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ABSTRACT High-dosage motor practice can significantly contribute to achieving functional recovery after
a stroke. Performing rehabilitation exercises at home and using, or attempting to use, the stroke-affected upper
limb during Activities of Daily Living (ADL) are effective ways to achieve high-dosage motor practice in
stroke survivors. This paper presents a novel technological approach that enables 1) detecting goal-directed
upper limbmovements during the performance of ADL, so that timely feedback can be provided to encourage
the use of the affected limb, and 2) assessing the quality of motor performance during in-home rehabilitation
exercises so that appropriate feedback can be generated to promote high-quality exercise. The results herein
presented show that it is possible to detect 1) goal-directed movements during the performance of ADL
with a c-statistic of 87.0% and 2) poorly performed movements in selected rehabilitation exercises with an
F-score of 84.3%, thus enabling the generation of appropriate feedback. In a survey to gather preliminary data
concerning the clinical adequacy of the proposed approach, 91.7% of occupational therapists demonstrated
willingness to use it in their practice, and 88.2% of stroke survivors indicated that they would use it if
recommended by their therapist.

INDEX TERMS Machine learning, m-health, rehabilitation, remote health monitoring, stroke, wearable
sensors, wearable technology.

I. INTRODUCTION
Stroke is a leading cause of severe long-term disability. In the
US alone, nearly 800,000 people suffer a stroke each year [1].
The number of individuals who suffer a stroke each year is
expected to rise in the coming years because the prevalence
of stroke increases with age and the world population is
aging [2]. Approximately 85% of individuals who have a
stroke survive, but they often experience significant motor
impairments. Upper-limb paresis is the most common impair-
ment following a stroke. It affects 75% of stroke survivors and
leads to limitations in the performance of Activities of Daily
Living (ADL) [4].

Inability to use the stroke-affected upper limb for ADL
often leads to a phenomenon that is referred to as learned non-
use [5]. As patients rely more and more on the unaffected (or
less impaired) upper limb [5] they progressively lose motor
abilities of the stroke-affected upper limb that they may have
recovered as a result of a rehabilitation intervention [6].

A high dosage of motor practice using the stroke-affected
upper limb during the performance of ADL, despite consider-
able difficulty, stimulates neuroplasticity and motor function
recovery [7]–[9]. Thus, it is clinically important to encourage
stroke survivors to continue making appropriate use of the
affected upper limb [10]–[13], in addition to engaging in
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rehabilitation exercises that focus on range-of-motion and
functional abilities [14]–[16].

The use of wearable sensors has recently emerged as an
efficient way to monitor the amount of upper-limb use after
a stroke [17]–[22]. However, despite growing evidence of the
clinical potential of these devices [23], their widespread clin-
ical deployment has been hindered by technical limitations.
A shortcoming of currently available wrist-worn devices is
that they cannot distinguish between Goal-Directed (GD)
movements (i.e., movements performed for a specific pur-
poseful task) and non-Goal-Directed (non-GD) movements
(e.g., the arm swinging during gait). Instead, these sensors
focus on recording the number and/or intensity of any type of
arm movements [10]. Consequently, non-GD movements are
reflected as part of the measurements with equal importance
as GD movements. This results in an overestimation of the
amount of actual arm use [24]. Furthermore, monitoring the
aggregate number of stroke-affected upper limb movements
is not sufficient for the purpose of providing timely feedback
to encourage the use of the affected limb during the perfor-
mance of ADL. To promote the use of the stroke-affected
limb, it is critical that feedback reflects the relative use of the
affected upper limb compared to the contralateral one.

Wrist-worn movement sensors have also been applied to
monitoring rehabilitation exercises in the home
setting [25]–[28]. However, existing systems primarily focus
on quantifying the dosage/intensity of the exercises (e.g.,
the duration of the exercises and the number of movement
repetitions) and do not monitor if the quality of the performed
exercise is appropriate. Ensuring good quality of movement
during the performance of rehabilitation exercises is critical
for maximizing functional recovery after a stroke [29]. More-
over, providing customized feedback regarding the quality of
exercise movements can increase motivation, promote long-
term adherence to a prescribed exercise regimen, and ulti-
mately maximize clinical outcomes [30]. One of the reasons
for limited exercise participation by stroke survivors is the
lack of access to resources to support exercise including per-
formance feedback from rehabilitation specialists [31]. There
are no technical solutions that provide feedback regarding the
quality of exercise performance for upper-limb rehabilitation
after stroke.

We propose a system for aiding in functional recovery after
a stroke that consists of two wearable sensors, one worn on
the stroke-affected upper limb and the other on the contralat-
eral upper limb [32] (Fig. 1). The proposed system can be
used to provide timely feedback when ADL are performed.
If the system detects that the patient consistently performs
GD movements with the unaffected upper limb, and rarely
uses the stroke-affected upper limb, then a visual or vibro-
tactile reminder can be triggered to encourage the patient
to attempt GD movements with the stroke-affected limb.
A benefit of this approach is that if a movement is critical
(e.g., signing a check), patients can use the unaffected upper
limb without receiving negative feedback as long as they
have performed a sufficient number of movements with the

FIGURE 1. A conceptual representation of the wrist-worn sensor system
for home-based upper-limb rehabilitation. The system consists of two
wearable sensors, a tablet computer to be used by patients at home, and
a backend web-service for clinician and caregiver data access.

affected upper limb throughout the day. Furthermore, the sys-
tem promotes high-dosage motor practice with appropriate
feedback to extend components of rehabilitation interven-
tions into the home environment.

This paper is focused on the development of algorithms
that form the foundation of the proposed system. These algo-
rithms detect GD movements during ADL, and determine
appropriate feedback during in-home rehabilitation exercise.
This feedback is designed to be similar to how therapists
would provide feedback to improve the quality of upper-limb
movements during in-clinic exercise. The proposed algo-
rithms extend previous work in which we showed that inertial
data (e.g., acceleration and rotational velocity) recorded dur-
ing the performance of a battery of functional motor tasks
using sensors positioned on the upper body can be used
to derive clinically-meaningful indicators of functional level
and the severity of motor impairments [32]–[35]. In addition,
this paper presents an evaluation of the appropriateness of the
envisioned technological approach for the intended audience,
including both stroke survivors and occupational therapists.
This evaluation was carried out using an anonymous sur-
vey obtained from focus groups. The survey consisted of
questions concerning whether clinicians would be interested
in integrating the proposed system in their clinical practice
and whether patients would be willing to adopt the proposed
technology.

II. MATERIALS AND METHODS
A. DATA COLLECTION
We recruited 20 stroke survivors (54.4 ± 10.1 years old;
average and standard deviation) and 10 aged-matched con-
trol subjects (53.8 ± 11.4 years old). Stroke survivors
were recruited from Spaulding RehabilitationHospital (SRH)
inpatient and outpatient units. Stroke survivors had chronicity
of 4.6 ± 5.5 years and showed mild-to-moderate upper-
limb motor impairments as evaluated using the upper-
limb Fugl-Meyer Assessment (FMA) (patients’ scores were
37.0 ± 8.0 out of 66 points) [36]. All subjects provided
written informed consent. The SRH Institutional Review
Board (IRB) approved the experimental procedures.
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TABLE 1. Upper-limb motor tasks that resembled different types of
activities of daily living.

TABLE 2. Upper-limb rehabilitation exercises that are typical of
home-based interventions.

When study participants arrived at the laboratory they
were instrumented with six-axis inertial measurement units
(three-axis accelerometer and gyroscope; Shimmer Research,
Ireland) bilaterally on the wrist. Stroke survivors were first
asked to perform motor tasks associated with the FMA for
the evaluation of their upper-limb motor impairments. Then,
both stroke survivors and control participants performed a
battery of motor tasks resembling different types of ADL
and rehabilitation exercises that could be performed indepen-
dently at home, as summarized in Tables 1 and 2, respectively.

All motor tasks, except for the passive movements listed
in Table 1, were performed while sitting in an armless chair in
front of a table. Stroke survivors performed a subset of these
motor tasks and exercises (i.e., a minimum of eight or more
motor tasks and five exercises) that were carefully chosen
by a therapist considering the subject’s motor abilities. Age-
matched healthy controls performed the complete set of
motor tasks and exercises. Each motor task and exercise was
repeated three to five times, depending on the patient’s func-
tional capability, in order to capture intra-subject variability
in the movement patterns. All tasks were scripted and timed
by a therapist. The sensor data were wirelessly streamed to
a base-station (i.e., laptop) via Bluetooth at a sampling rate
of 256 Hz throughout the entire experiment. A technician
marked the beginning and the end of each repetition with
a digital marker. The laboratory session was videotaped.
Video recordings and sensor data were time-synchronized for
offline analysis.

B. DATA ANNOTATION AND LABELING
1) GD VS. NON-GD MOVEMENTS
Data collected from the unaffected upper limb of stroke sur-
vivors and both limbs of control subjects were categorized as
associated with either GD or non-GD movements by visual
inspection of the time-synchronized video files. The perfor-
mance of FMA tasks, non-passive ADL-related movements,
and upper-limb exercises involving the target limbs were
labeled as GD. All other passive movements, such as arm
swing during gait, resting, and miscellaneous hand gestures
during talking, were labeled as non-GD.

2) PERFORMANCE OF REHABILITATION EXERCISES
An experienced therapist reviewed the video recordings col-
lected during the performance of rehabilitation exercises.
The therapist provided feedback regarding the quality of the
performed exercises with particular emphasis on accuracy
and presence of compensatory movements. The inertial data
collected during the performance of the rehabilitation exer-
cises was labeled Feedback (if the quality of movement was
not adequate) or No Feedback (if the movement quality was
adequate) according the therapist’s opinion. In other words,
the data was labeled according to how patients would have
been provided with feedback based on the observed quality
of movement in a regular rehabilitation session. The data was
further annotated using binary labels reflecting the type of
feedback generated by the therapist (i.e., Accuracy and/or
Compensatory Movement ). The exercise movements per-
formed by the age-matched controls were also reviewed to
make sure that they were performed appropriately. The sensor
data collected from control subjects was labeled as Control.

C. STAKEHOLDER SURVEY
A total of 17 chronic stroke survivors and 13 occupational
therapists (4 practicing in the inpatient unit and 9 in the outpa-
tient unit at SRH) volunteered to provide feedback regarding
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FIGURE 2. Eight off-the-shelf wristbands presented to the stakeholders that provide different donning/doffing mechanisms, e.g., a regular watch bracelet,
elastic bracelet, and slap bracelet. Participants were asked to try all wristbands and identify the ones that they could don/doff with minimal effort.

the clinical appropriateness of the proposed system and their
willingness to use it for home-based rehabilitation. Stroke
survivors were recruited via the SRH Stroke Support Group.
Therapists were recruited by word of mouth. All sessions
were held at SRH and lasted about 60 minutes.

The stroke survivors and the therapists participated in sep-
arate focus-group sessions. During each session, participants
were provided with an overview of the proposed system via
a PowerPoint presentation and demonstration of a looks-like
prototype of the sensors. Research staff addressed questions
that were raised during the demonstration. Then, participants
were asked to fill out an anonymous questionnaire regarding
the system’s appropriateness for home-based rehabilitation.

Stroke survivors were asked questions about their willing-
ness to use the system, if the system would be beneficial
to them, if they would use the system when recommended
by a therapist, if they liked the idea of receiving messages
throughout the day to remind them to use their stroke-affected
upper limb, and their preference for the reminder/feedback
mechanism (visual, vibration, sound, or a combination of
vibration and sound).

Therapists were asked if they would be willing to use the
proposed system in their clinical practice, if they believed
the proposed system would encourage patients to perform
home-based exercises, if they would want to receive email
alerts summarizing their patients’ activity and stroke-affected
upper limb use, and if they would want patients to receive
reminders throughout the day to encourage the use of their
stroke-affected upper limb.

Furthermore, both groups were presented with eight
different types of wristband that provided different don-
ning/doffing mechanisms for self-application of the sensor,
which is particularly important for stroke survivors with lim-
ited upper-limb functional abilities. Stakeholders’ feedback
was gathered with the objective of identifying a wristband
mechanism that would maximize the usability and long-term
adherence to the technology. The tested wristbands included

1) the FitBit Flex, 2) a generic slap bracelet, 3) the Polar Loop,
4) the Moov Now, 5) the Jawbone UP, 6) the Apple Milanese
Loop, 7) the Pebble Time Steel, and 8) a generic Velcro wrist
band (Fig. 2). Participants were asked to try all wristbands and
wear them tightly on their contralateral wrist, and identify the
ones that they could don/doff with minimal effort.

D. DATA ANALYSIS
1) DETECTION OF GD MOVEMENTS
Fig. 3a shows a schematic representation of the data analysis
pipeline that we designed to categorize movements as GD
or non-GD, with the eventual goal of triggering feedback to
motivate stroke survivors to use their affected limb.

Tri-axial acceleration time-series were preprocessed and
data features relevant to detecting GD and non-GD move-
ments were extracted. It is worth emphasizing that the detec-
tion of GD movements relied only on the accelerometer
data. This choice was motivated by the observation that
accelerometers use significantly less power than gyroscopes
(microwatts vs. milliwatts) and are therefore better suited
for long-term, continuous monitoring. Also, prior studies
support the feasibility of accurate assessment of upper-limb
movements using accelerometer data [19], [37], [38]

The orientation of the sensors was estimated by low-
pass filtering the acceleration time-series with a cut-off fre-
quency of 0.25Hz. The orientation time-series was subtracted
from the unfiltered signal to derive an approximation of the
inertial component of the acceleration, which was again
low-pass filtered with a cut-off frequency of 10 Hz to
attenuate high-frequency noise. Velocity and displacement
time-series were computed by trapezoid-integrating the
acceleration data. After integration, the signals were high-
pass filtered with a cut-off frequency of 0.25 Hz to attenuate
the effect of integration drift. Next, we computed the mag-
nitude (i.e., root mean square of the x, y, and z components)
of the acceleration, velocity, displacement, and jerk vectors,
as well as the inner products of each pair of acceleration
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FIGURE 3. Data analysis pipeline for a) detecting GD vs. non-GD movements during the performance of ADL and b) generating appropriate feedback
during the performance of rehabilitation exercises to be prescribed for home-based therapy.

signals (i.e., x-y, x-z, and y-z axes). We used the inner prod-
uct as a lower computational cost surrogate for the Singu-
lar Value Decomposition (SVD) as previously proposed by
Hong et al. [39] in gesture classification. This resulted in
a total of 19 time-series (i.e., jerk, accelerometer, velocity,
and displacement for the three axes and their magnitude,
and the x-y, x-z, and y-z axes inner products of the accel-
eration) to be processed to extract data features. The sig-
nals were segmented using a 2.5 s sliding window without
any overlap. Each segment was annotated as either GD or
non-GD.

Data features that we anticipated to be relevant to the
detection of GD movements were extracted from each of
the above-described time-series. The data features included
the minimum, maximum, range, mean, standard deviation,
root-mean-square values, and the number of zero crossings
of the time-series. These data features have been used in
prior work to classify different activities [33], [35], [40].
We employed a feature selection algorithm – the minimal-
redundancy maximal-relevance algorithm [41] – to iden-
tify the data features that were most relevant to classifying
GD vs. non-GD movements. This algorithm ranks data
features based on maximum correlation with the move-
ment categories (relevance) and minimum correlation
with each other (redundancy). The top 15 data fea-
tures were fed to the classification algorithm described
below.

We trained a logistic regression classification model to
distinguish GD from non-GD movements. The performance
of the classifier was assessed using the leave-one-subject-
out cross validation technique [42]. This technique evalu-
ates the performance of an algorithm by selecting the data
belonging to each subject (one at the time) as the test set
and by training the algorithm using the data belonging to
the remaining subjects. This approach avoids problems of
overfitting and provides fair estimations of the expected clas-
sification accuracy. The overall classification performance
was evaluated based on the Area Under the Curve (AUC) of
the Receiver Operating Characteristics (ROC) curve, which

describes the tradeoff between sensitivity and specificity. The
ROCAUC,which is also known as the c-statistic [43], reflects
the predictive accuracy of a classifier [44]. The ROC curve
was derived by varying from 0 to 1 the probability threshold
for detecting the positive class (i.e., GD movements). The
c-statistic ranges from 0.5 (unable to classify) to 1.0 (able to
perfectly classify), where 0.8 represents a good classification
ability.

2) DETERMINATION OF APPROPRIATE EXERCISE FEEDBACK
Fig. 3b shows a schematic representation of the data analysis
pipeline that we designed to generate appropriate feedback
regarding the quality of rehabilitation exercise performance.
To assess feasibility, this analysis was performed on data
from the exercise that was prescribed to the largest number
of participating stroke survivors, which was the arm raise
in the sagittal and coronal planes. Eleven stroke survivors
performed 98 trials of this exercise. 17 of these trials were
labeled asNoFeedback and 81 asFeedback.All 11 stroke sur-
vivors required feedback during at least one trial. In addition,
9 age-matched healthy controls performed a total of 54 trials
of this exercise.

The analysis used both accelerometer and gyroscope data.
This choice was made based on previous findings that gyro-
scope data can significantly contribute to the assessment of
movement quality [45]–[48]. In the context of evaluating
exercise quality, the high power consumption of the gyro-
scopes would have a minimal impact on the overall power
performance of the system because the home-based exercises
are performed over a relatively short period of time (e.g., less
than an hour). The magnitude of the accelerometer and gyro-
scope data (rather than its components) was used to minimize
the dependence on the initial orientation of the sensing unit.
The algorithm consisted of a cascade of two modules. The
first module focused on classifying if a dataset belonged to
the Control, No Feedback, or Feedback category. The second
module detected the appropriate type of feedback within the
Feedback category.
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The detection of the category of each exercise was for-
malized as a time-series classification problem because the
rehabilitation exercises considered in this work involve a pre-
determined, simplemovement that produced unique accelera-
tion and gyroscope time-series patterns. This work employed
the Nearest Neighbor (NN) algorithm with Dynamic
Time Warping (DTW) for time-series classification. The
NN-DTW algorithm with a sampling mechanism that
effectively reduces the cardinality of the training set
is known to allow accurate, fast, and computationally-
efficient classification [49]. This is optimal for resource-
constrained devices such as our wrist-worn sensors.
NN-DTW has been used in gesture recognition and clinical
event detection [37], [50], [51].

A preliminary analysis of the data showed that the
accelerometer and gyroscope data in the Control cluster
exhibited similar time-series patterns and formed a highly
dense cluster; i.e., the mean µc and standard deviation σc
of the time-warped distances among the Control time-series
were extremely small. The Feedback and No Feedback clus-
ters surrounded the Control cluster. A dataset with such a
pattern is known as a Japanese flag dataset [49], [52]. Based
on this observation, the algorithm was designed with two
steps. First, it checked if a time-series belonged to theControl
cluster. Then, if the time-series was classified asNon-Control,
the algorithm performed the conventional K -NN algorithm
betweenNoFeedback andFeedback classes by comparing the
number of NN instances belonging to the two classes.

Model training and performance evaluation was again
performed using the leave-one-subject-out cross validation
technique [42]. The algorithm classified a testing time-series
as Control (or belongs to the Control cluster) by verifying
that 1) the majority of NN of the testing time-series con-
tained instances from the Control cluster and 2) the distances
between the testing time-series and its NN instances are
small enough to ensure that the testing time-series is indeed
located within the boundary of the Control cluster. First,
the algorithm performed a DTW between the testing dataset
and all time-series in the training dataset, and selected K
nearest neighbors for the accelerometer and gyroscope data
separately, producing a total of 2 × K neighbors. The K
value was chosen as 10% of the cardinality of the training
dataset. Then, the algorithm computed the number of Control
instances (among the combined NN instances) that had DTW
distances within the range of µc ± 2σc (i.e., the boundary)
of the training data. If such instances formed the majority
of the NN instances, the testing time-series was classified as
Control, otherwise as Non-Control.
If the testing time-series was classified as Non-Control,

the algorithm then compared the number of NN instances
belonging to the No Feedback and Feedback classes. Due
to the imbalanced number of training instances in these
two classes (i.e., the number of Feedback instances was
three times greater than that of No Feedback instances in
our dataset), the algorithm balanced the numbers of the No
Feedback and Feedback instances in the NN instances using

weights ωNF and ωF :

ńTRNF = ωNF · n
TR
NF and ńTRF = ωNF · n

TR
F .

where nTRNF and nTRF represent the numbers of No Feedback
and Feedback instances in the training set, respectively. These
weights were defined based on a sigmoid function that took
the number of instances of the corresponding class in the
training set as its input. The input to the sigmoid function was
normalized such that the values of the weights were inversely
proportional to the number of the instances per class. The
weights were defined as:

ωNF =
−1

1+ exp
(

nTRNF
nTRNF+n

TR
F
− 0.5

) + 1

ωF =
−1

1+ exp
(

nTRF
nTRNF+n

TR
F
− 0.5

) + 1

The testing time-series was classified according to a major-
ity rule. If the testing time-series was classified as Feed-
back, a data feature-based classification algorithmwas imple-
mented to identify the type of feedback (i.e., related to lack of
accuracy and/or presence of compensatory movement). The
method to identify feedback type consisted of a data pre-
processing module, a data feature extraction module, a data
feature selection module, and a Random Forest algorithm to
determine the feedback type.

The data pre-processing method discussed in
Section II-D.1 was employed to derive the magnitude of
the linear jerk, linear acceleration, linear velocity, linear
displacement, angular velocity, and angular displacement
from the accelerometer and gyroscope time-series. Then
we derived the following data features that reflected the
speed, smoothness, and coordination of movement: 1) mean
value, 2) root mean square value, 3) maximum and minimum
amplitude, 4) skewness, 5) entropy, 6) kurtosis, 7) time it
took to complete the movement and to reach the maxi-
mum amplitude, and 8) average DTW distance from the
Control time-series in the training dataset. These features
were previously found to be relevant to assessing movement
quality [33]–[35]. A correlation-based feature selection algo-
rithm was used to select data features that were relevant
to detecting feedback type [53]. Then, a Random Forest
with 100 trees was implemented as a binary classification
model [42] to identify the exercise feedback type, and a
leave-one-subject-out cross validation was performed. Clas-
sification performance was evaluated based on precision
and recall (i.e., sensitivity). Precision is the percentage of
Feedback events detected by the algorithm that were really
Feedback events (i.e., the therapists gave feedback for that
trial). In other words, this is the percentage of Feedback
events reported by the algorithm that are correct. Recall is
the percentage of real Feedback events that were detected
by the algorithm. In other words, this is the percentage
chance that a trial necessitating feedback will be detected
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by the algorithm. Taken together, precision and recall are
widely usedmeasures to describe the overall performance of a
classification algorithm. Overall performance was evaluated
using the F-score, which is the harmonic mean of precision
and recall [54]. Its value spans the range between 0 (no
precision and recall) and 1 (perfect precision and recall).

III. RESULTS
A. DETECTION OF GD MOVEMENTS
A total of 262movements (220GD and 42 non-GD)were col-
lected from 10 control subjects, and 666 movements (367 GD
and 299 non-GD) were collected from 20 stroke survivors.
Segmenting the movements into 2.5 s windows produced
414 GD and 185 non-GD data points for the control subjects,
and 2475 GD and 1325 non-GD data points for the stroke
survivors.

FIGURE 4. The ROC curve for the detection of GD movements. The area
under the curve that indicates the predictive accuracy of the classifier was
87.0%. The highlighted operating point on the curve indicates a true
positive rate of 79% and true negative rate of 78%.

Fig. 4 shows the ROC curve based on the classification
results generated by the logistic regression classifier using
the leave-one-subject-out cross validation technique. The
c-statistic (ROC AUC) was 87.0%, thus indicating a strong
classification ability. The operating point highlighted on the
curve shown in Fig. 4 is associated with a true positive rate
of 79% and true negative rate of 78%.

B. DETERMINATION OF EXERCISE FEEDBACK
The exercise that was prescribed to the largest number of
participating stroke survivors was the ‘‘arm raise in the sagit-
tal and coronal planes’’ (Table 2). Eleven stroke survivors
performed 98 trials of this exercise. 17 of these trials were
labeled as No Feedback and 81 as Feedback. All 11 stroke
survivors required feedback on at least one trial whereas only
3 stroke survivors performed a trial that did not require feed-
back. In addition, 9 age-matched healthy controls performed
a total of 54 trials of this exercise.

Fig. 5 shows confusion matrices for the first classifica-
tion stage (i.e., detecting whether the performed exercise
requires feedback). Fig. 5a shows the confusion matrix for
classification of Feedback, where No Feedback and Control
are grouped together. The precision and recall for detecting

FIGURE 5. Confusion matrices for the first-level time-series classification
when considering a) two classes (Control or No Feedback vs. Feedback)
and b) three classes (Control, No Feedback, Feedback).

Feedbackwere 85.5% and 83.1%, respectively. This indicates
that 85.5% of the movement instances that were classified
as Feedback were true positives. Furthermore, 83.1% of the
instances that were labelled as Feedback were successfully
detected by the proposed analytic method. The computed
F-score (the harmonic mean of precision and recall) was
84.3%. Fig. 5b shows the confusion matrix considering all
three classes (i.e., Control, No Feedback, and Feedback). The
average precision and recall were 64.8% and 65.2% with an
F-score of 63.3%.

FIGURE 6. Confusion matrices for the second-level feature-based
classifiers for detecting feedback regarding a) the accuracy of the
movement and b) the use of compensatory movement. The F -scores for
the accuracy and compensatory movement feedbacks were 73.7% and
65.3%, respectively.

Within the Feedback group, there were 83 data instances,
of which 71 were true positives and 12 were false positives.
Fig. 6 shows confusion matrices for the second classifica-
tion stage (i.e., determining the appropriate feedback type
within these 83 data instances). Fig. 6a shows the confusion
matrix for detecting Accuracy feedback. The precision and
recall were 71.8% and 75.7%, respectively, with an F-score
of 73.7%. Fig. 6b shows the confusion matrix for detect-
ing Compensatory Movement feedback. The precision and
recall were 66.7% and 64.0%, respectively, with an F-score
of 65.3%.

C. STAKEHOLDER QUESTIONERS
Fig. 7 shows a summary of the survey results obtained from
stroke survivors regarding the use of the proposed wearable
system. 76.5% of stroke survivors indicated their willing-
ness to use the system and the reminders generated by the
system during the day to encourage the use of the stroke-
affected upper limb. 82.3% expressed confidence that the
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FIGURE 7. Survey results obtained from stroke survivors regarding the
translational feasibility for at-home rehabilitation.

FIGURE 8. Survey results obtained from therapists regarding the
translational feasibility for at-home rehabilitation.

system would help increase the use of their stroke-affected
upper limb. 88.2% indicated that they would use the system
if recommended by their therapist. Results regarding the pre-
ferred method of receiving feedback were equivocal; 29.4%
preferred a visual message, 11.8% preferred a sound, 23.5%
preferred a vibration, and 35.3% preferred a combination of
vibration and sound.

Fig. 8 shows a summary of the survey results obtained
from the therapists. 91.7% of the therapists reported that they
would be willing to use the system in their clinical practice.
All therapists (100%) thought that the device would help
encourage patients to perform home-based exercises. 61.5%
reported that they would want to receive periodic email alerts
about their patient’s performance, and the rest (i.e., 38.5%)
were undecided. All therapists (100%) expressed interest in
a system that can provide patients with reminders throughout
the day to encourage them to use their stroke-affected upper
limb.

TABLE 3. A summary of stakeholder preferences for wristband
mechanisms in terms of its ease-of-use under limited upper-limb
functionality. The numbers represent the percentage of responders (i.e.,
patients and therapists) who preferred the associated donning/doffing
mechanism for the presented technology.

Table 3 provides a summary of stakeholder preferences
for different wristbands regarding their suitability for self-
application to the wrist. The slap bracelet and Jawbone UP
were preferred by both patients and therapists, whereas the
FitBit Flex and Moov Now were not deemed appropriate.

IV. DISCUSSION AND CONCLUSIONS
We have presented a novel technological approach that uti-
lizes two wearable sensors (i.e., one worn on the stroke-
affected upper limb and the other on the contralateral upper
limb) for detecting GDmovements duringADL and for deter-
mining appropriate feedback during in-home rehabilitation
exercise (based on the sensor on the stroke-affected limb).
Furthermore, we have demonstrated the feasibility of two
algorithms that form the foundation of the system, with the
eventual goal of providing timely reminders to encourage the
use of the stroke-affected limb during ADL and appropriate
feedback to promote high-quality home-based rehabilitation
exercise. The presented results show that it is possible to
detect GD movements during the performance of ADL with
a c-statistic of 87.0%, and incorrectly-performed home-based
rehabilitation (arm raise) exercises with an F-score of 84.3%.
These results indicate that movements can be successfully
classified into either GD or non-GD movements with a pre-
dictive accuracy of 87.0%, and the incorrectly-performed
exercisemovements with an accuracy of 84.3%, thus enabling
the generation of appropriate feedback.

Reminder-based approaches to ADL modification should
provide timely feedback. In our case, this means providing a
reminder to use (or attempt to use) the stroke-affected limb
at the time of a movement with the contralateral limb. Such
approaches must also provide relevant feedback and avoid
alarm fatigue. In our case, this means not providing feedback
every time a contralateral limbmovement is detected. Instead,
we propose to trigger feedback at the time a GD movement
is detected based on the relative usage of the affected com-
pared to the contralateral limb. For example, if the patient
consistently performs GD movements with the contralateral
upper limb, and rarely uses the stroke-affected upper limb,
then a reminder is triggered. On the other hand, if the patient
has been making an effort to use the stroke-affected limb
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throughout the day then they will not receive a reminder when
a unilateral GDmovement is performed with the contralateral
limb.

DetectingGDmovements is, therefore, an important aspect
of the presented approach. We focused on detecting GD
movements of the non-affected upper limb in stroke sur-
vivors. To accurately monitor the relative usage of the stroke-
affected and contralateral upper limbs it is also necessary
to detect GD movements of the stroke-affected limb; other-
wise patients could simply game the system by performing
non-GD (e.g., passive arm swing) movements with stroke-
affected limb. Future studies should examine GD movements
performed by the stoke-affected upper limb and develop an
algorithm that can determine the optimal ratio between the
relative usage of the two limbs. We hypothesize that different
algorithms may be needed for patients with different func-
tional abilities. To our knowledge, this is the first time that
an algorithm has been developed to detect GD movements.
Future applications of this technique will expand upon prior
work that has explored the use of the stroke-affected and
contralateral upper limbs in stroke survivors [13], [55]–[57].

The presented algorithm for detecting the type of feedback
appropriate for a given exercise extends our prior work using
wearable sensor data to derive clinically-meaningful indica-
tors of functional level and the severity of motor impairments
in stroke survivors [33]–[35]. In the present study, and our
prior work, a wide range of data features were selected from
the acceleration, velocity, displacement, and angular veloc-
ity time-series to achieve reliable detection. This highlights
the importance of using both accelerometers and gyroscopes
when monitoring movement quality.

There were 17 No Feedback instances, twelve of which
were misclassified as Feedback (i.e., the false positives in
Fig. 5a). Interestingly, these 17 instances were associated
with only three stroke survivors, and two of these three stroke
survivors performedmovements requiring both Feedback and
No Feedback during a total of 10 repetitions of the exercise.
This suggests that their movements were positioned on the
‘‘therapist’s decision boundary’’ for determining Feedback
and No Feedback, making the classification especially chal-
lenging. On the other hand, 8 out of the 10 false negatives
were generated by a single subject, which suggests that
the movement patterns of that specific subject were simi-
lar to a particular set of No Feedback data in the training
set. We argue that the primary cause of these misclassifica-
tions was the relatively small dataset available for analyses.
To lessen the potential bias caused by the small data size,
we performed the same analysis using a 10-fold cross val-
idation instead of a leave-one-subject-out cross validation.
This resulted in an F-score of 95.1% with only four false
positives and four false negatives. These results suggest that
a larger sample size would likely address the shortcomings of
the classifier developed in this preliminary study.

There are several limitations of the study that deserve
consideration. We did not consider movements that were
both GD and non-GD in nature, nor did we handle cases

where a GD movement and a non-GD movement occurred
in the same 2.5s window of time. This important analysis
is left for future work. The sample size was relatively small
(i.e., 20 stroke survivors and 10 healthy controls) and thus
the reported results may not be generalized to the target
patient population of chronic stroke survivors with mild-to-
moderate upper-limb motor impairments. The limited sample
size also restricted the number of rehabilitation exercises that
were prescribed by a therapist to the stroke survivors who
participated in the study. Consequently, data analyses were
performed on the exercise that was prescribed to the largest
number of stroke survivors, which was the ‘‘arm raise in the
sagittal and coronal planes’’. Therefore, the reported results
for detecting feedback regarding the quality of rehabilitation
exercise performance may not be applicable to other types
of exercise movements. In an ongoing clinical study, we are
collecting data from a larger patient population performing a
variety of rehabilitation exercises. This dataset will allow us
to assess the applicability of the proposed algorithms to other
exercise movements. Future work to translate the research
findings herein reported into clinical practice will require the
deployment of the proposed system in the home setting and
a rigorous evaluation of its robustness, usability and clinical
effectiveness.

The envisioned technological approach could have a pro-
found impact on stroke rehabilitation by extending rehabil-
itation interventions to the home. The results of the focus
groups presented here indicate that both stroke survivors and
therapists are amenable to the usage of such a technology.
The proposed system would be especially useful in cases
where high-dosage therapy is not feasible due to limited
access to therapy programs. Patients with mild-to-moderate
upper-limb impairments would be the ideal candidates for
such a technology because they are able to engage in a
wide range of ADL and rehabilitation exercises in the home
environment.

We envision that the proposed system would be used first
in an inpatient setting as an adjunct to standard therapy hours,
which would allow patients to familiarize with the system and
clinicians to choose optimal system settings on an individual
basis (e.g., the reminder/feedback modality, the minimum
time duration between feedback instances, and the threshold
value to be applied to the relative usage of the two limbs
to determine when feedback should be delivered). It would
then be used in the outpatient setting to enable rehabilitation
in home and community settings. The proposed technology
could also be leveraged to assess stroke survivors’ responses
to prescribed rehabilitation interventions. An accurate mea-
sure of limb use in the home environment would provide
valuable information about a patient’s ability to translate
the motor skills they acquired during therapy sessions to
real life situations. This would allow therapists to closely
monitor the motor recovery process and develop individual-
ized therapy plans to maximize a patient’s ability to perform
ADL and live independently, which is the ultimate goal of
rehabilitation.
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