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I. INTRODUCTION

The propagation through the atmosphere has a sig-
ni�cant in�uence on radio signals broadcast by satellites
toward the Earth. Irregularities and gradients of the ioniza-
tion of the upper layer of the atmosphere, the ionosphere,
a region characterized by a high concentration of free
electrons, can cause �uctuations of the signal amplitude
and phase, which are called ionospheric scintillations.
Scintillations also affect Global Navigation Satellite
System (GNSS) transionospheric signals. Under disturbed
ionospheric conditions, GNSS receivers are more subject
to phase errors, cycle slips, increased carrier Doppler jitter,
and losses of lock, resulting in positioning errors of the or-
der of tens of meters, and, in the most severe cases, even in
the complete receiver outage [1]. Scintillations are a threat
to GNSSs since they may have disruptive impact on the
user receiver performance when high accuracy, reliability,
and continuity of the positioning service are needed, as, for
example, for critical applications and precise positioning
[2]�[4].

As a consequence, scintillation monitoring and de-
tection is a key aspect for improving the quality and
reliability of GNSS observations [5]. Networks of GNSS
receivers, speci�cally designed for accomplishing these
tasks, have been installed in recent years, both at low
and high latitudes, where scintillation is more likely to
occur [6], [7]. The purpose is indeed twofold: on one
side, observation of the signals themselves, which are a
source of information for understanding and modeling
the upper layers of the atmosphere [8]; on the other
side, the signals can be used as detectors and triggers to
raise warning and take countermeasures for GNSS-based
operations. For this reason, it is important to design
receivers robust to the presence of scintillation, but also to
have proper algorithms for the detection of the event and its
classi�cation [9].

Early and accurate detection of scintillation events is
a very important feature for space weather applications
for atmospheric remote sensing and in general for all
those data collection systems that automatically detect
and record Intermediate Frequency (IF) raw samples [10],
[11]. However, the scienti�c literature about scintillation
detection techniques is limited. Most of the works are
based on very simple event triggers, which are based
on the comparison of scintillation indices provided by
commercial receivers with preset threshold values [12].
However, this approach overlooks high-moment charac-
teristics of the signals and requires detrending operations.
Some alternatives to traditional scintillation indices were
proposed, for instance, exploiting wavelet techniques [13],
decomposing the Carrier-to-Noise density power ratio
(C/N0) by means of adaptive time-frequency methods
[14] of evaluating statistical properties of the histogram
of received samples [15]. The common drawback of such
techniques is that they rely on complex and computa-
tionally expensive operations or on dedicated receiver
architectures.
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Recent studies have demonstrated that machine
learning techniques can be exploited for scintillation
detection. In [16], Rezend et al. propose a survey of data
mining techniques, relying on observation and integration
of GNSS receivers, other sensors and online forecast
services. However, this approach relies on external data
sources and instruments, which are not always available. A
technique based on supervised machine learning Support
Vector Machine (SVM) algorithm has been proposed for
amplitude scintillation detection in [17] and [18]. This
method has been extended to phase scintillation detection
in [19] and [20]. The main limitations of these approaches
are: they provide a detection trigger at a low rate; they
are based on SVM models, which are computationally
demanding; and they have been tested on a set of data
pre�ltered at an elevation mask of 30�; thus, discarding
potentially useful and important data.

The work presented in this paper aims at proposing an
alternative method for the detection of amplitude scintilla-
tion based on machine learning. The scope of this approach
is multifold as follows:

1) to propose an alternative to the use of traditional scin-
tillation indices, the performance of which may depend
on algorithmic choices, such as detrending and average
operations;

2) to use only common GNSS stand-alone receivers ob-
servables;

3) to be able to understand the presence of the scintillation
event including the transient time before and after its
strongest phase, thus providing an early run-time alert;

4) to provide an automatic method, resembling manual ob-
servation of the observables, while keeping the cost low
in terms of human effort and enabling run-time detec-
tion;

5) to reduce the rate of false alarms due to the ambiguity be-
tween scintillation and other events, such as multipath,
that may affect the assessment of the classical amplitude
scintillation index, without the need of pre�ltering data;

6) to reduce the missed detection caused by a priori �lter-
ing of data at low-elevation angle, often implemented to
hard-cut multipath effect;

7) to use computationally ef�cient machine learning algo-
rithms, such decision tree.

The paper is organized as follows. After Section I,
which has outlined the scope of the work, Section II pro-
vides an overview on scintillation, its effects on GNSS sig-
nals and applications, and on machine learning algorithms,
models and metrics for performance evaluation. Section
III gives an overview of traditional scintillation detection
techniques and analyzes their limitations on selected case
studies. Section IV introduces machine learning detection,
identifying two different sets of features based on different
receiver measurements. Section V validates the proposed
approaches, presenting quantitative, and qualitative results
obtained running different machine learning algorithms on
different sets of features. Finally, Section VI draws conclu-
sions and outlines the future work.

Fig. 1. Pictorial representation of ionospheric delay and scintillation
phenomena. The red dashed lines are the line-of-sight signal paths from
the GNSS satellites to the receiver on earth; the green continuous signal

accounts for propagation distortions.

II. GENERAL OVERVIEW

This section presents a general overview on GNSS,
ionospheric scintillation, and machine learning. A reader
expert in the �eld can skip to Section III.

A. GNSS and Ionospheric Scintillations

GNSSs are radio-communication satellite systems that
enable a generic user to compute position, velocity, and time
at its current location, anywhere on the Earth, processing
Radio Frequency (RF) signals transmitted from a constella-
tion of satellites and performing trilateration with respect to
the satellites, taken as reference points [21]. Despite being
originally developed for localization, GNSSs are not lim-
ited to positioning purposes, but span an unlimited range of
applications, including scienti�c observations.

One of the main characteristic of GNSS signals is their
low-received power. For this reason, the accuracy, availabil-
ity, and reliability of the position solution is threatened by
potential errors, affecting the overall quality of the process.
Ionospheric propagation is the major and more variable nat-
ural error source in GNSS signal processing at the receiver
level. Propagation through this layer introduces a poten-
tially strong degradation of the GNSS signal, as depicted
in Fig. 1, causing signi�cant errors in any GNSS-based
application. The ionosphere affects the quality of GNSS
signals both in terms of a temporal delay and of scintilla-
tions. While delay compensation techniques are nowadays
applied in any GNSS receiver [21], scintillations is still an
issue for both mass-market and professional devices. Occur-
rence of scintillations is very dif�cult to be modeled, due to
their quasi-random nature [22]. Therefore, they remain, to
this day, one of the major limiting factors for high-accuracy
applications.

Scintillation monitoring is indeed a central activity, both
in the GNSS and in the space weather community. The
amount of scintillation affecting a satellite signal can be
evaluated by exploiting the correlation output values. Two
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Fig. 2. Flow diagram of the machine learning process. In the �rst stage,
the learning process, depicted in the red box, a model is de�ned, using

training data, selected features and a speci�c learning algorithm, such as
a decision tree. The model is then applied on the test dataset in the

classi�cation task, in the blue box, to generate the output.

indices are usually considered: S4 for amplitude scintilla-
tion and �� for phase scintillation. S4 measures the amount
of amplitude �uctuations due to scintillations in GNSS sig-
nals; it corresponds to the normalized standard deviation
of the detrended Signal Intensity (SI) computed from the
inphase (I) and quadrature-phase (Q) prompt correlation
samples. �� is calculated as the standard deviation of the
detrended carrier phase measurements. Both indices are cal-
culated over a varying observation interval, usually equal
to 60 s.

Most of the works on scintillation monitoring are based
on the comparison of the value of these two indices with pre-
de�ned thresholds. Nevertheless, detection based on such
�xed thresholds can be misleading, due to: the loss of the
transient phases of the events, causing a delay in the raise
of possible warning �ags; the missed detection of weak
events with high variance; or the signal distortions caused
by other phenomena, such as multipath. The only reliable
procedure is to entrust the detection of scintillation events
to a human-driven visual inspection of data.

B. Machine Learning

Machine learning [23] is the systematic study of intelli-
gent algorithms and systems that improve their knowledge
or performance by experience. In its general concept, ma-
chine learning process (Fig. 2) refers to the ability of solving
a task, processing right features describing the domain of
interest, according to a model. The use of machine learning
in Location-Based Services is also motivated by the in-
creasing volume of available data collected at remote sites
through low cost GNSS software receivers [24].

The problem under investigation in this paper is a typical
binary classi�cation task that can be undertaken exploiting
a machine learning approach on a big dataset. The main
elements of machine learning are [25] as follows:

1) domain, the problem to be solved (detection of iono-
spheric scintillation events in GNSS data collections);

2) features, the description of the objects of the domain
(GNSS observables);

3) task, the abstract representation of the problem that re-
�ects in the mapping between the input and the output
(the automatic classi�cation of data collection sample
in scintillation/nonscintillation);

4) model, the output of the machine learning when the
training set is fed to the algorithms.

The machine learning goal is to identify the right algo-
rithm, or set of algorithms, to use the right set of features to
build the right models that achieve the right tasks in terms
of detection accuracy. This goal is achieved by feeding the
machine learning algorithms with two different sets of data,
which are as follows:

1) a training-set of historical, prelabeled data;
2) a test-set, nonlabeled, possibly real-time data.

Machine learning offers a large number of algorithms, to
build models from a given dataset of input observations, and
to make predictions and decision expressed as output. These
algorithms are mainly grouped under three big families,
which are as follows:

1) supervised learning, where input data (training set) has
a known label or result;

2) unsupervised learning, where input data is not labeled
and does not have a known result;

3) semisupervised learning, where input data is a mixture
of labeled and unlabeled examples.

Since the goal of this research is classi�cation of data
on the basis of the detection of scintillation events and the
input training set is fully labeled, this study will take into
consideration two types of supervised learning algorithms:
decision tree and random forest.

1) Decision Tree: Decision tree is one of the most
commonly used classi�cation technique [26]. It is based
on tree structures, de�ned by recursively partitioning the
input space: each internal node represents a certain feature
of the domain; each branch, emanating from the node, is
the outcome of the decision taken in the node according
to a function; and each leaf represents a �nal classi�cation
decision, corresponding to the conjunction of single deci-
sions taken during on the path from the root of the tree to
the leaf. The learning takes place as the machine creates a
set of rules de�ning a model, in terms of sequence of the
features along the branches and functions for the decision
criteria in each node. The rules are based on the concept of
utility of a feature for the classi�cation purpose.

Lets consider two classes, D+ and D�, and a boolean
feature, D1, which can take the values D+

1 and D�
1 . The

ideal situation is when D+
1 = D+ and D�

1 = �, or D+
1 = �

and D�
1 = D�: in this case, the branches are said to be

pure. Typically this situation never happens, so the task is
to measure the impurity of each feature and corresponding
function. Extending the problem to a general case, the goal
is to measure the impurity of a set of n+ positives and n�

negatives, in terms of empirical probability �p = n+/(n+ +
n�), to evaluate the best rule. A cost function is de�ned
to achieve this task, thus, building the tree model. Among
several possibilities, such as the minority class or the Gini
index, the entropy E was chosen

E = � �p log2 ( �p) � (1 � �p) log2 (1 � �p) . (1)
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TABLE I
General Example of a Confusion Matrix

By minimizing the entropy, the information gain brought
by the tree is maximized. Further mathematical details on
decisions trees can be found in [23], [27], and [28].

2) Random Forest: Random forest is an ensemble
learning method for classi�cation, based on the construc-
tion of a multitude of decision trees at training time [29].
It helps to overcome the problem of over�tting, as well as
to reduce the variance of an estimate, exploiting averaging.
Random forests are a combination of tree predictors such
that each tree depends on the values of a random vector
sampled independently and with the same distribution for
all trees in the forest. The generalization error for forests
converges to a limit as the number of trees in the forest be-
comes large and depends on the strength of the individual
trees in the forest and the correlation between them.

3) Performance Evaluation Metrics: Performance of a
machine learning classi�cation algorithm is typically evalu-
ated using statistical tools and metrics [28]. One of the most
common is the confusion matrix, or contingency table; an
example is reported in Table I. Each row refers to actual
classes as annotated in the test case, each column to classes
as predicted by the classi�er. Last column and last row give
the marginals, which are important to allow the statistical
signi�cance assessment. In order to distinguish the per-
formance on the classes, correctly classi�ed positives and
negatives are referred to as true positives and true negatives,
respectively; incorrect classi�ed positives are called false
negatives or missed detections; misclassi�ed negatives are
called false positives or false alarms. Consequently, the true
positive rate is the proportion of positives correctly classi-
�ed, also called sensitivity or recall, while the true negative
rate is the proportion of negatives correctly classi�ed.

Other metrics that can be used to assess the machine
learning performance are as follows:

1) Accuracy: The percentage of correct predictions made
by the model over a dataset, calculated as
True Positives + True Negatives.

2) Precision: The ratio of correct positive observations,
calculated as
True Positives/ (True Positives + False Positives).

3) Recall: The ratio of correctly predicted positive events,
also known as sensitivity, calculated as:
True Positives/ (True Positives + False Negatives).

4) F-score: An alternative measure of a test accuracy, tak-
ing into account also both false positives and false nega-
tives. It corresponds to the weighted average of precision
and recall:
(2 • Recall • Precision) / (Recall + Precision).

4) k-Fold Cross Validation: Cross validation is a vali-
dation technique, which measures how the results of a sta-
tistical analysis will generalize to an independent dataset.
In fact, knowledge about the test-set can affect the model
and the evaluation metrics decreasing generalization per-
formance. This situation is typically called over�tting. A
solution to this problem is a procedure called cross valida-
tion. In the basic approach adopted in this paper, denoted
k-fold cross validation [30], the training set is split into
k smaller sets, called folds. Afterwards, for each of the k
folds, �rst a model is trained, using the remaining k � 1
folds as training data. The resulting model is then used to
test the untrained fold. Finally, the average of the values
obtained in each iteration is computed.

III. TRADITIONAL SCINTILLATION DETECTION

In this section, the traditional state-of-the-art ap-
proaches for amplitude scintillation detection are presented.
Two detection rules are considered and tested on two case
studies, evaluating and carefully discussing their perfor-
mance and limitations.

A. Description of Traditional Methods

The majority of the works on amplitude scintillation
monitoring are based on the analysis of the value of the
S4 index. Scintillation is typically considered present if S4

exceeds a prede�ned threshold TS4 . Different detection rules
can be identi�ed, according to the literature on the topic.

1) Hard Detection: A hard detection rule is de�ned by
simply applying the threshold TS4 on the estimated value
of S4. Ionospheric scintillation is present at epoch n if and
only if

S4 [n] > TS4 . (2)

It is a simple approach, easy to be implemented, but it
might lead to an undesired and nonnegligible number of
false alarms. The threshold is commonly assumed to be
TS4 = 0.4 by Dubey et al. in [31]�[35]; other works consider
scintillation moderate in the range between 0.2 and 0.5, and
strong above 0.5 [36].

As the S4 index is a measure of the variation of the am-
plitude of the GNSS signal, it is not unlikely that events
other than ionospheric scintillation cause it to increase
above the threshold, in a way similar to what scintillations
do, thus, affecting the detection process. This is particu-
larly frequent for low-elevation satellites, when the number
of multipath re�ected rays increases and, at the same time,
the C/N0 is lower.

2) Semihard Detection: In order to better characterize
the scintillation phenomenon and to reduce the false alarm
rate, more �lters can be applied to the signal. For exam-
ple, it is quite common to apply an elevation mask; most
of the multipath-induced false alarms can be removed by
considering only signals from satellites above a certain ele-
vation angle. Further conditions can be de�ned on the C/N0

value, so as to exclude noisy measurements, or on the satel-
lites azimuth �az. According to the semihard detection rule,
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scintillation is present at epoch n if and only if

S4 [n] > TS4 � �el [n] > T�el � C/N0 [n] > TC/N0 . (3)

The value of the elevation threshold T�el is typically set
to 30� [36], [37]. The de�nition of TC/N0 is more complex, as
the C/N0 is the result of an estimation process and depends
on the receiver implementation. The value 37 dBHz gives
satisfactory results [38]. Nevertheless, it has been proven
that the �lter on the C/N0 is not very discriminant in terms
of detection results; lower values, such as 30 dBHz, which
corresponds to the sensitivity of a standard tracking loop,
lead to analog results.

3) Manual Detection: A �third� approach corresponds
to human-driven manual and subjective identi�cation of
the portion of data affected by scintillation. This can be
achieved by visual inspection of the S4 and C/N0 estimates,
of the satellite azimuth and elevation and of the comparison
of historical data. Even though this approach lacks scienti�c
rigor, it can assure the best detection performance, provided
that the person doing the manual annotation has enough
knowledge and experience. However, it is time-consuming,
subject to human errors, and not automatic.

In this paper, the manual annotation is considered as the
reference ground truth for the detection performance anal-
ysis. The same approach has been used also in other works
relying on machine learning for scintillation detection [17],
[18].

B. Case Studies

The examples refer to GNSS data collections performed
on March 26 and April 2, 2015, in Hanoi (Vietnam), at
11� 20� N geo-magnetic latitude, using a customized Soft-
ware De�ned Radio (SDR)-based GNSS data grabber and
software receiver [38]. Moderate and strong amplitude scin-
tillation events were observed; the Dst index negative peaks,
provided by the World Data Center of Kyoto, amount to
�20 nT and �21 nT, respectively. Global Positioning Sys-
tem (GPS) L1 C/A signals are considered, respectively, of
Pseudo-Random Noise (PRN) satellite 10 and 23. Fig. 3
shows the estimates of the S4 index (top plot, black dots),
of the C/N0 and of the satellite elevation (bottom plot, blue
and red lines, respectively) as computed by the software
receiver. In addition, three horizontal lines are drawn in
correspondence of the S4, C/N0 and elevation thresholds,
used in the detection rules.

Traditional detection rules for scintillation monitoring
are applied as follows.

1) All points for which scintillation is detected according
to the hard rule, (2), are colored in cyan. In this case,
TS4 = 0.4; therefore, all points with a S4 higher than 0.4
are marked as scintillation.

2) All points for which scintillation is detected according
to the semihard rule, (3), are colored in magenta. In
this case, T�el = 30� and TC/N0 = 37 dBHz; as a conse-
quence, only a subset of points of the previous case are
marked as scintillation.

Fig. 3. Comparison of traditional scintillation detection methods for
two different scintillation events. Top panels report the trend of the S4,
the manual annotation, the detection results of the hard and semihard

rules and the value of the S4 threshold TS4 = 0.4. Bottom panels report
the elevation and C/N0 trends, and their respective thresholds used in

traditional rules, T�el = 30� and TC/N0 = 37 dBHz. (a) April 2, PRN 23.
(b) March 26, PRN 10.

3) All points enclosed by the blue boxes are manually
marked as scintillation by visual inspection.

From a careful analysis of the �gure, it is clear that
the hard and semihard rules fail in identifying scintillation,
when compared to the manual annotation, considered as
ground truth. In particular, in the �rst case, reported in
Fig. 3(a), the high S4 values in the time interval between
16:18 and 16:36 are likely due to multipath re�ections.
This is evident by considering the fact that the satellite
is rising (elevation lower than 5�), but also exploiting a
priori information on environmental conditions, such as
the presence of obstacles in the satellite line-of-sight, or
historical data analysis, such as the sidereal repetition of
the event with the same S4 pattern. The detection results of
the hard rule are then characterized by a high false alarm
rate. On the contrary, the semihard rule correctly marks all
the points as no scintillation, thanks to the �lter added by
the threshold on the elevation.

On the other hand, in the second case, depicted in
Fig. 3(b), both rules are too conservative. There are time
windows, which are part of the same scintillation event, but
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TABLE II
Confusion Matrices for the Hard and Semihard Rule, on the

Examples of March 26, PRN 10 and April 2, PRN 23

the values of S4 and �el slightly lower than the correspond-
ing thresholds classify them as nonscintillated time epochs,
thus, generating a high-missed detection rate. The interval
from 16:03 to 16.20 is the leading edge phase of the event
detected starting from 16:20. Similarly, the interval from
16:40 to 16:44 can be considered scintillation, even if the
S4 value is slightly below the detection threshold; the pres-
ence of high S4 values a few minutes before and after this
time interval assures that it can be marked as scintillation.

Results can be formalized by means of the confusion
matrix. In the �rst example, no scintillation is present, so
the false positives and false negatives are equal to 0. While
the semihard rule gives a True negatives rate of 100%,
this percentage reduces to 61.6% for the hard rule. In the
second example, the rate of true negatives and false positives
is the same for both rules, and corresponds to 4.2% and
0%, respectively. However, in this case, the hard rule has a
true positives rate of almost 58%, overcoming the semihard
(51.8%), which in turn has a higher false positives rate.

The overall confusion matrices for detection results of
the two examples and for both the hard and semihard rule
are reported in Table II. The hard rule detection gives an
overall percentage of correct estimations of only 32.9% +
29% = 61.9%. The false alarm rate amounts to 19.2%,
while the missed detection rate is 18.1%. When moving to
the semihard case, the number of points correctly estimated
increases to 52.1% + 25.9% = 78%. As expected, the false
alarms are 0%, but the missed detection rate increases to
22%.

C. Limitations

As demonstrated by the previous examples, the tradi-
tional thresholding-based approaches for automatic scintil-
lation detection appear not to be able to fully characterize
the event, since decisions based on hard thresholds do not
take into account either the physics of the event, or the en-
vironmental conditions. Multipath, interference, and other
nuisances might lead to erroneous scintillation detection,
as S4 overlooks the higher-moments characteristics of the
signals.

Furthermore, it has to be remarked that the computa-
tion of S4 is cumbersome and demanding: it requires com-
plex averaging and detrending operations on the correla-
tion outputs, in order to reduce noise and to remove the
slow variations due to the signal dynamics. The choice
of the best detrending technique is not trivial: several ap-
proaches, based on the use of high-order Butterworth �lters,

TABLE III
Summary of the Traditional Scintillation Detection Approaches

Strengths and Weaknesses

of wavelet transformations, and on simple averaging, have
been described [39]�[41]. Nevertheless, it has been proven
that different methods lead to different results [42]. It has
also been proven that a different detrending shall be chosen
for different geographical areas [43] and that detrending
operations could introduce postprocessing artifacts [19].

Manual annotation can assure higher accuracy in the
event classi�cation, in terms of duration and continuity, at
the expenses of a time-consuming human-driven visual in-
spection. Furthermore, it is a postprocessing analysis that
is not suitable for a quasi-real-time detection. As a sum-
mary, strengths and weaknesses of these three approaches
are reported in Table III.

This, in turn, justi�es the investigation of different de-
tection and classi�cation techniques. The limitations of the
aforementioned approaches can be mitigated exploiting ma-
chine learning techniques, able to learn from human pro-
cesses to produce automatic high-accuracy detection and
classi�cation.

IV. MACHINE LEARNING SCINTILLATION DETEC-
TION

The goal of the machine learning detection algorithm is
to replicate the performance of the manual detection, with-
out introducing additional human effort to manually classify
the data. The algorithm, once trained on big datasets labeled
by manual annotation, demonstrates better detection prop-
erties with respect to the hard and semihard approaches.

The machine learning algorithm considered is the deci-
sion tree, as it offers the best compromise between computa-
tional complexity, performance, and data preprocessing op-
erations. k-fold cross validation, with k = 10, is performed
on the dataset: for each run, 90% of input data are used in
the training phase and 10% of data are used for the test set.

A. Correlation Matrix Analysis and Features Selection

The �rst necessary step is the selection of the features
used to train the model. Features shall be selected between
the measurements provided by a GNSS receiver. Neverthe-
less, their choice is not trivial, and the �nal performance of
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Fig. 4. Correlation matrix, considering the observables of the signal.

the algorithm, as well as the scalability and generality of
the technique, depend on the features chosen.

The correlation matrix is a statistical tool used to under-
line the correlation between each couple of features. Each
cell of the correlation matrix reports the Pearson correlation
coef�cient between variables X and Y , de�ned as follows:

� (X, Y ) =
�XY

�X�Y
=

�n
i=1 (xi � flx) (yi � fly)

��n
i=1 (xi � flx)2

��n
i=1 (yi � fly)2

(4)
where xi is a single record of the dataset and flx is the sample
mean. The correlation coef�cient ranges from �1 to 1.
Correlation between X and Y is absent when the correlation
coef�cient � (X, Y ) is equal to 0, weak when |� (X, Y )| �
0.35, moderate in the range 0.36�0.67 and strong when it
exceeds 0.68 [44].

B. Observable-Based Features

Fig. 4 reports the matrix of the correlation � (X, Y ) be-
tween the manual ground truth and the 1 Hz observables
provided by the GNSS scintillation monitoring receiver: S4,
C/N0, �el, and �az. Manual annotation has a moderate cor-
relation with C/N0, �el, and S4, and a very low correlation
with �az.

A �rst set of features, L1, that looks to be a reasonable
starting choice, is then de�ned as follows:

L1 = {S4, C/N0, �el} . (5)

It includes the observables having the highest correlation
with the manual annotation. Furthermore, they are the same
parameters used in the semihard detection rule (3).

The same two case studies considered in Section III-B
are analyzed. The detection results of machine learning
algorithm based on set L1 are reported in Fig. 5, along
with the detection results of the hard and semihard rules.
The blue line identi�es the manual human-driven detection.
The green line corresponds to the detection results of the
machine learning decision tree algorithm. With respect to
the hard and semihard cases, and compared to the manual
detection, machine learning results show both a lower rate
of false alarms, in the example of Fig. 5(a), and a lower rate
of missed detection, in the example of Fig. 5(b).

The confusion matrix, reported in Table IV, summa-

Fig. 5. Decision tree detection results for two different scintillation
events and for set L1. Top panels report the manual annotation (ground

truth), the detection results of the hard and semihard rules, and the
machine learning detection results. Bottom panels report the trend of the
S4 and the value of the S4 threshold TS4 = 0.4. (a) April 2, PRN 23. (b)

March 26, PRN 10.

TABLE IV
Confusion Matrix for Machine Learning Prediction and for the Set L1,

on the Examples of March 26, PRN 10 and April 2, PRN 23

rizes the results. When compared to the case reported in
Fig. 3, the missed detection rate is reduced to 7.4%, while
there are no false alarms. The global success rate cor-
responds to 52.1% + 40.5% = 92.6%, meaning that for
more than nine cases over ten the machine learning pre-
diction matches the manual annotation. It is important to
underline that these two examples, in particular the �rst,
re�ect a worst case situation, in which the presence of mul-
tipath introduces a further level of complexity. More simple
cases, relative to portions of the dataset affected by scintil-
lation only, show a higher success rate, and are not reported
here.

Nevertheless, although the results in terms of scintilla-
tion detection are good, the approach based on the signal
observables reveals some limitations. On one side, the use
of S4 should be avoided, as it already corresponds to the
output of the traditional approach. In addition, its deriva-
tion is computationally demanding and involves complex
operations that could introduce postprocessing artifacts and
location dependent solutions. At the same time, the use of
C/N0 could lead to misleading detection result, as, in the
presence of scintillation, it might be affected by a bias or

LINTY ET AL.: DETECTION OF GNSS IONOSPHERIC SCINTILLATIONS BASED ON MACHINE LEARNING DECISION TREE 309



even provide completely wrong results [18]. Finally, the
use of satellites elevation can potentially lead to over�tting,
making the model suitable only for the speci�c location of
the data collection used for the training.

C. Signal-Based Features

In order to further improve the machine learning scin-
tillation detection performance, it is possible to exploit, as
features, not the �nal observables and the �nal scintillation
index, but rather their components; in other words, to un-
pack the S4 formulation [45]. In this section, the raw GNSS
signal measurements at the output of the receiver tracking
stage in time domain are used as features, the 50 Hz I and
Q correlators output. They correspond to the higher rate
observables that can be provided by a commercial receiver,
and thus to the most accurate representation of the original
GNSS signal. It will be proven that a machine learning ap-
proach that uses raw observables as features rather than the
scintillation indices not only is able to detect scintillations,
but offers a higher performance. Furthermore, such an ap-
proach overtakes the problem of computing the scintillation
indices and is able to exclude the side effects and artifacts
introduced by the postprocessing.

I and Q values cannot be directly injected in the learning,
but they have to be averaged, in order to reduce the impact of
thermal noise and to highlight the scintillation phenomenon.
Therefore, new quantities are de�ned, based on a short ob-
servation window, Tobs. N samples of I and Q are averaged
over the observation period, where N = Tobs • 50 Hz. The
averaged correlations samples, denoted �I 	 and �Q	, are
then de�ned as follows:

�I 	 =
1

N

N�

n=1

In (6)

�Q	 =
1

N

N�

n=1

Qn (7)

where In and Qn are, respectively, the I and Q correlator
outputs at time n.

In order to combine the information brought by phase
and quadrature components, the SI, at time n, can be com-
puted as follows:

SIn = I 2
n + Q2

n. (8)

Similarly, SI is averaged over the observation period

�SI 	 =
1

N

N�

n=1

SIn =
1

N

N�

n=1

�
I 2
n + Q2

n
�
. (9)

This suggests to compute other two additional features, i.e.,
the average over the observation period of the square of the

Fig. 6. Illustration of the samples averaging and window overlapping
procedure used in the work.

I and Q correlators

�
I 2

�
=

1

N

N�

n=1

I 2
n (10)

�
Q2

�
=

1

N

N�

n=1

Q2
n. (11)

By analogy with the previous cases and with the algorithm
used to compute S4, a last feature is identi�ed as the average
over the observation windows of the square of the SI

�
SI 2

�
=

1

N

N�

n=1

SI 2
n . (12)

A new subset of features, including combinations of the
I and Q correlators, is introduced

L2 =
	
�I 	 , �Q	 , �SI 	 ,

�
I 2� ,

�
Q2� ,

�
SI 2�
 . (13)

On the other hand, previous works on the topic consider as a
feature only the Fourier transform of the SI [19], [20]. Fur-
thermore, it is important to mention that, contrary to what
is typically done in literature [18], [46], no prior elevation-
based �ltering aiming at reducing the effect of multipath
is performed. Indeed, applying a mask partially hides the
signal distortion phenomenon that are under study.

The features in (13) are obtained by averaging N =
3000 values of the 50 Hz correlator stage outputs. The
observation windows is set to Tobs = 60 s, in agreement
with common scintillation observation algorithms [22]. In
addition, a sliding and overlapping windowing technique
is applied, depicted in Fig. 6: by shifting the observation
window of 1 s, the resolution of the observation is increased
to 1 Hz. The same average operation over 60 s of values
is performed and a set of new features is injected in the
machine learning algorithm at the end of each window,
thus, at a 1 Hz rate.

The correlation matrix for the set of features L2 is re-
ported in Fig. 7. From the table, it emerges that a moderate
correlation is experienced between the manual scintillation
annotation and the variables �SI 	,

�
I 2

�
and

�
SI 2

�
.

The results obtained running decision tree on set L2 on
the selected case studies will be presented in Section V-B,
respectively, in Fig. 11(a) and (b).

V. RESULTS

In this section, a complete performance analysis of dif-
ferent machine learning algorithms, on the full dataset, and
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Fig. 7. Correlation matrix considering the features de�ned in set L2.

Fig. 8. Summary of the accuracy and F-score obtained for the different
scintillation detection techniques presented.

considering different sets of features, is provided and com-
pared to the traditional detection methods. First, quantita-
tive results in terms of confusion matrices, accuracy, pre-
cision, recall and F-score are reported and commented.
Then, qualitative results focusing on the punctual analysis
of some false negatives and false positives predictions are
proposed, with a focus on the run time detection capabili-
ties. To conclude, results of a test on novel, untrained data,
collected in a different location, are presented.

Data are part of the same data collection described in
Section III-B (Hanoi, Vietnam, at 11� 20� N geo-magnetic
latitude, in March and April 2015). They include a total of
169 955 entries of data at 50 Hz resolution, spanning a total
time interval of about 6 h, and including in total 20 different
satellites. The rate of scintillation events is about 1:4.

A. Quantitative Results

1) Hard and Semihard Rules: First, summary results re-
lated to the hard and semihard rules tests are reported. The
confusion matrices are depicted in Table V. The number of
false positives and of false negatives is quite high in both
cases, respectively, 18.75% and 13.87%. In the semihard
rule case, the percentage of false positives is reduced to
only 0.26%, at the expenses of a higher rate of false nega-

TABLE V
Confusion Matrices for the Hard and Semihard Rule, on the

Complete Dataset

TABLE VI
Summary of the Overall Detection Results for Different Algorithms Over

Different Set of Features

TABLE VII
Confusion Matrix for the Complete Dataset Using Decision Tree

Over Set L1

tives. This is justi�ed recalling that the semihard rule is a
conservative approach.

Accuracy, precision, recall, and F-score are reported
in the �rst two rows of Table VI. Although also precision
and recall are reported, a fair performance analysis shall be
made focusing on the the accuracy, and in particular on the
F-score. As detailed in Section II-B3, precision and recall
give a partial overview on the goodness of the algorithms,
while the F-score is the most complete metric, taking into
account also the numerosity of the points denoted as scintil-
lated. The accuracy is about 5% higher in the second case.
However, the lower value of the recall is the sign of an un-
even evaluation of the performance. Indeed, the F-score for
the two approaches is similar; the semihard algorithm only
improves this indicator by 1%. The two approaches can
then be de�ned similar in terms of detection performance.

2) Decision Tree on Set L1: The central row of Table VI
reports the results obtained running the decision tree algo-
rithm over the set of features L1, on the complete dataset,
using a standard ten-fold cross validation approach. The
confusion matrix is reported in Table VII, and is the result
of the average of the ten confusion matrices generated dur-
ing the ten-fold cross validation process. Despite being a
nonstandard approach, this is allowed as each fold has the
same proportion of scintillation and nonscintillation points.

The number of false positives and false negatives is re-
duced to about 3.3%. The accuracy, corresponds to 96.7%,
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Fig. 9. Representation of the capabilities of the features de�ned in L1

to detect scintillation events.

meaning that for 164 299 over 169 955 points the machine
learning prediction matches the manual annotation. The im-
provement with respect to the semihard rule is larger than
10%.

Complementary information is reported in Fig. 9. The
�gure shows the three dimensional space de�ned by L1

and reports the machine learning detection results. Blue
points correspond to the portions of the signal for which
no scintillation is detected, red points correspond to points
for which machine learning algorithm detects scintillation.
The two different regions appear to be quite well separated,
sign that the global classi�cation performance is good.

3) Decision Tree on Set L2: The last rows of Table VI
report the results of the machine learning approaches on the
set of features L2, identi�ed in (13), and have been obtained
performing a ten-fold cross validation.

Machine learning approaches overcome both traditional
methods based on hard and semihard thresholding. The
improvement, in terms of F-score, is about 30%. In addi-
tion, the signal-based set of features L2 outperforms the
observable-based set of features L1. This is important con-
sidering the fact that L2 only includes features obtained by
averaging and summing the I and Q correlator outputs, and
that more elaborated features, such as S4 and C/N0, are
not considered. This overcomes the problem of computing
the scintillation indices and in turn reduces the computa-
tional burden of the detector. No complex averaging and de-
trending operations are required to compute S4 and C/N0

values, making this approach more generic and �exible.
Furthermore, the use of L2 makes the technique location
independent, as elevation is not used.

The confusion matrix obtained averaging the ten folds
of the decision tree approach is reported in Table VIII.
When compared to the confusion matrices for the set L1,

TABLE VIII
Confusion Matrix for the
Complete Dataset Using
Decision Tree For Set L2

Fig. 10. Accuracy and F-score of the decision tree algorithm versus the
number of points used in the training set.

the number of false positives passes from 1.7% to 1.0%, and
the number of false negatives passes from 1.6% to 1.0%.

Fig. 10 reports the accuracy and the F-score obtained
running decision tree algorithm on set L2 and using ten-fold
cross validation over a different number of input points.
The graph shows that the value of the metrics increases
as more points are used in the training phase, because the
model de�ned by the machine learning algorithm is more
complete. In order to obtain an accuracy of at least 98%
and a F-score of at least 96%, a training dataset of at least
140 000 points shall be used.

Table VI also shows that random forest technique fur-
ther improves the results, as it evaluates the decisions ob-
tained by several decision trees, at the expenses of a higher
computation burden in the training phase.

B. Qualitative Analysis of the False Predictions

Despite being easy to read and offering a quick quantita-
tive overview of the overall performance of machine learn-
ing, the metrics reported in Section V-A deserve a deeper
analysis. This section focuses on a few test cases, corre-
spondent to different scintillation events, analyzing in de-
tail the most relevant examples of false negatives and false
positives. All plots show the detection results of machine
learning decision tree tests, performed on set L2 (green
points), compared to the the hard (orange points), semihard
(red points), and manual/ground truth (blue points). The
value of �el and of C/N0, along with the thresholds used
in the semihard rule, are reported as a reference in bottom
panels, for a better interpretation of the results.
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