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Abstract

This paper presents numerical results concerning the nonlinear and failure analysis of fiber-reinforced composites. The
micromechanical framework exploits a class of refined 1D models based on the Carrera Unified Formulation (CUF)
having a variable kinematic description. The recently developed CUF micromechanics is a framework for the nonlinear
modeling and exploits the ability of the CUF to predict accurate 3D stress fields with reduced computational overheads.
The present formulation features the von Mises J2 theory for the pre-peak nonlinearity observed in matrix constituents,
and the crack-band theory to capture the damage progression. Numerical examples and comparisons with results from
literature assess the accuracy and efficiency of the proposed framework. The paper highlights the applicability of
CUF models as an efficient micromechanical platform for nonlinear and progressive failure analysis for fiber-reinforced
composites with potentially major advantages in the perspective of multiscale modeling.

1. Introduction

Recent advances in the field of high-performance
computing have catalyzed the simulation-based design
of materials and structural systems [1]. The usage of
the virtual testing framework for composites has im-
proved over the last couple of decades with significant
advances in the field of multiscale methods [2]. Com-
mercial packages such as DIGIMAT have also paved
the way for efficient computation of virtual allowables
and multiscale modeling for composite systems [3].
Accurate prediction of the nonlinear behavior of com-
posites usually stretches the limits of these frameworks
as users often come across accuracy versus analysis
time trade-off. Scaling such frameworks for large-scale
structural analyses remains an active field of research.

The nonlinear modeling of composites at ply-level
often performs reasonably well for almost brittle fail-
ure. In the case of significant nonlinearities between
first damage initiation and final failure, most of the
standard ply-level damage criteria tend to be insuf-
ficient [4]. Methods based on multiscaling capabil-
ities often perform better in such cases, but they
come with a significant computational overhead. The
high-fidelity generalized method of cells (HFGMC) mi-
cromechanics is one of the most recent advances to
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model nonlinear and progressive failure in compos-
ites [4, 5]. Zhang et al. [6] developed a multiscale
computational model for deformation, damage, and
failure response of hybrid 3D textile composite. The
pre-peak nonlinear response stemmed from a modi-
fied J2 deformation theory and the smeared crack ap-
proach modeled the post-peak softening. Chamis et
al. developed a micromechanics-based progressive fail-
ure analysis framework for composites integrated with
commercial FE packages [7]. Such a model can effec-
tively capture different damage mechanisms. David-
son and Waas presented a novel approach to analyze
the kink banding failure in composites through a mi-
croscale fiber-matrix unit cell modeling technique [8].
Another recent class of modeling approaches makes
use of asymptotic analysis and the theory of structure
genome [9].

The present work presents a nonlinear framework
based on refined structural models to undertake the
failure and nonlinear shear response of laminated com-
posite structures. Built within the context of finite el-
ements, refined models use the Carrera Unified Formu-
lation (CUF) via a variable kinematic description [10].
Recently, CUF models successfully tackled a plethora
of structural problems such as bio-mechanical struc-
tures [11], progressive failure analysis of composites
[12], hygrothermal analysis of shells [13], buckling and
post-buckling analyses of composite structures [14],
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and composite curved beam structures [15].
In this paper, the nonlinear behavior of composites

at the microscale exploits the recently developed mi-
cromechanical framework based on CUF [16]. The
micromechanics framework adopts the Component-
Wise (CW) approach to model various components of
the RVE through 1D finite element models. CUF-
micromechanics models can effectively capture the
nonlinear behavior with great computational efficiency
[12, 16]. The present work uses two classes of consti-
tutive material models; the von Mises based plasticity
model [17] for the nonlinear shear response exhibited
by the matrix and the crack-band model for the pro-
gressive failure analysis within the matrix [18].

The paper is organized as follows: Section 2 intro-
duces CUF models, the finite element framework and
the micromechanics modeling. Section 3 introduces
the two classes of material models utilized to model
the nonlinearity. Section 4 presents the numerical re-
sults and conclusions are in Section 5.

2. CUF micromechanics model

One-dimensional CUF models describe the kinemat-
ics of the structure through cross-section expansion
functions, Fτ (x, z) and axial displacement functions
uτ (y),

u = uτ (y)Fτ (x, z), τ = 1, ...,M (1)

where u is the generalized displacement vector, and
M is the number of terms in the cross-section expan-
sion function. The choice of Fτ and M remains arbi-
trary, and Fτ exploits various classes of basis functions,
e.g., polynomial, harmonic or exponential. Three main
classes of expansion functions emerged, namely, (a)
Taylor-based expansion (TE) [19], (b) Lagrange-based
expansion (LE) [20], and (c) Hierarchical Legendre-
based expansions [21] (HLE). This work adopts LE.
The micromechanical framework utilized in this work
exploits the Component-Wise approach (CW), an ex-
tension of one-dimensional CUF models for complex
structures such as RVE [16]. Using the CW approach,
nine-node (L9) LE models interpolate the kinematic
field over the cross-section. More details regarding LE
are in [20].

2.1. Finite element approximation
The displacement vector is

u(x, y, z) = {ux uy uz}T (2)

The strain, ε, and stress, σ, vectors are

ε = {εxx εyy εzz εxy εxz εyz}T , (3)

σ = {σxx σyy σzz σxy σxz σyz}T (4)

With small strain assumptions, the linear strain-
displacement relations are

ε = Du (5)

where D is the linear differential operator on u. Sec-
tion 3 provides the stress-strain relationship for differ-
ent classes of nonlinear materials.

The finite element approximation exploits the shape
functions Ni(y) as follows:

u(x, y, z) = Fτ (x, z) Ni(y) uτi

τ = 1, ...,M ; i = 1, ..., Nn (6)

where Nn is the number of nodes in the given finite
element. Using the Principal of Virtual Displacement
(PVD), the governing equations are

δLint − δLext = 0 (7)

where Lint stands for internal strain energy and Lext
for the work done by the external loads. The internal
work is

δLint =

∫
l

∫
Ω

δεTσ dx dz dy

= δuTsj kijτs uτi

where l and Ω are the axial and cross-section domains.
kijτs is the fundamental nucleus if the stiffness matrix.
The nucleus is a 3× 3 and does not depend upon the
order and type of expansion functions. A Newton-
Raphson iteration scheme solves the system of nonlin-
ear algebraic equations [22].

2.2. Component-wise micromechanics frame-
work

Within the Component-Wise micromechanical
framework, an RVE model has a beam FE along
one axis, and the cross-section domain has 2D La-
grange elements, see Fig. 1. In other words, the
FE acts along one axis. Otherwise, refined theories
of structures act along the cross-section. Multiple
LE elements discretize the cross-section of the RVE,
enabling displacement and traction continuity across
the interfaces of the various constituents. The beam
has four-node (B4) elements. The present formulation
uses periodic boundary conditions (PBC) consistently
with the periodic assumptions of the RVE. More
details concerning the numerical implementation of
the Component-wise micromechanics framework are
in [16].

3. Constitutive modeling

This paper uses two classes of material models for
modeling nonlinearity in composites. The nonlin-
ear shear response exhibited by unidirectional lami-
nates has inelastic deformations within the matrix con-
stituents. Plasticity-based inelastic models can sim-
ulate the shear-driven nonlinear behavior of matrix
[23–25]. Based on the works of Bazant and Oh [18],
the progressive failure analysis of matrix constituents
under tension uses the crack-band model.
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(a) (b)

+

(c)x2

x3
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Figure 1. An illustration of a Component-Wise mod-
eling of composite microstructure with arbitrary con-
stituents: (a) a triply periodic composite microstruc-
ture with three different phases, (b) a triply periodic
RVE with individual components modeled as separate
components and (c) assembled cross-section with La-
grange elements along with the beam for the RVE [16].

3.1. Plasticity modeling
The constitutive relation for elastic constituents is

σ = Ce : εe (8)

where Ce is the fourth-order elastic material matrix
for individual constituents of composite, εe is the elas-
tic strain tensor, and σ is the stress tensor. Matrix
has an elastoplastic constitutive model based on the
von Mises J2 theory [17]. The yield function φ is

φ = σeq −R(ε̄p) (9)

where σeq is the equivalent von Mises stress, εp is the
accumulated plastic strain and R(ε̄p) is the hardening
function. Based on isotropic hardening assumption,
the power law hardening function is [25]

R(ε̄p) = R0 +R∞(1− ηeβεp)(1− ηeµεp) (10)

where R0 is the initial threshold, β, η and µ are pa-
rameters fitting the hardening curve. The flow rule
determines the incremental plastic strain dεp,

dεp = dλ
dφ

dσ
(11)

where dλ is the plastic multiplier and dφ/dσ provides
the direction of the plastic flow. A return mapping
numerical scheme using Newton-Raphson algorithm
solves the local nonlinear problem. Numerical aspects
of the implementation of plasticity model within CUF
framework are in [22].

3.2. Crack-band model
The crack-band formulation models the progressive

failure in matrix to capture the behavior of numer-
ous microcracks formed in a given region and smear
the effect over a finite volume [5, 18]. The maximum
principal stress state determines the initiation and ori-
entation of the crack-band in the matrix. The frac-
ture toughness Gc of the matrix governs the traction-
separation law and crack-band growth. In this work,
crack propagation in the matrix is the mode I load-
ing only. The local principal stress state [σm1 , σ

m
2 , σ

m
2 ]

and principal directions [nm1 ,n
m
2 ,n

m
3 ] are computed

at every integration point of matrix within the RVE.
The crack-band initiates when the maximum principal
stress (tensile) σm1 reaches the cohesive strength of the
matrix σmc ,

σm1
σmc

= 1 (12)

Once initiated, the orientation of the crack-band re-
mains fixed and the post-peak softening slope EIT and
the strain at failure εf become

εf =
2Gc

σmc lc
(13)

EIT =

(
1

E0
m

− εf
σmc

)−1

(14)

where lc is the characteristic length of finite element
and E0

m is the elastic Young modulus of the matrix.
Further information on the crack-band model imple-
mentation within CUF is in [12].

4. Numerical Results

4.1. Nonlinear shear behavior of unidirectional
composites

This section deals with the in-plane shear response
of three different material systems via the CUF-micro
framework; namely, (a) E-Glass-MY750, (b) HTA-
6376, and (c) IM7-8552. Tables 1 and 2 enlist the
calibrated material properties for the fiber and matrix
constituents, respectively. The modeling of RVE the
cross-section consists of 20 L9 elements, whereas along
the third axis, the model has 2 B4 elements, see Fig. 2.
The dimensions of the RVE are 10µm×10µm×0.1µm
(length × width × thickness).

Table 3 shows the elastic properties of the mate-
rial systems via the micromechanical framework. The
hardening curve for the plasticity model exploits a four
parameter model (see Eq. 10). The parameters fit the
experimental nonlinear shear response. Table 4 enlists
the calibrated hardening parameters for various matrix
constituents and Fig. 3 depicts the hardening curve,
whereas Fig. 4 shows the in-plane shear response for
various material systems and comparisons with numer-
ical and experimental results from the literature.
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Boron or Graphite

Aluminium or Epoxy

2 B4

+

20 L9

Figure 2. CW discretization of the square-packed RVE
for the in-plane shear response of various unidirec-
tional material systems

Table 1
Mechanical properties of fibers

Fiber type E-Glass [26] HTA [27] IM7 [28]

E1
f (GPa) 74.0 223.0 272.5*

E2
f (GPa) 74.0 23.0 15.5*

G12
f (GPa) 30.8 32.0 29.0*

G23
f (GPa) 30.8 7.0 7.0

ν12
f (-) 0.20 0.28 0.2

* Calibrated value

Table 2
Mechanical properties of matrix

Matrix type MY750 [26] 6376C [27] 8552 [28]

Em (GPa) 4.3* 3.7 4.1

Gm (GPa) 1.7 1.5 1.6

νm (-) 0.27* 0.20 0.29*

* Calibrated value

Table 3
Predicted elastic properties for three unidirectional
laminates

Fiber Type E-Glass HTA IM7

Matrix Type MY750 6376 8552

Vf (%) 60 62 60

E1 (GPa) 46.1 139.6 165.0

E2 (GPa) 15.9 10.1 9.0

G12 (GPa) 5.9 5.9 5.6

G23 (GPa) 4.3 3.1 3.1

ν12 (-) 0.2 0.19 0.34
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Figure 3. Hardening curve for three laminate systems
with curve parameters

Table 4
Matrix hardening curve parameters

Matrix R0 R∞ β η µ

(MPa) (MPa) (-) (-) (-)

MY750 60.0 115.0 -3.5 0.56 -170.0

6376 40.3 120.0 -12.5 0.40 -170.0

8552 65.0 120.0 -10.0 0.60 -250.0
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(a) E-Glass/MY750 (Experimental [26] and HFGMC [4])
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(b) HTA-6376 (Experimenal [29] and Higgins et al. [27])
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Figure 4. Comparison of in-plane shear responses for
various unidirectional material systems

The last numerical assessment of this section deals
with a comparison between the standard finite element
approach and CUF-micro models for predicting the
shear response of the HTA-6376 material system. The
study-case uses a square-packed RVE model having
1656 standard 3D brick elements, amounting to 6405
degrees of freedom. The mesh density of the 3D FEM
model stemmed from a convergence study concerning
the elastic stress field. As per the CUF-micro, the 3D
model has periodic boundary conditions.

Figure 5 shows the in-plane shear response of HTA-
6376 via the two methodologies. Table 5 lists the nu-
merical results including the model information and
analysis time.
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Figure 5. Comparison between 3D FEM and CUF-
micro for the in-plane shear response of HTA-6376 ma-
terial system

Table 5
Numerical results for from 3D FEM and CUF-micro
model for the in-plane shear response of HTA-6376

DOF Number of Total analysis

Gauss points time [s]

CUF-micro 1,869 1,440 130

FE-micro 6,405 13,248 271

The results suggest that

1. CUF-micro models can accurately capture the
nonlinear shear behavior with a good match with
experimental and numerical results from the lit-
erature.

2. If compared to 3D FEM, CUF-micro models can
capture the nonlinear behavior with high accu-
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racy and lead to a reduction in the analysis time
greater than 50%.

3. In CUF-micro models, the number of Gauss
points required to store the state variables in the
RVE is 9 times smaller than 3D FEM. Such a
feature could significantly enhance the memory
efficiency of a multiscale framework.

4.2. Progressive failure of a unidirectional
fiber-reinforced composite under trans-
verse tension

This section presents the progressive failure analysis
of a uni-directional E-Glass/MY750 Epoxy composite
under transverse tension. The objective is to capture
the brittle post-peak softening behavior due to trans-
verse cracking as evidenced experimentally [30]. In
particular, this example extends the finding of CUF-
micro from [12].

The numerical assessment considers a single fiber
square-packed RVE architecture with 20 L9 and 2 B4
elements, and amounting to 1869 degrees of freedom,
see Fig. 2.

The volume fraction of the RVE is 58% with dimen-
sions of 8 µm × 8 µm × 0.8 µm. Tables 1 and 2 enlist
the elastic properties for Silenka E-Glass and MY750
matrix, respectively. The calibrated tensile fracture
properties for matrix, σc and Gc, are 66.5 MPa and
0.000563 N/mm, respectively [5, 31]. The fiber model
is linear elastic. A global strain of 0.01 acts along the
transverse direction (x2) of the RVE.

Figure 6 shows the global transverse stress (σ22)
versus transverse strain (ε22) along with comparisons
against literature results based on GMC, HFGMC and
standard 2D FE [31]. Table 6 enlists the numerical
results along with the ultimate transverse stress and
strain. Figure 7 shows the final damage contour at
failure, whereas Fig. 8 shows the contour plots for
the damage progression at the strain instances corre-
sponding to the load drops.

The results suggest that

1. The ultimate transverse stress computed via
CUF-micro has a good match with GMC,
HFGMC, and FE-2D.

2. CUF-micro models produce similar damage pro-
gressions as observed in results from literature.

3. CUF-micro models can predict the step-wise
load carrying capacity evidenced by experimen-
tal studies [30].

4. Figure 6 presents a step-wise behavior in the
non-linear region. Such a behavior is due to the
brittle nature of the failure leading to a step-
wise reduction of the stiffness through the RVE
in which the progression of damage proceeds as
in Fig. 8.
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Figure 6. Transverse tensile stress versus strain curves
of E-Glass/My750

Table 6
Numerical results for E-Glass/My750 under transverse
strain

Ultimate transverse Strain at ultimate

stress [MPa] transverse stress

GMC [31] 54.6 0.00310

HFGMC [31] 56.8 0.00313

FE-2D [31] 51.3 0.00267

CUF-micro 59.7 0.00314

(a) HFGMC (b) GMC

(c) FEM 2D) (d) CUF-Micro

Figure 7. Final damage contour plots from CUF-micro
and solutions from literature [31] of E-Glass/My750
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(a) (b) (c)

Figure 8. Damage progression for E-Glass/My750 un-
der transverse strain at global strains (a) 0.0032, (b)
0.0054 and (c) 0.008

5. Conclusion

This paper presented numerical results concerning
the nonlinear and progressive failure analysis of fiber-
reinforced composites via the novel CUF microme-
chanical framework. The CUF modeling approach
can handle each micro-component of a composite sys-
tem with 1D structural models provide 3D-like stress
fields. First, the numerical assessments considered the
pre-peak nonlinearity exhibited by matrix constituents
for three classes of fiber-reinforced composite mate-
rials. The results proved that CUF-micro can cap-
ture the nonlinear behavior with high accuracy if com-
pared to experimental data. Furthermore, a compar-
ison with the 3D FEM highlighted the numerical ef-
ficiency of CUF-micro, leading to a 50% reduction of
the computational costs. The second study-case fo-
cused on the progressive failure via the crack-band
model implemented within the CUF micromechanics.
Predicted failure corresponds well with the reference
results available from the literature and, in particular,
the present model can detect the step-wise load drop
evidenced by experimental campaigns.
Future work includes integrating the micromechan-
ics toolbox within a multiscale framework to simulate
large-scale composite structures.
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