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Drug combination trials are increasingly common nowadays in clinical research. However, very few meth-
ods have been developed to consider toxicity attributions in the dose escalation process. We are motivated
by a trial in which the clinician is able to identify certain toxicities that can be attributed to one of the
agents. We present a Bayesian adaptive design in which toxicity attributions are modeled via Copula re-
gression and the maximum tolerated dose (MTD) curve is estimated as a function of model parameters. The
dose escalation algorithm uses cohorts of two patients, following the continual reassessment method (CRM)
scheme, where at each stage of the trial, we search for the dose of one agent given the current dose of the
other agent. The performance of the design is studied by evaluating its operating characteristics when the
underlying model is either correctly specified or misspecified. We show that this method can be extended to
accommodate discrete dose combinations.

Key words: Attributable toxicity; Cancer phase I trials; Continual reassessment method; Copula
type models; Drug combination

1 Introduction

Cancer phase I clinical trials constitute the first step in investigating a potentially promising combination
of cytotoxic and biological agents. Due to safety and ethical concerns, patients are sequentially enrolled in
the trial, and the dose combinations assigned to subsequent patients depend on dose combinations already
given to previous patients and their dose limiting toxicity (DLT) status at the end of the first cycle of
therapy. The main objective of these trials is to estimate a maximum tolerated dose (MTD) that will be
used in future efficacy evaluation in phase II/III trials. The MTD is usually defined as any dose combination
(x, y) that will produce DLT in a prespecified proportion θ of patients,

Prob(DLT| dose = (x, y)) = θ. (1)

The definition of DLT depends on the type of cancer and drugs under study, but it is usually defined as
a grade 3 or 4 non-hematologic toxicity (see the National Cancer Institute CTCAE v4.03 for the definition
of the different grades of toxicity). The pre-specified proportion of DLTs θ, sometimes referred as target
probability of DLT, also depends on the nature of the toxicity, but it usually take values between 0.2 and
0.4.

In the drug combination dose finding literature, designs that recommend a unique MTD (see Yin and
Yuan (2009a,b); Wages et al. (2011a,b); Shi and Yin (2013); Riviere et al. (2014); Wheeler et al. (2017)) or
multiple MTDs (see Thall et al. (2003); Wang and Ivanova (2005); Yuan and Yin (2008); Braun and Wang
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2 Jimenez et al.: Partial toxicity attributions in drug combination trials

(2010); Mander and Sweeting (2015); Tighiouart et al. (2014, 2016, 2017)) have been studied extensively.
Most of these methods use a parametric model for the dose-toxicity relationship

Prob(DLT|(x, y)) = F ((x, y), ξ), (2)

where (x, y) represents the drug combination of two agents, F (.) is a known link function, e.g. a power
model or a logistic model, and ξ ∈ Rd is a vector of d unknown parameters. Non-parametric designs have
been proposed in the past, both in single agent and drug combination settings Mander and Sweeting (2015);
Gasparini and Eisele (2000); Whitehead et al. (2010). These designs unique assumption is monotonicity,
which is imposed either through the prior distribution (see Gasparini and Eisele (2000); Whitehead et al.
(2010)), or by choosing only monotonic contours when escalating (see Mander and Sweeting (2015)).

Let S be the set of all dose combinations available in the trial, and C(ξ) be the set of dose combinations
(x, y) such the probability of DLT equals a target risk of toxicity θ. Hence,

C(ξ) = {(x, y) ∈ S : F ((x, y), ξ) = θ}. (3)

Equation (3) is the traditional definition of MTD set. When S is discrete, following Tighiouart et al.
(2017), we can define the MTD as the set of dose combinations (x, y) that satisfy

|F ((x, y), ξ)− θ| ≤ δ, (4)

since C(ξ) may be empty, i.e., when the MTD is not in S. The threshold parameter δ, 0 < δ < 1, is
pre-specified after close collaboration with the clinician.

This work is motivated by a cancer phase I trial a clinician at Cedars-Sinai Medical Center is planning.
The trial involves the combination of Taxotere, a known cytotoxic agent, and Metformin, a diabetes drug,
in advanced or metastatic breast cancer patients. According to the clinician, some DLTs can be attributable
to either agent or both. For example, a grade 3 or 4 neutropenia can only be attributable to Taxotere and
not Metformin. Furthermore, for ethical reasons, if a patient has a DLT attributable to Taxotere when
treated with dose level xT of taxotere, then xT cannot be increased for the next patient in the trial (see
the dose escalation restriction in Section 2.2). Very few methods have been developed to incorporate
toxicity attribution in the dose escalation process. Yin and Yuan (2009a) proposed a design that models
the joint probability of toxicity with a copula model known as the Gumbel model Murtaugh and Fisher
(1990). This model allows the investigator to compute the probability of DLT when the DLT is exclusively
attributed to one drug, the other one, or both. However, they require all toxicities to be attributable, which
is rare in practice. Wheeler et al. (2017) proposed a semi-attributable toxicity design based on a trial
with non-concurrent drug administration. In their design, one drug is administered at the beginning of the
treatment cycle and the other drug is administered at a much later time point if and only if the patient did
not experience DLT. If a DLT occurs before the second drug is administered, then the DLT is attributed to
the first drug. However, if the DLT occurs after the second drug has been administered, then the DLT could
be caused by any of the drugs and therefore is not attributable. Iasonos and O’Quigley (2016) propose a
method that reduces the effect of the bias caused by toxicity attribution errors by using personalized scores
instead of the traditional binary DLT outcome. Lee and Fan (2012) considered the toxicity attribution
problem for ruled-based designs with non-overlapping toxicities.

In this article, we propose a Bayesian adaptive design for drug combinations that allows the investigator
to attribute a DLT to one or both agents in an unknown fraction of patients, even when the drugs are
given concurrently. The relationship between the dose combinations and the risk of toxicity is modeled
using the same copula model used by Yin and Yuan (2009a). The design proceeds using a variation of
the algorithm proposed in Tighiouart et al. (2017) where cohorts of two patients are allocated to dose
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combinations where, at each stage of the trial, we search for the dose of one agent given the current dose of
the other agent. Our approach differs from the methodologies of Yin and Yuan (2009a) and Tighiouart et al.
(2017) in three aspects; (i) a non-negative fraction of DLTs are attributable to either one or both agents, (ii)
the dose combination allocated to patients uses the CRM scheme as opposed to escalation with overdose
control (EWOC) approach proposed by Babb et al. (1998), and (iii) if a current patient experiences DLT
attributed drug D1 at dose level xD1 , then the dose level of agent D1 cannot be more than xD1 for the next
cohort of two patients. At the end of the trial, an estimate of the MTD curve is proposed as a function
of Bayes estimates of the model parameters. Last, we show that our method can be easily adapted from
a setting with continuous dose combinations to discrete dose combinations by rounding up the estimated
MTD curve to the nearest discrete dose combinations.

The rest of the manuscript is organized as follows. In Section 2, we describe the model for the dose-
toxicity relationship and the adaptive design to conduct the trial for continuous dose combinations. In
Section 3, we study the performance of the method in terms of safety and efficiency of the estimate of the
MTD set. In Section 4, we adapt our proposal to the setting of discrete dose combinations. In section 5,
we conduct a model misspecification evaluation. Discussion and practical considerations of the method
are discussed in Section 6.

2 Method

2.1 Dose-Toxicity Model

LetXmin, Xmax, Ymin, Ymax, be the minimum and maximum doses available in a trial that combines drugs
with continuous dose combination levels. The doses are standardized to be in a desired interval, e.g., [0.05,
0.3], so thatXmin = Ymin = 0.05 andXmax = Ymax = 0.3. Let Fα(·) and Fβ(·) be parametric models for
the probability of DLT of drugs D1 and D2, respectively. We specify the joint dose-toxicity relationship
using the Gumbel copula model Murtaugh and Fisher (1990) as

π(δ1,δ2) = Prob(δ1, δ2|x, y) = F δ1α (x) [1− Fα(x)]1−δ1 ×

F δ2β (y) [1− Fβ(y)]1−δ2 + (−1)(δ1+δ2)Fα(x) [1− Fα(x)]Fβ(y) [1− Fβ(y)]
e−γ − 1

e−γ + 1
,

(5)

where x is the standardized dose level of drug D1, y is the standardized dose level of agent D2, δ1 is the
binary indicator of DLT attributed to drug D1, δ2 is the binary indicator of DLT attributed to drug D2 and
γ is the interaction coefficient. We assume that the joint probability of DLT, when one of the drugs is held
constant, is monotonically increasing; that is Prob(DLT|x′, y) ≥ Prob(DLT|x, y) or Prob(DLT|x, y′) ≥
Prob(DLT|x, y), where x′ > x and y′ > y. A sufficient condition for this property to hold is to assume
that Fα(·) and Fβ(·) are increasing functions with α > 0 and β > 0. In this article we use Fα(x) = xα

and Fβ(y) = yβ . Using (5), if the DLT is attributed exclusively to drug D1, then

π(δ1=1,δ2=0) = Prob(δ1 = 1, δ2 = 0|x, y) = xα(1− yβ)− xα (1− xα) yβ
(
1− yβ

) e−γ − 1

e−γ + 1
.

(6)

If the DLT is attributed exclusively to drug D2, then

π(δ1=0,δ2=1) = Prob(δ1 = 0, δ2 = 1|x, y) = yβ(1− xα)− xα (1− xα) yβ
(
1− yβ

) e−γ − 1

e−γ + 1
.

(7)
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4 Jimenez et al.: Partial toxicity attributions in drug combination trials

If the DLT is attributed to both drugs D1 and D2, then

π(δ1=1,δ2=1) = Prob(δ1 = 1, δ2 = 1|x, y) = xαyβ + xα (1− xα) yβ
(
1− yβ

) e−γ − 1

e−γ + 1
. (8)

Equation (6) represents the probability of DLT attributed to drug D1 but not D2. Note that there over
70 types of non-hematological and hematological adverse events (toxicities) listed in the Common Termi-
nology Criteria for Adverse Events v4.0 (CTCAE) graded as 0, 1, 2, 3, and 4. In most cancer trials, a DLT
is defined as any type of grade 3 or 4 non-hematologic or grade 4 hematologic toxicity. In the example
described in the introduction, a grade 4 neutropenia can only be attributed to taxotere and not metformin
regardless of the dose of metformin when these two drugs are used in combination. Although the dose level
of drug D2 appears (6) and changes the probability of DLT, it does not necessarily change the probability
of DLT of all types of toxicities. Equations (7) and (8) are interpreted similarly.

Following Yin and Yuan (2009a), it is easy to see that the total probability of having a DLT is calculated
as the sum of (6), (7) and (8). Hence,

π = Prob(DLT|x, y) = π(δ1=1,δ2=0) + π(δ1=0,δ2=1) + π(δ1=1,δ2=1) =

xα + yβ − xαyβ − xα (1− xα) yβ
(
1− yβ

) e−γ − 1

e−γ + 1
.

(9)

We define the MTD as any dose combination (x∗, y∗) such that Prob(DLT|x∗, y∗) = θ. We set (9) equal
to θ and re-write it as a 2nd degree polynomial in yβ , and solve for the solutions. This allows us to define
the MTD set C(α, β, γ) as

C(α, β, γ) =

(x∗, y∗) : y∗ =

[
−(1− xα∗ − κ)±

√
(1− xα∗ − κ)2 − 4κ(xα∗ − θ)

2κ

] 1
β

 , (10)

where

κ = xα∗ (1− xα∗ )
e−γ − 1

e−γ + 1
.

Let T be the indicator of DLT, T = 1 if a patient treated at dose combination (x, y) experiences DLT
within one cycle of therapy that is due to either drug or both, and T = 0 otherwise. Among patients treated
with dose combination (x, y) who exhibit DLT, suppose that an unknown fraction η of these patients
have a DLT with known attribution, i.e. the clinician knows if the DLT is caused by drug D1 only, or
drug D2 only, or both drugs D1 and D2. Let A be the indicator of DLT attribution when T = 1. It
follows that for each patient treated with dose combination (x, y), there are five possible toxicity outcomes:
{T = 0}, {T = 1, A = 0}, {T = 1, A = 1, δ1 = 1, δ2 = 0}, {T = 1, A = 1, δ1 = 0, δ2 = 1} and {T =
1, A = 1, δ1 = 1, δ2 = 1}. This is illustrated in the chance tree diagram in Figure 1. Using equations
(6),(7),(8),(9) and Figure 1, the contributions to the likelihood from each of the five observable outcomes
are listed in Table 1. The likelihood function is defined as

L(α, β, γ | data) =
n∏
i=1

[(
ηπ

(δ1i ,δ2i )

i

)Ai(
πi (1− η)

)1−Ai]Ti
(1− πi)1−Ti , (11)

and the joint posterior probability distribution of the model parameters as

Prob(α, β, γ | data) ∝ Prob(α, β, γ)× L(α, β, γ | data). (12)

With equation (12) we can easily sample and obtain MCMC estimates of α, β and γ.
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2.2 Trial Design

Dose escalation / de-escalation proceeds using the algorithm described in Tighiouart et al. (2017) but uni-
variate continual reassessment method (CRM) is carried out to estimate the next dose instead of EWOC. In
a cohort with two patients, the first one would receive a new dose of agentD1 given the dose y of agentD2

that was previously assigned. The new dose of agent D1 is defined as xnew = argminu|P̂rob(DLT|u, y)−
θ|,where y is fixed and ˆProb(DLT|u, y) is computed using equation (9) with α, β, γ replaced by their pos-
terior medians. The other patient would receive a new dose of agent D2 given the dose of agent D1 that
was previously assigned. Specifically, the design proceeds as follows:

1. Patients in the first cohort receive the same dose combination (x1, y1) = (x2, y2) = (Xmin, Ymin).

2. In the i-th cohort of two patients,

• If i is even,

– Patient (2i−1) receives doses (x2i−1, y2i−1), where x2i−1 = argmin
u

∣∣∣P̂rob(DLT|u, y2i−3)− θ
∣∣∣ ,

and y2i−1 = y2i−3. If a DLT was observed in the previous cohort of two patients and was
attributable to drug D1, then x2i−1 is further restricted to be no more than x2i−3.

– Patient 2i receives doses (x2i, y2i), where y2i = argmin
v

∣∣∣P̂rob(DLT|x2i−2, v)− θ
∣∣∣ , and

x2i = x2i−2. If a DLT was observed in the previous cohort of two patients and was at-
tributable to drug D2, then y2i is further restricted to be no more than y2i−2.

• If i is odd,

– Patient (2i−1) receives doses (x2i−1, y2i−1), where y2i−1 = argmin
v

∣∣∣P̂rob(DLT|x2i−3, v)− θ
∣∣∣ ,

and x2i−1 = x2i−3. If a DLT was observed in the previous cohort of two patients and was
attributable to drug D2, then y2i−1 is further restricted to be no more than y2i−3.

– Patient 2i receives doses (x2i, y2i), where x2i = argmin
u

∣∣∣P̂rob(DLT|u, y2i−2)− θ
∣∣∣ , and

y2i = y2i−2. If a DLT was observed in the previous cohort of two patients and was at-
tributable to drug D1, then x2i is further restricted to be no more than x2i−2.

3. Repeat step 2 until the maximum sample size is reached subject to the following stopping rule.

4. We would stop the trial if, Prob(Prob(DLT|x = Xmin, y = Ymin) ≥ θ + ξ1|data) > ξ2, i.e. if
the posterior risk of toxicity at the lowest combination significantly is high. ξ1 and ξ2 are design
parameters tuned to obtain the best operating characteristics.

In step 2 of the algorithm, any dose escalation is further restricted to be no more than a pre-specified
fraction of the dose range of the corresponding agent. At the end of the trial, we obtain the MTD curve
estimate Ĉ = C(α̂, β̂, γ̂), where α̂, β̂ and γ̂ are the posterior medians of the parameters α, β and γ, given
the data.

3 Simulation Studies

3.1 Simulation set up and Scenarios

In all simulated trials, the link functions Fα(x) = xα and Fβ(y) = yβ are used. To evaluate the perfor-
mance of our proposal, the DLT outcomes are generated from the true model showed in (9). We used this
model in 3 different scenarios to study the behavior of our design when the prior distribution of the model
parameters is both well and poorly calibrated. Let αtrue, βtrue and γtrue represent the true parameter values
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6 Jimenez et al.: Partial toxicity attributions in drug combination trials

we use in (9) to generate DLT outcomes. In each scenario we select different values for αtrue, βtrue, but
the prior distribution for α and β, P (α) and P (β), as well as γtrue, do not vary. In scenario 1, we choose
values for αtrue and βtrue such that αtrue < E[P (α)] and βtrue < E[P (β)]. In scenario 2, we choose values
for αtrue and βtrue such that αtrue = E[P (α)] and βtrue = E[P (β)]. Last, in scenario 3, we choose values
for αtrue and βtrue such that αtrue > E[P (α)] and βtrue > E[P (β)]. Figure 2 shows the MTD curves with
the true parameter values described here and their contours at θ± 0.05 and θ± 0.1. We evaluate the effect
of toxicity attribution in these 3 scenarios using 4 different values for η: 0, 0.1, 0.25 and 0.4. These values
are reasonable because higher values of η in practice are very rare. Data is randomly generated using the
following procedure:

• For a given dose combination (x, y), a binary indicator of DLT T is generated from a Bernoulli
distribution with probability of success computed using equation (9).

• If {T = 1}, we generate the attribution outcome A using a Bernoulli distribution with probability of
success η.

• If {T = 1, A = 1}, we attribute the DLT to drug D1, D2, or to both drugs with equal probabilities.

We assume that the model parameters α, β, γ and η are independent a priori. We assign vague prior dis-
tributions to α, β and γ following Yin and Yuan (2009a), where α ∼ Uniform(0.2, 2), β ∼ Uniform(0.2, 2)
and γ ∼ Gamma(0.1, 0.1). These prior distributions correspond to the ones used by Yin and Yuan
(2009a) for the main analysis. The prior distribution for the fraction of attributable toxicities η is set
to be Uniform(0, 1). With these prior distributions, the true parameter values for each scenario are as fol-
lows. In scenario 1, α = β = 0.9 and γ = 1. In scenario 2, α = β = 1.1 and γ = 1. Last, in scenario 3,
α = β = 1.3 and γ = 1. For each scenario, m = 1000 trials will be simulated. The target risk of toxicity
is fixed at θ = 0.3, the sample size is n = 40, and the values for ξ1 and ξ2 will be 0.05 and 0.8 respectively.
All simulation are done using the software R version 3.3.1.

3.2 Design Operating Characteristics

We evaluate the performance of the design by assessing its safety and its efficiency in estimating the MTD
curve.

For trial safety, we employ the average percent of DLTs, the percent of simulated trials with DLT rate
greater than θ ± 0.05 and θ ± 0.10.

For efficiency, we employ the pointwise average relative minimum distance from the true MTD curve
to the estimated MTD curve. This measure of efficiency is well described in Tighiouart et al. (2014, 2017)
and can interpreted as a pointwise average bias in estimating the true MTD curve. We also consider the
pointwise percent of trials for which the minimum distance of the point (x, y) on the true MTD curve to
the estimated MTD curve is no more than (100× p)% of the true MTD curve. This measurement will give
us an estimate of the percent of trials with MTD recommendation within (100 p)% of the true MTD. This
measure of efficiency can be interpreted as the pointwise percent of correct MTD recommendation. In this
paper we select p = 0.1, 0.2. For a detailed explanation of these measures of efficiency, see Tighiouart et
al. (2014, 2017).

3.3 Results

In general, increasing the value of η until 0.4 generates estimated MTD curves closer to the true MTD
curve. Figure 3 shows the estimated MTD curves for each scenario as a function of η. In terms of safety,
overall we observe that increasing the fraction of toxicity attributions η reduces the average percent of
toxicities and percent of trials with toxicity rates greater than θ + 0.05 and θ + 0.10. Table 2, shows the
average percent of toxicities as well as the percent of trials with toxicity rates greater than θ + 0.05 and
θ + 0.1 for scenarios 1-3.
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Figure 4 shows the pointwise average bias of the 3 proposed scenarios for each value of η. Overall,
increasing the value of η until 0.4 reduces the pointwise average bias. In any case, the pointwise average
bias is around 10% of the dose range of either drug and practically negligible for η = 0.25, 0.4. For
instance, under scenario 3, the maximum absolute value of the pointwise average bias when η = 0.40 is
about 0.01, which corresponds to 0.3% of the dose range, which is practically negligible.

Figure 5 shows the pointwise percent of MTD recommendation of the 3 proposed scenarios for each
value of η. In general, increasing the value of η increases the pointwise percent of MTD recommendation,
reaching up to 80% of correct recommendation when p = 0.2, and up to 70% of correct recommendation
when p = 0.1. Based on these simulation results, we conclude that in continuous dose setting the approach
of partial toxicity attribution generates safe trial designs and efficient estimation of the MTD.

4 Discrete Dose Combinations

4.1 Approach

Dose escalation follows the same procedure described in section 2.2. The only difference is that, in step 2,
the continuous doses recommended are rounded to the nearest discrete dose level. For a detailed explana-
tion of this procedure see Tighiouart et al. (2017).

4.2 Illustration

We study the performance of our proposal in a discrete dose level setting where the probability of toxicity
of each dose level is generated from the working model. We employ 6 scenarios with 4 dose levels respec-
tively in each drug for scenarios 1 - 3, and 4 and 6 dose levels respectively in each drug for scenarios 4
- 6. The target probability of toxicity is always θ = 0.3 and, for each scenario, we simulate m = 1000
trials using the same vague priors for α, β and γ specified in section 3.1. The maximum sample size in all
scenarios is again n = 40. The performance of the method is evaluated using the percent of MTD selection
statistic proposed by Tighiouart et al. (2017).

In Table 3 we present the 6 mentioned scenarios we use to illustrate the implementation of our design
with discrete dose levels. Moreover, in Figure 6 we show the dose-toxicity surface of these 6 scenarios,
where we observe that all of them have a flat (near-constant) surface.

In Table 4 we show the percent of times that at least 25%, 50%, 75% or 100% of recommended MTDs
belong to the true MTD set. Using vague prior distributions, the scenario where toxicity attribution has the
strongest effect is scenario 2. In scenarios 1,4 and 5, we observe a slight effect but it does not make a big
difference.

5 Model Misspecification

In the previous sections, all the simulated scenarios are generated with the model showed in (9). However,
in practice we do not know the underlying model that generates the data and therefore we need to assess
the performance of our design under model misspecification. We employ the same toxicity scenarios used
by Yin and Yuan (2009a), which are shown in Table 5. Moreover, In Figure 7 we show the dose-toxicity
surface of these scenarios. Scenario 1 presents a very constant surface gradient. The rest of the scenarios
present surface gradients that vary as we increase the dose combination levels. However, scenarios 3, 4
and 6 vary more abruptly than scenarios 2 and 5. Scenario 6 is a particular case because the lowest dose
combination level has a probability of DLT that is already higher than the target risk of toxicity θ + 0.1.
Therefore, for this scenario, instead of presenting the percent of correct recommendation we present the
percent of times the trial is stopped due to safety using the stopping rule in Section 2.2 with ξ1 = 0.05 and
ξ2 = 0.8. For each scenario, we simulate m = 1000 trials with a target risk of toxicity of θ = 0.30, a
sample size of n = 40 and we use the same prior distributions for α, β and γ as in section 3.1.
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8 Jimenez et al.: Partial toxicity attributions in drug combination trials

In terms of safety, in general we observe that toxicity attributions reduce the average percent of toxicities
and percent of trials with toxicity rates greater than θ+0.05 and θ+0.10. Table 6 shows the average percent
of toxicities as well as the percent of trials with toxicity rates greater than θ + 0.05 and θ + 0.1.

In Table 7, we show the percent of times that at least 25%, 50%, 75% or 100% of recommended
MTDs belong to the true MTD set. In scenario 1 we observe a positive effect of the toxicity attributions,
improving the percent of times at least 75% and 100% of recommended MTDs belong to the true MTD set
in to 5% when η = 0.25. In scenario 2 we observe a positive effect of the toxicity attributions improving
the percent of times at least 25% and 50% of recommended MTDs belong to the true MTD up to 5% and
4% respectively. In scenarios 3, 4 and 5 we do not observe any positive effect when attributing toxicities.
However, these scenarios are particularly difficult for our design given the rounding up procedure we follow
with discrete dose combinations. In scenario 6 we observe a positive effect of the toxicity attributions,
improving the percent of times the trial is stopped due to safety by almost 4% when η = 0.40. Based
on these simulation results under model misspecification, we conclude that the partial toxicity attribution
method has good operating characteristics in recommending dose combinations of which, at least 50% are
the true MTDs; these percent of correct recommendations vary between 65% to 98% depending on the
scenario. Moreover, there is a high probability of stopping the trial if there is evidence that the minimum
dose combination in the trial has high probability of DLT.

However some of the scenarios showed in Table 5 have a set of true MTDs that include a large number
of dose combinations. For this reason, we implemented our design in 6 extra scenarios taken from Yin
and Yuan (2009a,b), and presented in Table S1 at the supplementary material, where a set of true MTDs
contains a much more restricted number of dose combinations. Also, since the scenarios presented in Table
5 where generated with a logistic model, we selected the scenarios to observe how robust is our proposal
in scenarios generated with other models, such us the Clayton Copula, and scenarios that were arbitrarily
generated. Moreover, since we are using the same set of true MTDs as Yin and Yuan (2009a,b), we make
a performance comparison in terms of percent of correct MTD selection, with the methodology proposed
by Yin and Yuan (2009a,b).

In Tables S2 and S3, in the supplementary material, we present operating characteristics in term of
safety and efficiency for each of the 6 scenarios. In general, we observe that the design behaves in a
similar way as with the scenarios presented along this manuscript. In terms of safety, toxicity attributions
reduce the average percent of toxicities and the percent of trials with toxicity rates greater than θ + 0.05
and θ + 0.10. In terms of efficiency, we only observe a positive effect in scenarios with a relatively flat
dose-toxicity surface. In terms of performance comparison, our proposed method is competitive with other
standard designs for drug combinations such us Yin and Yuan (2009a,b), and achieves better percent of
correct MTD recommendation in 4 out of the 6 employed scenarios.

Another issue that is relevant to the methodology we present in this manuscript is the errors in the
attribution of toxicities by the treating investigators. Our design does not include a parameter to control
the uncertainty around the decision made by the investigator when attributing the the DLT, which could be
an extension of this work. However, in the supplementary material, to assess the impact of these kind of
errors, we have simulated 3 scenarios taken also from Yin and Yuan (2009a,b) where we introduce 10%
and 50% of errors in the attribution of DLTs, and compare it to the case where we correctly attributes
100% of the DLTs. In Tables S4 and S5, we present the simulated results in terms of safety and efficiency.
Overall we do not observe any major difference when incorrectly attributing 10% and 50% of the DLTs
with respect to correctly attributing 100% of the DLTs.

6 Conclusions

In this paper we proposed a Bayesian adaptive design for cancer phase I clinical trials using drug combi-
nations with continuous dose levels and attributable DLT in a fraction of patients.. A copula-type model
was used to describe the relationship between dose combinations and probability of DLT. The trial design
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proceeds by treating cohorts of two patients, each patient with a different dose combination estimated using
univariate CRM for a better exploration of the space of doses. Treating cohorts of two patients will allow
trial conduct to be completed in a reasonable amount of time. Although the two patients in a cohort are
allocated to different dose combinations, a patient in the current cohort can be treated at a dose (x, y) if
and only if a patient in the previous cohort was treated at a dose on the same horizontal or vertical line
within our dose range, that is was treated with either dose x or dose y. The use of continuous dose levels is
not uncommon in early phase trials, particularly when the drugs are given as infusions intravenously. For
instance, we recently designed a drug combination trial of cabazitaxel and cisplatin delivered intravenously
in advanced prostate cancer patients where the dose levels are continuous and the protocol was approved by
the scientific review at Cedars-Sinai. For ethical reasons, we further imposed dose escalation restrictions
for one of the drugs when a DLT is attributable to that drug.

We studied the operating characteristics of the design under various scenarios for the true location of
the MTD curve. In general, we observed that the trial is safe and as the proportion of attributed toxic-
ities increases, the average proportion of toxicities decreases when we attribute toxicities. To assess the
efficiency when estimating the MTD curve, we employed the pointwise average bias and average percent
selection. In general the method is efficient although the results varied depending on the proportion of
attributed toxicities. Note that the operating characteristics were evaluated under vague prior distributions
of the model parameters and no toxicity profiles of single agent trials were used a priori. We also showed
how the method can be adapted to the setting of discrete dose combinations.

We also performed a model misspecification evaluation in scenarios with different dose-toxicity sur-
faces. We only observed a positive effect in terms of percent of correct MTD recommendation in scenarios
with flat surfaces. In scenarios with non-flat dose-toxicity surfaces we observed a decline in performance
of percent selection consistent with the findings by Riviere et al. (2014) when working with copula regres-
sion models. We also observed a positive effect in scenarios where the lowest dose combination has an
excessively high probability of DLT. In this case, toxicity attributions improves the percent of times the trial
was stopped due to safety. In all cases, safety of the trial is not compromised by accounting for a partial
toxicity attribution. Clearly, there is a trade-off when increasing the fraction of DLT attribution to one or
more drugs. The design is more conservative in future escalations, lowering the in-trial DLT percentages
and reducing how quickly the MTD contour is reached, by favoring experimentation over recommendation.

Our design is practically useful when the two drugs do not have many overlapping toxicities, see e.g.
Miles et al. (2002) for some examples of drug combination trials with these characteristics. In cases where
we expect a high percent of overlapping DLTs, designs that do not distinguish between drug attribution
listed in the introduction may be more appropriate. Our method relies on clinical judgment regarding DLT
attribution. In many phase I trials, such decisions are subject to error classifications and a possible exten-
sion is to introduce a parameter to account for errors in toxicity attribution as in Iasonos and O’Quigley
(2016) for single agent trials. We also plan to study the performance of this design using other link func-
tions under different copula models, and extend this method to early phase cancer trials with late onset
toxicity and by accounting for patient’s baseline characteristic by extending the approaches in Tighiouart
et al. (2014, 2012) to the drug combination setting.
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Table 1 Contributions to the likelihood function based on the observed outcomes: toxicity, attribution,
attribution to drug 1 (δ1) and attribution to drug 2 (δ2) for each patient.

Toxicity Attribution δ1 δ2 Likelihood

0 - - - 1− π = 1−
[
xα + yβ − xα × yβ− xα (1− xα) yβ

(
1− yβ

)
e−γ−1
e−γ+1

]
1 0 - - π × (1− η) =

[
xα + yβ − xα × yβ− xα (1− xα) yβ

(
1− yβ

)
e−γ−1
e−γ+1

]
× (1− η)

1 1 1 0 π × η × π(1,0)

π = η ×
[
xα(1− yβ)− xα (1− xα) yβ

(
1− yβ

)
e−γ−1
e−γ+1

]
1 1 0 1 π × η × π(0,1)

π = η ×
[
yβ(1− xα)− xα (1− xα) yβ

(
1− yβ

)
e−γ−1
e−γ+1

]
1 1 1 1 π × η × π(1,1)

π = η ×
[
xα × yβ+ xα (1− xα) yβ

(
1− yβ

)
e−γ−1
e−γ+1

]

Table 2 Operating characteristics summarizing trial safety in m = 1000 simulated trials.

Average
% of toxicities

% of trials with
toxicity rate > θ + 0.05

% of trials with
toxicity rate > θ + 0.10

Scenario 1

η = 0.00 33.62 25.90 4.10
η = 0.10 32.67 22.60 4.80
η = 0.25 31.55 17.60 2.70
η = 0.40 30.70 13.30 2.00

Scenario 2

η = 0.00 30.64 9.40 0.90
η = 0.10 29.69 7.30 0.40
η = 0.25 28.76 5.00 0.20
η = 0.40 28.04 4.10 0.30

Scenario 3

η = 0.00 27.47 2.00 0.00
η = 0.10 26.80 1.80 0.00
η = 0.25 25.99 1.30 0.00
η = 0.40 25.37 0.70 0.00
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Table 3 Dose limiting toxicity scenarios with θ = 0.3 generated with the working model. In bold the
dose combination levels that would compose the true MTD set.

Dose level 1 2 3 4 1 2 3 4 5 6

Scenario 1 Scenario 4
4 0.39 0.46 0.52 0.58 0.39 0.43 0.47 0.51 0.55 0.58
3 0.31 0.38 0.46 0.52 0.30 0.35 0.40 0.44 0.48 0.52
2 0.22 0.31 0.38 0.46 0.22 0.27 0.32 0.37 0.41 0.46
1 0.13 0.22 0.31 0.39 0.13 0.19 0.24 0.29 0.34 0.39

Scenario 2 Scenario 5
4 0.30 0.36 0.42 0.48 0.30 0.33 0.37 0.40 0.44 0.48
3 0.22 0.28 0.35 0.42 0.22 0.26 0.29 0.33 0.38 0.42
2 0.14 0.21 0.28 0.36 0.14 0.18 0.22 0.27 0.31 0.35
1 0.07 0.14 0.22 0.30 0.07 0.11 0.16 0.20 0.25 0.30

Scenario 3 Scenario 6
4 0.23 0.27 0.33 0.39 0.23 0.25 0.28 0.32 0.35 0.39
3 0.16 0.21 0.26 0.33 0.16 0.18 0.22 0.25 0.29 0.33
2 0.09 0.14 0.21 0.27 0.09 0.12 0.16 0.19 0.23 0.27
1 0.04 0.09 0.16 0.23 0.04 0.07 0.11 0.14 0.19 0.23

Table 4 Percent of times that at least 25%, 50%, 75% or 100% of recommended MTDs belong to the
true MTD set in m = 1000 simulated trials.

% of correct MTD recommendation for θ ± 0.10

≥ 25% ≥ 50% ≥ 75% 100% ≥ 25% ≥ 50% ≥ 75% 100%

η = 0.00

Scenario 1

91.40 87.30 83.70 83.70

Scenario 4

90.00 85.50 73.70 67.70
η = 0.10 92.50 87.80 83.90 83.90 91.30 86.00 71.10 65.80
η = 0.25 90.90 87.70 83.80 83.80 89.40 85.90 71.50 68.20
η = 0.40 90.90 87.70 83.80 83.80 89.80 85.70 70.50 67.30

η = 0.00

Scenario 2

78.10 78.10 73.60 73.60

Scenario 5

82.90 81.50 72.70 72.70
η = 0.10 79.80 79.80 73.90 73.90 82.80 81.40 71.70 71.70
η = 0.25 83.00 83.00 75.50 75.50 85.00 81.80 71.00 71.00
η = 0.40 83.50 83.50 76.20 76.20 85.70 82.50 70.60 70.60

η = 0.00

Scenario 3

99.10 99.00 97.00 97.00

Scenario 6

98.80 96.50 93.10 92.70
η = 0.10 99.30 98.60 95.10 95.10 98.60 95.70 89.90 89.60
η = 0.25 97.10 96.40 91.90 91.90 96.20 92.10 87.00 86.20
η = 0.40 95.90 95.10 89.50 89.50 94.00 89.50 81.90 81.00
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Table 5 Toxicity scenarios for the model misspecification evaluation. In bold the doses considered as
true MTD set.

Dose level 1 2 3 4 1 2 3 4

Scenario 1 Scenario 4
4 0.28 0.41 0.55 0.68 0.04 0.09 0.17 0.32
3 0.25 0.35 0.48 0.60 0.03 0.06 0.12 0.23
2 0.22 0.30 0.40 0.51 0.02 0.05 0.09 0.16
1 0.19 0.26 0.34 0.43 0.02 0.03 0.06 0.11

Scenario 2 Scenario 5
4 0.17 0.29 0.45 0.62 0.12 0.26 0.48 0.71
3 0.14 0.23 0.35 0.50 0.09 0.19 0.36 0.57
2 0.12 0.18 0.27 0.38 0.07 0.14 0.26 0.43
1 0.09 0.14 0.19 0.27 0.05 0.10 0.18 0.30

Scenario 3 Scenario 6
4 0.37 0.72 0.92 0.98 0.78 0.94 0.99 1.00
3 0.26 0.59 0.85 0.96 0.68 0.90 0.97 0.99
2 0.18 0.44 0.74 0.91 0.57 0.83 0.94 0.98
1 0.12 0.30 0.59 0.82 0.45 0.73 0.90 0.97

Table 6 Operating characteristics summarizing trial safety for model misspecification in m = 1000
simulated trials.

Average
% of toxicities

% of trials with
toxicity rate > θ + 0.05

% of trials with
toxicity rate > θ + 0.10

Scenario 1

η = 0.00 32.99 22.90 4.20
η = 0.10 32.19 18.50 2.90
η = 0.25 31.43 15.80 2.60
η = 0.40 30.58 12.90 2.50

Scenario 2

η = 0.00 29.85 6.60 0.20
η = 0.10 29.14 4.10 0.10
η = 0.25 28.20 3.10 0.30
η = 0.40 27.90 2.30 0.00

Scenario 3

η = 0.00 36.53 40.70 16.40
η = 0.10 35.13 33.90 12.50
η = 0.25 33.94 28.60 11.00
η = 0.40 32.94 23.40 9.50

Scenario 4

η = 0.00 22.43 0.00 0.00
η = 0.10 21.83 0.00 0.00
η = 0.25 21.39 0.00 0.00
η = 0.40 20.87 0.00 0.00

Scenario 5

η = 0.00 30.43 6.60 0.30
η = 0.10 29.48 3.30 0.10
η = 0.25 28.60 3.60 0.00
η = 0.40 27.60 2.30 0.00
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Table 7 Percent of times that at least 25%, 50%, 75% or 100% of recommended MTDs belong to the true
MTD set in m = 1000 simulated trials under model misspecification. In scenario 6 we show the percent
of times the trial is stopped due to safety reasons.

% of correct MTD recommendation for θ ± 0.10

≥ 25% ≥ 50% ≥ 75% 100% ≥ 25% ≥ 50% ≥ 75% 100%

η = 0.00

Scenario 1

82.90 75.60 55.40 55.40

Scenario 4

98.80 98.80 87.80 87.80
η = 0.10 82.70 72.70 57.30 57.30 97.20 97.20 85.70 85.70
η = 0.25 83.30 75.80 60.40 60.40 95.70 95.70 82.00 82.00
η = 0.40 80.60 73.10 57.60 57.60 95.20 95.20 76.20 76.20

η = 0.00

Scenario 2

74.70 71.00 58.20 45.70

Scenario 5

75.40 69.10 20.50 20.50
η = 0.10 77.00 73.50 53.60 44.60 71.80 62.80 20.40 20.40
η = 0.25 79.60 75.00 50.00 41.20 70.70 59.40 18.90 18.90
η = 0.40 77.30 73.10 47.90 37.80 71.20 60.50 16.70 16.70

η = 0.00

Scenario 3

76.90 65.30 23.30 23.30

Scenario 6

83.60
η = 0.10 72.50 61.80 21.90 21.90 82.90
η = 0.25 66.40 57.30 18.60 18.60 84.80
η = 0.40 66.10 54.70 15.70 15.70 87.20
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