured in concurrent mode, i.e., it exports to the OS two
virtual interfaces. One is used for the Ad-Hoc communication
among end devices and binds only to the IPv6 protocol stack,
so that device-to-device communication exploits IPv6 Link
Local addresses without the necessity of a DHCP server, which
would be needed instead in case of the IPv4 protocol. The
second interface is used for the connection with the fog node
access point and it is configured with an IPv4 address obtained
from the DHCP server running on the fog node itself. For the
sake of precision, the second interface was needed because
of the unavailability of the drivers to enable the WiFi ad-hoc
mode on the fog node as well.
DTN Configuration. Our DTN network runs on the IBR-
DTN [17] implementation of the Bundle Protocol. The DTN

Daemon exports a socket-based interface to applications, with
multiple Convergence Layer Adapters (CLAs) supporting var-
ious protocols (TCP, TLS, etc.). Moreover, it uses the Internet
Protocol Neighbor Discovery (IPND) to identify nearby peers
and perform the binding process. The original IBR-DTN im-
plementation included a bug affecting IPND while communi-
cating over IPv6; our fixes to the problem have been accepted
by the maintainer and included in the official repository.

On each device, the DTN Daemon has been configured
with the EID equal to the host name. Moreover, we selected
an epidemic routing strategy; hence, an end device always
attempts to transfer carried bundle to any connected peer, no
matter the direction where the latter is moving. Flooding is
stopped when the device connects with the final destination.
Devices store carried bundles in a local SQLite database.
Inter-Devices Connection. After the physical connection be-
tween two devices has been established (through WiFi Ad-
Hoc), the DTN Daemon on each device detects the presence of
a new neighbor, through IPND beacons sent every second. At
this point, the two DTN Daemons establish a TCP connection
and start to exchange bundles through the TCP-CLA over
IPv6. The connection with the fog node follows a similar
workflow, except that the DTN Daemon operates over the IPv4
stack, thus it waits for an IP address from the DHCP server
before exchanging beacons with the IPND protocol.
MQTT/DTN Device Gateway. In our prototype, the MQT-
T/DTN Device Gateway is a Python module that (i) emulates
an MQTT Broker providing a transparent interface to publish
messages for sensing applications, and (ii) interacts with the
API exported by the IBR-DTN Daemon to create bundles and
push them on the output DTN queue. The EID of the fog node,
statically configured on each end device, is used as destination.

B. Fog Node

The fog node is a Nebbiolo NFN-300, with a single compute
node fogLet NFL-1000-C [18]. It features an Intel Core-i5
4402E and runs the Nebbiolo Fog Operating System [19],
which provides a KVM-based hypervisor that hosts vari-
ous VMs, each one dedicated to different operations (e.g.,
administration, Cloud interaction, applications), and Docker
container support. In our setup we deployed a Linux virtual
machine (OT1VM) that hosts the needed architecture modules
as Docker containers.
MQTT Broker. RabbitMQ has been used as MQTT server
(a.k.a. broker) on the fog node, executed in a Docker container
on the OT1VM and configured so that all messages received
from sensing end devices (i.e., with topic sensors-data)
are duplicated and pushed on two message queues (namely,
data-monitoring and data-aggregation). These
queues are consumed respectively by a monitoring software
(we used the ELK stack [20] for this purpose) and an applica-
tion that performs filtering and aggregation in order to prepare
data for the Cloud.
DTN Configuration. The IBR-DTN Daemon has been de-
ployed on the Nebbiolo fog node inside a Docker container and
configured in the same way as described for the end devices



(Section IV-A). In this case we configured a single TCP-CLA,
i.e., the one for the IPv4 stack associated to the adapter directly
connected to the WiFi access point (bottom left interface of
the fog node in Figure 5). In this case, the EID has been set
to fog-node.
MQTT/DTN Fog Gateway. The MQTT/DTN Device Gate-
way is deployed as a Docker container as well; similarly
to the counterpart described for the sensing end devices, it
has been implemented as a Python application. This module
registers the EID dtn://fog-node/broker on the IBR-
DTN Daemon, so that it is notified whenever a bundle with
that destination is received. Notifications are extracted from
a queue and managed performing a pull operation through
the IBR-DTN APIs, thus fetching the new received bundle.
The Gateway also includes an MQTT client (based on Paho
MQTT), so that messages received through DTN bundles are
published on the corresponding queue of the RabbitMQ broker
(in our case, sensors-data).

C. Cloud

The Cloud component of our telemetry system prototype
has been implemented on a remote machine that, similarly to
the Fog counterpart, runs all software modules on separated
Docker containers: (i) an instance of the RabbitMQ Broker
that features three queues and collects overall data about
temperature, humidity and acidity of the ground, sent by the
“filtering and aggregation” applications running on each fog
node; (ii) an higher level ELK stack-based application that
consumes messages from the three queues and enables overall
data monitoring and daily aggregation.

V. EXPERIMENTAL RESULTS

The proposal communication architecture has been validated
through measurements over our prototype implementation,
with tests both on physical devices and on a system simulated
through virtualization technologies.

A. Physical devices connection

We performed some tests using physical sensing end devices
in order to measure the time needed by the DTN layer to
complete the neighbor discovery and bind over WiFi during
an opportunistic connection between two devices.

The test-base consists of two Raspberry Pi B+ v1.2 (con-
figured how described in Section IV). The installed version of
IBR-DTN is the 1.0.1. Packets exchanged between the devices
during the discovery and binding process have been captured
on one of the devices (device 1), while the opportunistic
connection between the devices has been emulated by isolating
the other one (device 2) in a Faraday cage: the negotiation
among them begins when the cage is removed.

The analysis of packet captures over 16 samples test shows
that, on average, the time needed by the two devices to be
ready to exchange bundles is of 0.8s, with an uncertainty
of 0.4s. This time lapse covers both the establishment of a
communication link and the binding at DTN layer.

We now analyze the captures of a single reference test.
Both devices continuously send beacon frames to adver-
tise their IBSS network. After the first beacon frame from
device 2 (namely, the one previously isolated) is received
by device 1, they perform the IBSS merge process to
establish a physical link, that allows them to receive the IPND
beacons used to advertise themselves as DTN nodes. Note that,
in our setup, IPND beacons are sent every one second, thus, in
the worst case, devices have to wait one second to recognize
the presence of a DTN neighbor after the IBSS connection has
been established. In our measurement, the first IPND beacon
coming from device 2 has been received 0.27s after the
first IBSS beacon frame. Thus the IBSS merge algorithm took
even less time. in that particular case, we captured the IPND
beacon sent from Device 1 after additional 0.61s, for a total
time of 0.88s.

B. System simulation

To evaluate performance on a real use case, i.e., when
a fleet of end devices exchange generated data through op-
portunistic connections, we created a simulation environment
(released at [2]) by virtualizing the Sensing Devices with
Docker containers. Communication occurs through a virtual
switch whose connection are dynamically reconfigured with
new OpenFlow rules injected by our simulator, thus mim-
icking vehicle movements over time and their opportunistic
connections. The communication occurs over Open vSwitch
v2.6.0, while containers are deployed on Docker v17 running
on a VM with 16 CPU cores, 12GB of RAM, Linux kernel
4.4.0-96 (the host machine features two octa-core Intel Xeon
E5-2660 @ 2.2 GHz CPUs).
Simulation Parameters. Each simulation lasts 30 minutes,
with 15 devices randomly connected to each other. The
duration of each opportunistic connection have been varied
among 1, 2, 4 and 6 seconds, while the probability of inter-
device connections among 10%, 25% and 40%. The purpose
of varying these parameters was to identify the minimum
requirements in terms of inter-device connections to make our
system work properly. We also varied the lifetime of bundles
in the DTN among 1, 5 and 10 minutes. In each simulation,
each device generates new measurement data every 5 seconds,
while its probability to be connected with the fog node is 10%.
For each configuration we ran 10 simulation, collecting mean,
max and min values.
Delivery Rate and Time. Figure 6a shows the percentage of
bundles that, at the end of each simulation, have successfully
been delivered to the destination. The bundle lifetime has been
set to 5 minutes. Results show that, when the inter-device
connections last only 1 second, an high probability of meeting
other peers leads to, counter intuitively, worse performance.
This is because, since devices do not have the time to exchange
large data, more connections just increase the number of
duplicated bundles in the network. In all the other cases,
almost all bundles (more than 98%) have been successfully
delivered. Increasing the duration or the probability of inter-
devices connections does not visibly improve performance.
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Fig. 6: (ab) Bundle delivery rate (a) and average delivery time (b) varying the probability of inter-device connections; values are shown comparing different
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Fig. 7: (ab) Average number of bundle stored on each device during the simulation for different probability of inter-device connections, with a bundle lifetime
of 5 minutes (a) and 10 minutes (b). (c) Storage overhead over simulation time compared to distinct bundles. (d) Average storage overhead varying the
probability of inter-device connections; values are shown comparing different bundle lifetimes (1, 5 and 10 minutes).

Figure 6b shows the average delivery time of all bundles.
In all configurations, an higher connection duration gives a
slightly better average delivery time. Values are noticeably
worse with connections of 1 second, and, also in this case,
degrade increasing the connection probability.
Delivery Distribution. Figures 6c and 6d show the distri-
bution of bundles successfully delivered to the destination
over time, respectively for different connection probabilities
(with a connection duration set to 6s) and for different con-
nection duration (with a connection probability set to 25%).
In particular, Figure 6c shows that more than one third of
bundles are delivered in less than 30s, while ≈95% reached
the destination in less than 3 minutes. In this case an higher
connection probability noticeably increases the percentage of
bundles delivered in the first 30s, while leaving the long term
result unchanged. Figure 6d shows that shorter connections
give a slightly smaller percentage of bundles delivered in the
first 30s, but a similar overall behavior (≈95% of bundles
are delivered in less than 3 minutes), except for the case with
connections of just 1 second, where the delivery time is visibly
more distributed.

In general, results depicted in all graphs of Figure 6 suggest
that our approach is suitable in scenarios where inter-devices
opportunistic connections during at least 2 seconds can be
established with a probability of 10% (or higher) over time,
and applications tolerate (i) a latency of, at most, 3 minutes
to receive the 95% of total data and (ii) a data loss inferior to
2%, which is perfectly reasonable for a telemetry system.
Storage Requirements. Since we used an epidemic routing
algorithm (namely, a device sends a copy of every carried
bundle each time an opportunistic connection is established),
we performed some measurements to evaluate the storage
capacity required on each end device.

Figure 7a shows the average number of bundles stored on

each node during the simulation, for different connection prob-
abilities and the bundle lifetime set to 5 minutes. If end devices
establish connections with a probability of 10%, the number of
bundles per device stabilizes between ≈100 and ≈250 after the
initial transient. As expected, higher connection probabilities
lead to a larger average amount of carried bundles. However, in
all cases the amount of bundles does not increase indefinitely
over time (when fully operational, it starts to ranges between
two values); this behavior means that, on average, after a
certain time the network is able to deliver bundles at the same
rate they are generated, thus keeping the storage occupation
bounded.

Figure 7b evaluates, instead, the scenario when the bundle
lifetime is 10 minutes. Even if, as we know from Figure 6c,
more than the 95% of bundles are delivered in less than 3
minutes, increasing the bundle lifetime from 5 to 10 minutes
significantly increases the average number of bundles stored
on each device (e.g., this time the case with a connection prob-
ability of 10%, ranges between ≈100 and ≈300); indeed, even
if a copy of a distinct bundle is delivered to the destination,
other devices will continue to exchange, and thus duplicate,
that bundle until its expiration time. Moreover, in this case the
system needs more time to stabilize within a given range.

In general, since the size of each bundle exchanged in our
use case is ≈260 bytes, results point out that the storage
requirement on end devices is very low (less than 150 KB).
Storage Overhead. We compared the total number of bundles
in the network over time with the number of distinct ones
(Figure 7c); results refer to a configuration with lifetime of 5
minutes and connection probability of 25%. The graph shows
that, while the number of distinct bundles converges to an
(almost) constant value (≈700), the actual number of replicas
carried on the DTN ranges between ≈2000 and ≈4500 (the
number of bundles on the network ranges between 3 and 7



times higher than the number of distinct ones).
Figure 7d compares the average storage overhead for dif-

ferent inter-device connection probabilities and for different
bundle lifetimes (1, 5 and 10 minutes). The graph shows that
the ratio between total replicas and distinct bundles increases
with the connection probability, for any bundle lifetime. On the
other hand, we notice a significant difference on the number of
bundles (both distinct and replicas) when lifetime is increased
from 1 to 5 minutes, while the same does not happen bringing
the lifetime to 10 minutes. Indeed, since on average only
≈55% of bundles are delivered in less than 1 minute after their
generation (as seen in Figure 6c), such a short lifetime makes
devices to discard a significant amount of still valid (i.e., not
delivered) bundles. This is not the case with a lifetime of 5 and
10 minutes, because almost all packets (≈95%) are delivered
in less than 3 minutes, as shown in Figure 6c. Therefore, a
lifetime of 5 minutes is reasonable in real setups.
Latency Overhead. Finally, we measured the latency over-
head introduced by our DTN-based communication infrastruc-
ture, through some comparisons with the plain TCP/IP routing
in case of a static and fully connected network topology,
namely, it is possible to establish a stable (possibly multi-hop)
connection between source and destination. Measured latency
values are shown in Table I.

TABLE I: End-to-end average latency introduced by our infrastruc-
ture, compared to a plain TCP/IP connection.

TCP/IP DTN stack

single-hop 0.551 ms 7.810 ms
multi-hop 3.556 ms 52.675 ms

The table shows latency both (i) in a single hop commu-
nication, namely there are no intermediary devices between
source and destination, and (ii) in a communication with seven
intermediate devices. In general, the DTN bundle protocol
introduces a significant latency overhead (additional 7 ms
on the first hop). Even if this may constitute a limitation
on hard real-time applications, it certainly does not affect
delay-permissive applications such as a telemetry system, or
firmware updates propagation, which instead benefit of the
disruption-tolerant connectivity provided by our approach and
are enabled to operate even over challenged environments.

VI. CONCLUSION

This paper presents a possible approach to Fog Computing
in challenged environments, with focus on a real Industry IoT
use case. In particular, this work proposes an architecture that
enables a fleet of machineries to send data and receive updates
to/from fog nodes over the MQTT protocol, largely adopted
by widespread IIoT applications. Moreover, the proposed
approach aims at keeping applications agnostic toward the
type of network connectivity, thus potentially enabling existing
applications to operate on an unconventional scenario such as
challenged networks. To enable data propagation over such
networks, our communication architecture makes use of the

store-carry-and-forward paradigm, typical of Delay/Disrup-
tion Tolerant Networks (DTN). Furthermore, an open-source
prototype of the proposed architecture have been created,
which has allowed us to present also relevant implementation
and configuration details.

Finally, performance of our communication architecture
has been evaluated through accurate measurements according
to several dimensions; results confirm the advantages and
applicability of this paradigm in IIoT environments.
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