POLITECNICO DI TORINO
Repository ISTITUZIONALE

To sync or not to sync: why asynchronous traffic control is good enough for your data center

Original

To sync or not to sync: why asynchronous traffic control is good enough for your data center / Sviridov, German; Bianco,
Andrea; Giaccone, Paolo. - ELETTRONICO. - (2018). (Intervento presentato al convegno IEEE Globecom tenutosi a
Abu Dhabi, UAE nel Dec. 2018) [10.1109/GLOCOM.2018.8647692].

Availability:
This version is available at: 11583/2712454 since: 2019-05-06T15:26:55Z

Publisher:
IEEE

Published
DOI:10.1109/GLOCOM.2018.8647692

Terms of use:
openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

03 June 2023

To sync or not to sync: why asynchronous traffic
control 1s good enough for your data center

German Sviridov, Andrea Bianco, Paolo Giaccone
Dipartimento di Elettronica e Telecomunicazioni - Politecnico di Torino - Torino, Italy

Abstract—Recently proposed architectures for high-
performance data centers advocate the adoption of a centralized
control that coordinates the packet transfers within the data
center network. In such architectures, centralized algorithms
perform decisions regarding packet scheduling (i.e., when a
packet is transferred from the server to the switches) and
packet routing (i.e., the sequence of traversed switches to reach
the destination server) with the aim of optimizing the overall
performance. Notably, centralized control permits to reduce
packet contention and to minimize the delay introduced by the
data center network, but may rely on expensive mechanisms
such as synchronous transmission of the packets from the
servers.

In our work we compare a generic synchronous architecture
for the centralized control of a data center with a generic asyn-
chronous architecture, that relaxes the strict packet-by-packet
control required by the synchronous architecture and enables
a simpler rate-based implementation at the servers. We show
that the two architectures achieve near identical performance in
terms of throughput, fairness and delays. We finally conclude
that asynchronous architectures offer a better trade-off in terms
of complexity and performance, with better scaling properties to
very large sizes.

I. INTRODUCTION

Data centers (DC) are constituted by a large concentration of
servers, providing computing and storage resources, typically
to run cloud computing services and real-time applications.
Servers are connected through a Data Center Network (DCN)
that interconnects them to the rest of the data center and pro-
vides access to the Internet, as shown in Fig. 1. Interestingly,
most of the data traffic within a DCN is local, mainly due to
the high exploitation of parallel processing, of the redundancy
in the data storage and of the internal control mechanisms.
Thus, performance perceived by the users heavily depends on
the performance of the data transfers within the data center.

In recent years, the demand for low latency and high
bandwidth in the DCN has grown dramatically, partially com-
pensated by a scalable design of data centers, exploiting multi-
layer Clos-based topologies [1]. The memories internal to
the switches have instead kept growing slowly. Consequently
the ratio of RTT over bandwidth for the intra-data center
communications have kept shrinking. As a consequence, under
such conditions, congestion control schemes in standard TCP
protocols, which were originally tailored to WAN/LAN with
high/medium RTT and medium/low bandwidth, are not able to
converge fast enough, ultimately leading to poor performance.
This is also exacerbated by the small size of most of the traffic
flows. Indeed, the majority of flows do not last long enough to
trigger congestion control mechanisms, which were originally

Traffic Control

L/ L] L] m—— 0
—>
sFEEEEEEEEERE

! Servers N
Fig. 1: Architecture of a multilayer data center with a central
traffic control for packet scheduling and routing

designed for long-lasting flows. This fact has motivated the
networking community to devise ad-hoc transport schemes,
exclusively designed for DCNs, able to minimize the latency
within the data center by exploiting a centralized traffic
control. Thanks to the limited physical extension and small
propagation delays, centralized control provides the possibility
to globally monitor the network state in real time and to
optimize the packet transmissions. Note that these ad-hoc
solutions coexist with the legacy transport protocols adopted
in the servers.

Recently, Fastpass [2] has been proposed as a centralized
scheduler for DC to coordinate the data transfer between
servers. The main idea is to abstract the DCN as a logical
“big switch” in which each server is connected to a single
port: Fastpass ensures that at any time at most one packet is
transferred to and from each server. This guarantees almost
no congestion within the DCN switches and very low, close
to ideal, DCN crossing latencies, accounting only for the
store-and-forward delays and for the link propagation delays.
However, this property comes at a cost: mainly the require-
ment of DC-wide synchronization among servers. Indeed,
all servers must have a common time reference to trigger
the transmission of each individual packet at a predefined
time instant, chosen by the packet scheduler. Hence, Fastpass
mimics a synchronous TDM-based network. The downside
of minimizing the DCN latency is that most of the delay
is now experienced at the servers, as later shown in the
numerical results in Sec. III-G, which investigate the queuing
spreading across the various levels of the data center hierarchy,
from servers to the higher layer switches. Nevertheless, the
predictability of DCN crossing delays permits to better control
the overall performance of data transfers, providing a nice
solution in the design of high-performance data centers.

In our work, we address the following question: Is it

possible to achieve performance similar to an almost ideal
synchronous architecture by relaxing the constraint on syn-
chronization, thus reducing its cost and complexity? We
show that the answer is positive. Indeed, fully asynchronous
data transfers can achieve performance similar to Fastpass
without any strict synchronization among the servers. The
asynchronous solution is still based on a centralized controller,
that now only orchestrates the actual rates at which each
server injects packets in the DCN, instead of controlling the
exact time when each single packet is transmitted by the
servers. Consequently, we claim that architectures based on
rate allocation are able to achieve a better trade off in terms of
performance and complexity than synchronous architectures.

For a fair comparison, we provide a general framework to
compare synchronous vs asynchronous traffic control of the
packet transmissions from the servers. Finally, to motivate our
main claim, we conduct an extensive simulation campaign,
with a detailed simulation model of the DC, to assess the
performance of the two control approaches.

The paper is organized as follows. Sec. II describes the con-
sidered synchronous and asynchronous traffic control models
in DCN. In Sec. III we describe the adopted simulation model
and discusses the main numerical results. In Sec. IV we discuss
some previously proposed centralized asynchronous traffic
control schemes. Finally, in Sec. V we draw our conclusions.

II. SCHEDULING AND ROUTING IN DCN

As shown in Fig. 1, we assume a data center with N
servers connected by a multilayer DCN, in which each server
is connected to a ToR switch. ToR switches are interconnected
through a multilayer Clos-based topology, e.g., leaf-spine in
the case of a two-layers topology. For simplicity, we assume
that the bisection bandwidth of the DCN is maximum, thus
no over-subscription is present'. We also assume an homo-
geneous scenario with all the links have the same capacity.
For inhomogeneous scenarios with link rates, at some layer, f
times faster than at another layer, it is possible to construct an
equivalent topology in which the faster links are split into f
parallel disjoint slower links, replicating f times the switches
with the higher rate ports. The process can be iterated across
all the layers until all the links in the DCN equivalent topology
have the same capacity.

Traffic flows are transferred between pairs of servers. The
packet transmission from the servers to the ToR switches
and the corresponding routing path are coordinated by a
central traffic control. Transmission queues at the servers are
organized as per-server destination, to avoid the throughput
degradation due to the well-known head-of-line problem.
Thus, a maximum of N (logical) queues are managed by each
server.

A. Synchronous (SYN) architecture

This architecture is based on Fastpass and the implementa-
tion issues are discussed in [2]. We assume that all server

IThe model can be easily adapted to DCNs with over-subscription.

SYN Traffic Control
Packet]U(t) Load-balanced R(tl
scheduling routing
| M)
Q1)
ASY Traffic Control R
Rate W(t) Load-balanced R(tl
normalization routing
W)
R(t)

Fig. 2: Synchronous (SYN) vs Asynchronous (ASY) architec-
ture

linecards are synchronized; time is slotted according to a
fixed packet transmission time. At a generic timeslot ¢, a
synchronous controller runs a sequence of three phases, as
depicted in Fig. 2:

1) Queue state collection. The state of all the transmission
queues at the servers is retrieved (e.g., by interacting
with proper socket monitoring tools installed in the
server kernel [2]). Let Q(t) = [g;;(t)] be a N x N matrix
such that ¢;;(t) denotes the priority to transmit a packet
from server ¢ to server j, at timeslot ¢. As an example,
¢;j(t) can be the queueing delay of the packet at the
head-of-line of the corresponding transmission queue.
Thus, packets with higher queueing delay have higher
transmission priority.

2) Packet scheduling. Based on Q(t), a packet scheduler
chooses a set of source-destination server pairs for trans-
mission during timeslot ¢, such that at there is at most
one concurrent transmission to and from each server.
Thus, the scheduler computes a matching between the
source servers and the destination servers. The matching
is described by a binary N x N matrix M (t) = [m;;(t)],
such that m;;(t) = 1 if server ¢ transmits the head-of-
line packet directed to server j during timeslot .

3) Load-balanced routing. The controller computes the
routing path for each transmitted packet in M (¢) to
balance the packets across the links of the DCN, to
guarantee that all packets traverse different links. The
outcome is a data structure R(¢) that describes the
routing path for all the packets in M (t).

The adopted constraints in the packet scheduling and routing
phases completely avoid queuing at each interface of the DCN,
if assuming the same number of hops in the multilayer DCN
and the same propagation delays of all links. In practice, a very
limited congestion can be experienced to compensate different
path lengths and different link propagation delays. Sec. III-G
will be devoted to evaluate the actual queuing.

One major practical issue of the considered SYN approach
is the requirement to guarantee a synchronous behavior of
all the servers. Indeed, the required time accuracy becomes
more strict with high port bitrates. As a reference example,
consider that the transmission time of the smallest Ethernet

packet (e.g., a TCP ACK) is about 50 ns at 10 Gbps and the
one of an Ethernet MTU is about 1.2 us. Given the quartz
clock generators present in the servers and their unavoidable
thermal drift (affected also by the server computation load), the
precise synchronization across all the server can be achieved
if relying on expensive dedicated hardware [3].

The choice of the timeslot duration is also very critical
for performance, due to the possible partial filling of the
transmission timeslots. In terms of throughput, small timeslots
permit to reduce the waste due to partial filling, but at the
expenses of introducing some control overhead to manage the
fragmentation of large packets into multiple timeslots. On the
contrary, large timeslots remove or mitigate the fragmentation
problem, but suffer from the partial filling of the timeslots
due to small packets. In terms of control information, small
timeslots require higher bandwidth for the control channel
between the controller and the data center components. We
will evaluate in Sec. III-F the effects of the partial filling on
the performance.

B. Asynchronous (ASY) architecture

We now remove the constraint of synchronization and
propose an architecture based on rate control; the centralized
controller assigns transmission rates at each server, one for
each possible destination server, instead of assigning packets
to timeslots as in the SYN scenario. The considered scheme
runs periodically whenever the offered load changes at the
servers, tracking flow-level dynamics instead of packet-level
dynamics as in the SYN case. As shown in Fig. 2, a sequence
of three phases occurs at time ¢:

1) Offered rate estimation. The control gathers the statistics
about the offered load between any pair of servers.
Similarly to the previous scenario, the statistics can be
obtained by interacting with proper socket monitoring
tools installed in the server kernel. Let R(t) = [r;;(t)]
be a N x N matrix, denoted as offered rate matrix, with
7i;(t) be the offered load from server i to server j at
time ¢, normalized by the link rate, i.e. r;; € [0, 1].

2) Rate normalization. Now R(t) is renormalized to be-
come admissible and avoid link overloading, i.e. the
overall transmission rate from any server and towards
any server must be lower than the link rate. The outcome
of this phase is a N x N matrix W(t) = [w;;(t)],
denoted as transmission rate matrix and w;;(t) be
the actual transmission rate to adopt from server i to
server j at time ¢. The algorithm maximizes the overall
throughput -, >° w;;(t). By construction W(t) is a
double sub-stochastic matrix, i.e., >, w;;(t) < 1 and
> wis(t) < 1.

3) Load-balanced routing. Based on W (t), the controller
chooses the paths to balance the traffic across the
DCN. The outcome is a proper data structure R (t) that
describes the routing paths for the packets transferred
starting from ¢.

Similarly to the SYN architecture, the ASY one can be
easily extended to support traffic priorities, by properly scaling
each value in R(t).

Whenever the offered rate changes, i.e. R(t) varies, the
controller must re-run the three above steps. In the worst
case, this occurs with a frequency which is related to the
packet transmission time. Thus, the ASY system incurs (in
the worst case) in an overhead similar to the SYN system in
terms of exchanged control information. Instead, during the
time intervals in which R(t) does not change, ASY incurs in
a much lower overhead than SYN.

III. PERFORMANCE EVALUATION

To analyze the performance of SYN and ASY architectures,
we first describe the specific algorithms adopted for the
controllers. Then, we detail the simulation methodology and,
finally, we present the numerical results.

A. Algorithms for SYN architecture

We assume a greedy maximal matching adopted for packet
scheduling, based on the state of the transmission queues at
the server. We consider different priority functions to define
the Q(t) matrix:

e Oldest cell first (OCF): the matching is performed by
looking at the queuing delay of the head-of-line packets.

o Shortest remaining job first (SRJF): the matching is
performed by looking at the amount of residual bytes
of each flow needed to be transferred. Shortest flows are
prioritized over longest ones.

e Max-min fair (MMF): the matching is performed by
looking at the waiting time of the packets since they
become the head of the queues.

Routing computation, coherently with Fastpass, is per-
formed to minimize the contention on the switch output ports.
To achieve this, we implemented the solution of the edge
coloring problem for bipartite graphs starting from M (t) by
adapting the classical Paul algorithm for Clos networks in [4].
Notably, in the case of a two layers DCN, each color is
associated with one distinct spine switch.

B. Algorithms for ASY architecture

To implement rate normalization, we consider a simple
algorithm based on iterative matrix renormalization presented
in [5]. The algorithm iteratively renormalizes rows and
columns of the rate matrix R(¢) and it is amenable to a parallel
implementation.

Each server implements one leaky bucket scheduler for each
active per-destination queue, to guarantee an instantaneous rate
w;;(t) between server ¢ and server j.

For load-balanced routing, we deployed a standard flow-
by-flow ECMP, which will be shown in Sec. III-G to be
good enough to provide low buffer occupancy, and, as a
consequence, small queuing delays inside the DCN.

C. Simulation methodology

We performed the analysis using the discrete-event simula-
tor OMNeT++ [6] in combination with the libraries of INET
framework, which provides detailed simulation models for the
Internet protocols stacks from MAC layer up to application
layer.

We considered a standard Ethernet-based leaf-and-spine
topology for the DCN to compare SYN with ASY architec-
tures, as shown in Fig. 1. The chosen topology provides full
bisection bandwidth, connecting N = 120 servers, built with 3
spine switches, 4 leaf switches and 30 servers per leaf switch.
All servers are connected to the leaf switches via a 1 Gbps
link while leaf switches are connected to spine switches via a
10 Gbps link. The buffers at the servers and at the switches
are assumed infinite.

Traffic flows are generated according to a Poisson process
with bursty arrivals of packets belonging to the same flow and
the flow size is exponentially distributed with average 46 kB.
This value has been derived by Facebook data center [7].

IP packet lengths are chosen according to one of the
following methods:

1) fixed and equal to 1500B to simulate bulk data transfers.

2) randomly chosen according to a bimodal distribution
with 0.4 probability of generating 40B packets and 0.6
probability of generating 1500B packets; this scenario
approximates the scenario typical of many applications
such as Hadoop, as observed in [7];

3) randomly chosen according to the Facebook Web Server
distribution (FBW) taken from [7], which refers to a web
service scenario in a data center. In this scenario only
15% of the packets have are 1500B size with a median
centered around 150B.

In SYN architecture, we set the timeslot corresponding to
1500B at IP layer, coherently with Fastpass [2].
We considered two different traffic patterns:

1) incast, where all the servers sends traffic to the same
hot-spot server;

2) uniform, where the traffic is uniformly distributed across
all servers;

The data center load is defined as the average normalized
amount of traffic destined to the servers. Finally, the central-
ized controller is assumed to operate out of bandwidth and
with zero latency.

We evaluate the normalized per-server throughput and the
Flow Completion Time (FCT), in terms of average and coef-
ficient of variation. FCT is measured from the generation of
the first packet belonging to a flow until the reception of the
last packet by the destination application. Each FCT is then
normalized by the theoretical minimum FCT that would be
achieved by that flow in an empty DCN.

FCT has been chosen among the primary confrontation
metrics due to its importance in assessing the performance of
typical DC delay-sensitive applications, which directly affects
the quality of experience of end users. We further highlight
the composition of FCT by analyzing the server latency, i.e.

o

o =
L}
|]

Fairness
o
o

o
IS

o
)

SYN =
)) ASY —e—
0.6 0.7 0.8 0.9 1

0

0 0‘, 1 OI, 2 Ol, 3 OI, 4 LO . Sd
Fig. 3: Fairness comparison between SYN MMF packet
scheduling and ASY rate normalization algorithms under
uniform traffic

the average amount of time packets spend in the transmission
queues inside each server before entering the DCN and the
network latency, which is the average time it takes for packets
to arrive to the destination server once they enter the DCN.

D. Fairness comparison

As a preliminary result, we show that the two architectures
behave in a similar way in terms of fairness. We compare
the ASY architecture computing the MMF matching with the
SYN architecture with previously described rate normalization
algorithm. Fig. 3 depicts the Jain’s fairness index of the two
systems under uniform traffic for different loads. For small
load, the ASY system achieves lower fairness due to the
sparseness of the offered rate matrix. However, for load higher
than 0.2, the matrix becomes denser and the two architectures
rapidly converge to the same, close to the optimal one, fairness
index.

E. Influence of the matching policy on FCT

We investigate the effect of the metrics adopted in the com-
putation of maximal size matching, as described in Sec. III-A,
under fixed-length packets. For the sake of space, we do not
report the results for variable-size packets, because they are
very similar.

Fig. 4 depicts the influence of each matching metric on
the FCT, under incast traffic. OCF yields the highest average
FCT but at the same time lowest variance (results not reported
for the sake of brevity). On the contrary SRIF by its nature
minimizes the FCT but may lead to unfairness which in
return increases variance and the amount of potentially missed
application deadlines. MMF is a reasonable trade-off between
average FCT and the corresponding variance as it balances the
two metrics. All the metrics permit to achieve the maximum
throughput and the same (optimal) fairness. The main factor
responsible for the slight reduction in FCT in the case of ASY
system is packet contention at the switches, which will be
shown in Sec. III-G to be negligible.

F. Influence of packet-length distribution

In our subsequent analysis we considered the influence of
packet-length distribution on the two systems.

=

00

SYN MMF -0
- SYN OCF --8-
G | SYNSRF
L ASY -
810 -
£ a ®
£ g
(=] st 7.7

mim BYe)

z g —Ef %

01 02 03 04 05 06 07 08

Fig. 4: Comparison among different maximal size matchings
under incast traffic pattern.

-
o
S
-
=)

Normalized FCT
=
)
Normalized FCT
=

o

1 1
0.1 0.2 03 04 05 0.6 0.7 0.8 0.1 0.2 03 04 05 0.6 0.7 0.8
Load Load

(a) Average (b) Coefficient of variation

Fig. 5: FCT for fixed-length packets and uniform traffic
pattern.

1) Fixed packet lengths: We obtained results similar to
the case of the incast traffic pattern. From Fig. 5a it can
be seen that there is no significant variation in terms of
FCT between the two systems. Noticeably at higher loads
the ASY system yields smaller FCT while still maintaining
comparable variance. The reason behind this behavior will be
later explained in Sec. III-G.

2) Bimodal packet lengths: Bimodal packet length distri-
bution is common to applications using TCP as the transport
protocol. In the case of fixed-size packets, each timeslot of
SYN system was fully exploited because the packet lengths
were tailored in such a way to perfectly fit inside the timeslot,
leading to 100% throughput inside each timeslot. We observed
that the performance of SYN system changes significantly in
the presence of variable-size packets. For a bimodal packet
distribution, the FCT of SYN system quickly diverges from
the ASY one, which as it can be seen from Fig. 6a increases
by more than one order of magnitude. It is easy to build an
adversarial traffic pattern repeatedly composed by one MSS
sized packet followed by one ACK packet which may reduce
the throughput of the SYN system down to ~ 50%.

3) FBW packet lengths: Similarly to bimodal packet
lenghts distribution, in the case of FBW the SYN system does
not achieve 100% throughput due to the partial timeslot filling.
Results depicted in Fig. 6b show how at low load the two
distributions lead to similar FCT. However, at higher load,
even if FBW packet lengths lead to smaller FCT with respect
to the pure bimodal one, it is still one order of magnitude
larger with respect to the ASY case.

G. Queueing within the data center

Figs. 7-9 show a 100ms trace of buffer occupancy averaged
across all servers, for 0.8 load under uniform traffic pattern

=
o
=3
=
o
=3

Normalized FCT
=
o
Normalized FCT
=
o

1 ASY —e—
01 02 03 04 05 0.6 0.7 0.8

ASY —eo—

1!
01 02 03 04 05 0.6 0.7 0.8
Load Load

(a) Bimodal (b) FBW

Fig. 6: FCT for bimodal and FBW packet lengths and uniform
traffic pattern.

0 10 20 30 40 50 60 70 80 90 100

Fig. 7: Transmission buffer occupancy at the servers

SYN ——
4 ASY ——

B T VA P Y L S SV

1 EA e tbion fosres s p At MMM s P il i A P 9

0 10 20 30 40 50 60 70 80 90 100
ms

Fig. 8: Per-port buffer occupancy at the leaf switches

SYN ——
4 ASY ——

kbytes

0 10 20 30 40 50 60 70 80 90 100
ms

Fig. 9: Per-port buffer occupancy at the spine switches

and fixed packet lengths. It is immediate to notice that the
ASY system provides a more balanced distribution of buffer
occupancies across the entire data center. The ASY system is
able to keep the server memory 40% lower with respect to the
SYN architecture at the expense of slightly bigger buffering
at the switches. Notably, this reduction is relevant because it
mitigates the resources overhead of managing per-destination
queuing at the servers. In particular, we observed that the 40%
reduction in the buffer occupancy at the servers corresponded
to a 45% increase in the average buffer occupancy at leaf
switches (but no significant variation in the 99th percentile
with respect to the SYN case) and 100% increase in the aver-
age buffer occupancy at spine switches (with a 99-percentile
around 7.5 kB, which is still very small).

In Fig. 10a we show the impact of queuing on the expe-
rienced delays under uniform traffic pattern with fixed length
packets. Although the 50th percentile of the packet network

11— 1

08 i 0.8

06l | o6/}

04l i 0.4

oy SYN -eeees 02 SYN eeeee
oL ASY — o ASY ——
0 005 01 015 02 02 0 10 20 30 40 50 60 7¢

ms ms

(a) CDF of network latency. (b) CDF of FCT.

Fig. 10: Latency distribution inside the network for SYN and
ASY systems under 0.8 load and uniform MTU-zised traffic.

latency for ASY architecture is double that of the SYN, the
overall FCT is still dominated by the latencies at server queues.
In fact, when compared with the CDF of FCT in Fig. 10b,
the contribution due to network latency can be seen to be
negligible. The cost of providing protection against contention
inside the DCN in SYN architecture is that of experiencing
larger delays at the servers, which, as shown, for high load
becomes the dominant cause of an increased FCT.

IV. RELATED WORK

The most relevant work is Fastpass [2], which has motivated
our work and has been already discussed in the previous
sections, as a reference model for the SYN architecture.

Flowtune [8] follows all the three phases described for ASY
architecture. It adopts a per-flowlet offered load estimation.
Furthermore, it proposes a centralized rate normalization algo-
rithm, based on the solution of a network utility maximization
(NUM) problem. Thus, the transmission rate matrix is obtained
based on a generic fairness function and can become equal
to the one adopted in our work for a proper chosen utility
function. The load-balanced routing adopts ECMP as in our
case. Moreover, [8] focuses completely on the scalability
aspect of centralized rate assignment while obviating the
comparison of the proposed approach with the synchronous
one. Numfabric [9] leverages the same architecture than [8]
but now the NUM problem is solved in a distributed way by
relaxing the constraint on the maximum utilization of a link,
which leads to suboptimal rate allocations. Finally, due to its
distributed nature, the solution for the NUM problem requires
multiple RTT in order to converge.

Hedera [10] follows just the two phases of offered rate
estimation and of load-balancing routing in ASY architec-
tures. Differently from our model, the load balancing scheme
reroutes flows to balance the offered traffic across the topology,
leaving to TCP the overall maximization of the network
utilization. Thus, the rate estimation is based on the link load,
without the interaction with the servers.

Finally, all these previous works [8], [9], [10] do not provide
any performance comparison with the SYN architecture, which
is instead our main contribution.

V. CONCLUSIONS

We investigated how centralized asynchronous traffic con-
trol architecture compares to the synchronous one. We show

that by relaxing the constraint on time synchronization and by
employing simple rate limiting at each server, it is possible to
obtain comparable performance for both systems, in terms of
throughput, fairness and flow completion time (FCT). In terms
of impact on queuing, the asynchronous system distributes the
queuing delays across all the components of the data center,
with smaller delays at servers at the expense of slight increase
in queuing inside the DCN switches, with respect to the
synchronous architecture. Notably, due to the large number of
(logical) per-destination queues managed by the server in both
architectures, the asynchronous approach reduce the memory
overhead of the transmission queues at the servers. Moreover
the synchronous system suffers from partial slot filling due to
the packetization process.

In conclusion, asynchronous architectures appear very
promising for their trade-off between performance and com-
plexity. An in-depth investigation of all the implementation
issues involved in asynchronous architectures with centralized
traffic control and their experimental performance assessment
deserves future investigations.

REFERENCES

[1] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano et al., “Jupiter rising:
A decade of Clos topologies and centralized control in google’s data-
center network,” in ACM SIGCOMM Computer Communication Review,
vol. 45, no. 4. ACM, 2015, pp. 183-197.

[2] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal, “Fast-
pass: A centralized zero-queue datacenter network,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 4, pp. 307-318, 2015.

[3] K. S. Lee, H. Wang, V. Shrivastav, and H. Weatherspoon, “Globally
synchronized time via datacenter networks,” in SIGCOMM. ACM,
2016, pp. 454-467.

[4] J. Y. Hui, Switching and traffic theory for integrated broadband net-
works. Springer Science & Business Media, 2012.

[5]1 R. Sinkhorn, “A relationship between arbitrary positive matrices and
doubly stochastic matrices,” The annals of mathematical statistics,
vol. 35, no. 2, pp. 876-879, 1964.

[6] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation
environment,” in Simutools. ICST, 2008.

[71 A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4. ACM, 2015, pp. 123-137.

[8] J. Perry, H. Balakrishnan, and D. Shah, “Flowtune: Flowlet control for
datacenter networks.” in NSDI. USENIX, 2017, pp. 421-435.

[9] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Alizadeh, and
S. Katti, “Numfabric: Fast and flexible bandwidth allocation in data-
centers,” in SIGCOMM. ACM, 2016, pp. 188-201.

[10] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in NSDI.
USENIX, 2010.

