
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Risk-Aware Path Planning Strategy for UAVs in Urban Environments / Primatesta, Stefano; Guglieri, Giorgio; Rizzo,
Alessandro. - In: JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS. - ISSN 0921-0296. - ELETTRONICO. -
95:2(2019), pp. 629-643. [10.1007/s10846-018-0924-3]

Original

A Risk-Aware Path Planning Strategy for UAVs in Urban Environments

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/s10846-018-0924-3

Terms of use:

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10846-018-0924-3

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2712423 since: 2019-09-02T18:05:59Z

Springer



Journal of Intelligent and Robotic Systems manuscript No.
(will be inserted by the editor)

A Risk-aware Path Planning Strategy for UAVs in Urban
Environments

Stefano Primatesta · Giorgio Guglieri ·
Alessandro Rizzo

Received: date / Accepted: date

Abstract This paper presents a risk-aware path planning strategy for Unmanned
Aerial Vehicles in urban environments. The aim is to compute an effective path
minimizing the risk to the population, enforcing safety of flight operations over
inhabited areas. To quantify the risk, the proposed approach uses a risk-map that
associates discretized locations of the space with a suitable risk-cost. Path planning
is performed in two phases: first, a tentative path is computed off-line on the basis
on the information related to static risk factors; then, using a dynamic risk-map, an
on-line path planning adjusts and adapts the off-line path to dynamically arising
conditions.

Off-line path planning is performed using riskA*, an ad-hoc variant of the A*
algorithm, which aims at minimizing the risk. While off-line path planning has no
stringent time constraints for its execution, this is not the case for the on-line phase,
where a fast response constitutes a critical design parameter. We propose a novel
algorithm called Borderland, that uses the check and repair approach to rapidly
identify and adjust only the portion of path involved by the inception of relevant
dynamical changes in the risk factor. After the path planning, a smoothing process
is performed using Dubins curves. Simulation results confirm the suitability of the
proposed approach.
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1 Introduction

Unmanned Aerial Vehicles (UAVs) are gaining momentum in recent years and
their extensive use has induced the rapid growth of related research areas. UAVs
have been successfully applied in several applications, both in military and in civil
fields, such as security surveillance, search and rescue, environmental monitoring,
mapping, to name a few [2]. In particular, the use of UAVs in urban environments
is growing and, in the very near future, UAVs will be involved in Smart Cities [31,
20]. For this reason, it will be mandatory to enhanced safety of flight operation.

Path planning is one of the key elements to provide autonomy to UAVs in the
execution of the missions, by defining the set of waypoints to reach a destination,
while satisfying some optimality criterion [13]. Path planning has been widely
studied and a large number of methods have been proposed in the last decades.
Starting in the late 50s with the Dijkstra algorithm [9], graph search algorithms
have been widely used in path planning. One of the most commonly used algo-
rithms is A* [17], which complements the logic of graph search with a heuristic
component for the computation of the cost function. Several A*-based algorithms
have been developed for dynamic [40] and anytime [27] path planning, and in high
dimensional environments [18,19].

Another popular family of path planning algorithms comprises sample-based
techniques, which explore the search space through a sampling scheme. Widely
diffused approaches are Probabilistic Roadmaps (PRM) [24] and Rapidly-exploring
Random Trees (RRT) [25]. Especially RRT is very popular, and many RRT-based
algorithms have been developed. The most popular is RRT* [22], a near-optimal
version of RRT, also used to perform kinodynamic path planning [23]. Sample-
based algorithms have been also used for UAVs [44].

A wide variety of path planning algorithms specifically dedicated to UAVs has
been presented in the literature. In [29], the authors propose a kinodynamic path
planning algorithm with collision avoidance using the Closed-loop RRT. Other
techniques are based on evolutionary algorithms (EAs) [36], as well as reinforce-
ment learning approach [46]. Often, path planning for UAVs uses techniques based
on an explicit 3D description of the environment [8,45].

When autonomous vehicles move in uncertain or populated environments, risk
should be accounted for to produce an effective path planning. In [43] the authors
propose a dynamic path planning for UAVs taking into account static and dynamic
threats. In [7,42] risk-maps are used to compute the path with minimum risk. Risk-
aware path planning is a common problem and concerns also mobile robots [12]
and autonomous underwater vehicles (AUVs) [33]. In general, risk-aware path
planning takes into account the risk from the UAV point of view, i.e. it minimizes
the risk of collision with obstacles and other vehicles [38,43]. However, when UAVs
operate in urban environments it should be mandatory to consider the risk to
people on the ground. In [39] the authors propose a path planning algorithm for
emergency landing, in order to avoid populated areas. Another interesting work
in [37] introduces a path planning technique minimizing the trade off between risk
to the population and flight time. In [14], Guglieri et al. propose a path planning
strategy for UAVs using the RA* algorithm, a modified version of A* that takes
into account the risk of flying over a specified area.
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The risk to the population is defined by risk analyses. A common risk assess-
ment approach defines the risk as the probability of lethal incidents when the UAV
flies over a populated area [3,5,6,15].

1.1 Current work

This work introduces a new perspective in path planning, whereby the definition of
optimal path accounts for both static and dynamic risk factors for the population
on ground along the route. The proposed path planning algorithm takes a so-
called risk-map in input. A risk-map is a dynamical location-based map, where
each location is associated with a specific risk-cost that quantifies the risk of flying
over that location [6,15]. The proposed path planning approach is composed by
an off-line and an on-line path planning phase.

First, the off-line path planning aims to solve an optimal path planning prob-
lem. Given a risk-map, a starting and a final point, the off-line path planning seeks
for an optimal global path that avoids obstacles and no-flight areas, computed min-
imizing the risk-cost defined by the risk-map. The off-line path is computed before
the mission starts and, in general, when the UAV is still on the ground. Thus, the
off-line path planning is not, in general, a time-critical activity.

The on-line path planning aims to repair and adapt the off-line path in real-
time, according to relevant information emerging from a dynamic risk-map. During
the trajectory execution, in fact, the risk-map changes when unanticipated obsta-
cles and other risk factors appear. For this reason the on-line path planning only
focuses on the portion of path not already executed, i.e., from the current position
of the UAV to the target point. Unlike off-line planning, the on-line one is time-
critical, since the UAV is already flying en-route and needs to react promptly to
dynamically changing conditions.

After path planning, a fast Path Smoothing procedure based on Dubins curves [10]
is applied to the obtained path. This procedure is necessary, in order to transform
the theoretically-obtained path in a flyable one. Then, the path is handed over to
a UAV Control System [41]. Figure 1 illustrates the architecture of the proposed
approach.

Guidelines for the development of our approach have been introduced for the
first time in [34], as a part of a Cloud-based framework for risk-aware intelligent
navigation for UAVs in urban environments.

This paper is organized as follows. Section 2 provides an overview on risk as-
sessment and risk-maps. Then, in Section 3, the off-line path planning is illustrated
in detail, focusing on the problem formulation and on riskA*, our proposed algo-
rithm. Section 4 describes the on-line path planning, achieved through the novel
Borderland algorithm. Then, in Section 5 the Path Smoothing procedure using
Dubins curves is described. Finally, in Section 6 the proposed method is validated
by numerical results. Our conclusions are drawn in Section 7.

2 Risk-map

This section provides an overview of basic concepts about the definition of the
risk-map.
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Fig. 1 The main architecture of proposed risk-aware path planning approach.

In path planning problems, the construction of a map has a critical role, since
it defines the search space, i.e., the space with all the possible configurations where
the path planning algorithm searches for the solution [26]. The risk-map used in
this work is a dynamic one that quantifies the risk of flying over a given position,
including the presence of obstacles. The risk-map describes a discretized 2D space,
i.e. flight at constant and fixed altitude is considered. A location-based map is
assumed, where the 2D space is sampled in a grid fashion, and each location is
associated with a number, quantifying the risk level [15]. Thus, a map M consists
of a n×m matrix of locations:

M =


rc(p1,1) rc(p1,2) · · · rc(p1,m)
rc(p2,1) rc(p2,2) · · · rc(p2,m)

...
...

. . .
...

rc(pn,1) rc(pn,2) · · · rc(pn,m)

 , (1)

where each element rc(pi,j) is a square cell centered in the location pi,j and with
a specific dimension. The dimension of the cell, i.e. the risk-map resolution, is
defined considering the quality of the source data used to generate the risk-map.
Each cell rc(pi,j) has a specified risk-cost expressed by a real number in the range
0-1, according to its risk value and specific to the spatial co-ordinates pi,j . Notably,
0 corresponds to a zone with no risk, while 1 defines a zone with the highest flight
risk, i.e. a no-flight zone.

The risk value is defined according to [3,5,6,15]. In particular, the risk is the
probability of lethal incidents, defined as succession of three conditional events:
(i) the loss of control of the vehicle with uncontrolled crash on the ground, (ii)

the impact with someone, and (iii) a fatal injury to the person that has been hit.
This probability is therefore defined as follows:

Pcasualty(pi,j) = Pcrashing × Pimpact(pi,j)× Pfatality(pi,j) (2)

The probability of crashing Pcrashing is the probability of loss of control of the
UAV with the uncontrolled crash on the ground. This term is expressed as a rate
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per hour (h−1) and it generally coincides with the failure rate of the aircraft. Its
value depends on the vehicle type and its reliability. In [6], a constant value in the
range [10−6, 10−9] h−1 is used for generic unmanned aircraft systems, while in [4]
values in the range 0.5− 10 h−1 are established for Micro Air Vehicles (MAVs).

The probability of impact with someone Pimpact(pi,j) considers the crashing
area Acrash and the population density ρ relative to the position pi,j :

Pimpact(pi,j) = ρ(pi,j) ·Acrash. (3)

The crashing area is computed according to the method used in [6], taking into
account the dimensions of the UAV and of the average human being.

The probability of fatal injury to someone Pfatalty(pi,j) is defined using the
approach proposed in [6], accounting for the sheltering factor relative to the posi-
tion pi,j and the kinetic energy at impact. The sheltering factor defines how the
population is exposed to the impact of the UAV. In fact the presence of obstacles
in the impact area can reduce the probability of fatal injuries, because obstacles
can absorb the impact energy and shelter to debris.

In order to ensure an appropriate level of safety, a maximum value of Pcasualty

is specified. According to the ”Equivalent Level of Safety” defined in [6,15], an
appropriate and conservative value of maximum acceptable risk is 10−6 h−1. The
risk value is computed for each location pi,j in the risk-map, then it is normalized
in the range 0-1, whereas 1 defines locations with a risk-value greater then the
maximum acceptable risk. Obstacles at the flight altitude and no-fly zones enforced
by National aviation agencies are accounted by forcing the corresponding risk-cost
to 1.

3 Off-line Path Planning

The off-line path planning takes as input the risk-map and solves a risk-aware path
planning problem before the beginning of the flight mission. Since the risk-map is
defined at fixed flight altitude, a two-dimensional path planning problem is here
tackled.

Here, off-line path planning is realized through an A*-based [17] graph search
algorithm, called riskA*, which optimizes the path by trading off risk-cost and
path length.

3.1 Problem formulation

Let C ⊆ R2 be a continuous search space of a path planning problem. As in many
other applications [32], C is discretized into a discrete space X, on which the risk-
map will be constructed, and taking into account the risk-map resolution. Each
state x ∈ X is a discrete location in the discrete search space. With a slight abuse
of notation, here and henceforth we will refer to x as a state of search space,
location of risk-map M or a node of a search grid graph.

The obstacle region Xobs ⊆ X is the set of locations in which flight is for-
bidden. Thus, the associated cost is equal to 1, as described in Section 2. The set
Xfree = X \Xobs contains the remaining navigable locations. The initial and final
locations are denoted xstart, xgoal ∈ Xfree. Let Σ be the set of all paths, where a
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single path σ is a sequence of connected locations x in the search space X. The
path planning algorithm searches for an optimal path σ∗ from xstart to xgoal in
Xfree that minimizes a given cost function f : Σ → R > 0. Hence, the optimal path
is the solution of the following program:

σ∗ = arg min
σ∈

∑ f
(
σ(s)

)
subject to σ(0) = xstart

σ(1) = xgoal

∀s ∈ [0, 1] , σ(s) ∈ Xfree.

(4)

3.2 RiskA* algorithm

The riskA* algorithm is based on well-known A* [17]. Similarly to A* algorithm,
the input of riskA* is a graph M composed by nodes and edges. Here, we specialize
the algorithm by considering a two-dimensional grid graph, where each location
corresponds to a graph node, and each portion of path between two nodes corre-
sponds to a graph edge. The output of riskA* is a back-pointer path, which is a
sequence of nodes starting from the goal and tracing back to the start.

Similarly to A*, the general idea of riskA* is to move through the graph min-
imizing the cost function f(x):

f(x) = g(x) + k · h(x), (5)

where g(x) is the motion cost of the path from node x to the start node xstart,
the constant k is the adjustment variable, and h(x) the heuristic cost, i.e., the
estimated motion cost of the best path between x and xgoal. Thus, f(x) is the
estimated motion corresponding to the shortest path from xstart to xgoal, passing
through node x.

Differently from traditional A*, riskA* considers the risk-cost in the cost func-
tion f(x). Given a generic node xn, the motion cost g(xn) is:

g(xn) =

∫ xn

xstart

rc(x)dx, (6)

where g(xn) is the integral of the risk-cost between the initial state xstart and
state xn. Function rc(x) is the risk-cost associated with the path. Similarly, the
heuristic function cost h(xn) is:

h(xn) =

∫ xgoal

xn

rc(x)dx, (7)

where h(xn) is the integral of the risk-cost between state xn and the final state
xgoal.

The risk-cost function takes values in 0 < rc(x) ≤ 1. As a consequence, the
motion cost is never equal to zero. Moreover, conservative considerations lead us
to never consider the risk equal to zero.

Figure 2(a) shows the cost function f(x) at step n. Note that g(x) is the effective
motion cost from the initial node, while h(x) is the estimated motion cost until
the final node. Hence, g(x) and h(x) are complementary along the path.



A Risk-aware Path Planning Strategy for UAVs in Urban Environments 7

xx
goal

x
n

x
start

r
c
(x)

h(x
n
)

g(x
n
)

(a)

h(x
n
)

xx
n

x
start

r
c
(x)

c(x
n-1

, x
n
)

x
n-1

r
c
(x

n-1
)

r
c
(x

n
)

x
goal

g(x
n-1

)

r
c
(x

goal
)

x
n+1

x
goal-1

r
c min

(b)

Fig. 2 Graphical representation of the cost function f(x). Given a generic state xn, in (a) the
cost function is composed by the motion cost g(xn) and the heuristic cost h(xn). Similarly, in
(b), the incremental step defined in Equations (8), (9), (10), (11) is illustrated.

The riskA* algorithm is described in Algorithm 1. Its inputs are xstart and
xgoal, and a grid graph M related to the risk-map. In the same way of A*, two
data structures are used, called O (Open set) and a C (Closed set). The Open
set is used to store currently discovered nodes waiting to be evaluated. Set O is a
priority queue defined according to the estimated cost f(x), such that an element
with low cost is served before an element with high cost. The Closed set is the set
of nodes already processed or invalid. The algorithm uses the same logic of A*.
Important variants with respect to the original algorithm are in lines 6, 7, where
if more than one node xbest with the same motion cost exist, the algorithm selects
the node with the lower risk-cost. The riskA* algorithm generates a search tree,
which, by definition, has no cycles.

For each node x explored by riskA* the estimated cost function f(x) is com-
puted as described in Equations (5), (6), (7). Considering the discrete grid, the
integral is calculated with an approximative and incremental method. Thus, g(xn)
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Algorithm 1 riskA* algorithm

1: procedure riskAstarSearch(xstart, xgoal,M)
2: Add xstart to O
3: Add all invalid nodes xinvalid ∈M to C
4: repeat
5: Pick xbest from O with f(xbest) 6 f(x), ∀x ∈ O
6: if ∃ multiple xbest then
7: Pick the xbest with lower rc(xbest)
8: end if
9: Remove xbest from O and add to C

10: if xbest = xgoal then
11: return ReconstructPath(xgoal, xstart)
12: end if
13: Expand xbest: for all xadj ∈ Near(xbest) and xadj /∈ C
14: if xadj /∈ O then
15: Add xadj to O
16: else if g(xbest) + c(xbest, xadj) < g(xadj) then
17: Update xadj’s backpointer to point to xbest

18: end if
19: until O is empty
20: return ReconstructPath(xgoal, xstart)
21: end procedure

is the sum of the motion cost at previous step g(xn−1) and the trapezoidal area
described by the motion from xn−1 and xn, denoted with c(xn−1, xn):

g(xn) =

∫ xn−1

xstart

rc(x)dx+

∫ xn

xn−1

rc(x)dx

= g(xn−1) + c(xn−1, xn),

(8)

with

c(xn−1, xn) =
rc(xn−1) + rc(xn)

2
dist(xn−1, xn), (9)

where dist(xn−1, xn) is the Euclidean distance between two nodes. Figure 2(b)
illustrates the discretization of the cost function.

The term h(xn) indicates the area described by the estimated motion from xn

and the final state xgoal. With A*-based algorithm, if an admissible heuristic is
adopted, the algorithm is able to search for the optimal solution in the graph. The
heuristic h(xn) is admissible if h(xn) ≤ h∗(xn) for each node xn and with h∗(xn)
being the effective optimal motion cost from xn to the goal. If the heuristic is not
admissible, the A*-based algorithm can overestimate the motion cost to reach the
goal, and it can overlook nodes that would lead to the optimal solution. Then,
in order to have an admissible heuristic, we estimate the motion considering the
minimum risk-cost between the node xn and the node xgoal. Then, as depicted in
Figure 2(b), the heuristic cost can be computed as follows:

h(xn) =
rc(xn) + rc min

2
dist(xn, xn+1) + dist(xn+1, xgoal−1)rc min+

+
rc(xgoal) + rc min

2
dist(xgoal−1, xgoal),

(10)
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where rc min > 0 is the minimum value of the risk-cost function. Assuming dist(xn, xn+1) =
dist(xgoal−1, xgoal) = distmin, with distmin the minimum distance between two ad-
jacent nodes, the heuristic function becomes:

h(xn) =
rc(xn) + rc(xgoal)

2
distmin + (dist(xn, xgoal)− distmin)rc min (11)

The A*-based algorithms are able to find the optimal solution in the graph.
However, due to the the discrete space, the outcome of A*-based algorithms may
not be the optimal one in the continuous space. In fact, the path computed with
riskA* is constrained to turn angles multiple of 45◦. A Post-Optimization phase
is performed after the execution of riskA*.

Post-Optimization is described in Algorithm 2. The algorithm explores the path
(lines 3 to 12). Then, considering two states xj, xk ∈ σ, the algorithm verifies if the
line of sight segment LOS(xj, xk) improves the path. The LOS(·) segment connects
two nodes xj and xj with a straight line in the continuous space, inserting additional
nodes using a linear interpolation (line 4). The interpolation step is comparable
with the risk-map resolution. Then, the motion cost cost(·) of the LOS(·) segment
is computed using the incremental method described in Equations (8) and (9).
If the LOS(xj, xk) segment has a lower motion cost than the path from xj to xk,
the algorithm updates the path (line 6). Moreover, after the replacement of the
LOS(·) segment, the k index needs to be updated in respect to the updated path
(line 7). These iterative procedure continues until the xgoal is reached. A simple
example of the Post-Optimization procedure is depicted in Figure 3.

We remark that the Post-Optimization procedure aims to optimize the path
locally, since the global optimization is provided by the riskA* algorithm.

Algorithm 2 Post-Optimization algorithm

1: procedure PostOptimization(σ)
2: j = 1, k = 3
3: while j 6= length(σ) do
4: Interpolate(LOS(xj, xk))
5: if cost(LOS(xj, xk)) 6 cost(segment(xj, xk)) then
6: Replace segment(xj, xk) ∈ σ with LOS(xj, xk)
7: Update k
8: k = k + 1
9: else

10: j = j + 1
11: end if
12: end while
13: return σ
14: end procedure

4 On-line Path Planning

4.1 Problem formulation

The on-line path planning is based on a check and repair approach [11], in which
the path is dynamically adapted in accordance to a dynamic risk-map.
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(a) (b)

(c) (d)

Fig. 3 Simple example of the Post-Optimization procedure. In (a) the path is computed
with riskA*, as a sequence of nodes from A to F. In (b) the Post-Optimization procedure
searches for LOS(·) segments that improve the path. Starting from node A, it considers at
first the LOS(A,C), then the LOS(A,D). On the contrary, it discards the LOS(A,E), because
it crosses a high risk area. In (c), the path is updated with the segment A-B’-C’-D, with B’
and C’ being the interpolated nodes of the LOS(A,D). Then, the Post-Optimization procedure
discards the LOS(B′,E) and the LOS(C′,E), as well as the LOS(D,F) in (d).

Recalling the notation of the off-line path planning problem described in Sec-
tion 3.1, the off-line path σ is a sequence of locations x ∈ Xfree from xstart to
xgoal. Considering the dynamic risk-map, the search space X(k) changes at each
discrete-time step k, then the path is considered as a sequence of states x(k).
Hence, at each time step, the differential search space Xdiff(k) can be defined as
follows:

Xdiff(k) = X(k)−X(k − 1), (12)

Moreover, the on-line path planning algorithm aims to repair the path only when
it is necessary, i.e. when the path is involved by an area with increased risk-costs.
For this reason, a differential risk-map Mdiff related to Xdiff is defined as:

Mdiff(xn(k)) =

{
1 if ∆rc(xn(k)) > 0

0 otherwise
(13)

with

∆rc(xn(k)) = rc(xn(k))− rc(xn(k − 1)) (14)

The differential risk-map Mdiff has the same dimension of the risk-map M . The
notation Mdiff(xn(k)) defines the state of the generic node xn in the differential
map Mdiff at time k. Figure 4 illustrates an example of risk-maps at time k and
k − 1, and the corresponding differential map.

The check routine verifies if Mdiff(x(k)) > 0, ∨ x(k) ∈ σ, i.e., it verifies which
part of the path has to be updated because of a change in the risk-map.

The repair routine tries to adjust the path with a fast algorithm, in order to
tackle the dynamic risk-map.
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(a) (b) (c)

Fig. 4 Example of the risk-map in which the risk areas are identified: white areas are with
minimum risk-cost, black areas are with maximum risk-cost, and shade of red areas are with
middle cost, in which darker red areas involving more risk than bright red ones. In (a), the
risk-map at time k− 1. In (b), the risk-map at time k. In (c), the differential risk-map defined
according to Equation (13).

The riskA* is not suitable to solve this problem, because of the computational
time, since it requires a time proportional with the dimension of the map. Unlike
off-line path planning, the on-line algorithm needs to adapt the path in short time,
because the UAV is performing the mission. As a consequence, the on-line path
planning needs to trade off between computational burden and optimality.
In this work, we propose the Borderland algorithm as a solution to the on-line
path planning problem.

4.2 Borderland algorithm

Here, we introduce the Borderland algorithm. It is an extension of Bug algorithms
[30] applied to grid graphs and with generic motion cost. Bug-based algorithms
are widely used in on-line path planning to tackle complex and dynamic envi-
ronments [1,21]. In our approach the idea is to follow the contour of each risk
area involved and circumnavigate it, in order to adjust the path minimizing the
combination of risk-cost and path length.

The pseudo code of the Borderland algorithm is described in Algorithm 3. The
input are: (i) the current UAV position at time k, (ii) the most recent path com-
puted at time k − 1, (iii) the grid graph search space M at time k, related to X,
and (iv) the differential space Mdiff related to Xdiff . The Borderland algorithm
always considers the path from the current UAV position to the goal, because the
previous portion of the path is already executed.
First, the algorithm visits each location x in the path σ and it checks if each x is
involved in the differential risk-map. If this is the case, it adds x to a differential
set D (lines 2 to 5). The differential set D is a set of nodes members of the path
σ and involved in the differential risk-map Mdiff .
From all locations in D, Borderland detects path segments S[xa, xb] as a sequence
of locations (line 7). The segments S[xa, xb] are the portions of path need to be
repaired.
Here, the algorithm checks if the current position xpos is involved in the segment
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Algorithm 3 Borderland algorithm

1: procedure BorderlandSearch(xpos, σ,M,Mdiff)
2: for each x ∈ σ do
3: if Mdiff(x) > 0 then
4: Add x to D
5: end if
6: end for
7: Detect segments S[xa, xb] as a sequence of x ∈ D
8: for each S[xa, xb] do
9: if xa ∈ S[xa, xb] = xpos then

10: Search nearest xesc with Mdiff(xesc) = 0
11: Search for σseg[xa, xb] through xesc

12: else
13: σseg = Circumnavigate area(Mdiff > 0)
14: if @ σseg then
15: if rc(area(Mdiff > 0)) < 1 then
16: Reduce area(Mdiff > 0) until ∃ σseg

17: else if rc(area(Mdiff > 0)) = 1 then
18: Search σseg[xa, xb] in M
19: end if
20: end if
21: end if
22: if ∃ σseg then
23: if cost(σseg) > cost(S[xa, xb]) then
24: Discard σseg

25: end if
26: else
27: @ solution
28: return
29: end if
30: end for
31: Reconstruct Path σnew with σ and every σseg

32: Simplify σnew

33: return σnew

34: end procedure

S[xa, xb]. In the affirmative case, it searches for an escape location xesc outside of
the differential risk-map and seeks for an alternative segment σseg, passing through
xesc (lines 9 to 11).
Hence, for each S[xa, xb], the Borderland algorithm tries to circumnavigate the
differential area in Mdiff with a new portion of path σseg (line 13) as an alterna-
tive segment.
If σseg does not exist and the involved area in Mdiff has a risk-cost lower than 1
(obstacle or no-flight area), the algorithm searches for an alternative path, by re-
ducing the involved area Mdiff until σseg exists (lines 15, 16). This means that the
algorithm searches for an alternative path in the differential map (see Figure 6).
Otherwise, if the involved area is a no-fly zone, it is impossible to find a local solu-
tion considering the differential risk-map. Thus, the algorithm seeks for a solution
in the risk-map M , circumnavigating no-fly zones (lines 17, 18).
If a feasible portion of path σseg exists, the Borderland algorithm compares the
motion cost of the new segment σnew with the old one S[xa, xb]. If the former has
a greater cost, then it discards σseg (lines from 22 to 25).
On the contrary, if a solution doesn’t exist, the algorithm reports it.
Once all segments have been examined, the new path σnew is reconstructed using
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(a) (b) (c)

Fig. 5 Examples of Borderland scenarios. After the update of the risk-map, in (a), the current
position is in a high risk area. Thus, an escape route is computed, finding an alternative path
with lower cost. In (b), a common scenario, whereby the algorithm circumnavigates the risk
area with a path with lower motion cost. In (c), the algorithm tries to circumnavigate the
risk-area. The alternative path has a greater cost then the original one, then the route doesn’t
change.

the old path σ and segments σseg (line 31). Finally, the algorithm simplifies the
path σnew with the Post-Optimization procedure described in Algorithm 2 (line
32).

In order to clarify how the Borderland algorithm works, in Figures 5 and 6
some simple scenarios are illustrated. In Figure 5(a), the current position is in the
high risk area due to a dynamic update of the risk-map. The algorithm searches
for an escape location outside of the updated differential space and it finds an
alternative path.
Figure 5(b) shows the typical scenario, in which the algorithm circumnavigates the
high risk area and it finds a path with lower cost. On the contrary, in Figure 5(c),
the new route computed by Borderland has a greater cost than the previous one,
then it discards it.
In the particular scenario of Figure 6, the Borderland algorithm searches for an
alternative path. In order to find a solution, the algorithm reduces the involved
area and the resulting path minimizes the motion cost.

5 Path Smoothing using Dubins Curves

After the path planning procedure, the theoretical path is not suitable for UAVs.
Even if the Post-Optimization procedure solves the path coinstraining to grid
edges, the resulting path can’t be performed by aerial vehicles because of kinematic
constraints. In order to achieve a more suitable and realistic path, a smoothing
procedure is required. Due to their simplicity and performance, Dubins curves are
the suitable solution.

The Dubins curves are introduced in [10] and they refer to the shortest curve
between two poses in the two-dimensional plane considering constraints in the
radius of curvature. Assuming a constant speed of the vehicle and the state of the
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(a) (b) (c)

Fig. 6 Example of Borderland scenario. After the update of the risk-map, in (a), the path
crosses the area with high risk-cost. The algorithm searches for an alternative path. As there
is no solution, the algorithm searches for the solution in the differential map by reducing the
involved area, until an alternative path is found (b). In (c) the final solution.

UAV q = (qx, qy, qθ), the differential equation of Dubins curves are:

q̇x = cos(qθ) (15)

q̇y = sin(qθ) (16)

q̇θ = u (17)

with u normalized between −1 and 1 with respect to the maximum curvature.
According to [10], the shortest path between two poses is always expressed as a
combination of no more than three motion primitives. For this reason only three
values of u are used u ∈ {−1, 0, 1}. For simplicity, the value 0 describes a straight
motion (S), whereas −1 and 1 are the right (R) and left (L) turn, respectively. As
a consequence, only six combination of curves are possible:

{LRL,RLR,LSL,LSR,RSL,RSR} (18)

In Figure 7 is illustrated the Path Smoothing procedure using Dubins curves.
Often, the smoothing using Dubins curves is performed during the path plan-

ning phase, whereby the path is defined considering the curvature radius of the
vehicle [16,28]. Sometimes, this latter approach is preferable because the smooth-
ing procedure can compromise the optimality of the path. On the contrary, the
disadvantage is the introduction of more complexity in the algorithm, increasing
the computation time. However, we prefer to perform the smoothing procedure
after the path planning phase for two reason: (i) the resolution of the risk-map
is compared with the curvature radius of the vehicle, then the path remains op-
timal; (ii) the smoothing is performed in very short time, useful for the on-line
adaptation of the path.

6 Simulation Results

This section reports preliminary simulation results, obtained through Matlab sim-
ulations and using a laptop with a 2-core with 1.9 GHz CPU.
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Fig. 7 Example of the Path Smoothing procedure using Dubins curves. In blue the path
before the smoothing procedure. In green the smoothed path with a curvature radius of 10 m,
while in magenta the path with a curvature radius of 20 m.

(a)

(b)

Fig. 8 Risk-map related to the Torino’s neighbourhood. In (a) the urban area from Google
Maps. In (b) the realistic risk-map at 20 meter of altitude. Black pixels describe the occupied
areas (rc = 1), while in shade of red areas are with other risk-costs (0 < rc < 1), where darker
red areas have a greater risk-cost than bright red ones.
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Table 1 Results of riskA* algorithm with different values of k.

Map k
solve

time [s]
path

length [m]
cost

average
risk-cost

0.0 0.3010 333.7345 107.1005 0.3220
0.5 0.2623 333.7345 107.1005 0.3220
0.75 0.2432 333.7345 107.1005 0.3220

Map 1 1.0 0.2256 333.7525 107.1010 0.3219
126× 76 cells 1.25 0.2066 333.7525 107.1030 0.3220

(500 simulations) 1.5 0.1864 333.9410 107.1150 0.3218
2.0 0.1472 334.2295 107.1945 0.3219
2.5 0.1126 334.2990 107.5485 0.3227
3.0 0.0814 333.7855 108.2410 0.3252
0.0 3.3292 769.4265 220.5930 0.2864
0.5 2.8039 769.4265 220.5930 0.2864
0.75 2.5165 769.4265 220.5930 0.2864

Map 2 1.0 2.3007 769.5300 220.5940 0.2863
339× 131 cells 1.25 2.1237 769.5300 220.6045 0.2864

(200 simulations) 1.5 1.9884 769.7800 220.6225 0.2864
2.0 1.6323 771.2785 220.7955 0.2865
2.5 1.1328 773.3660 222.0745 0.2872
3.0 0.6551 774.1210 223.5875 0.2888

The risk-map used in the simulations is illustrated in Figure 8 and describes a
Torino’s neighbourhood with realistic risk-costs. The risk-map has 126× 76 cells,
where each element is a square cell with dimension 5×5 m. The risk-map is defined
by colored coded: white areas are with minimum risk-cost, black areas are with
maximum cost (obstacles and no-flight areas), while shade of red areas are with
middle cost, in which darker red areas involving more risk than bright red ones. As
reported in Section 2, the maximum acceptable probability is defined at 10−6 h−1,
then zones with greater risk values are defined as no-flight areas.

Regarding the off-line path planning, the proposed riskA* algorithm is im-
plemented. In order to select the best value of the parameter k, a Monte Carlo
simulation campaign is carried out considering a set of values of k and two maps.
We execute 500 independent simulations with the map illustrated in Figure 8(b)
and 200 independent simulations with the map in Figure 11. Simulations are ran-
domized with respect to start and goal positions. Observing numerical results in
Table 1, we can conclude that the k parameter affects the optimized path and the
time required to compute the solution. High values of k yields fast solution time
at the cost of path optimality. An opposite effect is observed for low values of k.
In particular, with k = 0, the heuristic function is not active and the behavior of
the riskA* is the same of the Dijkstra algorithm. With both maps, our simulations
lead to select a value of k = 0.75 to provide a good trade-off between optimality
of the solution and computation time.

According to the results in Table 1, the time to attain the optimal solution via
riskA* also depends on the map size, due to an increase of the size of the graph
to be visited.

Further, we also compare our riskA* algorithm with the original A* and RA*.
The RA* algorithm is proposed in [14] by Guglieri et al.. Similar to riskA*, RA*
is based on original A* and considers the risk to the population of flying over a
specified area. The cost function of RA* takes into account the risk-cost as an
additive factor, whereas, in this test, the A* algorithm optimizes the path length.
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(a)

(b)

Fig. 9 Path planning with A* (in blue), RA* (in magenta) and riskA* (in green). In (a)
only the path planning algorithm is executed, while in (b) the Post-Optimization procedure
improves the path.

Table 2 Numerical results of the simulation depicted in Figure 9. The percentage values refer
to the values of the A* algorithm.

Algorithm
solve

time [s]
path

length [m]
cost

average
risk-cost

A* 0.5621 653.0510 254.0945 0.3883
PO A* 0.5637 608.5530 (-6.81%) 234.6380 (-7.65%) 0.3834 (-1.26%)
RA* 0.4684 668.9085 (+2.42%) 209.9570 (-17.37%) 0.3070 (-20.94%)

PO RA* 0.4692 649.4940 (-0.54%) 202.9355 (-20.13%) 0.3098 (-20.21%)
riskA* 0.5446 700.6245 (+7.2848) 196.0440 (-22.85%) 0.2790 (-28.14%)

PO riskA* 0.5468 674.4790 (+3.28%) 189.9475 (-25.25%) 0.2781 (-28.38%)

Figure 9 illustrates a comparison between the mentioned approaches. In the
reported scenario, the advantage of riskA* is apparent. According to the numerical
results reported in Table 2, the riskA* algorithm tends to compute a longer path,
yet reducing the average risk-cost, as well as the motion cost.

In order to validate the proposed riskA* algorithm, 500 independent Monte
Carlo simulations are performed comparing A*, RA* and riskA*, where the start
and goal points are randomly sampled in the map. Test results are reported in
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Table 3 Comparison of A*, RA* and riskA*. The numerical results are the average values of
500 simulations.

Algorithm
solve

time [s]
path

length [m]
cost

average
risk-cost

A* 0.0554 376.9025 140.5340 0.3705
PO A* 0.0755 356.6225 (-5.38%) 133.1715 (-5.23%) 0.3707 (+0.05%)
RA* 0.1964 381.8215 (+1.31%) 128.1155 (-8.84%) 0.3329 (-10.15%)

PO RA* 0.2066 367.5745 (-2.47%) 123.2700 (-12.28%) 0.3341 (-9.82%)
riskA* 0.2812 392.5540 (+4.15%) 125.5625 (-10.65%) 0.3220 (-13.09%)

PO riskA* 0.2948 375.1550 (-0.46%) 120.0565 (-14.57%) 0.3207 (-13.41%)

Table 3. This test demonstrates that riskA* is able to find the optimal path by
trading off the path length and the risk-cost. Compared with the A*-based solu-
tion, the path is longer (+4.15%), but the average risk-cost is significantly lower
(−13.09%). The results show also the different behavior of the RA* algorithm.
Compared with the riskA*, RA* computes shorter paths, but with higher average
risk-cost.

After the path planning procedure, Post-Optimization is performed. Figure 9(b)
highlights the advantage of the application of the Post-Optimization procedure. We
observe that, in the original paths in Figure 9(a) the turn angles are constrained to
be expressed in multiples of 45◦, while Post-Optimization optimizes the path with-
out compromising the optimality. The advantages of the Post-Optimization proce-
dure are also reported in Tables 2 and 3, performed on A*, RA* and riskA*. With
A*, Post-Optimization only takes into account the path length, while with RA*
and riskA* the motion cost is used, considering both path length and risk-costs.
We observe that Post-Optimization reduces the path length and the motion cost,
maintaining a comparable values of average risk-cost. Moreover, Post-Optimization
only slightly affect the computation time of the solution.

Regarding the on-line path planning, the Borderland algorithm is implemented.
Figure 10 exemplifies a scenario in which Borderland algorithm and Path Smooth-
ing using Dubins curves are applied. The results displayed in the figure highlights
the advantages of our approach with respect to riskA* in executing the replanning
phase. Numerical performance indicators are synthesized in Table 4, where the
replanning phase is executed twice on different risk-maps. In Map 1, the path is
computed using riskA*. The risk-map is updated (Map 2) and, as a consequence,
the motion cost of the path changes and the path needs to be updated. The riskA*
computes a new path from scratch, while Borderland tries to repair the oldest path.
Referring to Table 4 the Borderland algorithm finds a solution that is not the opti-
mal one, but the resulting motion cost is lower than the previous path. Moreover,
the solve time is significantly less in respect of the riskA* algorithm. Similar re-
sults are obtained with the third map. The path in the new map (Map 3) is not
valid and both riskA* and Borderland update the path. RiskA* and Borderland
compute a path with similar features, but Borderland requires less computational
time. In this test both Post-Optimization and Path Smoothing with Dubins curves
are performed, providing a suitable path for UAVs.

The advantage of the Borderland algorithm is the fast adaptation of the path.
Borderland searches for an alternative solution by exploring the local space near
the involved area in the differential map. On the contrary, riskA* computes the
optimal global path, by evaluating all the search space. For this reason, the Bor-
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(a) (b)

(c) (d)

(e) (f)

Fig. 10 Example of the proposed risk-aware path planning approach. In (a), riskA* computes
the off-line path (in blue). In (b), the risk-map changes and the Borderland algorithm checks the
path exploring cells around the updated area. In (c), the path repaired by the Borderland (in
blue) and the path computed from scratch with the riskA* algorithm (in yellow) are compared.
Similar behavior in (d) end (e), whereby the risk-map is updated and the Borderland algorithm
is able to adapt the path. In (f) a detail of the path computed, where the path is smoothed
with Dubins curves.

Table 4 Results of on-line path planning.

Map
ID

solve
time [s]

path
length [m]

cost
average
risk-cost

1 PO riskA* 0.8634 674.4790 189.9475 0.2781
previous path 497.3965 165.7020 0.3336

2 PO riskA* 0.7902 530.0510 157.9735 0.2986
Borderland 0.1932 (-75.55%) 506.5655 (-4.43%) 159.3680 (+0.88%) 0.3159 (+5.79%)

previous path 336.5660 Invalid Invalid
3 PO riskA* 0.2985 351.5975 98.2045 0.2839

Borderland 0.1211 (-59.43%) 348.9715 (-0.74%) 98.4210 (+0.22%) 0.2856 (+0.60%)
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(a)

(b)

Fig. 11 Simple scenario with high dimensional map. In (a) the path computed by riskA*. In
(b) the path computed with Borderland (in blue) and with riskA* (in yellow) are reported.

Table 5 Risk-aware path planning in high dimension map. The percentage values compare
the Borderland with the PO riskA* algorithm.

Map
ID

solve
time [s]

path
length [m]

cost
average
risk-cost

1 PO riskA* 10.7896 1813.9145 503.5395 0.2760
previous path 1644.6530 Invalid Invalid

2 PO riskA* 6.6231 1512.1280 447.9680 0.2966
Borderland 0.2931 (-95.57%) 1638.6085 (+8.36%) 522.9410 (+16.74%) 0.3174 (+7.01%)

derland algorithm cannot guarantee the global optimal solution. However, the
advantage of Borderland is more visible with high dimension map. In Figure 11
a simple scenario is shown using a map with 339 × 131 cells. Results in Table 5
demonstrate how Borderland is faster then riskA*. The solve time in Table 5 is the
amount of time to perform the replanning, as well as both the Post-Optimization
and Path Smoothing using Dubins curves. Figure 10(f) shows a detail of the path
after the Path Smoothing procedure.

7 Conclusions and Future Works

In this paper, we have presented a risk-aware path planning strategy for UAVs
in urban environments, where people and crowds are a critical safety issue. The
proposed approach computes a path usable in autonomous missions and it consists
of two phases, off-line and on-line path planning.
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The off-line path planning searches for a global path considering the risk-map
as a static environment. An A*-based algorithm is proposed, called riskA*. RiskA*
uses a cost function that considers both path length and risk-cost, the resulting
path minimizes the combination of these two factors.
Simulation results corroborate the validity of our approach and demonstrate the
good performance of riskA*. In particular, riskA* is able to seek for an optimal
solution considering the risk to the population on ground, critical factor in ur-
ban environments. Results of riskA* are also compared with RA*, an A*-based
algorithm proposed in [14].

The on-line path planning adjusts and adapts the path considering a dynam-
ically updated risk-map. We propose the Borderland algorithm as a solution. To-
ward the adaptation of the off-line trajectory to the new operational conditions,
Borderland performs check and repair routines. First, it checks which parts of path
are involved in the dynamic risk-map, then it searches for an alternative path.
Simulation results show that Borderland is able to repair and adjust the path in
short time and in a different scenarios, minimizing the risk-cost. Moreover, instead
of compute new path from scratch every time, Borderland adjusts the path only
when it is necessary. It is an advantage, especially in high dimensional map.

After the path planning, the Path Smoothing procedure allows a realistic and
suitable path for UAVs to be obtained. The smoothing is performed using Dubins
curves and provides to modify the path in a flyable one in short time and without
compromising the optimality of the path.

The joint use of off-line and on-line path planning constitutes a valid risk-aware
path planning strategy for UAVs. The resulting behavior demonstrates that the
proposed approach is able to compute and maintain a valid, safe and reliable path,
despite the evolution in the operational conditions.
The proposed risk-aware path planning approach solves the problem of compute
and maintain a safe path in urban environments. In particular it guarantees to
always have a risk level lower than the maximum acceptable risk defined, as well
as it avoids the no-flight zones forced by National aviation agencies.

Future works will include the implementation of the proposed approach on
a real robotic platform using ROS (Robot Operating System) [35]. Possible im-
provements involve the consideration of kinodynamic constraints of the vehicle, the
presence of multiple UAVs, and the adaptation to a tridimensional environment.
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