
27 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

About the functional test of the GPGPU scheduler / Du, B.; RODRIGUEZ CONDIA, JOSIE ESTEBAN; Sonza Reorda,
M.; Sterpone, L.. - ELETTRONICO. - (2018). (Intervento presentato al convegno 24th IEEE International Symposium on
On-Line Testing and Robust System Design (IOLTS 2018) tenutosi a Hotel Cap Roig, Platja d’Aro, Costa Brava, Spain
nel July 2-4, 2018) [10.1109/IOLTS.2018.8474174].

Original

About the functional test of the GPGPU scheduler

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/IOLTS.2018.8474174

Terms of use:

Publisher copyright

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2712448 since: 2019-07-22T15:22:37Z

IEEE Xplorer

About the functional test of the GPGPU scheduler

B. Du*, Josie E. Rodriguez Condia†, M. Sonza Reorda‡, L. Sterpone§
Politecnico di Torino, Torino, Italy

{*boyang.du, †josie.rodriguez, ‡matteo.sonzareorda, §luca.sterpone}@polito.it

Abstract1—General Purpose Graphical Processing Units (GPGPUs)

are increasingly used in safety critical applications such as the

automotive ones. Hence, techniques are required to test them during

the operational phase with respect to possible permanent faults

arising when the device is already deployed in the field. Functional

tests adopting Software-based Self-test (SBST) are an effective

solution since they provide benefits in terms of intrusiveness,

flexibility and test duration. While the development of the

functional test code addressing the several computational cores

composing a GPGPU can be done resorting to known methods

developed for CPUs, for other modules which are typical of a

GPGPU we still miss effective solutions. This paper focuses on one

of the most relevant module consists on the scheduler core which is

in charge of managing different scalar computational cores and the

different executed threads. At first, we propose a method for

evaluating the fault coverage that can be achieved using an

application program. Then, we provide some guidelines for

improving the achieved fault coverage. Experimental results are

provided on an open-source VHDL model of a GPGPU.

Keywords—GPGPU Scheduler, SBST, functional testing.

I. INTRODUCTION

General Purpose Graphical Processing Units (GPGPUs) were

introduced in the last decades to accelerate graphic tasks in

different kinds of computer systems, with special emphasis on

gaming applications. More recently, GPGPUs found wide

application on mobile devices for other tasks, such as face

recognition and video processing. Today, GPGPUs are entering

into areas, where high performance requirements are combined

with safety requirements. A major example lies in the so called

advanced driver-assistance systems (ADAS) in the automotive

area, including systems devoted to Automatic Cruise Control,

Pedestrian Recognition and Protection, Forward Collision

Warning and Automatic Parking. The adoption of ADAS is also

considered as an intermediate step towards the development of

autonomous and semi-autonomous cars. All these ADAS

systems are based on sensors such as cameras, radars or lidars;

producing a sustained flow of data that must be processed and

produce decisions in real-time. GPGPUs are very well suited for

this data fusion task and are thus being increasingly considered.

However, since any failure by these systems may provoke

serious consequences, effective solutions to first assess and then

mitigate faults arising within GPGPUs became a hot topic, as

mandated by regulations and standards, such as ISO 26262.

Several works [1][2] already investigated the sensitivity of

GPGPUs to radiation effects, which are a major cause for

transient faults. These works are mainly based on exposing real

GPGPU devices to accelerated radiation fluxes, and then

1 This work has been partially supported by the European Commission

through the Horizon 2020 RESCUE-ETN project under grant 72232.

observing the resulting effects. In this way it is possible to

estimate both the probability of a single fault to arise, and the

one that a fault may produce a critical failure, despite the

mitigating mechanisms possibly implemented by the system.

Moving to permanent faults, achieving the required safety targets

clearly mandates the adoption of special techniques to minimize

the chances that possible faults created by the manufacturing

process or by other mechanisms (e.g., aging) escape the different

test procedures applied at the device, board and system level.

Moreover, given the very high safety targets required, the

advanced semiconductor technology used to manufacture current

GPGPU devices, and the relatively long lifetime of ADAS

systems, it is mandatory to develop efficient techniques to detect

permanent faults before they cause critical failures (in-field test).

In all cases a test must be performed, which should be able to

detect a very high percentage of those faults that may cause

critical failures. In both cases, the test must be relatively fast, and

must be performed taking into account the environment where

the target device works, with minimum impact on the rest of the

system.

Due to these constraints, Software-based Self-test (SBST) has

been widely adopted for in-field test [3], following the guidelines

provided by research work in the area [6]. The development of

SBST test procedures can sometimes be done by abstracting

detailed structural information, when the function and

architecture of the target module is known (e.g., for caches, or

branch prediction units). In other cases, it is based on these

information for both developing the SBST code, and for

assessing the achieved fault coverage.

In the case of GPGPUs, the development of effective SBST

test procedures can be split in two parts

 When targeting the computational cores of the GPGPU, one

can use the techniques developed for traditional CPUs [5].

The work in [4] is an example of what can be done in this

direction.

 More efforts are required to target those modules, which are

specific of the GPGPU architecture. As an example, testing

the scheduler existing in any GPGPU, as well as the

interface between the scheduler and the computational cores,

requires specific algorithms able to excite the different faults

and to make them observable.

In other works [7][8][9] data and control modules are tested

and analyzed by the presence of faults. These experiments

included reliability characterization by statistical fault injection

methods and checking the effect of software errors in the system.

In [10] it is presented a methodology to mitigate hardware

failures in GPUs. Moreover, a rescheduling strategy is

introduced to ensure execution under hardware malfunction.

This paper focuses on the test of the GPGPU runtime

scheduler and aims at investigating the fault coverage that can be

achieved resorting to a functional approach. The GPGPU

runtime scheduler is probably the most critical unit within a

GPGPU since it manages the parallel task execution and it

partitions a complete job into tasks considering the device

memory size and by dynamically scheduling the available

GPGPU cores.

The implementation of this module is not known in detail for

commercial GPGPU devices, thus we resort to the FlexGrip

open-source model developed by the University of

Massachusetts [11]. We first evaluated the stuck-at fault

coverage that can be reached on some specific parts of the

scheduler and on the scheduler/core interface by simple

programs running on the GPGPU (identifying those faults, that

cannot produce any failure, given a specific scenario), and then

propose some techniques to improve such a figure.

The paper is organized as follows. In Section II we

summarize the key characteristics of the FlexGrip model, with

special emphasis on the scheduler module we target in our work.

In Section III we propose the techniques for generating suitable

test programs for such a module. Section IV reports some

experimental results, and Section V finally draws some

conclusions.

II. AN OVERVIEW OF FLEXGRIP

FlexGrip is a VHDL model for a GPGPU module developed by

the University of Massachusetts and targeting a Xilinx FPGA

[11]. The module is based on the Nvidia G80 Tesla architecture

and is compatible with the Nvidia CUDA Compilation Toolkit. It

accepts, as input application code, CUDA-binary code (.SASS)

compiled with SM 1.0 compatibility level. 27 instructions are

supported by FlexGrip.

The CUDA programing model parameters, employed in

FlexGrip, and the kernel parameters, such as Grid dimension,

Block dimension and Blocks per core, can be configured before

simulation. Meanwhile, kernel application parameters could be

configured to pass the global memory address of input and

output data into the kernel application execution.

A. The Overall Architecture

The FlexGrip architecture is based on the SIMT (Single

Instruction Multiple Thread) paradigm and exploits a custom

Streaming Multiprocessor (SM) core with five stages pipeline

(fetch, decode, read, execution/control and write). Moreover,

each SM (see Fig. 1) includes a warp unit as thread controller. In

the SIMT architecture, a single instruction is fetched, decoded

and then distributed to be executed on every scalar processor

(SP) in the SM. Read and write stages load and store data

operands from and to registers files (FRs), shared, global or

constant memories.

The level of instructions parallelism in the SM core is

customizable by user or host. It allows the selection of one of

three possible configurations corresponding to 8, 16 or 32 SPs,

respectively. This parameter will affect the total number of logic

elements, the total energy consumption and the performance of

the whole GPGPU.

The number of SPs allows the execution of the same parallel

instruction and it implies some changes in the warp distribution

of threads. In the 8-SP core configuration, a 32-threads warp is

divided into four lanes and every SP must execute 4 threads per

warp in sequence. For the 16-SP configuration, the warp threads

are organized in two lanes per SP. Finally, in the 32-SP

configuration, the maximum instruction parallel capability is

obtained with 32 threads executed in parallel one by each SP. It

is worth highlighting that the SP hardware only exists in the

execution/control pipeline stage. The other pipeline stages are

shared inside the SM and one instruction is fetched, decoded,

read and written per SM. Only integer operations are supported

by FlexGrip.

A major advantage in FlexGrip is the use of an additional

module to support thread-level branching at hardware level

(branch unit). This module is not commonly supported by SMs

in G80 architecture and manages control flow instructions and

synchronization points in order to create or return from

conditional branches with multiples paths. A conditional branch

instruction causes divergence paths when a set of threads make

different decisions in terms of branch taken or not taken, while a

synchronization instruction can cause previous paths to

converge. Once path divergence occurs, all the threads will

continue until they reach the synchronization point where the

path convergence occurs, so the threads could be executed in

parallel again. At hardware level, the branch unit includes a warp

stack memory which is employed to store thread information

such as actual mask, program counter and state for each

individual thread.

Fig. 1. The FlexGrip architecture: a focus on the SM.

B. Warp Unit

Nvidia defines a warp as a set of 32 or 64 threads which execute

the same set of instructions in parallel with data independency.

This implies that every thread assigned to a SP can execute

parallel operations employing different data resources. In the

FlexGrip architecture, the thread execution is managed by a warp

unit in each SM with a limit of 32 threads per warp.

The warp unit is mainly composed of warp generator, warp

scheduler, warp checker, and two memories to store information

about the warp threads, namely the warp state memory and the

warp pool memory. The warp pool memory stores the ID, the

execution program counter, and the thread mask for each warp.

The warp state memory stores the actual state of the warp

(active, wait, stop and finish). Each entry line in both memories

corresponds directly to a warp that is being or will be executed in

the SM. For every thread in a warp, the fence registers store in a

bit the state of thread, indicating whether the thread is in use or

in waiting state. The warp scheduler reads and checks the fence

registers in order to identify when all warp threads are in a

waiting state. If this condition is true, it means that all previous

divergence paths converged and the synchronization barrier is

released, so that warps can return to normal operation.

The warp generator defines the total number of warp pool

lines to be employed by the application and assigns the entry

lines in the pool memory needed to manage them. Moreover, this

unit writes the initial value of every warp entry line in the pool

memory.

The warp checker modifies the fields in the warp lines after a

comparison between the real state values, coming from the SM,

and the predefined values in the warp pool memory. Moreover,

this module writes and reads the state memory. The warp

scheduler is composed of a state machine and coordinates the

execution of every warp in the SM.

Fig. 2. FlexGrip Warp Unit General Architecture.

The configuration of FlexGrip starts in the block scheduler.

This block defines and controls (among other configuration

parameters useful for the SM execution) the dimension of blocks

and warps for the application. The block scheduler controls and

manages the execution of block threads in the SM, adopting a

round robin scheme, and it sends the configuration parameters to

the warp unit in order to control the execution of multiple warps.

For a correct execution of the branch unit, the G80

architecture supports synchronization barriers which allow the

generation of convergence points. These points are employed to

establish a memory address, generally after conditional paths

ends, where threads wait until all divergence path threads reach

to the same address.

C. Interface between scheduler and the SM

The interface is formed by a set of connections that

interconnects the warp unit and the SM controller. Inside the SM,

some connections are used to notify and modify the thread

execution according to the executed instructions. The branch

unit, in the execution/control stage, is able to generate

divergence paths in active threads. The interface is used to

modify the content of the thread state in the warp unit.

The interface connections carry information about control

signals, number of actual active threads, content of initial mask

state, address of general purposes registers per thread and shared

memory, size of shared and register used by thread, thread

program counter and warp identifier.

III. THE PROPOSED EVALUATION

The evaluation we performed consists of a preliminary

permanent fault coverage analysis of a simple benchmark

applications using the whole set of GPGPU assembly instruction,

described in the subsection III.A. Secondly, we developed three

incremental methods to enhance the fault testing capabilities of

any application implemented on GPGPU. The three methods are

accurately described in the subsection III.B showing the

interdependence between the application execution flow (e.g.,

divergence and convergence paths), the thread mapping and the

shared memory allocation.

Please note that for the purpose of this paper, a fault can be

labeled as detected at the end of the execution of a given piece of

SBST code when one or both of the following condition hold

(called detection by memory content and by performance

evaluation, respectively).

In the first situation, the results, produced in memory by the

fault-free and each faulty system, are compared. A fault is

detected when the comparison produces a mismatch. In the

second, Performance evaluation is based on two checks. Firstly,

we check if the kernel execution was correctly completed and the

simulator generated the results in memory. If the fault caused the

system to hang and kernel execution did not finish, the fault is

labeled as detected. In the case of execution completed, we check

and compare the kernel execution time (e.g., the number of clock

cycles) with the fault-free one. In case of time mismatch, the

fault is labeled as detected by performance degradation. In these

evaluation, it is possible that a fault could be detected by

performance evaluation and memory mismatch; however, the

checker priories a fault detected by wrong results in memory

instead of performance error.

A. Basic program behavior

We first selected a simple benchmark (VectorAdd) to

evaluate the effects of permanent faults in the warp unit (i.e., in

the warp pool memory and in the interconnections with the SM).

This sample program performs an add operation between two

vectors and generates a result vector. The benchmark is

composed of 18 SASS assembly instructions.

This simple program corresponds to a one dimension data

intensive application. Despite its simplicity, it suitably stimulates

the warp unit. The application is configured to use one grid and

256 threads per block. This implies that the size of the input

vectors is limited to 256 operands.

With the application configuration selected above, the

number of warp pool line entries used is 8 out of the 32 available

lines. Hence, we evaluated the effects of the program execution

on the testable fields, i.e., the mask field and the program counter

in the used warp pool line entries and in the interconnections

interface.

A fault affecting the controls signals or the warp base

parameters between the warp unit and the SM could stop or hang

the system. As a consequence, the faulty SM hardware uses other

system configuration parameters than the correct ones and the

application never finishes or generates a valid result. A wrong

base address for either the shared memory or the file registers

could overlap operands from different threads and thus

compromise the application execution. Furthermore, a fault in

the actual thread state connections can generate performance

issues, such as unexpected latency, or a mismatch in the final

results in memory.

Permanent faults in the warp pool memory may also generate

some issues. In the actual mask field can produce two possible

scenarios. In the first scenario, some threads preserve a

permanent active state and never finish the kernel execution. In

the second scenario, some threads preserve a permanent inactive

state and are not allowed to execute instructions and write results

in the global memory. This implies that some results will not be

written to memory. In this case, a memory mismatch is produced

at end of the program execution.

A fault in the execution program counter field can generate a

hang in the thread execution and access to invalid locations in

the program memory. Finally, a fault in other warp pool fields,

which correspond to memory and register file base addresses

configuration can cause the kernel to crash. However, some of

these faults are observable but not controllable. These permanent

faults belong to block scheduler configuration settings and a

GPGPU functional testing approach cannot access to block

settings, so those faults could be observed by proposed

observation mechanism but it is not possible to stimuli additional

faults.

In Section IV we report some experimental results supporting

the analysis above and provide a quantification of the different

fault effects on a sample test case.

From SM Write pipeline to SM to SM

to SM

Block

Scheduler

Warp

Scheduler

 Fence

Registers

Warp

Checker

 Warp

State

Memory

Warp ID

Calculato

r

Warp

Generator

 Warp
Pool

Memory

B. Enhanced versions

Taking into account the previous analysis, we propose three

approaches to enhance an existing program (such as the one

introduced in the previous sub-section) to increase its ability to

test the faults affecting the fields of a warp pool line entry and

the connections between the warp unit and the SM.

These approaches heavily rely on the thread ID, or index,

which uniquely identifies a thread during its execution which, in

turn, depends on the kernel dimension and application

complexity. Moreover, it defines the distribution of blocks and

threads in a grid and could be used by multiple threads to access

multiple data locations (Multiple Threads Multiple Data or

MTMD). This parameter is also used as a base address to load or

store operands from different memory locations.

The proposed SBST approaches employ the thread ID to

identify the number of a thread executed in a SP and to change

the thread execution order. The change in execution generates

divergence paths and the expected stimuli to check the actual

mask field. The reader is invited to refer to Fig. 3 for a pseudo-

code for the different methods.

1) Method M1

This method uses the thread ID during the application

execution without compromising the application order. M1 is

based on introducing a set of comparisons between the thread ID

of each thread and a set of constant values.

Firstly, the application is executed. Secondly, the thread ID

and the constant value j are compared, and depending on the

comparison, two possible (divergence) paths are generated in the

SM. With different instructions executed in the paths, a

difference (of timing) in thread execution is produced. Then, the

divergence is repeated to consider the mark fields of all the warp

pool lines. The total number of such repeated evaluations

depends directly on the number of warps-per-block and threads-

per-warp configured by the host according to the application.

A permanent fault in the mask field generates wrong

divergence paths, leading to performance variation which can be

used for fault detection. This technique only targets the

permanent faults affecting the ID field of the warp pool line.

However, some comparison routines can be suitably placed in

the program memory in order to also detect faults affecting the

bits belonging to the warp program counter.

2) Method M2

With this method, the divergence paths generated by the

comparison are divided into two groups, one of which will

execute a global memory store instruction to extend the

performance variation and introduce the possibility of checking

global memory for fault detection. The other group will bypass

this instruction.

In the presence of a permanent fault in the mask field,

unauthorized and permanently active threads will store final

memory results more than once. This will not affect the final

result of the application in global memory but will cause a

performance variation due to extra global memory accesses. On

the other hand, a permanently inactive thread will never write to

global memory, leading to some missing data in the final results

in the global memory.

The same approach employed in M1 method is used to check

the warp program counter fields in the warp pool line. Additional

branches are also inserted to detect faults affecting the warp

program counter. With this approach some interface

interconnection faults can also be detected.

3) Method M3

The methods M1 and M2 depend on performance variation

triggered by divergence paths in the test program to detect the

permanent faults in the mark field. However, in practical

GPGPUs, these methods would require performance counters for

detection, which are not necessarily implemented or easily

accessible. To solve this issue, a variation of M2 is presented. In

this approach, a basic memory thread signature is introduced.

Firstly, a signature initialization with zero is carried out. For

every thread executed by the application a particular memory

location is required to store the signature. This means one

exclusive memory location for each thread.

One of the two divergence paths groups (convergence path)

is composed of the following procedures: load thread signature,

increase it, store of the signature in memory and the thread

instruction for global memory access as in M2.
j ← 0 ► Clear constant
… ► Normal app. Execution
Sig_per_thread[] ← 0 ► Initialize signature (M3)
for i ϵ {set of ThreadId in SM} do ► Evaluate for every ThreadID
 if i == j then ► If ThreadID Matches
 Divergence_path_GroupA(); ► Divergence path Group A
 Thread_Store_in_memory(); ► Memory results store (M2)
 Sig_per_thread[i] ← Sig_per_thread[i]+1 ► Set signature (M3)
 Sig_store_in_memory(); ► Store signature (M3)
 else
 Divergence_path_GroupB (); ► Divergence path Group B
 j ←j+1 ► Change constant value

Fig. 3. Pseudocode for method M1 (white), M2 (white and light gray), and M3

(white and dark gray).

In this method, the thread signature is essentially a counter which

is incremented each time the thread writes into memory: the

expected value for every thread is one. A higher value implies

that the thread has written more than once in memory. A

signature with value zero implies that the thread never accessed

the global memory. The detection of permanent faults in mark

field can be performed by checking the signatures in the final

results.

IV. EXPERIMENTAL ANALYSIS

A. The FlexGrip simulation setup

In order to assess the effectiveness of the proposed techniques

we performed some simulation-based fault injection campaigns

using the FlexGrip model [11].

A tool has been developed to automate the fault injection

using ModelSim, which is able to start the simulation, load the

test program, generate the ModelSim command to inject a

permanent fault in the desired signal in the design and collect the

log file generated by FlexGrip after each fault simulation. The

log file contains the final results of the test program in the global

memory, which is then compared with the golden results from

fault-free simulation for fault detection purposes. In case the log

file is not generated at all, it means that the kernel never finished

the test program execution, and such fault is labeled as detected

by system hang.

Besides checking the final results in global memory,

performance evaluation is also performed by comparing the

actual and golden kernel execution time. A fault is labeled as

detected by “performance degradation” when the execution time,

in the fault simulation, is longer than the expected value.

At the end of the fault injection campaign, the list of faults

injected, labeled according to the two checks mentioned above,

is gathered for coverage analysis as presented later in this

section. The fault injector reads a fault list file which includes the

fault type, the logic value and the signal name.

B. Changes to FlexGrip

The original FlexGrip has been designed using the Xilinx

System Generator to take advantage of the libraries and cores

provided by Xilinx for better resources utilization in the target

FPGA (Virtex6). For the scope of our work, Xilinx libraries

cores have been changed with synthesizable VHDL modules

exactly replicating the functionalities of the original FlexGrip

Xilinx Core Generator modules.

These modules include different register files previously

implemented using Xilinx Block Memory IP Core replaced by

behavioral level dual-port memory implementation, scalar

processor for different arithmetic and logic operators, and so on.

After the modifications, it is possible to simulate the resulting

model with the standard library using ModelSim and perform the

fault injection analysis.

C. Methods implementation

The three SBST methods are applied to the original application

code using the FlexGrip model.

1) Method M1

In FlexGrip, the SM initialization loads the thread ID to a

specific location in the shared memory. To use the thread ID in

the test program, a move from the shared memory to an un-

occupied register needs to be inserted.

The total number of constants to compare depends on the

blocks and threads per block configuration. For the present

application, eight comparison routines are required, according to

the total number of SPs selected in SM configuration for

FlexGrip. The implementation of the M1 method code is

composed of 91 assembly instructions, including the original

application.

The routines employed are aimed to perform the following

operations:

1. Selection of a convergence address point. An instruction

memory address is defined as a convergence point for thread

divergence.

2. Comparison between the thread ID register and a constant

value. Threads with different thread ID values will enter in

waiting state before the convergence point.

3. Conditional branch execution. This generates the divergence

paths and the stimuli required for pool line test.

4. Execution of divergence paths. Threads which match the

constant value will execute two extra NOP instructions. All

threads will converge again at the convergence point

determined in operation 1 and continue to execute in

parallel.

These operations are repeated for every constant value

predefined in the test code, as illustrated in Fig. 4.

… ►Application code
GLD Rx, g[0x06] ►Move of threadIdx.x (stored in shared memory)
MVI Ry, Z ►Move constant parameter per SP (from 0 to (Z-1))
… ►Application code

--------------- M1 code ---------------
AND Rx, Ry ►Comparison between constant value and threadIdx.x
SSY Dir_1 ►Convergence point definition
BRANCH Dir_2 ►Conditional evaluation
NOP ►Divergence Path
NOP
Dir_2:GST M[Ra],Rb ►Convergence Path, Storage thread results
Dir_1: NOP.S ►Warp branch stack release (Convergence point)
--- Repeat Z-1 times according to the number of threads per block.

--- End of M1 code.

Fig. 4. General Pseudocode for a routine implementing Method M1. Z is the
number of threads per block or threads defined for the application.

The number of conditional branch routines is directly related

with the maximum number of threads-per-block and the number

of threads defined in the application. These routines are placed at

the end of the application code.

2) Method M2

This method employs the same thread ID index. However, the

application execution order is modified and the final global

memory store instruction is replaced with a series of conditional

routines. In our example, 90 assembly instructions are employed.

In this approach, the first three operations are equal to the

method described above. In operation 4 the path includes the

final memory result storage instruction. In this case, the

execution of the store instruction generates an additional latency

due to global memory access. The operations are repeated the

same number of times as M1.

3) Method M3

In this approach, the use of the thread signature requires

some additional space in the global memory. In this case, a base

address is selected for this purpose. The following operations are

carried out replacing the final storage operation:

1. Thread signature initialization. For every active thread, the

signature in the global memory is initialized with zero.

2. Selection of a convergence point.

3. Comparison between thread ID and a constant value,

generating divergence paths of thread execution.

4. Threads whose thread ID matches the constant value will

perform final memory results store operation, load the thread

signature, increase once, and store back into global memory.

5. Other threads execute three NOP instructions and an

unconditional branch instruction to reach the convergence

point.

In FlexGrip, the code is implemented in .SASS assembly

language with 152 instructions. However, the proposed

approaches can also be developed at a higher level (e.g., using

CUDA C) with the use of a switch statement and the kernel

(threadIdx.x) variable. An example of routine implementation of

the method M2 at high level is presented in Fig 5.
… ► Normal application code

switch(threadIdx.x) ► Comparison of threadIdx.x

{

 case Z: ►Thread execution for threadIdx.x with Z value

 Thread_final_Store(); ►Store of results in global memory

 break;

 … ►Comparison with other Z-1 value

} ►End of M2 code

Fig. 5. CUDA code for method M2. Z is the number of threads per block or
thread in the application.

When implement the test code in CUDA C level, PTX-

CUDA C mixing programming is required to allow finer control

of branch instructions and convergence, though instrumentations

are still needed after PTX-SASS translation as control flow

instructions are not explicitly allowed in higher level.

D. Experimental Results

Two fault simulation campaigns have been performed on the

GPGPU model, configured with a clock of 100 Mhz, using the

fault list of the warp pool memory lines (2,048 elements) and the

interface connection (478 elements). FlexGrip has been

configured with one grid, 256 blocks and 24 threads per warp.

Table 1 presents the results of the fault simulation campaign for

the warp pool memory lines. The original application

(VectorAdd) requires 142.005µs. of simulation time. Algorithms

M1, M2 and M3 require 142.005 µs, 415.215 µs and 1.122 ms

respectively.

There are some permanent faults in the warp pool memory

that are functionally untestable , such as the permanent bits in the

higher part of the warp ID and some bits from shared memory

and general-purpose registers base addresses. In fact, these fields

are kept constant during the kernel execution. There are also

fields defined as constant values which are not accessible.

Taking into account those restrictions, the total number of

untestable faults per entry line is equal to 156 permanent faults.

Furthermore, 23 faults are observable but not controllable. These

faults correspond to the base addresses of the general purposes

registers file and shared memory space of every thread, so for the

application with eight warps entry lines, the total amount of

untestable faults is 1,064.

From Table I, method M1 increases the number of detected

faults comparing to the original application (VectorAdd),

while method M2 is capable to detect all the testable permanent

faults in the warp pool memory. The 256 permanent faults

detected by memory mismatch in M2 are all related to the actual

mask field for the eight lines used by application. It means that

all permanent faults in the actual field are detected. The same

numbers of permanent faults in program counter, detected by

method M1, are detected also by M2.

TABLE 1. FAULT DETECTION RESULTS IN WARP POOL MEMORY.

Application Code VectorAdd M1 M2 M3

Total Faults 2,048 2,048 2,048 2,048

Testable Faults 984 984 984 984

Detected Faults 624 728 984 984

 Hang 440 613 616 616

 Memory Mismatch 184 115 112 368

 Performance degradation 0 0 256 0

Testable Fault coverage (%) 63.41 73.98 100 100

Fault coverage (%) 30.46 35.54 48.04 48.04

The method M3 aims at a different purpose. This approach

allows fault detection in the actual mask field employing a

different observation mechanism, i.e. checking the final results in

the global memory only. Hence, it does not require the use of

additional or complex hardware for performance or timing

measurement during test.

An analysis of the interconnection signals shows that a total

of 201 connections are not relevant for kernel execution and

thread control in the GPGPU and are classified as untestable

faults for the proposed methods. In Table 2, the results of the

fault injection campaign regarding the interconnections between

the warp unit and the SM is reported. M1 increases the fault

detection coverage by 7.94% as it is able to detect those faults

affecting the bits carrying the thread state information between

the warp unit and the branch unit to control the branch execution.

M2 further increases the fault coverage to 85.92% instead of

100%, as connections regarding shared memory size, general-

purpose registers size or number of warps do not generate

misbehavior in FlexGrip operation.

TABLE 2. RESULTS FOR FAULT DETECTION IN WARP UNIT CONNECTIONS.

Application Code VectorAdd M1 M2 M3

Total Fault 478 478 478 478

Testable Faults 277 277 277 277

Detected Faults 155 177 238 236

 Hang 105 157 154 161

 Memory Mismatch 50 20 20 75

 Performance degradation 0 0 64 0

Testable Fault Coverage (%) 55.95 63.89 85.92 85.20

Fault Coverage (%) 32.42 37.02 49.79 49.37

Faults detected by performance degradation correspond to the

signals between the warp unit and the Execution/Control stage in

SM which are in charge of preserving execution coherency

between the two modules.

The method M3, without checking Performance degradation,

is still able to achieve very close fault coverage by only checking

the final results in global memory. Fault coverage is increased by

29.25% comparing to the original application, which means that

81 additional permanent faults are detected: 64 of them belong to

the actual thread state and the other faults belong to the thread

program counter.

In M2 some permanent faults are detected with different

observation mechanisms. Some faults affecting the thread

program counter and base address of the general-purpose register

file previously detected by memory mismatch become detected

by Hang or Performance observation. Faults related to bus

control signals, memory and general-purpose register file base

addresses are detected by Performance degradation in M2.

M1 is able to detect some faults in the warp pool memory and

in the interconnections; however, the percentage of fault

coverage is low. On the other hand, M2 achieves higher fault

coverage by introducing store instruction to access global

memory to increase performance variation among different

divergence paths. Meanwhile, M3 achieves similar high fault

coverage by only checking the final results in global memory,

taking advantage of a signature variable for each thread.

V. CONCLUSIONS AND FUTURE WORKS

In this work three SBST incremental methods are proposed to

detect faults inside the GPGPU warp scheduler. These methods

can be applied to any suitable existing GPGPU application. The

key idea is their capability to generate divergence paths of thread

execution and use performance variation among the threads

and/or final results in global memory to detect permanent faults.

Fault injection campaigns have been carried out using the

FlexGrip GPGPU VHDL model. Results indicate that both

method M2 and M3 are promising SBST methods able to

achieve high fault coverage. Especially, the M3 method requires

only to check the final results in global memory after test

program execution, which is a typical mechanism used in

processor SBST techniques. As future works we plan to extend

the characterization to further GPGPU modules and to compare

the fault coverage results with extended Instruction Set

Architecture (ISA) fault simulators. Besides, we plan to use the

proposed techniques on gate-level netlist models and real

platforms.

REFERENCES

[1] D. Sabena; L. Sterpone; L. Carro; P. Rech, “Reliability Evaluation of
Embedded GPGPUs for Safety Critical Applications”, IEEE Transactions
on Nuclear Science, Year: 2014, Volume: 61, Issue: 6, Pages: 3123 – 3129

[2] L. Bautista Gomez; F. Cappello; L. Carro; N. DeBardeleben; B. Fang; S.
Gurumurthi; K. Pattabiraman; P. Rech; M. Sonza Reorda, “GPGPUs: How
to combine high computational power with high reliability“, 2014 Design,
Automation & Test in Europe Conference & Exhibition (DATE)

[3] Paolo Bernardi; Riccardo Cantoro; Sergio De Luca; Ernesto Sánchez;
Alessandro Sansonetti, “Development Flow for On-Line Core Self-Test of
Automotive Microcontrollers”, IEEE Transactions on Computers, Year:
2016, Volume: 65, Issue: 3, pp. 744 – 754

[4] Stefano Di Carlo; Giulio Gambardella; Marco Indaco; Ippazio Martella;
Paolo Prinetto; Daniele Rolfo; Pascal Trotta, “A software-based self test of
CUDA Fermi GPUs”, 2013 18th IEEE European Test Symposium (ETS)

[5] Andreas Riefert; Riccardo Cantoro; Matthias Sauer; Matteo Sonza Reorda;
Bernd Becker, “On the automatic generation of SBST test programs for in-
field test”, 2015 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1186 – 1191

[6] A. Paschalis; D. Gizopoulos, “Effective software-based self-test strategies
for on-line periodic testing of embedded processors”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Year: 2005,
Volume: 24, Issue: 1, Pages: 88 – 99

[7] Sparsh Mittal, “A Survey of Techniques for Modeling and Improving
Reliability of Computing Systems”, IEEE transactions on parallel and
distributed systems, Year: 2016, Vol. 27, no. 4

[8] N. Farazmand, R. Ubal, and D. Kaeli, “Statistical fault injectionbased AVF
analysis of a GPU architecture,” in Proc. 8th IEEE Workshop Silicon Errors
Logic Syst. Effects, Year: 2012.

[9] J. Tan, Y. Yi, F. Shen, and X. Fu, “Modeling and characterizing GPGPU
reliability in the presence of soft errors,” Parallel Comput., Year: 2013, vol.
39, no. 9, Pages 520–532

[10] David Defour, Eric Petit, “A software scheduling solution to avoid
corrupted units on GPUs”, Journal of Parallel and Distributed Computing,
Year: 2016, Volumes 90–91, Pages 1-8

[11] Kevin Andryc; Murtaza Merchant; Russell Tessier, “FlexGrip: A soft
GPGPU for FPGAs”, 2013 International Conference on Field-
Programmable Technology (FPT), pp. 230 – 237

