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Communication-Aware UAV Path Planning
Afshin Mardani, Marcello Chiaberge, Paolo Giaccone

Dept. of Electronics and Telecommunications, Politecnico di Torino, Italy

Abstract—Autonomous air drones, known as Unmanned Aerial
Vehicles (UAVs), often carry out missions with real-time video
streaming. In this work, we address the off-line mission plan
problem of computing the optimal path from an origin to a
final destination in two-dimensional space in order to maximize
the quality of the communication, given a cellular coverage, and
thus to provide throughput guarantees to the video streaming.
In addressing the problem, we consider the energy budget
constraint, the presence of wind in the area and the path
smoothing problem. We propose novel path planning algorithms
that are shown to outperform classical approaches that are
oblivious of communication network coverage.

I. INTRODUCTION

Autonomous air drones are becoming more and more pop-
ular and typically require real-time video streaming for safety
and surveillance reasons. In the case of long-distance flights,
the drone can leverage the cellular network infrastructure to
support the videostream communication. When planning an
autonomous path between a set of distant waypoints, we
advocate the adoption of path-planning algorithms which are
aware not only of the obstacles (as in classical approaches)
but also of the cellular coverage, in order to guarantee the
stringent requirements of Quality of Service (QoS) in the
communication. Thus, in our work we address the off-line path
planning problem between two generic waypoints, given an
energy budget and a bandwidth requirement in terms of either
minimum throughput or average throughput. We consider the
coverage map and possible effects of the wind that could affect
the path trajectory. We also consider the problem of smoothing
the path obtained by our path planning algorithms, in order
to obtain straight flying trajectories and compensate for the
spatial sampling of the adopted graphs.

Our main contributions are manyfold.
1) We propose two novel path planning algorithms, de-

rived from the popular A* algorithm. MT-PP (Minimum
Throughput Path Planning) is aimed at maximizing
the minimum throughput along the path, in order to
guarantee a minimum level of communication QoS. AT-
PP (Average Throughput Path Planning) is instead aimed
at maximizing the average throughput along the path, in
order to guarantee an average level of communication
QoS.

2) We show numerically that a communication-aware ap-
proach like ours can significantly outperform classical
approaches (oblivious of cellular coverage), in terms
of throughput, without exceeding the energy budget
constraint.

3) We propose a novel path smoothing approach (IPS) that
allows to decrease the computation time with respect to
classical approaches.

The paper is organized as follows. In Sec. II, we describe
the path planning problem. In Sec. III we discuss related
works. In Sec. IV we propose our novel communication-aware
path planning algorithms. In Sec. V we assess the achievable
performance due to our proposed approach. Finally, we draw
our conclusions in Sec. VI.

II. THE PATH PLANNING PROBLEM

We address the problem of generating the optimal trajectory
from an initial waypoint to another waypoint in a two-
dimensional space for an autonomous drone. In our innova-
tive communication-aware approach, the quality of the video
streaming application during the flight is maximized, taking
into account the available energy budget and the expected
wind conditions. Notably, the trajectory is computed off-line
and fed to the drone internal controller, which will follow it
compensating for the actual disturbances during the flight.

A. Flight area

The flight area is modelled according to a grid graph,
as shown in Fig. 1. Indeed, the cellular coverage area is
partitioned with a regular tessellation and each node is located
at the center of each tile. The node is associated with a
value of throughput given by the average value within the
corresponding tile. The nodes corresponding to adjacent tiles
are connected by an edge. In this work, we will consider 8-
degree grid graphs, i.e. with 8 neighbors for each node but
our approach can be extended to any other grid graph.

Formally, the flight area is described with an undirected
grid graph G = (V,E). Each node i ∈ V is associated with
physical position (xi, yi) and the throughput bi experienced

Fig. 1. Grid graph with degree 8 and the corresponding coverage map.
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by a drone when uploading the streaming data to the cellular
network in the area around node i. An edge (i, j) ∈ E
connecting nodes i to j is associated with the physical distance
dij .

For simplicity, we do not consider obstacles in the flight
area, even if the methodology can be easily extended to this
scenario by removing the edges and the nodes corresponding
to obstacles.

B. Drone Mobility Model

We assume that the drone flies at constant air speed vd with
power consumption equal to P . The total energy available in
the drone is E0. The energy consumption due to traveling
on an edge (i, j) ∈ E is Eij . The drone starts from node
is (denoted as source node), corresponding to the starting
waypoint, and arrives in node id (denoted as destination node),
corresponding to the destination waypoint. A path comprising
multiple waypoints is decomposed in a sequence of segments,
for each of them the path planning algorithm runs.

Let P be the set of all possible loop-less paths connecting
is to id and let p ∈ P be a generic path. The aim of the path
planning is to find a path p ∈ P connecting is to id so that
the communication performance is maximized, subject to the
following energy budget:∑

(i,j)∈p

Eij ≤ E0 (1)

C. Mobility Planning Between Two Nodes

Consider now a simplified problem in which the drone has
to move from waypoint i to j. Let vdx and vdy be the drone
air speed, along the two axes. Let vgx and vgy be the drone
ground speed, along the two axes. Let tij be the time of flight
from i to j. Assume that the wind is constant with speed vwx
along the x-axis and vwy along the y-axis.

Now we can write the following system of equations:

vgx = vdx + vwx (2)
vgy = vdy + vwy (3)
xj − xi = vgx · tij (4)
yj − yi = vgy · tij (5)

v2dx + v2dy = v2d (6)

where (2) and (3) relate the effect of the wind to the actual
ground speed; (4) and (5) relate the physical distance to travel
to the ground speed; finally, (6) relates the air speed of the
drone to the two components. By solving the above system, it
is possible to compute the drone speed and its time of flight.
Thus, the flight distance covered by the drone is vd · tij , and
the energy consumption is:

Eij = P · tij (7)

The ground distance from i to j is equal to the Euclidean
distance between them. The total data transferred along the
path i to j is bi · tij . All the introduced parameters with their
descriptions are collected in Table I.

TABLE I
VARIABLE DEFINITIONS.

Parameter Description Unit
bi Cellular network throughput at node i bit/s
dij Physical distance m
Eij Energy consumed between two nodes J
E0 UAV total energy J
tij Flight time s
P Power consumption W
vd UAV air speed m/s
vg UAV ground speed m/s
vw Wind speed m/s

III. RELATED WORK

There are many path planning algorithms that have been
developed in recent years [1]. In [2] the authors, inspired
by the A* search algorithm and Dubins paths, present a
path planning method to find the shortest, most flyable and
safest path for fixed-wing UAVs with obstacle avoidance.
[3] proposes any-angle path-planning algorithms, which are
variants of the heuristic path-planning algorithm A*. Their
algorithms find the shortest paths by propagating information
along the grid edges (like A*, to be fast) without constraining
the resulting paths to these edges. In [4], the authors propose
a path planning method to generate paths for aircrafts in a
2-D space to avoid conflict, non-flying zones, and risk areas.
Notably, none of these works consider network throughput in
their path planning algorithms.

Path optimization for UAV communication systems has re-
cently been investigated for different setups. In [5], a 3-D mod-
eling of aerial wireless coverage is used in communication-
aware path planning of UAVs for the aerial surveillance of
long linear infrastructures. In [6], the UAV’s flying direction
is optimized for uplink communications. In [7] and [8], the
authors optimize the movement of the UAVs to ameliorate the
network connection of an ad-hoc network assisted by UAVs.
However, none of the above works has integrated the power
consumption of the drone.

Moreover, many path optimization problems have been
studied, but not specifically for communication purposes.
For example, in [9] the path is optimized considering the
energy consumption of UAVs and not the communication
performance. In [10], the task of reaching a specific goal
from a set of possible goals is studied. The path is optimized
in order to minimize the required energy, which depends on
unknown disturbances, like the wind. Also in this case, the
communication is not considered.

In some works, energy-efficient UAV communications are
discussed, but without considering the effects of wind. In [11],
the authors study energy-efficient designs for UAV commu-
nication, where a UAV is employed to communicate with
the ground station. The energy efficiency is maximized via
trajectory optimization. In [12], the problem of off-line path
planning for UAVs is addressed, considering different mission
objectives, as safety, fuel efficiency, collisions and possible
criteria for communication. Nevertheless, all of the above



mentioned works neglect the wind effects on the power
consumption.

There is not a unique approach to compensate for wind
disturbances in path planning for UAVs. For instance, [13]–
[15] compensate for the wind in the real-time control loop
design of the UAVs to keep the position error of the flight
path as small as possible with respect to the desired path.
However, we compute the optimal path offline, taking into
account the expected wind. The drone internal flight controller
will compensate in real time for the actual wind conditions
experienced while following the path computed according to
the expected wind.

IV. NEAR-OPTIMAL COMMUNICATION-AWARE PATH
PLANNING

Our proposed approaches are based on the classical A* algo-
rithm for path planning, adopted in many contexts as robotics
and video games, and approximate the optimal path. A* is
aimed at finding the shortest path (or a good approximation
of it) with a much smaller computation time than canonical
Dijkstra’s algorithm, thanks to a smaller search subspace.
Indeed, A* uses a cost function which is obtained by an
heuristic cost function obtained by summing a function g,
which represents the exact cost from the source to the current
node (as in Dijkstra’s algorithm), and a user-provided heuristic
function h, which estimates the distance from the current node
to the destination. Optimality and computation time depends
on the chosen heuristic function. In particular, if h function
gives exact distances to the destination (the estimated distance
is equal to the distance on the grid), the algorithm only scans
nodes on the shortest path from source to destination.

A. Path Planning Algorithms

Now, we introduce our path planning algorithms, which are
variants of the A* algorithm.

1) AT-PP Algorithm: This algorithm maximizes the average
throughput along the path, as:

max
p∈P

∑
(i,j)∈p

bi
|p|

(8)

subject to the energy budget. The pseudocode of the algorithm
is provided in Algorithm 1, which neglects degenerate cases
for the sake of readability. As in usual Dijkstra and A*, a
node can be in three different states: (i) “visited” whenever
the path cost to reach the node is already fixed and minimized,
(ii) “frontier” whenever the node is one of the candidates for
the minimum path cost, (iii) “unvisited” whenever the node
has not been visited. The connected region of visited nodes
keeps increasing until one node in the frontier reaches the
destination, obtaining the best path. The cost function shown
in ln. 39 is peculiar of our application: it combines the inverse
of the average throughput (“path bw”) up to some node and
the estimated distance to the final destination D. Consequently,
the resulting path is optimizing both throughput and distance,
weighted by factor β which is optimized numerically later.

The available energy budget E0 is considered by pruning
the visit whenever the consumed energy is above E0 (see
ln. 23). Notably, it may happen that no path is found since
not compatible with E0 (see ln. 40).

2) MT-PP Algorithm: This algorithm maximizes the mini-
mum throughput along the path, as follows:

max
p∈P

min
(i,j)∈p

bi (9)

The algorithm is iterative and works as follows. Assume
an initial value of threshold th, which could be set equal
to the average throughput achievable in the area. At each
iteration, the algorithm finds the best path by considering
only the nodes with a throughput ≥ th. The path selection
is based on a variant of AT-PP in which the throughput at
some visited node is computed as the minimum along the path
(differently from ln. 30 of AT-PP). To maximize the minimum
throughput, at the end of the path search procedure th is
increased. If no path is found with a minimum throughput ≥ th
(maybe because of energy constraint), then th is decreased.
To optimize the sequence of chosen values of th, we adopt
a dichotomic search, which stops whenever a given precision
on the minimum throughput along the path is achieved.

Algorithm 1 Average-Throughput Path Planning (AT-PP)
1: function AT-PP(N , {bv}v∈N , S,D, P, vd, E0, β)
2: for each vertex v ∈ N do . Initialization, for each vertex
3: path bw[v]=-1 . Throughput from S to v
4: acc path bw[v]=-1 . Cumulative throughput from S to v
5: parent[v]=-1 . Parent of node v
6: ground path distance[v]=∞ . Ground distance from S to v
7: flight path distance[v]=∞ . Flight distance from S to v
8: path hops[v]=-1 . Number of nodes from S to v
9: path time[v]=-1 . Flight time from S to v

10: path energy[v]=∞ . Energy from S to v
11: path cost[v]=∞ . Cost based on A*
12: path bw[S]=acc path bw[S]=bS . Setting the values for S
13: parent[S]=S
14: ground path distance[S]=flight path distance[S]=path hops[S]=0
15: path time[S]=path energy[S]=0
16: path cost[S]=GROUNDDISTANCE(S,D)
17: U = N \ {S} . Unvisited nodes
18: F = {S} . Frontier nodes
19: V = ∅ . Visited nodes
20: while F is not empty do . Visit all the nodes in the frontier
21: u = argminv∈F {path cost[v]} . Find the min cost node in F
22: move u from F to V
23: if path energy[u]> E0 then . Check the required energy to reach u
24: continue . If greater than E0, consider a new node in F
25: if u = D then . Check if arrived to destination
26: return . End. Return the whole state, from line 4 to 11
27: for each neighbor v /∈ V of u do . Check all the neighbors of u that

are in U or F
28: if v ∈ U then
29: move v from U to F . Move v to the frontier, if is not there
30: bw=(acc path bw[u]+bv)/(path hops[u]+1) . Average throughput

along the path
31: path bw[v]=bw
32: acc path bw[v]=acc path bw[u]+bv
33: parent[v]=u
34: ground path distance[v]=ground path distance[u]+ GROUNDDIS-

TANCE(u, v)
35: flight path distance[v]=flight path distance[u]+

FLIGHTDISTANCE(u, v, vw, wdir)
36: path hops[v]=path hops[u]+1
37: path time[v]=path time[u]+FLIGHTDISTANCE(u, v, vw, wdir)/vd
38: path energy[v]=path energy[u]+P × tuv

39: path cost[v]=(flight path distance[u]+FLIGHTDISTANCE
(u, v, vw, wdir))+FLIGHTDISTANCE(v,D, vw, wdir)+β/path bw[v] .
Main cost function

40: return error - destination unreachable



Fig. 2. An example showing the difference between our smoothing method
A*IPS with respect to A*PS.

B. Path Smoothing

The paths resulting from AT-PP and MT-PP performing on
grid graphs are constrained to be along the edges of the grid
graph, thus are longer than shortest path on the free 2-D
space. This observation leads us to smooth the paths, by a
post-smoothing process increasing the runtime. We consider
the A* post-smoothing algorithm (A*PS) proposed in [16].
A*PS usually finds a shorter path than A* on grid graphs. We
propose a novel improved post smoothing process (A*IPS),
according to which the resulting paths are in some cases
shorter than A*PS. A*IPS works similarly than A*PS, with the
difference that, when the A*PS is checking the line-of-sight
(LOS) from the current node to the successor of its successor
during the graph visit, A*IPS, in parallel, is also checking
the LOS from the successor of its successor to the destination
node. As long as the LOS is found to the destination, the
whole process terminates and the shortest path is obtained. As
an example in Fig. 2, the A*PS from the starting point A must
check the LOS from point A towards the destination point,
node by node. Since A*PS does not have LOS to the nodes
between point C and end point from point A, it terminates
in point C and then starts again from C to the destination.
However, A*IPS, from the starting point A, is simultaneously
checking the LOS towards the destination and the LOS from
each following node to the destination. Therefore, our method
finds the LOS from point B to the destination and terminates
its process. Note that LOS is defined in terms of throughput
values; two points are considered in LOS if all the closest
nodes in the direct path among them is above the current value
of throughput.

In Sec. V-C we will show that the resulting path of A*IPS
is shorter or equal to the A*PS, with a possible reduction in
computation time.

V. PERFORMANCE EVALUATION

A. Scenarios

Our algorithms were tested on two coverage maps, reported
in Fig. 3, on a 4 km×4 km area. In the first coverage map
(left of Fig. 3) the throughput shows a peak in the center
and then decreases linearly to a minimum value, then it is
constant with a higher value than the minimum in the whole
border. This allows to create a discontinuity in the coverage

Fig. 3. Cone map (left) and valleys map (right).

Fig. 4. Scenario A, B (left) and scenario C (right). “S” stands for source
position. “D” stands for destination position.

that may impair the performance of greedy approaches (as
the one considered in our work). Thus the cone map can be
considered a simple worst-case coverage scenario. The second
coverage map (right of Fig. 3) is denoted “valleys” and the
coverage is now continuous with 4 valleys of low throughput.

The drone flies from a source position to a destination
position. Combining the choice of different source-destination
pairs with the coverage map, we defined the following scenar-
ios:
• Scenario A (Fig. 4): This is symmetric case with

the source in (-1000,-1000) m and the destination in
(1000,1000) m, on the cone map.

• Scenario B (Fig. 4): This is an asymmetric case with
the source in (-1000,-1000) m and the destination in
(2000,2000) m, on the cone map.

• Scenario C (Fig. 4): The source and the destination
are placed at θ degree from the peak of throughput on
the cone map. This allows to investigate how a path is
deviated towards the area of high throughput.

• Scenario D (Fig. 6): The source is in (-1000,-1500) m and
the destination is in (1000,1300) m, on the valleys map.
In this scenario, two low throughput regions are between
the direct path from the source to the destination. This
allows to show how the resulting path is deviated from
low throughput areas.

When the wind is present, the wind can be either “head
wind” (opposite direction than the direct path from the source
to the destination) or “tail wind” (same direction than the direct
path from the source to the destination).

B. Methodology

We investigate the behavior of our algorithms, both in
dealing with limited energy on-board and the presence of wind,
compared with the Shortest Path (SP) algorithm that computes



Fig. 5. Throughput in function of β under scenario C.

TABLE II
AVERAGE THROUGHPUT COMPARISON.

Scenario Algorithm
Average Throughput [Mbit/s]

no head wind tail wind
wind 2 m/s 2 m/s

D
MT-PP + IPS 3.3 2.6 3.5
AT-PP + IPS 2.7 2.3 2.8

SP 2.2 2.2 2.2

C AT-PP + IPS 2.8 1.5 2.8
MT-PP + IPS 1.5 1.5 1.5

θ = 135◦ SP 1.5 1.5 1.5

A
MT-PP + IPS 2.0 2.0 2.0
AT-PP + IPS 2.5 2.5 2.5

SP 2.5 2.5 2.5

B
MT-PP + IPS 2.0 2.0 2.0
AT-PP + IPS 2.3 2.3 2.3

SP 2.3 2.3 2.3

the direct path from the source to the destination position. SP
has been chosen since it is representative of all the state-of-
the-art algorithms presented in Sec. III, which are oblivious
of the coverage map.

In our simulations we consider 8-degree graphs, as shown
in Fig. 1, on a 101 × 101 grid with 40 meters of minimum
distance between two nodes. Note that in the case of obstacles,
the graph can be modified by removing the edges and the
nodes that cannot be reached by the drone, and thus our
algorithms can also take into account the presence of obstacles.
For simplicity, we do not consider this case in this work.

Our algorithms are implemented in MATLAB and executed
on a 2.67 GHz Core i7 PC with 8 GByte of RAM running
Windows 10. Running times were evaluated using tic and
tac MATLAB commands.

C. Numerical evaluation

First of all we optimize choice of the coefficient β utilized in
cost function of our algorithms. Here we considered scenario
C, and four destinations in θ = 45, 90, 135, and 180 degrees
are selected. Fig. 5 plots the throughput in function of β. We
set β = 1500 (shown with dashed line in Fig. 5) to obtain a
high throughput value in most of the cases.

Tables II and III report the average throughput and minimum
throughput along the path, respectively, for all the considered
scenarios and in presence of wind. Both MT-PP and AT-PP
run with IPS as path smoothing procedure.

TABLE III
MINIMUM THROUGHPUT COMPARISON.

Scenario Algorithm
Minimum Throughput [Mbit/s]

no head wind tail wind
wind 2 m/s 2 m/s

D
MT-PP + IPS 3.0 1.0 3.1
AT-PP + IPS 1.8 1.0 2.2

SP 0.3 0.3 0.3

C AT-PP + IPS 0.1 0.1 0.1
MT-PP + IPS 0.1 0.1 0.1

θ = 135◦ SP 0.1 0.1 0.1

A,B
MT-PP + IPS 2.0 2.0 2.0
AT-PP + IPS 0.1 0.1 0.1

SP 0.1 0.1 0.1

Fig. 6. Paths computed by SP and MT-PP under scenario D.

Fig. 7. Paths computed by SP and AT-PP algorithm under scenario C (θ =
135◦).

Fig. 8. Paths computed by SP and MT-PP algorithm under scenario A.

Consider for now the performance without wind. Scenario
D, shown in Fig. 6, is validating the expected performance of
MT-PP. The figure shows the paths obtained by MT-PP and
SP. The average throughput achieved by MT-PP and AT-PP is
larger than SP (50% larger for MT-PP) whereas the minimum
throughput is much higher than SP (9 times larger for MT-PP.)

Fig. 7 shows the path found by AT-PP under scenario C,



Fig. 9. Paths computed by SP and MT-PP algorithm under scenario B.

TABLE IV
COMPUTATION TIME AND PATH LENGTH COMPARISON.

Algorithm Scenario Run time [s] Path length [m]

MT-PP

A 1.18 3507
B 2.91 4922

C (θ = 135) 0.05 1535
D 1.52 4715

MT-PP + PS

A 1.21 3325
B 3.01 4655

C (θ = 135) 0.07 1418
D 1.55 4450

MT-PP + IPS

A 1.21 3325
B 2.94 4610

C (θ = 135) 0.05 1418
D 1.57 4435

with θ = 135◦, validating the behaviour of the algorithm.
Specifically the resulting path tends to pass close to the vertex
of the cone with maximum throughput. This path is the optimal
path considering that the average throughput is maximized.
Thus, the average throughput of the path is increased up to
1.3 Mbit/s with respect to SP.

Moreover, in scenarios A and B, shown in Figs. 8 and 9,
the minimum throughput achieved by the MT-PP algorithm
outperforms the SP by about 20 times.

Consider now the effect of wind. In presence of the head
wind, MT-PP and AT-PP gain less than the tail wind or when
the wind is absent. This is due to the restricted energy budget
to fly into the high throughput regions and compensate for the
wind simultaneously. In scenario A and B, the path throughput
of MT-PP is not affected by the wind in any cases, since MT-
PP tends to avoid the low throughput regions so far as allowed
by the energy constraint. In scenario C and D, in case of head
wind, the MT-PP and AT-PP generated paths are closer to SP
to be able to compensate for the wind effect and consequently
the throughput of the resulting paths are lower than the no
wind or tail wind cases.

We investigate the effect of the path smoothing algorithm
in Table IV, where we compare the computation time and
the corresponding path length for MT-PP alone (i.e., without
PS), MT-PP with standard PS and MT-PP with our proposed
IPS. By construction, MT-PP without path smoothing takes
the lowest computation time, and adding standard PS takes
3.4% additional time, in the worst case (scenario B). Instead,
adding IPS takes in the worst case (scenario B) up to 1.0%
additional time. In terms of path length, under scenario A,
PS and IPS reduce the path length by 5.1% whereas under

scenario B, they reduce the path lengths by 5.4% and 6.3%,
respectively. Thus, IPS is always preferred to PS in terms of
both computation time and path length.

VI. CONCLUSIONS

In this paper, we investigated the path planning problem
for an autonomous drone in order to optimize the quality
of the video streamed by the drone. We considered the
cellular coverage map, the energy budget of the drone and
the possible presence of wind. We proposed two algorithms
to maximize either the average throughput or the worst-
case throughput along the path. We also proposed a novel
path smoothing procedure outperforming the classical one in
both terms of computation time and path length. Through
a numerical evaluation of different scenarios, we showed
that our communication-aware approach allows to improve
the throughput with respect to classical approaches that are
completely oblivious of the cellular coverage maps, with a
beneficial effect on video streaming applications.
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