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Abstract—Car sharing is a popular means of transport in
smart cities. The free floating paradigm lets the customers
autonomously pick and drop available cars freely, within city
limits. In this work we study the different policies when designing
an electric Free Floating Car Sharing (FFCS) system. This system
has the need to guarantee battery charge, a time-consuming
operation, for which charging stations availability becomes a key
factor for the sustainability of the whole system.

We harvest the data of an already operative FFCS provider,
and extract information about actual users’ driving patterns. We
implement a trace driven simulator to replay collected users’
trips and simulate car batteries consumption for different design
parameters. In this work, we limit the study to a single city, Turin
(Italy), where we leverage actual trips registered over 2 months.
We analyse and discuss several system design alternatives: the
number of charging stations, their placement, and when to force
users to return cars for charge. We identify regimes where cars
never discharge and users can freely drop cars anywhere, albeit
they are rarely rerouted to a charging station, possibly located in
a nearby area to their original destination. Surprisingly, our data
shows that even few charging stations (15 or more, i.e., 6% of
city areas) guarantees the system to work almost autonomously,
making thus possible free floating car sharing a feasible solution
with electric cars.

Index Terms—car sharing, electric vehicle, data driven opti-
mization, charging station, free floating

I. INTRODUCTION

Due to fast growth of urbanization, nowadays mobility
and pollution are very important challenges for our society.
Regulators and policy makers try to push the usage of more
eco-sustainable solutions for transportation in cities. Hybrid
or electric cars are considered among the best options to
replace combustion engine cars. Along with the usage of
public transport, the sharing mobility such as bike sharing,
car pooling and car sharing, is seen as an important means
to reduce traffic and pollution. In this work, we focus on the
design of an electric car sharing system, where customers rent
a car for moving within the city for a short period of time,
usually for less than one hour. Among the possible car sharing
solutions, a very interesting one is the so called Free Floating
Car Sharing (FFCS) system. The peculiarity of this system is
that customers are free to pick and return the car wherever
they like, inside a geo-fenced area.

The design of a system based on electric cars is more
challenging compared to an internal combustion based one.
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Indeed, the time needed to perform a complete charge is not
comparable to refuelling time, and can grow up to several
hours [1]]. As such, electric car sharing systems require to setup
an infrastructure of charging stations, whose design requires
[2[], [3], [4]l. Two are the main problems that need to be faced:
i) the charging station placement problem and ii) the return
policy the users have to follow at the end of the rental, i.e.,
in which cases forcing the user to return the car to a charging
station.

In this paper we face both the above problems. In the
past some works have proposed solutions for the adoption of
electric FFCS [J5]], [6] and for a smart placement of charging
stations [2[]-[4], [[7]]. Here we are the first to take a data
driven approach for dimensioning an electric FFCS system
and analysing customer experience. We collect real data from
the actual usage pattern of the FFCS system currently in use
in the city of Turin (Italy), which is based on traditional
combustion engines [8[]. By observing the actual rentals and
parking durations, and the origin and destination of hundred
thousands trips, we study and compare the performance of
a hypothetical equivalent car sharing system based on electric
vehicles. We first compare different charging station placement
policies, including simple random solutions and more ad-
vanced algorithms that exploit the knowledge of parking areas
and duration. Results show that placing the charging stations in
those areas where cars stay parked for long periods performs
similarly to a random placement. Instead, placing charging
station in those areas where cars are frequently parked even
for short times guarantees much better performance.

Second, we compare three different return policies and we
observe how they impact on the system cost, in term of number
of charging stations, and on the user satisfaction, in term of
number of times users are forced to drive to a charging station
and the cost for additional distance. Opportunistic free floating
solutions, i.e., charge only when there is an available nearby
charging pole, requires more than twice as much charging
stations compared to policies that force to charge when the
battery level gets below a threshold.

We run extensive simulations using data of real rentals we
collected over 2 months. Results show that it is sufficient to
cover at least 6% of zones with charging stations provided
smart return policies are adopted. This corresponds to install
only 15 charging stations in the whole city of Turin, which
has 1 million inhabitants, to sustain a free floating electric car



sharing system like the one currently in use with 300 vehicles.

We believe that our data driven approach offers novel
opportunities to guide the design of electric car sharing system,
where the realistic figures provided by data allow finding
solutions that meet both user requirements and limit system
costs.

II. RELATED WORK

The diffusion of the free floating approach to car sharing
leaded to an increasing attention by many researchers, with
analyses of these systems and their extension to electrical
vehicles. The studies performed in 2011 by Finkorn and Miiller
[9, [10] are the first attempts to analyse benefits of FFCS
for the population. Their results on users’ behaviour, like
travelled distances, are similar to ours. Later works [[11]]—[13]
also collected data and analysed the mobility pattern of users
and differences among cities.

The introduction of electrical vehicles for private and public
transportation brought the problem of placing the electric
charging stations. Authors in [[7] show the benefits of placing
charging stations with different capacity according to the
user parking duration. Few data driven studies address the
charging station placement, either by respectively minimizing
cost of installation, power loss and maintenance [2f], [4], or by
minimizing the users’ walked distances necessary to reach a
charging pole [3].

After a survey among FFCS users in Ulm (Germany),
authors of [5]] investigated the positive influence and feasibility
of an electric FFCS systems. Lastly, authors of [6] studied the
relocation of electric cars in FFCS, since few charging stations
may be blocked by fully charged vehicles.

In our work we are the first to take a data driven approach
for dimensioning the electric FFCS system by analysing and
optimizing different metrics impacting customer experience.

III. DATA COLLECTION AND CHARACTERIZATION

Our goal is to solve the design of an electric FFCS system,
and to run accurate performance evaluation. For this, we
rely on actual data that we collect by harvesting available
information on the web. Here we first describe how we collect
data and then how we characterize the system utilization. We
focus on those metrics that impact the design of an equivalent
system based on electric cars, i.e., driving distance and parking
habits.

A. Data collection and filtering

FFCS systems like Car2Go, DriveNow or GoGet, consist
of a web backend which allows users to rent a car using,
e.g., a web interface, or a smartphone. These backends expose
information, which can be harvested to extract indicators
about system usage, and user habits. For instance, Car2Go
offers APIs for downloading data of the system statusﬂ We
use these APIs to obtain and collect data. First, we get the

Icar2goAPI, https://www.car2go.com/api/tou.htm, service subject to ap-
proval by Car2Go. Approval granted in September 2016, service disconnected
at January 2018.

service operative area limits, i.e., the perimeters of the parking
areas in the city we are studying, that remains constant over
several months. Second, we track locations of the cars that
are currently available by taking a snapshot every minute.
In each snapshot, we get those cars that are parked in the
operative limits and without any ongoing booking. For each
car, we collect (i) the plates, used as car identifiers, (ii) the
geo-positions, obtained from in-car GPS device, and (iii) the
fuel levels, obtained from the car electronic unit, with precision
of 1% of tank capacity.

We developed a software, called UMAP [8]], capable to
reconstruct, for each car, parking and booking periods. A
parking event is characterized by the time interval (i.e., all
consecutive snapshots) during which a car is available on
the online system. A booking event is characterized by the
time between two parking periods during which a customer is
possibly using the car to move from one point to another.

We started collecting data with UMAP in December 2016,
and we have collected more than a year of data in all the
22 cities Car2Go offers service. In this work, we focus on 8
weeks between September and November 2017, and consider
the city of Turin only. We collected about 190000 bookings
from the 300 cars of the Car2Go fleet.

Next, we filter this data to obtain actual rentals. Recall that,
the Car2Go system allows users to reserve a car. In case the
user cancels the reservation, the car becomes available again,
showing up as a booking in our dataset. In addiction, some
bookings last for several days or weeks. These may be due
to a car going offline, or under repair. At last, the backend
system may sometimes fail, generating spurious bookings.
UMAP filters these artefacts to obtain actual rentals: starting
and ending position must be at least 700 m far apart, booking
duration must be greater than 3 minutes, and shorter than 1
hour. After filtering, our dataset contains than 125000 actual
rentals.

Given that we only know the starting and ending position
of a rental, we need to estimate the possible driving path
and length. Euclidean distance between starting and ending
coordinates of the trip represents a lower bound of the real
driven distance, since cars have to follow the topology of the
city and traffic laws. To estimate the real driving distance, we
apply a corrective factor, that we obtain again from data. In
more details, given a rental, we use Google Maps API to
get driving directions. Then, we compute the ratio between
the returned driving distance, and the euclidean distance. We
repeated this for about 10000 trips, observing the distribution
of the ratio which ranges between 1 and 2, with a median
value of 1.4. We use this value as corrective factor to obtain the
driving distance from the euclidean distance. We further verify
this results by analysing the data about fuel consumption.
We estimate an average consumption of 11.7 litres every 100
kilometres, which is clearly an overestimate in city driving.
By multiplying by 1.4, we have a consumption pretty closer

Zhttps://developers.google.com/maps/documentation/distance- matrix/,
freely available for a limited number of queries.
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Fig. 1. CDF of travelled distances. X-axis is logarithmic.
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Fig. 2. CDF of parking durations. X-axis is logarithmic, and limited to 2
days.

to the one typically observed in the city (7.41 every 100 km)E]
In the following we 1.4 as the corrective factor for all driven
distances.

At last, Car2Go allows users to reach the Turin airport, that
is about 15 km far away from the city centre. Distances for
trips to the airport, reached by a straight highway, are not
corrected.

B. Data characterization

Here we briefly characterize the actual usage of the FFCS
system in Turin. This is instrumental to guide the design of
the charging station placement algorithms.

Let us focus on the characterization of the (estimated)
distance travelled during rentals. This figure is interesting since
it is directly related to the minimum amount of charge an
electric car shall have to complete a trip. Fig. |l| shows the
empirical Cumulative Density Function (CDF) of the distances
covered over all rentals. Trips of less than 700 meters were
pre-filtered. Notice how 97% of the trips covers less than 10
km, roughly corresponding to the operative area diameter in
Turin. Trips to and from the airport are the longest one, up to
19 km.

3https://www.alvolante.it/prova/smart-fortwo- coupe-twinamic,
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Fig. 3. Heatmaps showing (a) number of parkings per zone and (b) average
parking time per zone. Darker areas have larger values. Zones are interpolated
for better visualization.

Next, we investigate the parking duration. This figure is
interesting since it is related to the amount of charge a
parked car obtains when attached to a charging station. Fig. 2]
illustrates the empirical CDF of parking duration. Interestingly,
more than half of the parkings lasts less than 1 hour. This is
due to the high utilization of cars in FFCS, especially during
business hours. Conversely, 10% of the parkings lasts more
than 8 hours, with some cars that are left parked for days.
The former are probably due to overnight parkings, while the
latter hint for some cars parked in areas with few customers.

Next, we analyse how parking habits are different in the
city area. For this, we divide the service operative area limits
into a grid of squared zones of 500x500 meters, obtaining 261
zones covering the operative area in Turin. For each zone, we
compute statistics about parkings: the total number, the sum
of all the parking duration, and the average parking time (i.e.,
parking duration divided by number of parkings).

Fig. shows the heatmap of the total number of parkings
in the city zones. The more a zone is red, the more frequently
cars are parked here. The red area correspond to the city
centre which hosts the highest number of parkings, implying
that users rely on car sharing for travelling downtown, a
working area full of shops and restaurants. On the contrary,
few parkings are observed in the suburbs, where people live
and likely return home in the evening [8]. Interestingly, the
sum of the cumulative parking times inside each zone brings
to similar results (not shown here for brevity).

Fig. B(b)| instead shows the heatmap of the average parking
time for each zone. In this case, the metric is quite homoge-
neous, with peaks on some borders of the operative area. This
means that few cars reach these border zones and they stay
unused for long time (see also rightmost part of Fig. [2).

The large spread of parking density and duration challenges
the decision on where to place charging stations. Indeed, if
placed in areas where cars are frequently parked but for short
time (e.g., city centre), batteries would get little charge. If
placed in areas were few cars stay parked for long time (e.g.,
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suburbs), cars will be fully charged cars but occupying the
station for long time.

IV. ELECTRIC CAR SHARING SIMULATOR

Our goal is to study different design choices for electric
car sharing systems, based on collected data. For this, we
developed a flexible event-based simulator that allows us
to compare different algorithms and tune parameters while
collecting metrics of interests.

We simulate a fleet of electric cars, which move in the
city according to events recorded in a trace. Each car is
characterized by its parking location, and the current status
of battery charge. The simulator takes as input a pre-recorded
trace of rentals characterized by the start and end time, and
initial and final geographic coordinates. For simplicity, space is
divided into 261 zones of 500 x 500 m each (as in Section [II).

Our simulator, written in Python, takes less then 5 seconds
to complete a single simulation on the full trace. Due to the
large number of simulations we run, we use PySpark to analyse
the simulation results by using a Big Data cluster of 30 nodesﬂ
We made the simulator source code publicly availableE]

A. Parking station placement

Z zones (with Z < 261) are equipped with recharging
stations, each with 4 poles. The simulator implements different
charging station placement algorithms. Each zone i is assigned
a likelihood I;. We greedily choose the top Z zones, according
to four likelihood definitions:

e random placement: [; is an independent and identical
distributed random uniform variable, so that recharging
stations result placed at random;

e average parking time: l; is the average parking duration
in 7 as recorded in the trace;

e total number of parkings: [; is the total number of
parkings recorded in ¢ in the trace;

e total parking time: l; is the total parking time accumu-
lated in ¢ by all cars recorded in the trace.

The last three heuristics are driven by the intuition that placing
recharging stations in those zones where cars are likely to be
parked could improve system performance.

B. Trace event processing

Each recorded rental reflects a mobility interest of user, i.e.,
a desired trip. The simulator process events in order of time.
When a car rental start event is processed, the user looks for
a car in the initial position zone. If a car is present, the user
rents the most charged car. If no car is present, the user walks
to the closest zone containing an available car, mimicking the
normal behaviour of FFCS users that use their smartphone to
rent the closest car from their position. A car rental end event
is then scheduled using the trace final time and location. When
a car rental end event is processed, the user returns the car.
After returning it, the simulator updates the battery charge

4http://spark.apache.org/docs/latest/api/python/#
Shttps://github.com/michelelt/sim3.0!

status by consuming an amount of power proportional to the
trip distance. In case the battery level drops below 0, the trip is
declared infeasible. The discharged car still performs further
trips, all marked as infeasible, until it reaches a charging
station.

Depending from the return policy, the user may connect the
car to a charging station. We investigate the following return
policies:

o Free Floating: the user opportunistically connects the car
to a charging station if and only if it is available in the
final zone of the rental;

e Needed: cars are connected to a pole when the battery
charge at the end of the rental is below a certain thresh-
old «. This implies the user may be rerouted to a different
zone than the desired one, if no available pole exists in
the desired zone;

e Hybrid: the car must be connected to a charging pole,
if available in the ending zone; if the battery charge is
below a given threshold «, cars must be returned to the
closest charging zone.

The Free Floating policy never obliges the user to bring
the car far from the desired ending location, even in case
battery charge is close to exhaustion. Needed mandates to
connect cars to a charge station only if energy runs low, thus
trying to protect from battery exhaustion. Hybrid mixes the
two policies.

C. Performance metrics and parameters

We measure the following metrics, that we identify having
influence in the quality of experience of the users:

o percentage of infeasible trips due to completely dis-
charged battery;

o percentage of trips users have to connect the car to a
charging pole, implying the burden to plug the car;

« percentage of trips users are rerouted to a zone different
from their original destination because they are forced to
charge the car;

« average walked distance from the desired location when
the car is charged or rerouted.

Infeasible trips are critical, and the system shall be engineered
so that they never happen. Other performance metrics shall
be minimised. In addition to the above metrics, the simulator
collects statistics about car battery charge level, and fraction
of time a battery stays under charge.

The key design parameters that we focus on, other than
station placement and return policy, are:

o number of zones Z which are equipped with a charging
station;
« battery threshold o for Needed or Hybrid charge policies.

We consider the following scenario: the fleet has a constant
number of cars equal to 300 (the same as observed in the
trace). Electric cars have the same nominal characteristics as
the Smart ForTwo Electric Drive, i.e., 17.6 kW h battery, for


http://spark.apache.org/docs/latest/api/python/#
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135 km of range, with a discharge curve that is proportional
to the travelled distance (12.9 kW h/100 km). E]

Charging stations have 4 low power (2 kW) poles each.
These are cheap to install and they are a good compromise
between costs, power requested, and occupied road section.
We model a simple linear charge profile (complete charge
in 8 hours and 50 minutes in our case). At last, the initial
position of the cars, only affecting the initial transitory, is
chosen randomly.

V. IMPACT OF CHARGING STATION PLACEMENT

In this first set of experiments, we consider the simple
opportunistic Free Floating car return policy, i.e., users always
return the car in the desired zone, and connect it to a charging
pole if available. The goal is to check if this simple mechanism
is sustainable with electric cars, and the impact of the different
charging station placement policies.

Fig. [] shows the performance of the different placement
algorithms in terms of infeasible trips percentage with respect
to the percentage of charging zones, ranging from 1% to 27%.
In Turin, this corresponds to install from 2 to 70 charging
stations. We observe notably different performances. First, the
average parking time placement policy (Avg time) performs
the worst, with still 6% of infeasible trips even when more
than 25% of zones are equipped with charging stations. Even
a simple random choice performs better (Mean rnd, obtained
as the average of 10 random instances). The total parking time
(Tot time) and total number of parkings (Num parking) perform
very similarly. They permit to reach about 2% of infeasible
trips at 10% coverage, reaching O infeasible trips when more
than 20% of zones are equipped.

The intuition of why such a striking difference is given by
the different city areas they place charging stations. Avg time
placement favours peripheral zones where few trips ends, and
where cars stay parked for long time (see Fig. 3(b)). On the
contrary, Num parking and Tot time favour city centre areas,

Shttps://www.smart.com/uk/en/index/smart-electric-drive.html

== Avg time —&— Num parking

1.0

0.8

0.6 1

CDF

0.4

0.2

0.0

0 5 10 15 20 25 30
Plugged time [h]

Fig. 5. CDF of the time spent by a car at a charging station (Z=40), for total
number of parking and average parking time placement algorithms.

where cars frequently are parked for short time (see Fig. [3(a)).
Indeed, in the whole simulation, for Z = 40, only 7430
charges have been recorded for Avg time, compared with
47628 charges of the Num parking. Moreover, as shown in
Fig. [5] the average parking time placement generates much
longer plugged times, often much longer than the time needed
for a full charge. Therefore, many cars occupy the charging
poles when they are already charged, preventing other cars
to use the pole and increasing the number of infeasible trips.
Even if plugged time is shorter, the Num parking policy allows
the cars to charge the (little) energy consumed in the (short)
trips.

In a nutshell the best approach is to choose charging station
zones that favours the central areas, in which the parkings last
less and are more frequent. We will use the total number of
parking placement algorithm for the rest of the paper.

VI. IMPACT OF RETURN POLICY

We now investigate the impact of the different return
policies, i.e., we quantify the implications of forcing users to
return the car to a different zone than the desired one, when
the battery is below a critical level.

A. Infeasible trips

Considering Fig.[l| we already saw that the maximum travel
distance is 19 km. This consumes about 14% of the total
battery capacity for the considered car model. In the following,
we take a precautionary approach to set the minimum battery
charge threshold, «, equal to 25%, unless differently specified.

We first focus on the infeasible trips percentage with respect
to the charging station coverage. Fig. [6] shows results for the
different return policies. Forced and Hybrid policies perform
much better than the original opportunistic Free Floating. In
details, Hybrid and Needed guarantee to successfully conclude
al trips with just 11 and 15 charging zones, respectively (see
the insert if the Figure), while Free Floating reaches this goal
only at 23% of charging zones (60 zones). In a nutshell,
adopting a policy which mandates users to charge the cars
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Fig. 6. Percentage of infeasible trips for different zone coverage percentage
analysing the charging policies. The zoom highlights where the lines go to 0.

when battery charge gets below a threshold drastically reduces
the number of infeasible trips, even with a handful of charging
stations. We focus on Hybrid and Needed policy from now on,
with at least 6% of coverage. We mark as Infeasible the region
below this threshold.

B. Rerouting and charge percentage

Forcing a user to park in a charging station can be annoying,
because the customer has to reach the charging station, and
lose time to plug and unplug the car to the pole. Even worse,
rerouting users to the closest zones for charging increases
the distances they have to walk. In the following, we show
indexes that involve users’ figures. In particular, we analyse the
percentage of trips that require the user to plug to a charging
pole (charge percentage for short), and percentage of rerouting
events (charge events that occur in another zone) over all trips.

Fig. [/| shows the charge percentage for the two returning
policies, as a function of charging stations coverage. Shaded
area highlights the infeasible region, where the lack of charg-
ing zones create artefacts. Focusing on the feasible region
instead, the two curves start with similar values, but then they
diverge. Interestingly, the percentage of charges decreases for
the Needed policy, getting as low as 8%. This happens since,
when few stations are present and all of them can be occupied,
hence some cars will not be charged despite they would need
to. Conversely, the Hybrid policy increases almost linearly
the fraction of trips where users have to plug to a pole. Free
Floating policy shows similar trend to Hybrid, not shown here
for the sake of brevity.

Let us now investigate the average state of charge measured
at the end of each trip. Fig. [8| shows results versus percentage
of charging zones. In the infeasible area, performances are
comparable, since the lack of charging stations does not
generate enough charging opportunities. In the feasible range,
the Hybrid policy keeps increasing to almost 90% of average
charge, since users opportunistically plug the car every time
they encounter a free pole (see again Fig. [7). Instead, for
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Fig. 7. Percentage of trips that end in a charging station, as function of the
zones for the two return policies.
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Needed policy, the level increases much slower, staying above
the 25% threshold, that is the sole condition for charging.

Focusing on the trips that ends with charge events that
occur in a zone different from the desired destination, Fig.
[9) represents the rerouting percentage in function of charging
stations coverage. Rerouting probability decreases as expected:
the more the stations are, the more likely users find a charging
station at their desired final zone. Yet, the two policies have
different performance. The Hybrid policy is less likely to
reroute the user. In fact, by opportunistically connecting the car
to a charging pole if available, the average battery charge is
higher, thus decreasing the rerouting probability. With more
than 7% of charging zones, the percentage of rerouting is
already lower than 1% for Hybrid policy.

In a nutshell, Hybrid policy significantly reduces the number
of times the user has to drive to a charging station in a different
zone than the desired one. However, it increases the number
of times the user parks at a charging station and has to plug
the car to the pole. Therefore, one must be cautious when
weighting these results and designing the return policies which
impact the final users. Next, we check how this charges and
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reroutes impact the users in terms of distance to the desired
final position.

C. Walked distance

When the system forces a user to drive and park the car in
a charging station that is not in their desired zone, it means
that the customer has walked by at least 500 m to reach her
destination. Fig. [T0] shows the average walked distance from
the actual parking zone to the original desired one, given the
user has been rerouted. Intuitively, the average walked distance
decreases as the charging zone percentage increases, since
the likelihood of finding a nearby charging zone increases.
In general, the average of users’ walked distance (Needed
case) goes from about 2.5 km to about 1.4 km, still a sizeable
amount. Recall that the charging station placement algorithm
is likely placing stations mainly in the city centre. Therefore,
the charging stations are concentrated in a small area, so that
rerouting from the suburbs significantly affect the average
walked distance. The two policies perform similar here, given
that the distance mainly depends on the charging station
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Fig. 11. Overall average distance covered by users to reach their desired

destination, calculated over all trips. Trips ending with charging but not
rerouting weight 150 m

placement. Moreover, this result must be checked in light
of rerouting probability (see Fig. [9). Rerouting events are
extremely rare for the Hybrid policy for high number of
charging zones, hence the extreme variability of its mean
walked distance. Given the very few rerouting of the Hybrid
policy, one can envision a system that directly takes care
of those very few cars that need a battery charge, i.e. by
relocating vehicles. For instance less than 3 cars per day would
need to be relocated with coverage 14% or higher.

At last, we focus on the overall distance the users have to
walk to reach their actual final destination. Three are the cases:
1) they suffer rerouting, ii) they end in a charging zone, or iii)
they end in a zone with no charging station. For the first case,
we already have shown results. For the second case, we need
to compute the average in-zone distance from the charging
stations (placed at the centre) and all possible destinations
within the same zone. Assuming a square of 500 m side, the
average distance from the centre is about 150 m. This is the
average walked distance when charging the car in the zone of
the desired destination. For the third case, we assume users
arrived at their final destination directly.

The results are shown in Fig. Consider the feasible
region first. The Needed policy exhibits a decreasing trend
(from 280m to 60m). On the contrary, the Hybrid policy
first exhibits a decrease (minimum of 50 m at 8% of charging
zones), but then it slowly increases till it overtakes the Needed
policy. This is due to the fact that with few charging stations
(6-12%) the number of charges is limited (< 30%, see Fig.
by the availability of charging stations. Instead, when this
number grow, the opportunistic policy that mandates to attach
the car to a charging pole if it exists forces the user to walk
more (within the ending zone). To this extend, the Needed
policy is better giving users have to charge only when actually
needed.

In summary, about 10% of zones guarantees all feasible
trips, reduces the walked distance and obtains few reroutings
and not too many charges.
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Fig. 12. Reroute percentage in function of «, with 8% of charging zones.

D. Impact of minimum battery threshold

At last, we check the impact of . Fig. [I2] focuses on the
rerouting percentage, considering a coverage of 8% (i.e., Z =
20). Both policies slightly increase rerouting when « increases:
a higher threshold is crossed more frequently, increasing the
reroute probability. This however brings little or no benefits
to system performance. Values of « equal or lower than 15%
generates infeasible trips, then we cannot clearly get below
this threshold. Thus setting o = 25% is a safe choice.

VII. CONCLUSION AND FUTURE WORK

Designing an electric free floating car sharing systems leads
to many interesting problems and trade-off. In this work, we
built on actual rental traces to study via accurate simulations
the impact of i) the charging station placement, and ii) return
policies. We considered Turin as a case study, using 2 months
of rentals recorded from a currently operational FFCS that we
use to run trace driven simulations. Considering charging sta-
tion placement, we have seen that it is better to place charging
stations within popular parking area (e.g., downtown), where
parking duration is short but enough to top-up the battery.

We have shown that a FFCS solution with electric vehicles
can auto-sustain itself, even with very few charging stations
(6% of zones, i.e., 15 in total in Turin, with 300 cars and
1 million inhabitants). These results are obtained also thanks
to the users collaboration by returning the car to a nearby
charging station, and whenever the battery level drops below
a target threshold.

Car sharing providers shall take into account the trade-off
between usability, costs and benefits for the users. For instance
our results hint for possible alternative design solution, i.e.,
the adoption of some simple relocation policies that would
move cars that need a charge, a promising solution to limit
discomfort for users due to rerouting enforcement. The same
could be achieved by considering incentives to users.

We leave for future work: (i) the optimization of the poles
distribution in space, (ii) a thoughtful study of a electric
FFCS systems in different cities, (iii) the simulations of future

scenarios with new technologies (charging pole and battery),
(iv) scalability in terms of users and cars. We believe that
our approach, based on data and accurate simulation results is
very promising to design electric FFCS systems in near future
smart cities.
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