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Abstract

This work is a journey into the dynamic tailoring of beam-like structures which aims
to exploit unconventional couplings and nonlinearities to enlarge the design space
and improving the performances of engineering systems. Particularly, two examples
pertaining dynamic tailoring of aerospace and mechanical systems are investigated
in depth.

In the first case, the work aims to attain a desired structural performance exploit-
ing typical nonlinear structural phenomena and unconventional couplings offered
by the unitized structures. As for the unitized structures, the present work, derives
two equivalent plate models of curvilinear stiffened panels namely, constant (or
homogenized) stiffness model and variable stiffness model. The models are assessed
through finite element analysis. In the spirit of CAS (Circumferentially Asymmetric
Stiffness), the equivalent plate stiffness’s are used to determine the cross- sectional
beam stiffness’s. The governing equations for the Euler-Bernoulli, anisotropic beam
with variable stiffness are derived and then used to address the optimization problem.
The objective of the optimization is to attain a desired static or dynamic performance
of the unitized beam exploiting the enlarged design space which arises from the
stiffness variability and the unconventional couplings.

In the second type of system analyzed, the aim is synthesize meaningful topolo-
gies for planar resonators. The topology optimization is addressed using as initial
guess a ground structure. Motivated by the results of the optimization, a generalized
reduced order model is derived for multi-members beam structures. The generalized
model have been then specialized for three cases namely, V- Y- and Z-shaped res-
onators. The analytical solution for the V-shaped resonator is also derived along with
the electro-mechanical equations of motion. Different solutions are studied aiming
at investigating the effect of the folding angle on to the performances of a V-shaped
harvester.
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Beside the study of the static and dynamic behavior of the systems, the thesis
presents two novel optimization algorithms namely, the StudP GA and the GERM.
The StudP GA, is a population based algorithm conceived to enhance the exploration
capabilities, and hence the convergence rate, of classical GA. The StudP GA has been
preliminary assessed through benchmark problems for composite layered structure
and then used for the optimization of the stiffeners’ path aiming at attaining a
desired static or dynamic performances. The GERM (Graph-based Element Removal
Method), is a double filtering technique conceived for the topology synthesis of
planar ground structures. The GERM has been used, in combination with a standard
GA, to address the topology optimization problem of the two types of system namely,
planar resonator and compliant structures.

The work introduces also the concept of trace-based scaling for predicting the
behavior of anisotropic structures. The effectiveness of the trace-based scaling
is assessed through comparison between scaled and analytical performances of
anisotropic structures.



Sommario

Questo lavoro si pone l’obiettivo di sfruttare accoppiamenti non convenzionali e
non linearità per ampliare lo spazio di progettazione e migliorare le prestazioni di
elementi strutturali ad elevato allungamento di tipo trave. In particolare, due esempi
riguardanti l’ottimizzazione dinamica di sistemi aerospaziali e meccanici sono presi
in considerazione.

Nel primo caso, il lavoro si propone di posticipare il verificarsi di instabilità sfrut-
tando i tipici fenomeni strutturali non lineari e gli accoppiamenti non convenzionali
offerti dalle strutture integrali. In primo luogo vengono derivati due modelli di
piastra equivalente di pannelli irrigiditi con irrigidimenti curvi. I modelli equivalenti
vengono quindi utilizzati per determinare le rigidezze di elementi trave composti da
pannelli irrgidiiti.

Nel secondo tipo di sistema analizzato nel presente studio, l’obiettivo è invece
quello di sfruttare gli accoppiamenti strutturali per migliorare il comportamento di
risonatori planari. A tal fine, la tesi affronta prima l’ottimizzazione della topologia
dei risonatori planari utilizzando il metodo ”Ground Structure”. Motivati dai risultati
dell’ottimizzazione, viene derivato un modello di ordine ridotto generalizzato per
strutture planari a più membri. Il modello generalizzato è stato quindi specilizzato
per tre casi, cioè risonatori a forma di V, Y e Z rispettivamente. Per il risonatore
a forma di V venogno derivate anche le equazioni esatte del moto e il modello
elettro-meccanico.

I due progetti utilizzano lo stesso modello fondamentale di trave. In enetrambi i
casi il problema di ottimizzazione è riscritto sotto forma di ottimizzazione combina-
toria vincolata.

Per i due tipi di sistemi presentati, le soluzioni semi-analitiche derivate sono
confrontate con analisi ad elementi finiti.



viii

Oltre allo studio del comportamento dinamico strutturale, la tesi presenta due
nuovi algoritmi di ottimizzazione, ovvero lo Stud P GA e GERM. Lo Stud P GA
viene in primo luogo testato su problemi di benchmark e successivamente utilizzato
per l’ottimizzazione della topologia degli irrigidimenti al fine di ottenere una data
prestazione strutturale, statica o dinamica. Il GERM (metodo di rimozione degli
elementi basato su grafi), è una tecnica di filtraggio concepita per la sintesi topologica
delle Ground Structure.
Il lavoro introduce il concetto di ”scalatura” al fine di predire l’effetto dell’impeigo
di differenti materiali anisotropici sul comportamento strutturale. L’effeicacia della
procedura di ”scalatura” viene mostrata attraverso diversi esempi concernenti strut-
ture anisotrope.
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Chapter 1

Structural Tailoring

1.1 Introduction and Significance

The last few decades have seen the exploitation of nonlinear dynamic phenomena
utilized to improve the performance of engineering systems. This new design
paradigm is known as Nonlinear Dynamics for Design. The introduction of this
paradigm is ascribed to Prof. Ali H. Nayfeh [1]. It has provided: a) the fundamental
understanding of various nonlinear phenomena, for example to provide insights into
the physics of how small insects get aloft [2, 3] and b) innovative design solutions
such has the antenna of the Hubble telescope [4]. Moreover, nonlinearities were
proved to be effective in: a) enhancing the performances of energy harvesters [5–
9], b) exhibiting conformal shape adaptation (or morphing) capabilities [10–13],
c) developing feedback controllers for aeroelastic systems [14–17] and so forth.
Despite the achievements obtained so far, there is still a need to develop a systematic
approach to optimize engineering systems and obtain full advantage of nonlinear
behavior.

Automated design optimization is rapidly being adopted by engineers in nearly
all major industries. This adoption is made possible by advances in high-performance
computing, material characterization methods and enabling technologies, such as
additive manufacturing, have led towards multi-scale and/or multi-field modeling,
and simulation-based design of materials and systems in the aerospace industry [18].
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To date, Integrated Computational Materials Engineering1 (ICME) has been the
catalyst for multi-scale design, decreasing the gap between the materials development
cycle and product development cycle [19, 20]. Despite significant progress in the
development of aerospace components and systems have been achieved, that progress
has been limited by persistent technology and infrastructure challenges.

In a technical recent report [18], NASA envisages the use of computational
materials tools and techniques, combined with structural engineering tools, to be the
enabling factor for cost-effective, rapid, and revolutionary design of fit-for purpose
materials, components and systems. The NASA’s Vision 2014 emphasizes the
role of optimization to achieve such goals. Particularly, the report underlined the
importance of properly formulating the optimization problem such that the solutions
are manufacturable designs2. The need for advanced design and optimization tools
and methods, as well as the developing of advanced materials and manufacturing
technologies, is also underlined in the Fixed Wing project of NASA’s Fundamental
Aeronautics program. The new design paradigm exemplified in the Subsonic Fixed
Wing project of NASA’s Fundamental Aeronautics program aims to: a) develop
revolutionary tools and methods enabling practical design, analysis and optimization,
and (b) explore concepts and technologies to reduce the environmental impact of next
generation transport aircraft. Particularly, gains in fuel efficiency can be achieved
by means of structural weight reduction and higher aspect ratio. However, the
resulting slender, lighter and highly flexible structures are prone to exhibit aeroelastic
instabilities. In order to postpone the occurrence of such instabilities, aeroelastic
tailoring plays a crucial role due to the extensive use of anisotropic structures. The
importance of having a set spacing between the bending and torsional frequencies is
clear if one considers that the onset of flutter instability is given by the coalescence
of coupled bending and torsional mode [21]. This phenomenon can be anticipated
due to the large deformations that High Aspect Ratio (HAR) wing undergoes during
normal flight operations [22, 23].

The importance of the development of optimization methods for smart structures
is discussed by Frecker [24], and emphasized in a review paper by Zhu and co-
workers [25], where the challenges of conventional design and optimization methods

1Integrated Computational Materials Engineering (ICME) is an approach to design products, the
materials that comprise them, and their associated materials processing methods by linking materials
models at multiple length scales (Source: Wikipedia).

2It is worth noting that the plural form is intentionally used to recognize that engineering design
problems are likely to have multiple solutions, thereby permitting a range of design options.
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for Micro Electro-Mechanical Systems (MEMS) are pointed out. A particular
emphasis is posed onto the design of resonators. Resonators in fact, have a broad
range of applications, including Atomic Force Microscopy (AFM), signal filtering,
mass sensing, biological sensing, motion sensing, and other diverse applications. In
[26], Tripathi and Bajaj they wrote “Identifying or designing structures that will lead
to 1:2 internal resonance between the different modes of vibration is not a trivial task.
Most of the examples of such physical systems in the literature are based on prior
experiences of the investigators.”. To date, despite the huge effort undertaken there
is not a systematic method to design resonators, as will be discussed in a dedicate
section in the following.

In broad terms, the design of engineering systems is an optimization problem
in nature. Looking at the work-flow during structural design, engineers modify
the design variables such as material properties, node locations, cross-sectional
geometries and topology to achieve a desired performance while respecting a set of
given constraints. Thereby the entire structural design process may be seen as the
problem of seeking for the set of design variables xi which minimize/maximize a
certain merit function f (⃗x) under given set of inequality and equality constraints,
g j (⃗x) and hk(⃗x) respectively. Mathematically, the definition given above, can be
written as in Gerhard [27], that is

minimize
x⃗∈Rn

f (⃗x)

subject to g j (⃗x)≤ b j, j = 1, . . . ,m

hk(⃗x) = ck, k = 1, . . . , p

xiL ≤ xi ≤ xiU i = 1, . . . ,n

being xiL and xiU the side constraints, i.e. the upper and lower bounds of any of the
i− th design variables.

During the last decades several numerical methods have been proposed to han-
dle optimization problems; those methods, according to Gandom et al. [28], can
be classified as either deterministic or probabilistic. Mathematical programming
methods are mostly gradient-based algorithms and are deterministic. Conversely,
meta-heuristics and heuristics are mainly bio-inspired algorithms which have been
developed on the basis of observed evolutionary behaviors; these methods belong to
the class of probabilistic methods. Despite their slow convergence rate when com-
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pared against the deterministic counterpart, heuristics offer the advantage of being
more robust in terms of converge to the global solutions when multiple objectives
have to be handled at once.

The distinctive features of heuristics are intensification/exploitation and diversifi-
cation/exploration. Exploration ensure that the algorithm searches within the entire
domain while exploitation is mostly related to the search of best candidates within
a particular area. A fine balance of the two features significantly influences the
performance of the optimization algorithm [29]. As a result of the above mentioned
distinctive features and capabilities, and by virtue of the concurrently advancing
in high performance computing, heuristics methods have been widely adopted to
handle engineering problems. Countless algorithm have been proposed to handle
optimization problems however, as discussed by Wolpert and Macready, there is not
an optimum optimization algorithm [30]. The choice of the most suitable algorithm
for a given problem is not trivial and usually leads to "the chicken and egg" dilemma.
Indeed, the latter choice depends upon the characteristics of the design space that
has been defined. Paradoxically, the characteristics of the design space are typically
not known until the design space has been explored, which is the primary role of
the search method. In view that some algorithms may perform better on a given
class of problem, researchers, if not proposing novel optimization algorithm, rely on
previous experiences and/or works to select a proper optimization technique.

This work is aimed at using optimization techniques to efficiently navigate the
design space for structural systems. Particularly, the two design problems considered
are the optimization of high aspect ratio anisotropic wings and the synthesis of
resonators for scavenging purposes. Despite the main goal of the present work
remains the design and optimization of engineering structures, the work provides
insights also onto the algorithmic aspects.

1.2 Structural Tailoring: a short overview

According to the definition given by Shrik et al. [31],

“structural tailoring is the embodiment of directional stiffness into a
structural design to control static or dynamic deformation in such a
fashion as to affect structural performance in a beneficial way”
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The first documented work related with aeroelastic tailoring is due to Munk [32],
who optimized the orientation of the grains of a wooden propeller to achieve the best
deformation couplings. Two pioneering projects related with the aeroelastic tailoring,
which is worth mentioning, are the forward swept wings of the X-29 and the Active
Aeroelastic Wing [33]. A comprehensive review of the aeroelastic tailoring for
transport aircraft wings is given by Jutte and Stanford [34].

According to the definition given in [34], structural tailoring can be classified
as: global (or uniform) tailoring and local tailoring. Global tailoring techniques
seek at modifying the wing’s primary stiffness direction, for example the wing’s
bending and torsional stiffness, as well as the degree of coupling between the two,
to achieve a desirable performance. The primary stiffness direction is defined by
Weisshaar as “the locus of points where the structure exhibits the most resistance
to bending deformation” [35]. When global tailoring approach is used, structural
properties such as bending and torsional stiffness are the design variables. For global
tailoring, simplified structural models, such as beam-like and plate-like structures are
generally adopted. Gasbarri et al. [36] pointed out that the approach is shortsighted
in that, bending and torsional stiffnesses are treated as independent quantities and, as
a consequence, there is no guarantees that a manufacturable design can be identified.
However, the idealized models are particularly useful during preliminary design
stages to help navigate the search space aiming at identify areas of feasible designs.
While overlooked in most research effort, the idealized models have a prominent
effect on the final aircraft; outcomes they provide may influence considerably the
entire life-cycle costs [37].

On the other hand, local tailoring is applied when separate sections of the wing
becomes design areas. This is a common choice for composite wings, where plies’
orientations and/or the stacking sequence of each of the panel composing the wing
are optimized separately to achieve desired cross sectional properties. However,
the use of local variables, generally requires a large number of design’s parameters
which, in turn, render the optimization problem computationally expensive.

While it is true that high-fidelity models for aeroelastic tailoring have been
developed, as mentioned in [34], the survey presented in the next section is mostly
focused on to beam models. However, some interesting works are covered to motivate
the lack of analytical/theoretical low fidelity models capable of representing the state
of art of aerospace technologies.
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1.2.1 Idealized beam models

Librescu and his co-workers were among the first to use a box-beam model, made
of composite laminates, to model a wing [38, 39]. The focus of their work was on
seeking potential advantages of using the bending-torsion coupling to postpone static
aeroelastic instabilities. Weisshar and co-workers [35] investigated the effect of the
aeroelastic tailoring on a wing modeled as a beam. On the basis of their analysis
they concluded that, for Unmanned Air Vehicle UAV, aeroelastic tailoring may not
yields a drastic weight reduction compared against the untailored structure but can
offer improved aeroelastic performances with nearly the same weight.

Chattopadhyay et al. [40] performed a parametric analysis of box beams with
thick walls employing higher-order laminate theory to model each wall of the box
beam and concluded that : a) the flutter speed is affected by transverse shear deforma-
tions, b) the existence of various coupling modes, for different ply angles, strongly
influence the wing aeroelastic behavior.

Cesnik et al. [41] performed an aeroelastic stability analysis for high-aspect ratio
composite wings. The structural model they adopted is based on an asymptotically
correct cross sectional formulation and a nonlinear geometric exact beam analysis.
The work emphasize the importance of using the right stiffness formulation in order
to model material couplings, the variations of divergence and flutter speeds with the
changes in the lamination angle of a box-beam model of a wing cross section, and
some of the effects of a nonlinear structural model on the aeroelastic stability of a
slender wing.

Patil [42] analyzed a swept composite box beam, using a linear structural model
and Theodorsen’s theory to get unsteady aerodynamic forces. The wing was modeled
as a thin-walled composite box beam of rectangular cross section. Patil has showed
that the possibility of using material couplings in the structural tailoring process
opens new frontiers to the design of a composite wing. Static and dynamic aeroelastic
stability can be altered by those couplings.

Patil and co-workers [43] developed an aeroelastic analysis tool capable to model
the complete aircraft as a set of beams. They used a geometrically exact mixed
formulation for the structural dynamics analysis coupled to a finite-state air loads
model. The results they obtained indicate the necessity of including higher-order
nonlinear effects for accurate aeroelastic analysis.Patil [44] wrote:“by efficiently
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designing the structural cross section one could provide some level of structural
coupling which lead to shift of the nonlinear flutter speed/frequency”.

Gasbarri et al. [36] used a plate-like structure to address the integrated aero-
dynamic, dynamic and structural optimization problem for a composite wing-box
design. They employed a hybrid multilevel decomposition procedure, which com-
prises an aeroelastic optimization of a composite wing based on the Sequential
Quadratic Programming (SQP) and, a composite optimization using Genetic Algo-
rithm (GA).

Koohi et al.[45] developed a 1D structural dynamics model for aeroelastic analy-
sis of a composite wing under large deformations. The structural model was coupled
with a semi-experimental unsteady aerodynamic (ONERA dynamic stall) model.
They adopted a Finite Element formulation to discretize the aeroelastic equations.
The cross-sectional properties of the wing were determined through the Variational
Asymptotical Beam Sectional Analysis (VABS). The perturbed dynamic equations,
about the nonlinear static equilibrium, were established to capture the flutter bound-
aries when the wing undergoes large deformations.

Wan et al. [46] presented an aeroelastic two-level optimization methodology for
preliminary design of wing structures. In the first-level optimization, the parameters
for structural layout and sizes were taken as design variables while aeroelastic
constraints were considered in the second-level optimization. They used a simplified
2D finite element model where spars and stringers were modeled as bars, while
skins and inter-space between upper and lower skins are treated as a multi-layer
composites structure.

Continued research into advanced materials and structures is enlarging the aeroe-
lasticity designs space. Exmanining at the most recent works in the field of aeroelastic
tailoring, clearly illustrates how new technologies such as Variable Angle Tow (or
Automated Fiber Placement) and 3D printing are paving the way to a myriad of
potential manner of designing fit for purpose materials and structures. An example
which is worth mention is given in Locatelli et al [47], where they used curved spar
and ribs to enhance the performance of a civil aircraft. A comprehensive overview
of the curvilinear placement fiber technology is given in Lozano [48]. A review of
the mathematical modeling of tow steering fiber is given in Ribeiro et al [49]. AFP
allows to place the fiber along a desired path giving rise to a laminate which has
variable stiffness. Allowing the layup of curvilinear fibers has different benefit from
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a structural perspective. Indeed it results in a better stress distribution and expands
the design space compared to the conventional stacking sequence [50–54].

A comprehensive and detailed work on the potential enabling technologies for
the aeroelastic tailoring is presented in Jutte et al [55]. They explored the use
of tow steered composite laminates, functionally graded metals (FGM), thickness
distributions, and curvilinear rib/spar/stringer topologies for aeroelastic tailoring. In
their analysis they used a parametrized model of the NASA’s Common Research
Model as a reference model. They performed their analysis employing a finite
element model. However, they pointed out that during the first stages, "...formal
optimization should be used to further locate the capabilities and trade-offs of
the tailoring schemes...". They also wrote ”...the tradeoffs between straight and
curvilinear members are significant enough that formal design optimization should
expose new topological insights...” and they concluded that ”The addition of spars
increases the flutter resistance of the wing with a corresponding weight penalty.
When spars are located toward the leading edge, the flutter point increases, such
that a wing design with spars (and 4 stringers) can have the same flutter resistance
as a wing design with 8 spars (and 0 stringers). This follows a well-known trend of
pushing the CG forward for better flutter resistance”.

Doyle et al [56], performed the optimization of the NASA ATW2 and ATW4
configuration aiming at postponing the onset of flutter instability. They obtained up
to 6% increment of the flutter speed by using curvilinear spar and ribs. Stanford
et al [57], performed a comparative study of curvilinear stiffeners and tow steered
composite for aeroelastic tailoring of transport aircraft. They wrote that ”High local
curvature is noted at the side-of-body and the aileron attachment locations, but
gradual stiffener curvature spanning multiple panels is noted as well”.

In view of the enlarged design space introduced by innovative technologies and
reviewing the state of art of idealized beam model, emerges the lack of analyti-
cal/theoretical 1D model which considers variable stiffness. The latter is envisaged
to be useful to identify promising design areas within the framework of earliest
design stages, as pointed out in Jutte et al [55].
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1.2.2 Material selection

Within the preliminary design stages, material and functional requirements have to
be considered with great care since, erroneous assumptions and/or improper material
choices can lead to unrealistic responses and ultimately waste of resources. In
order to select the material on the basis of the performances enhancement, Material
Selection Optimization (MSO) method have been proposed since the early ‘80s [58–
62]. In spite of the huge effort undertaken, Material Selection Optimization (MSO),
requires cumbersome and time-consuming computations. On the other hand, two
alternative approaches are possible namely, performances indices or scaling and self-
similarity methods [63, 64]. Performances indices are usually derived for a particular
applications and lack to be generalized in order to provide guidelines for material
selection [65–67]. To this end, within the preliminary design framework, scaling
and self-similarities methods seem to be the most promising methods to predict the
structural responses and perform a broadband investigation. These concepts have
been only partially exploited for aeroelastic applications [64, 68, 69].

Bisplinghoff et al [68] presented the classical approach to aeroelastic scaling,
based on the use of dimensional analysis and the fundamentals of the Buckingham’s
(π) theorem.

Bond et al [70] presented an aeroelastic scaling procedure that accounts for
geometric nonlinearity by scaling the eigenvalue associated with the buckling load.
They wrote ”The Goland wing model was used as a case study to demonstrate
that both the natural frequencies and mode shapes must be matched to properly
scale the aeroelastic response. A variant of the Goland wing joined with a strut
was developed as the case study for scaling geometric nonlinearity. Scaling its first
buckling eigenvalue together with the natural frequencies and mode shapes resulted
in accurate aeroelastically scaled response in the initial nonlinear range. The fully
nonlinear response of the scaled model decreased in accuracy as the critical load
predicted by the buckling eigenanalysis was approached.”

Wan and Cesnik [69] proposed a methodology for geometrically nonlinear aeroe-
lastic scaling of high aspect ratio aircraft. They extended the linear scaling factors
and similarity rules to address geometrically nonlinear aeroelastic scaling. They
noted the following: ”The analysis results indicate that the current existing aeroe-
lastic scaling law for linear structure is also suitable for geometrically nonlinear
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structure with large deformation. It was shown that the scaling factors for the
linear and nonlinear parts of the stiffness matrix follow the same similarity rule.
Moreover, it is imperative that the Froude number similarity be met. The Froude
number determines the ratio of the deflection under gravitational load to deflection
due to aerodynamic and inertial loads. Satisfying the Froude number similarity
guarantees that the large static wing deflection under initial trim condition is met,
and therefore the nonlinear stiffness properties between models is satisfied as well.
The stiffness has a direct impact into the static and dynamic aeroelastic response of
the system. Reynolds-number similarity is also important particularly when its value
is low enough for laminar/turbulence transition. In practice, however, matching
the Reynolds number criterion may present a challenge in view of the other scaling
factors.”

Cestino et al [64] applied the Buckingham’s theorem to design a small scale wing
model of an High Aspect Ratio wing. On the basis of the set of 12 nondimensional
parameters they identified, the built the small scale wing and conducted experimental
tests. They concluded that the scale model’s reduced flutter frequency match closely
the reduced frequency of the full scale model.

It is worth noting that for the works previously mentioned, the scaling was
used to resize the structure in order to build a model suitable for wind tunnel tests.
Contrary, in the framework of material selection, the scaling is limited to the elastic
properties of the anisotropic material while all the other geometric parameters remain
unchanged.

1.3 Design and optimization of electro-mechanical sys-
tem

Tailoring the dynamic response of a structure based on its shape or topology can
be a daunting task. However, this has been of particular interest to the design
of resonators for kinetic energy harvesters and MEMS based resonators. MEMS
design efforts is dated back to the late 1960s with the microscale resonant structure
developed by Nathanson et al [71] for filtering purpose. Efforts in this area are: 1)
ad hoc relying on structures with geometries that historically have been observed to
exhibit certain dynamic behavior [72, 73] , 2) rely on shape optimization routines
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that have restrictions on the geometry of the resonator [74–79], or 3) use techniques
from topology optimization where the optimal distribution of material is determined
computationally [80–84].

To the author’s knowledge, the first author showing that Multi Objective Genetic
Algorithm (MOGA) combined with the open source SUGAR, yields meandering
resonators was Zhou et al [74]. Kamalian et al [75] extended the work of Zhou. They
discussed about the limitations of symmetry constraints previously used in MEMS
design and on the role of human interaction in a computer-aided MEMS design. In
their multi-objective optimization, Kamalian et al. relaxed the geometric constraints
and noted that, the algorithm leads to unsymmetrical rather than meandering structure
with the same frequencies and smaller occupied area.

Mukherjee et al [85] focused on parametric optimization of a MEMS accelerom-
eter with predefined topology. They concluded that ”synthesis algorithms have been
successfully applied to automatic layout of surface-micromachined accelerometers”;
however, because the configuration they selected had a fixed topology, it did not
allow to identify radical and innovative designs. Agarwal et al [86] developed a
grammar language to synthesize resonator topology. They noted that MEMS designs
having small differences can have a substantially different behavior.

Kamalian and Agogino [87] proposed some modifications to the objectives and
constraint settings of the GA formulation to synthesize designs that match more
closely to the desired performance of MEMS when fabricated. Particularly, they
imposed angle limitations to the synthesis procedure to avoid intersection of the
beams composing the resonator.

In designing resonators that have 1:2 modal frequency ratio, the first approach
has a long history in the research community. A common geometric configuration
of resonators exhibiting this behavior are L-shaped structures. L -shaped resonators
have been of interest to the dynamics community for several decades [88–91]. This
structure can behave effectively as 2-DOF system with commensurate frequencies
[89]. If the resonator is excited so that the response is nonlinear, it exhibits rich
dynamic behavior by having: 1) strong modal interactions resulting in an energy
exchange between the modes when the system is excited, i.e., an internal resonance,
2) both saddle-node and Hopf bifurcations, and 3) saturation, i.e., the amplitude of
a mode being directly excited becomes independent of the level of excitation. In
designing vibration energy harvesters (VEHs) the L shaped structure’s internally
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resonant behavior has been exploited to improve the range of frequencies that energy
can be extracted, [8, 92]. Harne et. al [9] exploited the saturation phenomena present
in the L-shaped structure to enhanced the average power scavenged by the device.

Concurrently, VEHs have been designed with orthogonally oriented members
essentially a collection of L-shaped resonators. These designs either: 1) maximize
the power response [93], 2) in a fixed volume ensures a lower bending stiffness, an
increase in mass or both [94–96]. The latter makes the devices suitable for harvesting
energy at low frequencies.

Reviewing the research that uses techniques from structural optimization, several
studies are noteworthy. Tripathi and Bajaj [79] presented a computational synthesis
based on FEA to achieve natural frequencies of a structure in some desired ratio,
notably 1:2 and 1:3. These planar, orthogonally connected multi-member structures
are intended for MEMS applications. Deng et al. [97] used topology optimization
to maximize the frequency response in the design of vibration energy harvesting
electro-magnetic device. Furthermore Dou et. al. [84] presented a formulation based
on shaped optimization to tailor the nonlinear response of a resonator that considers
multiple modes in the response.

1.4 Objectives of the work

The primary objective of this work is to advantageously exploit dynamic phenomena
to enlarge the design envelope and to improve performances of engineering systems.
Two classes of problems are addressed, namely: optimization of unitized structures
and synthesis of planar resonators. The two problems are connected in that the
mathematical formulation fall within the same class of optimization problems, i.e.
topology optimization. Moreover, provided some simplifications adopted for the
planar resonator, the same beam model, i.e. Euler-Bernoulli beam, is adopted for the
two problem in hand.

Beside the aforementioned objective, and closely related to the design of unitized
structures, the work aim at derive an homogenization model of curvilinear stiffened
structures. The latter being useful to bring the complex topology optimization
problem, to a constrained combinatorial problem, where the design variables become
the orientations of the stiffeners at prescribed control points.
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Moreover, the work aims at exploiting the invariants’ objective property to
introduce a systematic method, as opposite to Material Selection Optimization, to
select a proper material for a targeted application. The methodology can be cast
within the scaling or self-similarity methods.

1.5 Layout of the thesis

The reminder of the thesis is organized as follow. Chapter 2 presents the derivation of
the equivalent engineering properties of curvilinear stiffened panels. The derivation
is two folds: the homogenized properties, i.e. panel-wise constant, and the variable
stiffness properties are derived. The derivation is extended to concentric panels with
one and two families of stiffeners. It is shown that the model presented is suitable
for both stiffened and sub-stiffened panels.

Motivated by the results of the equivalent model, in chapter 3, we derive the non-
linear equations of motion of an anisotropic, thin-walled box-beam. The equations
of motion are derived by means of the Hamiltonian principle. Nonlinearities up to
order two have been retained. Only geometric nonlinearities are considered. The
beam is made by an arrangement of stiffened/unstiffened panels. Once the equivalent
properties are derived as indicated in chapter 2, the Circumferentially Asymmetric
Stiffness (CAS) model is used to evaluate the section-wise properties of the beam.

Chapter 4 introduces the Invariant-based scaling of anisotropic structures. Several
examples pertaining scaling of composite structures are presented.

In chapter 5, we briefly introduce a novel optimization algorithm developed
within the framework of this thesis to handle constrained combinatorial problems.
Then we formulate and hence solve the optimization of the stiffeners topology in
order to attain a prescribed structural behavior.

Chapter 6 presents the optimization of a multi-member truss structure. The
objective of the optimization is the ratio between the bending frequencies; particularly
structures that exhibit commensurate frequencies are sought. The design problem is
formulated as topology optimization problem and solved using the Ground Structure
Method. To handle the design complexity the topology optimization problem is
formulated and hence solved by means of an in-house developed Genetic Algorithm
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coupled with a double filtering strategy, namely the Graph-based Element Removal
Method (GERM), originally developed in the framework of this work.

In view of the results obtained by the topology synthesis, in chapter 7 we derive
the equations of motion of a cantilever, multi-member structure. The equations of
motion are then parametrically solved in order to identify structures that exhibit
commensurable frequencies in a ratio one-to-two and one-to-three. The analytical
solution for the case of a two-members structure is also derived. Universal design
chart for the one-to-two resonator are presented.

In chapter 8, the electro-mechanical equations of motion are derived for the case
of a two members structure. The detailed analysis of the linear dynamic behavior of
the angle-shaped resonator is presented.

Chapter 9 summarizes the results obtained in this work and draws some conclud-
ing remarks.

1.6 Contribution of the thesis

The main contributions of the present work are summarized hereto:

• The formulation two equivalent plate models of unitized panel with straight
and curved stiffeners have been derived, respectively constant stiffness model
and variable stiffness model. The limit of validity of the homogenized model
have been identified. It is shown that the variable stiffness model is more
accurate than the constant stiffness model in predicting buckling loads and
frequencies of the stiffened structure.

• The development a second order nonlinear, flexural-flexural-torsional beam
model which includes span-wise stiffness’ variability. It has been shown that
the stiffness variability enlarges significantly the design space for anisotropic
structures.

• The introduction of a novel scaling procedure for anisotropic structure. The
procedure relies on the objective properties of the stiffness’ invariant. The pro-
cedure is effective in predicting the behavior of different anisotropic materials
using linear scaling laws, irrespective of geometric nonlinearities. The scal-
ing procedure is applicable to a variety of structural performances including:
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deflection, mode of vibrations, divergence speed, buckling and post-buckling
of anisotropic structures. The author envisages the use of such procedure
within the framework of preliminary design to select the most promising
anisotropic material on the basis of structural performance rather than other
indexes unrelated to the structural behavior.

• The development of a novel optimization algorithm to deal with constrained
combinatorial optimization has been presented. It has been shown that the algo-
rithm outperforms other heuristics in terms of convergence rate and reliability
when benchmark problems are considered.

• A Graph-based filtering scheme has been conceived to synthesize meaningful
structures starting from Ground Structures with high cardinality. The filtering
scheme, coupled with an in-house developed GA, has been used to design
planar resonators and compliant structures. The GERM (Graph-based Element
Removal Method) has led to unconventional topologies for planar resonators.

• Motivated by the results of the topology synthesis, a reduced order model
(ROM) for multi-members resonators have been developed. The ROM was
useful to establish a rule of thumb, i.e. a planar structure can be designed
to have exactly N-commensurate frequencies, where N is the number of
members constituting the resonator. Particularly, three class of resonators
were introduced, namely: V- shaped (or angle shaped) resonator, Y-shaped
and Z-shaped resonators. The reduced order model was used also to establish
a systematic way to design resonators, i.e. the universal design charts. The
electro-mechanical equations of motion for the V-shaped resonator have also
been derived. It has been shown that the V-shaped resonator outperforms the
L-shaped resonator in term of energy harvested.

The above mentioned contributions has led to the publications listed below. In the
interest of clarity, the publications list is divided in two parts, namely publications
with a major contribution of the author (developing the model, performing analysis
and simulations, writing the main body of the article) and publications with minor
contribution. The lists have been further divided in to: Journal publications and
conference publications. Papers which are in preparation and/or under review, even
if those paper are directly related to the Doctorate activities, have not been included.



16 Structural Tailoring

1.6.1 Major contribution

Journal papers

1. Danzi, F., Gibert, J. M., Frulla, G. and Cestino, E. ”Generalized topology
for resonators having N commensurate harmonics”. JOURNAL OF SOUND
AND VIBRATION. Volume 419, 2018, pp 585-603, ISSN 0022-460X,
https://doi.org/10.1016/j.jsv.2017.10.001.

2. Danzi, F., Frulla, G. and Romeo, G. ”An Invariant-based Performance-
Oriented Procedure for Preliminary Design of Composite Structures”. AIR-
CRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, Volume 90,
Issue 3, pp.532-541, https://doi.org/10.1108/AEAT-11-2016-0228.

3. Danzi, F., Frulla, G. and Cestino, E. ”Constrained combinatorial optimization
of multi-layered composite structures by means of Stud GA with proportionate
selection and extinction”. STRUCTURAL AND MULTIDISCIPLINARY
OPTIMIZATION. Volume 55, Issue 6, pp. 2239–2257, ISSN 1615-1488,
https://doi.org/10.1007/s00158-016-1638-4.

4. Danzi, F., Gibert, J. M., Frulla, G. and Cestino, E. ”Graph-based element
removal method for topology synthesis of beam based ground structures”.
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION. Volume 57,
Issue 4, pp. 1809–1813, ISSN 1615-1488,
https://doi.org/10.1007/s00158-017-1818-x.

5. Romeo, G., Danzi, F. and Tsai, S.W. ”Using Trace to Scale the Properties
of Composite Materials”. JEC COMPOSITES, Volume 88, pp. 42-45, ISSN
1639-965X.

Conference papers

1. Danzi, F., Cestino, E., Frulla, G. and Gibert, J. M. ”Numerical and experi-
mental validation of unitized beam model”. Proc. of 31st Congress of the
International Council of the Aeronautical Sciences, Belo Horizonte (Brasil),
9-14 September, 2018.

https://doi.org/10.1016/j.jsv.2017.10.001
https://doi.org/10.1108/AEAT-11-2016-0228
https://doi.org/10.1007/s00158-016-1638-4
https://doi.org/10.1007/s00158-017-1818-x


1.6 Contribution of the thesis 17

2. Danzi, F. and Gibert, J. M. ”Exact dynamics of an angle-shaped resonator
for energy scavenging applications”. Proc. of SPIE Smart Structures and
Materials + Nondestructive Evaluation and Health Monitoring, 2018, Denver,
Colorado (USA), 5-8 March 2018, https://doi.org/10.1117/12.2296642.

3. Danzi, F., Cestino, E., Frulla, G. and Gibert, J. M. ”Equivalent plate model
of curvilinear stiffened panels”. Proc of 7th International Conference on
Mechanics and Materials in Design, pp. 553-568, Albufeira (Portugal), 11-15
June 2017.

4. Danzi, F.,Frulla, G., Cestino, E. and Gibert, J. M. ”MDO/MSO of Slender
Thin Walled Box Beam Model”. Proc. of AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference (2017). Denver, Colorado (USA), 5-9
June 2017, https://doi.org/10.2514/6.2017-4323.

5. Danzi, F., Gibert, J. M., Cestino, E. and Frulla, G. ”Topology Synthesis of
Planar Ground Structures for Energy Harvesting Applications”. Proc. of
SPIE Smart Structures+Nondestructive Evaluation and Health Monitoring
(SS/NDE), Portland, Oregon (USA), 25-29 March 2017, https://doi.org/10.
1117/12.2257351.

6. Romeo, G., Danzi F. and Cestino E. ”Multi-objective optimization of the
composite wing box of solar powered HALE UAV”. Proc. of 29th Congress of
the International Council of the Aeronautical Sciences, St. Petersburg (Russia),
7-12 September, 2014.

1.6.2 Minor contribution

1. Cestino, E.; Frulla, G., Duella, R., Piana, P., Pennella, F. and Danzi, F. ”Appli-
cation of Structural Topology Optimization to Couple Thin-Walled Stiffened
Box-Beams”. SAE Ttechnical paper, SAE 2017 AeroTech Congress & Exhibi-
tion, Fort Worth, Texas (USA), 26-28 September 2017.

2. Frulla, G., Danzi, F. and Romeo, G. ”Preliminary design of anisotropic plate in
critical and post-critical regime by extended Trace procedure”. Proc. of 11th
International Aerospace Supply Fair (AIRTEC), Munich (Germany), 25-27
October 2016.

https://doi.org/10.1117/12.2296642
https://doi.org/10.2514/6.2017-4323
https://doi.org/10.1117/12.2257351
https://doi.org/10.1117/12.2257351
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1.7 Others contribution

Here are listed some collateral works, unrelated to the work presented herein but
performed during the PhD.

1. Cestino, E., Romeo, G., Piana, P. and Danzi, F. ”Numerical/experimental
evaluation of buckling behaviour and residual tensile strength of composite
aerospace structures after low velocity impact”. AEROSPACE SCIENCE
AND TECHNOLOGY. Volume 54, 2016, pp 1-9, ISSN 1270-9638,https:
//doi.org/10.1016/j.ast.2016.04.001.

2. Romeo, G., Frulla, G., Cestino, E. and Danzi, F. ”Experimental buckling
behavior of composite aerospace structures after low velocity impact”. JEC
Europe 2015, Paris (France), 10-12 March 2015.

https://doi.org/10.1016/j.ast.2016.04.001
https://doi.org/10.1016/j.ast.2016.04.001


Chapter 2

Equivalent models of straight and
curved reinforced structures

Some of the contents and derivations presented in this chapter have been previously
published in the Proceedings of Mechanics and Materials in Design 2017

Danzi, F., Cestino, E., Frulla, G. and Gibert, J. M. ”Equivalent plate model of curvi-
linear stiffened panels”. Proc of 7th International Conference on Mechanics and
Materials in Design, pp. 553-568, Albufeira (Portugal), 11-15 June 2017.

This chapter presents the derivation of two equivalent plate models of a curvilin-
ear stiffened panel. The curved stiffeners are modeled as piecewise straight beams,
neglecting the effect of the Jacobian of the curved beam on the strains and stresses.
The effect of the curvature on the equivalent properties is investigated through a
parametric analysis. Using a homogenization method, based on strain-energy density
equivalence, the stiffnesses of the equivalent stiffener layer, in the following referred
to as equivalent continuum layer, are derived. The derivation is further extended
in order to identify the apparent engineering constants of the equivalent-stiffened
layer. By virtue of the rank sub-additivity properties, it is demonstrated analytically
that, for curved stiffeners, the homogenization give rise to full rank, i.e. invertible,
matrices. This allows one to consider, according to the particular geometry of the
stiffeners, whether it is possible or not neglect the effect of the transverse shear. The
derivation presented herein is limited to one family of stiffeners in the symmetric, or
concentric, configuration. However, it is shown in the chapter that, the equivalent
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properties of lattice structures, i.e. structures with two stiffeners’ families, can be
obtained by superposition.

2.1 Overview of equivalent plate models for reinforced
structures

In this section, we provide a short overview of the equivalent models for reinforced
plate and shells with straight and curvilinear stiffeners. A comprehensive review of
ortho-grids and braced panels is given in Nemeth [98].

Homogenization theories as well as surrogate models have been widely used in
calculating effective properties of reinforced shells and plates. Homogenization is
particularly useful in the early stages of building-block analysis for navigating the
design space and identifying optimal preliminary configurations. The earliest works
on equivalent stiffnesses of stiffened plates and shells date back to the beginning of
last century, and are ascribed to Huber [99, 100] and Flugge [101], respectively.

Smith et al. [102] improved upon the formulation of Huber by accounting for
the local interactions between the skin and the stiffeners. A more accurate treatment
of shear stresses with respect to Huber’s work was presented by Pfluger [103]. In
Gomza et al. [104], they derived the effective plate thickness of stiffened plate.
Benscoter and MacNeal [105], presented an equivalent plate theory, based on first-
order difference equations, that includes transverse-shear deformations to study a
straight multicell wing. Dow et al. [106], identified the fundamental repeating
element of the stiffened plate with integral stiffeners and replaced each stiffener
in the repeating element with a homogeneous orthotropic plate. They enforced a
direct compatibility between the stiffeners and the equivalent repetitive element, that
is the strains in the repeating-element stiffeners were related to the corresponding
plate strains. Finally, they applied an energy equivalence method to calculate the
expressions for twelve independent elastic constants. Crawford and Libove [107]
presented a study that focused on the torsional stiffness of orthogonally stiffened
plates. Hoppmann, in a series of successive works prevalently related to experimental
measures, derived the effective stiffness moduli to describe accurately the bending
behavior [108] and the elastic compliances [109] of orthogonally stiffened plates.
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Huffington [110] introduced a method based on the strain energy equivalence
between an infinitely long stiffened plate and an orthotropic plate to calculate the
expressions of concentric orthogonally stiffened panels. Heki and Saka [111] derived
the closed form expressions for the stiffnesses associated with the homogeneous
isotropic stiffeners with negligible in-plane shear stiffnesses. Won [112] presented a
set of equations for homogeneous isotropic beam stiffeners with rectangular cross-
sections. The expressions given by Won are for a pair of oblique stiffener families
and include higher-order effects associated with the interaction of the plate wall with
the stiffeners while neglecting the transverse shear stiffnesses.

Pshenichnov [113] derived the expression of the stiffness for an equivalent
single-layer plate-like and shell-like ortho-grid structures. The equivalent stiffnesses
presented are based on a classical shell theory and are obtained by using tensor
transformations to equate beam strains with corresponding shell strains and by
equating shell stress resultants with transformed beam forces. The latter were
presumed uniformly distributed across the equivalent shell wall. Although the
analysis is based on a classical shell theory, the effects of stiffener bending in the
tangent plane is included expressing the beam shearing forces that acts in the tangent
plane in terms of the derivatives of the corresponding beam moments. The beam
bending strain is obtained in terms of the shell tangential displacements and strains
by considering deformation associated with rotation about the unit vector normal
to the middle surface. Although this approach captures tangential stiffener bending
effects, the effects cannot be represented directly in terms of the shell strains and, as
a result, are not accounted into the equivalent stiffness expressions.

Jaunky et al. [114] introduced a refined smeared-stiffener theory for grid-
stiffened laminated-composite accounting for the variation of the neutral surface
caused by interactions between the skin and the stiffeners. In Chen and Tsai [115],
they presented the equivalent stiffnesses for laminated composite grid plates and
circular cylindrical shells. In their study, generally laminated walls stiffened with
ribs, stringers, and a pair of identical diagonal stiffeners with an arbitrary orientation
angle were considered. Grid-stiffness expressions are given that include out-of-plane
(transverse) and in-plane shear flexibility of the stiffeners and in-plane stiffener bend-
ing. Slinchenko [116] derived the equivalent stiffnesses for homogeneous isotropic
stiffeners with negligible in-plane shear and torsional stiffnesses.
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Kapania and co-workers [117] were the first introducing the concept of curvi-
linear stiffened panel. In the earliest work they performed numerical studies to
investigate the effects of orientation, spacing, location, and curvature of the stiffeners
on the optimal designs. They noted that a curvilinear stiffeners, in some circum-
stance, resulted in a better design than straight stiffeners in terms of buckling load
resistance. Moreover, they found that gradient-based optimization techniques are
inadequate to optimize panels with curvilinear stiffeners. Joshi et al. [118] presented
a surrogate model based on Response Surface (RS) to optimize curvilinear stiffened
panels in terms of end point design and curvature.

Locatelli et al. [47] introduced a design/optimization framework SpaRibs to
optimize unitized wing-box structures. Tamijani and Kapania [119] adopted an
Element Free Galerkin method to study the effect of stiffeners’ number and size
onto the natural frequencies of curvilinear stiffened panels. The formulation they
implemented is based on first order shear deformation theory. Wang et al [120] used
a double-scale scheme to derive the equivalent properties of a curvilinear stiffened
panel. At the macroscopic level the panel is treated as a continuum plate, the
equivalent properties were derived imposing the strain energy equivalence between
the stiffened structure and a small cell. At the microscopic level they used periodic
boundary conditions to correlate the behavior of adjacent cells. They used the
Block’s wave theory to study local instability of the plate and the homogenization
method to derive global instability.

Although curvilinear stiffeners have been already proven to be effective in en-
hancing the structural performances, most of the works already presented in the
open literature are performed using finite element models [34, 47, 57, 117, 118, 121].
Equivalent model have the advantage of simplifying the physics to gain insights
into the problem and identifying promising solutions. Moreover, to achieve one the
objectives of this work, i.e., to derive an equivalent 1D model of unitized structure,
homogenization is an essential step to reduce the complexity of the problem. Indeed,
once an equivalent model is established, the circumferentially asymmetric structure
model can be used to derive the equivalent beam stiffnesses. The derivation of the
equivalent beam stiffnesses is addressed in the subsequent chapter. This chapter
is aimed at deriving a systematic set of equations for equivalent continuum model
of straight and curved stiffened panels. The model is meant to shade light into the
attainable performances. The apparent engineering properties of the resulting 2D
anisotropic material are derived. To assess the validity of the proposed method, a
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comparative study of the buckling loads and frequencies of simply supported panels
is carried out. Results for the stiffened structures are compared against those of
the equivalent models. In Figure 2.1 is reported an exemplification of the stiffened
structure and the equivalent model that we aim to derive.

(a)

����������
�� �!����������"

#$������%

(b)

Fig. 2.1 Example of (a) stiffened plate and (b) equivalent continuum structure

2.2 Structural model

The structural model is derived on the basis of first-order transverse-shear deforma-
tion theory for anisotropic plates (Reissner-Mindlin type). The stiffeners are modeled
consistently using the FSDT beam theory (Timoshenko). Two basic repetitive ele-
ments useful respectively to enforce the direct compatibility and to impose the strain
energy density equivalence are introduced. The direct compatibility is established
relating the stress and strain resultants of the repeating element stiffeners to the
corresponding plate strains, as in [98, 106]. Consistent with the work of Nemeth
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Statical equivalence
{Fs}= 1

ds
{Fb}

Kinematical equivalence
{εb}= [E]{εP}

Integrating over
the plate thickness

1
2

∫
h
{εP}T [CP]{εP}dz

Differentiating twice
with respect to the strains

∂ 2Ûp

∂{ε}∂{ε}

Homogenized properties
A, B, D

Integrating over
the plate thickness

1
2

∫
L

(∫
h
{εP}T [CP(x)]{εP}dz

)
dx

Differentiating twice
with respect to the strains

∂ 2Ûp(x)
∂{ε}∂{ε}

Variable stiffness properties
A(x), B(x), D(x)

Fig. 2.2 Flowchart of the numerical implementation of the equivalent models.

[98] and Pshenichnov [113], the variation of the stress resultants across the width
of the stiffeners is neglected. This assumption holds for thin stiffeners, as those
considered in the present analysis. Contrary to Zhao [122] and Slinchenko [116] and,
in accordance with the derivation presented by Crawford [107] and Nemeth [98], the
torsional rigidity of the stringers is retained in the present derivation.

The local orientation of the stiffeners is presumed to vary linearly as in [51] for
tow-placed fibers and [120] for curved stiffeners. The stiffeners’ orientation ϑ(x) is
given as

ϑ(x) = ϑ1 +
ϑ2 −ϑ1

b
x (2.1)

being b the panel length, as shown in Figure 2.3. The stiffeners path satisfies the
following Equation

dy
dx

= tanϑ . (2.2)

The derivation is based on the assumption that a curved beam can be faithfully
represented by a collection of piece-wise rectilinear oriented beams. The aforemen-
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tioned assumption will be justified later on in the chapter and it will be shown that
gives rise to the limits of validity of the models presented herein.
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Fig. 2.3 Example of steering stiffened panel. The figure shows the main features of the
stiffened panels considered in this work.

2.3 Direct compatibility

Following Dow [106] and Nemeth [98], the direct compatibility is derived for a
family of rectilinear and equally spaced stiffeners. The stiffeners are presumed being
oriented with an angle ϑ(x) with respect to the x-axis of the plate. The prismatic
rectangular stiffeners are in the symmetric (or concentric) configuration and perfectly
bonded to the skin panel. The material points of the beam are located on the local
Cartesian coordinates XY Z, which follow the stiffeners orientation as shown in
Figure 2.4.

2.3.1 Statical equivalence

In order to establish the statical equivalence, the stress resultants of the equivalent
continuum layer, expressed in the XY Z coordinate system, must be equal to the
beam’s forces and moments. Denoting with the superscript ”p” and ”s” respectively
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Fig. 2.4 Reference systems for the plate xyz and stiffeners XY Z respectively.

the contribution of the plate and stiffeners, the stress resultants of the stiffened plate
are given by the following set of equations

Nxx =
∫ h/2

−h/2
σxxdz = N p

xx +2Ns
xx, (2.3a)

Nxy =
∫ h/2

−h/2
τxydz = N p

xy +2Ns
xy, (2.3b)

Mxx =
∫ h/2

−h/2
zσxxdz = Mp

xx +2Ms
xx, (2.3c)

Mxy =
∫ h/2

−h/2
zτxydz = Mp

xy +2Ms
xy, (2.3d)

Qxz =
∫ h/2

−h/2
τxzdz = Qp

xz +2Qs
xz, (2.3e)

where h is the total thickness of the stiffened plate, i.e. h = hp+2hs where hp and hs

are respectively the plate and stiffeners thicknesses. Note that the definition above
still holds for eccentric stiffeners except that the factor 2 should be dropped from the
stress resultants. In this latter case, Equations 2.3 agree with those given by Nemeth
for a family of equally spaced eccentric stiffeners. Focusing onto the stiffeners
contribution, the stress resultants for the Timoshenko beam are given as follows:

Nb
x =

∫
As

σxxdAs, (2.4a)
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T b
y =

∫
As

τxydAs, (2.4b)

T b
z =

∫
As

τxzdAs, (2.4c)

Mb
xy =

∫
As

(yσxx − zσxx)dAs, (2.4d)

Mb
y =

∫
As

zσxxdAs, (2.4e)

Mb
z =

∫
As

yσxxdAs = 0, (2.4f)

where As is the stiffener cross sectional area and the apex b stands for beam. The
positive signs for the axial Nx and shear forces Ty and Tz as well as those of the
moments are depicted in Figure 2.5. Noting that the forces and moments given in
the Eqns 2.3 are forces and moments per unit length, it follows that Eqns 2.4 can be
equated to the Eqns 2.3 dividing by ds, being ds the stiffeners’ spacing, as shown in
Figure 2.3. It should be noted that the moment Mz vanishes because we neglected
the variation of σxx along the stiffener width. This assumption is consistent with the
plate continuum model and agrees also with the assumption made by Nemeth. Since
we assumed that the stresses are constant along the beam width, one have that the
Eqns 2.4 can be written as

Nb
x = ds

∫ h/2

hp/2
σxxdz, (2.5a)

T b
y = ds

∫ h/2

hp/2
τxydz, (2.5b)

T b
z = ds

∫ h/2

hp/2
τxzdz, (2.5c)

Mb
xy = ds

∫ h/2

hp/2
(yσxx − zσxx)dz, (2.5d)

Mb
y = ds

∫ h/2

hp/2
zσxxdz. (2.5e)

Finally, the beam’s stress resultants on the equivalent continuum layer are given as

Ns
xx =

Nb
x

ds
, (2.6a)

Ns
xy =

T b
y

ds
, (2.6b)
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Ms
xx =

Mb
y

ds
, (2.6c)

Ms
xy =−

Mb
xy

ds
, (2.6d)

Qs
xz =

T b
z

ds
, (2.6e)
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Fig. 2.5 Stress resultants acting on the generic stiffeners.

Notice that the terms on the left-end side of Eqns 2.6 are the stress resultants
onto the stiffeners rewritten into the equivalent continuum layer, consistently with
the plate theory. The negative sign in Eq. 2.6d is due to the different convention
adopted for the twisting between the beam and plate model, as depicted in Figure
2.5 and Figure 2.6 respectively.

2.3.2 Kinematical equivalence

In order to enforce a full compatibility among the discrete stiffened structure and
the equivalent continuum model, we need to establish the kinematical equivalence.
The latter being established imposing that the strains in any point of the equivalent
continuum layer are equal to the strains in any point of the stiffeners. Consistently
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Fig. 2.6 Plate stress resultants onto the equivalent continuum layer.

with the assumption that yielded Mz = 0, the variation of the strain along the stiffeners
width is neglected. Noting that the shear and twisting deformations act only on one
face of the stiffeners while on both faces of the differential plate element, the
stiffeners are presumed contributing only to half of the shear deformation. The
resulting linear strains, according to the First Order Shear Deformation Theory, are
given as in Reddy [123]

εxx =
∂u(0)

∂x
+ z

∂ψx

∂x
= ε

(0)
xx + zκxx, (2.7a)

εyy =
∂v(0)

∂y
+ z

∂ψy

∂y
= ε

(0)
yy + zκyy, (2.7b)

γxy =

(
∂u(0)

∂y
+

∂v(0)

∂x

)
+ z
(

∂ψx

∂y
+

∂ψy

∂x

)
= γ

(0)
xy + zκxy, (2.7c)

γxz =
∂w(0)

∂x
+ψx ≡ γ

(0)
xz , (2.7d)

γyz =
∂w(0)

∂y
+ψy ≡ γ

(0)
yz , (2.7e)

εzz = 0, (2.7f)
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where ε
(0)
xx and ε

(0)
yy are the extensional strains, γ

(0)
xy is the in-plane shear strain, κi j

are the bending curvatures, finally γ
(0)
xz and γ

(0)
yz are the transverse shear strains. Now,

being εT
b = {e(0)x ,Γ

(0)
xy ,Γ

(0)
xz ,χ

(0)
z ,χ

(0)
y ,τ

(0)
xz } the strains for the Timoshenko beam and,

εT
P = {ε

(0)
xx ,ε

(0)
yy ,γ

(0)
xy ,κ

(0)
xx ,κ

(0)
yy ,κ

(0)
xy ,γ

(0)
yz ,γ

(0)
xz } the strains for the Reissner-Mindlin

plate, one have

ex = ε
(0)
xx , (2.8a)

Γ
(0)
xy =

1
2

γ
(0)
xz , (2.8b)

Γ
(0)
xz = γ

(0)
yz , (2.8c)

χ
(0)
z = 0, (2.8d)

χ
(0)
y = κ

(0)
xx , (2.8e)

τ
(0)
xz =−1

2
κ
(0)
xy , (2.8f)

where χ
(0)
z and χ

(0)
y are the strains due to the change of curvature of the beam, τ

(0)
xz

is the strain due to the torsion of the beam and finally, Γ
(0)
xy and Γ

(0)
xz are the strains

due to the shear forces Ty and Tz. Equations 2.8 in matrix form become

{εb}= [E]{εP} (2.9)

being E given by

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 1/2 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 −1/2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.10)

Equation 2.9 relates the generalized strains of the Timoshenko beam model to those
of the Reissner-Mindlin plate model.
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2.4 Energy equivalence method

In the previous section the direct compatibility equations are derived for a family
of straight but oriented, concentric stiffeners. In this section a homogenization
technique based on strain energy density equivalence is presented; the method is
useful to derive the stiffnesses of a family of curved stiffeners. To establish the
energy density equivalence it is worthwhile to define the basic cell, i.e. the simplest
element that will generate the whole stiffened geometry by simple translation over
the stiffeners centroidal plane. Aiming at approximating the curved stiffeners path,
a set of sub-cells is defined. The basic cell is then given as the union of the sub-
cells. The direct compatibility is enforced within the sub-cell, where the stiffener is
presumed to be straight. An example of the basic cell and sub-cell is given in Figure
2.7.

�
�

(a)

�
�

 
�

!
"

Straight 

stiffener

 Stiffener path 

within the cell

(b)

Fig. 2.7 Exemplification of the basic cell Fig. (a) (shaded gray area) and subcell (shaded red
area). Fig. (b) shows a detailed view of the subcell area where the strain energy density is
evaluated.

The idea behind this energy-based homogenization method is that the basic unit,
i.e. the sub-cell, is small enough compared to the overall structural dimensions
such that the strain-energy density within it can be approximately represented by
a constant value. No overlapping of the sub-cells nor of the basic repetitive cell is
premised.

The derivation starts by writing the expression of the strain energy for the
Timoshenko beam as in Nemeth [98]. Being [Cb] the constitutive matrix for the beam
and denoting with L j the length of the sub-cell, the strain energy for the beam is
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given as

Ub =
1
2

∫
L j

{εb}T [Cb]{εb}dX (2.11)

where [Cb] is given as follow

[Cb] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

EAs 0 0 EAsȳ EAsz̄ 0
0 kyGAs 0 0 0 −kyGAsz̄
0 0 kzGAs 0 0 kzGAsȳ

EAsȳ 0 0 EIzz EIyz 0
EAsz̄ 0 0 EIyz EIyy 0

0 −kyGAsz̄ kzGAsȳ 0 0 GJt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.12)

being E,G the Young modulus and the shear modulus of the isotropic material (or
equivalently the effective modulus for the case of a special orthotropic material),
ky and kz are the shear correction factors, Iyy and Izz are the second area moment of
inertia with respect to the y and z axis respectively, Iyz is the product moment of area,
ȳ = 0 having assumed the coordinate system XY Z to be centroidal, z̄ is the distance
between the centroidal axis of the stringer and the plate midplane (see Figure 2.4)
and, finally Jt is the torsional moment of inertia. In this work Jt is evaluated as in
Wang [124]

Jt =
1
3

b3h

[
1− 192b

π5h

5

∑
n=1

1
(2n+1)5 tanh

(
(2n+1)πh

2b

)]
. (2.13)

Equivalently, recalling that εT
P = {ε

(0)
xx ,ε

(0)
yy ,γ

(0)
xy ,κ

(0)
xx ,κ

(0)
yy ,κ

(0)
xy ,γ

(0)
yz ,γ

(0)
xz }, the strain

energy for the beam written in the equivalent plate-strains assumes the following
form

UP =
1
2

∫
L j

{εP}T [CP]{εP}dX (2.14)
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where [CP] ∈ R8×8 is given as

[Cp] = [E]T [Cb][E]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EAs 0 0 EAsz̄ 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1

4 kyGAs 0 0 1
4 kyGAsz̄ 0 0

EAsz̄ 0 0 EIzz 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1

4 kyGAsz̄ 0 0 GJt 0 − 1
2 kzGAsȳ

0 0 0 0 0 0 0 0
0 0 0 0 0 − 1

2 kzGAsȳ 0 kzGAsȳ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(2.15)

It is worth noting that the stiffness matrix given in Eq. 2.15 is rank deficient
therefore, in this form, is not invertible. The equations given above agree with those
given in [98] and differ from that of the classic smeared stiffness approach for the
presence of the transverse shear. The strain energy written as in Eqn. 2.14 is in the
local reference frame, oriented within the sub-cell at an angle ϑ̄ , being the latter the
averaged orientation of the stiffeners within the subcell, as shown in Figure 2.7.

Next, the reference system XY Z must be rotated to align the beam to the plate
global reference system xyz. It follows that

Up =
1
2

∫
L j

{εp}T [Cp]{εp}dx

where [Cp] = [T ]T [CP][T ].
(2.16)

The transformation T ∈ R8,8 matrix is given as⎡⎢⎣[Tε ] [0] [0]
[0] [Tε ] [0]
[0] [0] [Tt ]

⎤⎥⎦ , (2.17)

where

[Tε ] =

⎡⎢⎣ cos2 ϑ̄ sin2
ϑ̄ cos ϑ̄ sin ϑ̄

sin2
ϑ̄ cos2 ϑ̄ cos ϑ̄ sin ϑ̄

−2cos ϑ̄ sin ϑ̄ 2cos ϑ̄ sin ϑ̄ cos2 ϑ̄ − sin2
ϑ̄

⎤⎥⎦ , (2.18)

and

[Tt ] =

[
cos ϑ̄ −sin ϑ̄

sin ϑ̄ cos ϑ̄

]
, (2.19)



34 Equivalent models of straight and curved reinforced structures

being

ϑ̄ =
ϑ |x j=0 +ϑ |x j=L j

2
. (2.20)

So far, the beam’s strain energy have been rewritten using the equivalent-plate
strains and then transformed it to align the beam reference system to the plate
reference system. It is worth noting that being [CP] a rank deficient matrix, and being
the rotation an affine transformation, the rank is preserved thus, the rotated stiffness
matrix [Cp] is still rank deficient. Despite the constitutive matrix of the beam written
in the plate reference [Cp] is singular, the energy equivalence method leads to full
rank, thus invertible, matrices, except for the case of straight stiffeners. This aspect
deserves some more discussion that will be addressed in the next section.

Based on the presumption that the sub-cell is small enough, the strain energy can
be approximated as follow

Up =
L j

2
{εp}T [Cp]{εp}, (2.21)

the strain energy density per unit area is given by

Ûp =
Up

A j
(2.22)

where A j is the area of the sub-cell. From Figure 2.7 follows that A j ≈ L jds cos ϑ̂ .
The strain energy density for the equivalent continuum layer is then given as

2Ûp = ns

nsc

∑
j=1

{εp}T [Cp]{εp}
ds cos ϑ̂

=
∫ hs

0
{ε}T [Q]{ε}dz, (2.23)

where ns is the number of stiffeners, nsc is the number of sub-cells, and [Q] on the
right-hand side of the eq. 2.23 is the reduced stiffness matrix of the equivalent-
continuum layer. Likewise, in the limit for ncell → ∞ one have

lim
ncell→∞

ϑ̄ → ϑ(x),

lim
ncell→∞

2Ûp ⇒
∫ hs

0
{ε}T [Q(x)]{ε}dz.

(2.24)

Finally, taking the derivatives of the quadratic forms given in the Eqns. 2.23 and
2.24 respectively, gives the stiffness matrices of the equivalent continuum layer. The
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resulting stiffness matrices are given as

[Asti f f ] =
Ls

Acell

⎡⎢⎣C11
p C12

p C13
p

C21
p C22

p C23
p

C31
p C32

p C33
p

⎤⎥⎦ , (2.25a)

[Bsti f f ] =
Ls

Acell

⎡⎢⎣C14
p C15

p C16
p

C51
p C24

p C26
p

C61
p C62

p C36
p

⎤⎥⎦ , (2.25b)

[Dsti f f ] =
Ls

Acell

⎡⎢⎣C44
p C45

p C46
p

C54
p C55

p C56
p

C64
p C65

p C66
p

⎤⎥⎦ , (2.25c)

[Asti f f
T ] =

Ls

Acell

[
C77

p C78
p

C87
p C88

p

]
. (2.25d)

In this case, the stiffeners in the concentric configurations the membrane-bending
coupling matrix B is zero. Following the same procedure discussed above, one can
obtain the stiffness matrices of the equivalent continuum plate adjoining to the strain
energy density of the stiffeners, the strain energy of the skin plate. In this latter case
the integral on the right-hand side of the Eqns. 2.23 and 2.24 should be extended to
the whole plate thickness, h = 2hs +hp.

Figures 2.8, 2.9 and 2.10 depict the stiffness coefficients for the membrane,
bending and shear matrices respectively derived with the present procedure. The
stiffness coefficients reported in Figures 2.8-2.10 are relative to a rectangular flat
panel in the concentric configuration, with a = 500 mm, b = 800 mm, hs = 20 mm,
hp = bs = 3 mm, ϑ1 = 16.75◦ and ϑ2 = 45◦. The plate and stiffeners dimensions
are those of a typical aeronautical panel. The plate and stiffeners constituent material
is Aluminum Alloy (E = 73 GPa, ν = 0.3). The solid lines represent the variable
properties obtained using Eq. 2.24 while, the dotted lines, are the constant coef-
ficients calculated as in Eq. 2.23. As can be seen from Figures 2.8-2.10, despite
the constituent material is isotropic, the stiffness matrices obtained are those of
a complete 2D anisotropic material. This regardless if one looks at the constant
stiffness coefficients (dotted lines) or at the variable stiffness coefficients (solid lines).
Both, the variable stiffness coefficients and the constant stiffness coefficients were
obtained using 1000 sub-cells.
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Fig. 2.8 Non-dimensional membrane matrix coefficients for a stiffened panel with ϑ1 =
16.75◦, ϑ2 = 45◦ with respect to the non-dimensional abscissa x̂ = x/b. The coefficients are
normalized with respect to the maximum of A11. Solid lines are the variable coefficients
while dotted lines represent the homogenized coefficients.
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Fig. 2.9 Non-dimensional bending matrix coefficients for a stiffened panel with ϑ1 = 16.75◦,
ϑ2 = 45◦ with respect to the non-dimensional abscissa x̂ = x/b. The coefficients are nor-
malized with respect to the maximum of D11. Solid lines are the variable coefficients while
dotted lines represent the homogenized coefficients.
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Fig. 2.10 Non-dimensional shear matrix coefficients for a stiffened panel with ϑ1 = 16.75◦,
ϑ2 = 45◦ with respect to the non-dimensional abscissa x̂ = x/b. The coeffcients are normal-
ized with respect to the maximum of AT44 . Solid lines are the variable coefficients while
dotted lines represent the homogenized coefficients.

By varying the angle of orientation ϑ(x) of the stiffeners and retaining all the
other parameters, one can obtain a completely different structural behavior. One
example that is worth mentioning is the case in which ϑ1 =−ϑ2. Let us consider a
concentric stiffened panel having ϑ1 = 10◦, ϑ2 =−10◦ while all the other dimensions
remain unchanged with respect to the panel studied above. As can be seen form
Figure 2.11-2.13, looking at the constant coefficients the resulting structural behavior
is that of a 2D orthotropic material. Indeed, the coefficients A16, A26, D16, D26 and
AT45 are all zero. It is important notice that, despite the averaged stiffness coefficients
(dotted lines) are A16 = A26 = D16 = D26 = AT45 = 0, there is still a local anisotropy
if one considers the variable coefficients (solid lines). This latter observation is
crucial to explain the differences of the two equivalent models, as we will see in the
next sections.
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Fig. 2.11 Non-dimensional membrane matrix coefficients for a stiffened panel with ϑ1 = 10◦,
ϑ2 = −10◦ with respect to the non-dimensional absiccs x̂ = x/b. The coefficients are
normalized with respect to the maximum of A11. Solid lines are the variable coefficients
while dotted lines represent the homogenized coefficients.
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Fig. 2.12 Non-dimensional bending matrix coefficients for a stiffened panel with ϑ1 = 10◦,
ϑ2 = −10◦ with respect to the non-dimensional absiccs x̂ = x/b. The coefficients are
normalized with respect to the maximum of D11. Solid lines are the variable coefficients
while dotted lines represent the homogenized coefficients.
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Fig. 2.13 Non-dimensional shear matrix coefficients for a stiffened panel with ϑ1 = 10◦,
ϑ2 = −10◦ with respect to the non-dimensional absiccs x̂ = x/b. The coefficients are
normalized with respect to the maximum of AT44 . Solid lines are the variable coefficients
while dotted lines represent the homogenized coefficients.

2.4.1 Preliminary consideration on the rank of the stiffness ma-
trices

In the previous section we wrote that the energy equivalence method leads to an
equivalent continuum layer with full rank, therefore invertible, matrices. In this
section we a seek a formal explanation for the latter observation.

Let A ∈Kn×n, and TA a linear map TA : Kn →Kn, then the following two state-
ments are equivalent:

1. rank(A) = n

2. det(A) ̸= 0

Recalling the rank sub-additivity properties, i.e.

rank
(
∑

i
ai
)
≤ ∑rank(ai) (2.26)
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being ai ∈Kn×n. By definition of rank

rank
(
∑

i
ai
)
≤ ∑rank(ai)≤ n (2.27)

Here, we aim to prove the following

Lemma 1. If the stiffeners are curvilinear, the rank of the matrix is maximum, i.e.
rank(A) = n, where A denotes the sum of the matrices ai.

Proof. Let us suppose that exists an angle of orientation ϑ2 ̸= ϑ1 with ϑ2, ϑ1 ∈ R,
such that dim(A) = dim(a1 +a2)< n , i.e. det(A) = 0. Recalling that

ai = rt
ϑi

ãrϑi (2.28)

where rϑ is the rotation matrix of the stiffness tensor ã expressed in the local
reference system. Summing the two matrices a1 = rt

ϑ1
ãrϑ1 and a2 = rt

ϑ2
ãrϑ2 we

obtain the matrix A. From statement 2 follows that the determinant should be equal
to zero for A to be singular. Imposing the latter condition to the matrix A give rise to
a transcendental equation f (ϑ1,ϑ2) which admits only one real solution, i.e.

sinϑ1 = sinϑ2 cosϑ1/cosϑ2. (2.29)

This solution can be reworded as tanϑ1 = tanϑ2, i.e. ϑ1 = ϑ2 that is the contraposi-
tive of our initial hypothesis.

Observation 1.1. Let us consider the case of curved stiffeners were ϑ2 = ϑ1 +δϑ ,
with 0 < δϑ ≪ 1. According to the Lemma 1, the rank of the stiffness matrices
would be maximum and hence the apparent engineering constants would be single
valued functions.

A close inspection of the Lemma 1 and subsequent observation leads to the
following

Observation 1.2.
lim

ϑ→ϑ
−
0

Y = c lim
ϑ→ϑ

+
0

Y = c (2.30)

being Y the generic engineering constant of a family of straight stiffeners, then,
despite the singularity, the engineering constant of the equivalent layer can be
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determined also for a straight stiffener by letting the orientation in one point varies
of a small perturbation δϑ .

It is worth noting that the singularity of the stiffness matrices when straight
stiffeners are concerned, can be fixed by adjoining to the stiffeners matrices the
contribution of the skin plate. Despite the equivalent continuum structure, can be
modeled as a three layers anisotropic structure, in the following we will consider the
equivalent engineering properties of the entire stiffened structure, i.e. the one ob-
tained adjoining the contribution of the skin plate to the stiffness obtained as in Eqns.
2.25a-2.25d. In other words, we will consider the structure as a thick monolithic
layer exhibiting three different structural behavior, i.e.: membrane, bending and
shear. The equivalent thickness models generally adopted for homogenized models,
along with a discussion of the model adopted in the present work, is presented in the
next section.

Before going further with the model, is worthwhile comparing the model derived
herein with that given in [125]. Cestino and Frulla [125] calculated the apparent
engineering properties (E11, E22, ν12 and G12) of the equivalent continuum layer for
a family of straight stiffeners. The apparent engineering properties were calculated
by dividing the expression of the membrane matrix, given as in Equation 24a of
Nemeth [98], by the stiffeners height hs. The equivalent properties were determined
in the local reference system XY Z and the rotation were performed a posteriori. The
method adopted in [125] gives rise to an inconsistency, i.e. the bending matrix of the
equivalent layer differs from that of the stiffened structure. According to the model
presented in [125], the reduced stiffness matrix of the equivalent layer is given as
follow

Q =

⎡⎢⎣
Ebs
ds

0 0
0 0 0
0 0 kyGsbs

4ds

⎤⎥⎦ (2.31)

Neglecting the effect of the bending curvature, and retaining only the planar compo-
nents, the direct compatibility for the stiffeners expressed in the plate form can be
expressed as follow

Ns
xx =

EAs

ds
ε
(0)
xx , (2.32a)

Ns
xy =

KyGAs

4ds
γ
(0)
xy . (2.32b)
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Dividing Eqns. 2.32 by the stiffeners height hs recalling that As = bshs and rewriting
in matrix form, one obtain the Eq. 2.31. It is worth mentioning that this is consistent
with the model of Nemeth and the model presented herein for what concerns the
in-plane behavior. The inconsistency arises since they assumed that

D =
∫ h/2

hp/2
Qz2dz. (2.33)

which is not necessarily true for a stiffened structure. Looking at the coefficient D66

obtained with the two formulations one have

D(m)
66 =

∫ h/2

hp/2
z2 KyGbs

4ds
dz =

1
3

KyGbs

4ds

(
h3

p

8
+

3h2
phs

4
+

3hph2
s

2
+h3

s −
h3

p

8

)

=
1
3

KyGbs

4ds
h3

s

(
1+

3
4

h2
p

h2
s
+

3
2

hp

hs

)
,

(2.34)

where m stands for membrane, to recall that is the equivalent bending stiffness
obtained imposing the statical equivalence for the membrane stress resultants as in
[125]. Contrary, in this work we have

D66present =
GJt

4ds
, (2.35)

where Jt is given as in Eq. 2.13. Neglecting higher order terms for the torsional
rigidity Jt we have

D(m)
66

D66present

=

1
3

KyGbs
4ds

h3
s

(
1+ 3

4
h2

p
h2

s
+ 3

2
hp
hs

)
G1

3
b3

s hs
ds

(2.36)

by letting hp/hs → 0, i.e. for stiffened structures

D(m)
66

D66present

=
Ky

4

(
hs

bs

)2

. (2.37)

Figure 2.14 shows a comparison of the D66 coefficient obtained using the model
presented herein (red line) against that obtained with the model given in [125] (black
line). A rectangular flat plate a= 500 mm, b= 800 mm, hs = 20 mm, bs = hs = 3mm,
made by an Aluminum alloy E = 58000 Mpa, ν = 0.33 was considered for the
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purpose of this comparison. The plate has 5 straight stiffeners oriented at zero. From
Figure 2.14 follows that the model given in [125] overestimates the D66 coefficient.
It is worth mentioning that for straight stiffeners oriented at zero, the D66 coefficient
is the only coefficient that differs among the two models. Recalling that

∫ h/2

hp/2
bsz2dz = Iyy

follows that the coefficient D11 calculated as in Cestino [125], coincides with that
given as in Nemeth [98]. Considering now the case of a straight stiffeners oriented
at an angle ϑ , and recalling that [Cp] = [T ]T [CP][T ], one have that the discrepancy
originally presented only in the D66 coefficient is now spread to all the coefficients
of the bending matrix, as shown in Figure 2.15.
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Y: 3.235e+04

X: 0.0101

Y: 9.172e+05

Fig. 2.14 Comparison of the D66 coefficient for a rectangular stiffened plate with straight
stiffeners oriented at ϑ = 0◦. The solid black line is the D66 coefficient calculated as in [125]
while the solid red line is the coefficient calculated using the present model.

It is worth mention that, for sub-stiffened structures (hs ≈ hp), the approach given
in [125] can led to a first order approximation of the bending matrix. The present
approach is in agreement with the model given by Nemeth [98] and yields, in general,
different bending matrices with respect to those calculated as in [125]. The three
models agree if one compares the membrane matrices.
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Fig. 2.15 Comparison of the Di j coefficients for a rectangular stiffened plate with straight
stiffeners oriented at ϑ = 20◦. The solid black lines are the Di j coefficients calculated as in
[125] while the solid red lines are the coefficients calculated using the present model.

2.4.2 Considerations on the equivalent thickness

In his treatise on equivalent plate model of stiffened plates, Nemeth pointed out that
the equivalent plate thickness of a lattice structures is not defined uniquely and that
the adequate formulation should be selected according to the dominant phenomena
that one aims to describe [98]. Nemeth proposes four methods to calculate the
equivalent thickness h(e)s hereafter summarized as follows

1. Equivalent area by imposing the equivalence between the area of the stiffener
and the area of the equivalent layer

h(e)s =
As

ds
.

2. Equivalent first moment of area by writing the equivalence between the stiff-
ener weighted first moment and the first moment of the equivalent layer. For
the case of homogeneous orthotropic material with the principal axes aligned
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to the beam axes (Es ≡ Ex), the expression of the equivalent layer thickness is
given as

Asz̄s =
1
Es

∫
A

ExzdA being dA = dydz

Asz̄s =
∫

A
ExzdA =

ds

2

(
h(e)

2

s +h(e)s hp

)
2Asz̄s

ds
= h(e)s

(
h(e)s +hp

)
.

3. Equivalent second moment of area by requiring that the second moment of
area of the equivalent layer equals the second weighted moment of area of the
stiffeners

Is
yy =

1
Es

∫
A

Exz2dA

Is
yy =

ds

3

[(
h(e)s +

hp

2

)3

−
(

hp

2

)3
]

3
ds

Is
yy = h(e)

3

s +
3
2

h(e)
2

s hp +
3
4

h(e)s h2
p.

4. Equivalent torsional rigidity by imposing the equivalence of the torsional
rigidity among the equivalent layer and the stiffener.

For the purpose of this work, it is preferred to not discern a priori which among
membrane, bending or shear behavior is dominant. Therefore, an alternative method
to identify the equivalent thickness is defined which, in turns, allows

• to represent consistently all the aforementioned structural behaviors, and

• that is suitable for implementation on commercial Finite Element codes.

The method chosen in this work considers the equivalent continuum model having
the same thickness of the real structure, i.e. h = hp +2hs and derives the equivalent
anisotropic material for each of the aforementioned structural behavior. In other
words, one will have three equivalent materials, namely membrane material, bending
material and shear material, the latter being calculated as follow

Ci jM =
Ai j

h
, Ci jB =

12Di j

h3 , Ci jT =
AT i j

h
, (2.38)
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where Ai j, Di j and ATi j are respectively the membrane, bending and shear matrices of
the equivalent continuum model. Finite Element codes, such as, MSC Patran allows
to model an anisotropic thick structure by means of MAT2 card. Using MAT2 one
can have up to four different structural behaviors, namely: membrane, bending, shear
and membrane-bending coupling. In the successive analysis, we will extensively
adopt the MAT2 to model the equivalent continuum structure.

(a) (b)

Fig. 2.16 Input for the MAT2 card of MSC® Patran (a) and (b) example of input properties
for a 2D anisotropic strucutre.

2.4.3 Derivation of the effective engineering constants

The equivalent engineering properties of the continuum structure can be evaluated by
direct comparison with the flexibility matrix [S] of a 2D anisotropic structure given
as in [126]. The flexibility matrix is given as follow⎡⎢⎣ εx

εy

γxy

⎤⎥⎦=

⎡⎢⎣S11 S12 S16

S12 S22 S26

S16 S26 S66

⎤⎥⎦
⎡⎢⎣σx

σy

τxy

⎤⎥⎦ , (2.39)
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that is

ε1 = S11σx +S12σy +S16τxy =
1

E1
σx −

ν21

E2
σy +

η61

E6
τxy,

ε2 = S12σx +S22σy +S26τxy =−ν12

E1
σx −

1
E2

σy +
η62

E6
τxy,

γ12 = S16σx +S26σy +S66τxy =
η16

E1
σx +

η26

E2
σy +

1
E6

τxy.

(2.40)

Recalling that the flexibility matrix can be written as [S] = [Q]−1 and applying
the definition of inverse, one have that the component Si j is the ratio between the
determinant of the minor obtained by eliminating the ith row and the jth columns of
Q. It follows that

εx =
Q2

26 −Q22Q66

∆
σx +

Q12Q66 −Q16Q26

∆
σy +

Q16Q22 −Q12Q26

∆
τxy,

εy =
Q12Q66 −Q16Q26

∆
σx +

Q2
16 −Q11Q66

∆
σy +

Q11Q26 −Q12Q16

∆
τxy,

γxy =
Q16Q22 −Q12Q26

∆
σx +

Q11Q26 −Q12Q16

∆
σy +

Q2
12 −Q11Q22

∆
τxy,

where

∆ =−(Q66Q2
12 −2Q12Q16Q26 +Q22Q2

16 +Q11Q2
26 −Q11Q22Q66).

(2.41)

It can be shown that

E1 =
1

S11
=

∆

Q2
26 −Q22Q66

≡ Eequiv
x , (2.42)

E2 =
1

S22
=

∆

Q2
16 −Q11Q66

≡ Eequiv
y , (2.43)

G12 =
1

S11
=

∆

Q2
12 −Q11Q22

≡ Gequiv
xy , (2.44)

ν21 =−E2S12 =
∆

Q2
16 −Q11Q66

Q12Q66 −Q16Q26

∆
=

Q12Q66 −Q16Q26

Q2
16 −Q11Q66

≡ ν
equiv
yx ,

(2.45)

ν12 =−E1S21 =
∆

Q2
26 −Q22Q66

Q12Q66 −Q16Q26

∆
=

Q12Q66 −Q16Q26

Q2
26 −Q22Q66

≡ ν
equiv
xy ,

(2.46)
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η61 = G12S16 =
∆

Q2
12 −Q11Q22

Q16Q22 −Q12Q26

∆
=

Q16Q22 −Q12Q26

Q2
12 −Q11Q22

≡ η
equiv
zx ,

(2.47)

η62 = G12S26 =
∆

Q2
12 −Q11Q22

Q11Q26 −Q12Q16

∆
=

Q11Q26 −Q12Q16

Q2
12 −Q11Q22

≡ η
equiv
zy .

(2.48)

Likewise, the apparent engineering properties for the shear matrix, can be evaluated
as

G13 =
1

S44
=

∆T

QT22

≡ Gequiv
xz , (2.49)

G23 =
1

S55
=

∆T

QT11

≡ Gequiv
yz , (2.50)

µ13,23 =−G13S45 =
QT22

QT11

, (2.51)

and (2.52)

∆T = QT11QT22 −QT12, (2.53)

where Ex and Ey are the extensional moduli, Gxy, Gxz and Gyz are the shear moduli ,
νxy and vyx the Poisson’s ratios, ηxy,x and ηxy,y are coefficients of mutual influence of
the first and second kind, also known as shear-extension coupling coefficients and
finally µ13,23 is the Chentsov’s coefficient, also referred to as shear-shear coupling.
In Figure 2.17 are reported the equivalent engineering properties of the continuum
layer, in the form of contour plots, for the membrane behavior. The properties are
those of the homogenized model to get rid of the spatial dependency. It can be noted
that the maximum of Ex is given for straight stiffeners oriented at zero while, Ey

and Gxy achieve their maximum for straight stiffeners oriented at ϑ = ±45◦. It is
worth mentioning that the function Ey(ϑ1,ϑ2) would increase monotonically till
ϑ = ±90◦, that is with the stiffeners aligned to the y−axis. However, since the
stiffeners’ orientations are bounded, −45◦ ≤ ϑ ≤ 45◦, Ey exhibits a local maximum.
A superscript ”m” is used to recall that those equivalent engineering properties are
those of the membrane behavior.

In Figure 2.18 are reported the coefficients of mutual influence obtained consid-
ering the membrane behavior of the stiffened plate. It can be noted that both ηm

xy1
and

ηm
xy2

are zero when ϑ1 = −ϑ2, that is the global behavior of the equivalent model
resembles that of an equivalent orthotropic continuum (Q16 = Q26 = 0). It is also
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Fig. 2.17 Normalized engineering properties of the equivalent-continuum-plate with respect
to the angles of orientation of the stiffeners ϑ . The figures show the equivalent membrane
properties of the stiffened plate. Notice that the equivalent Ex, Ey and Gxy have been
normalized respectively with their maximum value.

worth pointing out that ηm
xy2

presents a sort of ellipse centered around zero in which
the coefficient is null. In this case is the averaged (homogenized) coefficient that is
zero, meaning that ηm

xy2
(x,ϑ1,ϑ2) exhibits an anti-symmetry over the plate’s domain.

In Figure 2.19 are depicted the normalized shear coefficients Gxz and Gyz. It
is worth noting that in either cases the maximum is attained for straight stiffeners
oriented at ϑ = ±45◦. A local maximum is obtained for curved stiffeners with
ϑ1 =−ϑ2 =±45◦.
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Fig. 2.18 Coefficients of mutual influence ηxy1 and ηxy2 of the equivalent-continuum-plate
with respect to the angles of orientation of the stiffeners ϑ .
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Fig. 2.19 Normalized engineering properties of the equivalent-continuum-plate with respect
to the angles of orientation of the stiffeners ϑ . The figures show the equivalent shear
properties of the stiffened plate. Notice that the equivalent Gyz and Gxz have been normalized
respectively with their maximum value.

Figure 2.20 illustrates the Chentsov’s coefficient (or shear-shear coupling coeffi-
cient) with respect to the angles of orientation of the stiffeners. In this case, as for
the mutual coefficients, the coefficient is zero for equivalent orthotropic behavior.

In Figure 2.21 are reported the equivalent engineering properties obtained con-
sidering the bending behavior. It is worth noting that the contour plots reported
herein differs with respect to the contour plots reported for the case of membrane
behavior (see Fig. 2.17). The difference is due to the the fact that D66 ̸=

∫
Q66z2dz,
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Fig. 2.20 Chentsov’s (shear-shear coupling) coefficient

as explained above and hence also the equivalent properties are remarkably different
not only in terms of values but also in terms of shapes of the contour.

2.5 Kinematic Equations for First Order Shear De-
formation curved beam

This section aims at identifying the limit of validity of the model presented above.
In view of geometry of the stiffeners considered, which have the mid-line lying on
a plane, herein it is considered a planar curved beam. A more accurate description
of the physics of the problem should considers a 3D curved beam. Nonetheless,
the planar model is yet useful to show that, for a curved beam, the deformations
are coupled and hence writing the kinematic compatibility as in Eq. 2.8 leads to an
inconsistency.

The following kinematic equations are presumed on the basis of the Timoshenko
beam theory (FSDT). The displacement field in the local reference frame is given as

u∗2 = v∗(s),

u∗3 = w∗
0(s)+ y∗ϕ(s),

(2.54)
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Fig. 2.21 Normalized engineering properties of the equivalent-continuum-plate with respect
to the angles of orientation of the stiffeners ϑ . The figures show the equivalent bending
properties of the stiffened plate. Notice that the equivalent Ex, Ey and Gxy have been
normalized respectively with their maximum value.

where v is the transverse displacement, w is the axial displacement and ϕ is the
rotation about the beam axis. The displacement u can be written as

u∗ = v∗(s)n(s)+
[
w∗

0(s)+ yϕ(s)
]
t(s) (2.55)

where n and t the normal and tangent unit vector in s, where s is the curvilinear
abscissa. The derivative of the displacement field with respect to the curvilinear
abscissa s′ is

u∗,ss′ = v∗s′n+ v∗n,s′ +
[
w∗

0 + y∗ϕ
]

s′t +
[
w∗

0 + y∗ϕ
]
t,s′ (2.56)
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Fig. 2.22 Kineamtics of a planar curved beam

Recalling Frenet-Serret formulas

n,s′ =− 1
R− y∗

t, and t,s′ =− 1
R− y∗

n. (2.57)

Eqn. 2.56 becomes

u∗,s′ =
{

v∗s′ +
1

R− y∗
[
w∗

0 + y∗ϕ
]}

n+
{
− 1

R− y∗
v∗+

[
w∗

0 + y∗ϕ
]
,s′

}
t. (2.58)

The deformations are given by

ε =
∂u∗3
∂ s′

=− 1
R− y∗

v∗+w∗
0,s′ + y∗ϕ,s′,

γ =
∂u∗2
∂ s′

+
∂u∗3
∂y∗

= v∗s′ +
1

R− y∗
[
w∗

0 + y∗ϕ
]
+ϕ,

(2.59)

since
∂

∂ s′
=

R
R− y∗

∂

∂ s
, (2.60)

ε =− 1
R− y∗

v∗+
R

R− y∗
[
w∗

0,s + y∗ϕ,s
]
,

γ =
R

R− y∗
v∗s +

1
R− y∗

[
w∗

0 + y∗ϕ
]
+ϕ.

(2.61)
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If the width of the stiffeners is negligible with respect to the radius of curvature R,
i.e. R ≫ y∗ then the compatibility eqns. become

ε =− v∗

R
+w∗

0,s + y∗ϕ,s,

γ =v∗s +
w∗

0
R

+ϕ.

(2.62)

In the limit for R → ∞,
ε =w∗

0,s + y∗ϕ,s,

γ =v∗s +ϕ,
(2.63)

the compatibility equations become in turn those of the straight beam.

As can be seen, for a curved beam, the in plane deformations in Eqns. 2.61
are coupled. Hence, the direct replacement of the generalized deformations of a
straight beam with those of a curved beam leads to an inconsistency, as discussed
by Yang and Kuo [127]. Moreover, Yang and Kuo noted that also the out of plane
deformations are coupled. It follows that the kinematic compatibility as in Eqns.
2.8 cannot be enforced. One should proceed, for example, equating the work done
by a system of external forces on to the curved beam to the work done by the same
system of external forces onto a straight beam and finally deriving the stiffness of
the equivalent continuum layer by imposing the equality among the two systems.
However, Yang and Kuo [127] noted that, for relatively small angle subtended by the
curved beam, the approximation with piece-wise straight but oriented beam leads
to a good approximation. In the next section, based on the work of Yang and Kuo,
we will discuss the validity of having considered the curved stiffeners as piecewise
rectilinear.

2.5.1 Implications of the kinematics of curved beam

In section 2.3 we have conjectured that the curvature of the beam can be neglected
and, based on this assumption, we have enforced the direct compatibility within the
subcell. Here the aim is to ascertain that this assumption holds for the particular
geometry of the stiffeners we have chosen and eventually identify the limit of validity
of the present theory. Substituting Eqn. 2.1 and integrating one have the reference
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stiffeners path is given as

y =

⎧⎨⎩x tanϑ1 if ϑ1 = ϑ2

b
ϑ1−ϑ2

ln
⏐⏐⏐ cosϑ

cosϑ1

⏐⏐⏐ if ϑ1 ̸= ϑ2
. (2.64)

In the following only the of the second equation will be considered 2.64, i.e. the
case ϑ1 ̸= ϑ2. Indeed in the first case the beam would be straight and the radius of
curvature R infinite. For a steering stiffener, the curve path is given by

f (x) =
b

ϑ1 −ϑ2
ln
cosϑ(x)

ϑ1

 . (2.65)

The curvature of a planar curve given in the implicit form y = f (x) is given as:

κ =
∥ f ′′∥(

1+ f ′2
)(3/2)

(2.66)

and since

f ′ =− tan
(
ϑ(x)

)
, f ′′ =−

(ϑ2 −ϑ1)sec2(ϑ(x)
)

b
with some algebraic manipulations one have

κ =
ϑ2−ϑ1

b

(
1+ tan2 ϑ(x)

)
(1+ tan2 ϑ(x))3/2 . (2.67)

Noting the the radius of curvature R = 1/κ , it follows that:

R =
b
√

1+ tan2 ϑ(y)
ϑ2 −ϑ1

. (2.68)

Eq. 2.68 can be used to establish whether effect of the radius of curvature onto the
strains and stresses can be neglected or not.

Yang and Kuo [127] noted that, if the angle subtended by the curved beam β is
less than twenty degree (β < 20◦), the effect of the Jacobian R/(R− y) and of the
radial contribution onto the strains can be neglected and hence, the curved beam
can be approximated by straight but oriented beams. For the particular geometry of
the stiffeners considered herein, following straightforward geometric considerations
exemplified in Figure 2.23, and being c the arc length subtended by the curved
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stiffeners c = βR, the constraint β < 20◦ is equivalent to

b
c
=

|ϑ2 −ϑ1|√
1+ tan2 ϑ(y)

< β (2.69)

where β is expressed in radians. Notice that it has been presumed that b approx-

b
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Fig. 2.23 Geometrical interpretation of the design’s envelope limit

imates the chord subtended by the curve. Based on the observation of Yang and
Kuo [127], Eqn. 2.69 gives in turn the limit of validity of the model derived herein.
Geometrically, the limit can be interpreted as the ratio between the arc length and
the chord subtended by the curved beam. This limit will be evaluated a posteriori in
a dedicated section in this chapter. Eqn. 2.69 leads to the limit envelope reported
in Figure 2.24, where the shaded gray areas represent the region where the geomet-
ric limit is violated and hence, according to the limit identified by Yang and Kuo,
the model error would increase. Looking at the limit envelope reported in Figure
2.24 follows that moderately curved stiffeners, as those synthesized in the work of
Jutte and Stanford [55], can faithfully be described by the model presented herein.
Notwithstanding the above identified envelope, it is also worth mentioning that, in
the following we will consider stiffened plates with a radius of curvature typical
of aeronautic panels (R ≈ 5 · 103mm or more). Indeed, if the radius of curvature
is smaller, the terms −v∗

R and w∗
0

R become of the same order of magnitude as the
other terms in Eqns. 2.62 and cannot be neglected. In that case, the limit envelope
identified previously shrinks.
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Fig. 2.24 Design envelope’s limits for curvilinear beam modeled as a piece-wise straight but
oriented beam. The gray shaded area represent the design zones which violates the geometric
constraint, thus require the stiffeners modeled as curved beam. The red circles represent the
topologies studied for the purpose of verification of the limit envelope.

2.5.2 Equivalent panel density

The equivalent panel density is calculated based on the presumption that the mass is
uniformly distributed within the subcell. The expression of the equivalent density is
then given as

ρequiv =
2nsρsAsLs +ρpabhp

abh
, (2.70)

where Ls is the stiffener’s length and can be written as

Ls =

⎧⎨⎩
b

cosϑ
if ϑ1 = ϑ2

b
ϑ2−ϑ1

log
(

sec(ϑ2)+tan(ϑ2)
sec(ϑ1)+tan(ϑ1)

)
if ϑ1 ̸= ϑ2

substituting Ls with L j one can obtain the equivalent density within the subcell. It is
worth noting that, in thi first case, the panel density is constant over the entire plate’s
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domain while, in the second case, the model yields a variable density over the plate’s
domain.

2.6 Assessment of the equivalent models

In this section, parametric studies are performed to investigate the effect of prominent
parameters onto the equivalent models derived as above. The nature of parametric
analysis requires that some parameters be held constant while the remaining parame-
ters are varied. The results were obtained considering a rectangular flat plate a = 500
mm, b = 800 mm having 5 equally-spaced stiffeners. The plate is simply supported
along the edges, made by Aluminum alloy (E = 73GPa, ν = 0.3, ρ = 2780 kg/m3).
The skin plate thickness is hp = 3mm, the stiffeners dimensions are respectively
hs = 20mm and bs = 3mm and finally the stiffeners’ spacing ds is ds = 100 mm. The
error between the real structural behavior and the predicted behavior is calculate as
follow

ER% =
Xp −Xc

Xc
×100, (2.71)

where Xp is the generic performance obtained with the equivalent model while Xc is
the performance calculated modeling the real stiffened structure. In the following
all the analysis were performed using MSC Patran/Nastran. The equivalent model
where meshed using C-Quad4 elements with a mesh having 5000 elements. The
stiffened structure was instead meshed with a global edge length of 5 mm using
C-Quad 4 elements.

2.6.1 Effect of the curvature

In section 2.5.1, based on the work of Yang and Kuo [127], we conjectured that the
effect of the curvature is negligible when the angle subtended by the curved beam
is less than 20◦. Here the aim is to ascertain such assumption by comparing the
stiffness of the equivalent models against that of the stiffened structure. Particularly,
the assessment is performed comparing the first buckling load and the first frequency
for 8 panels laying over the boundary curves, i.e. on the curves that define the limit
of validity of the present model. All the configurations used herein for the sake of
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comparison are indicated onto the design map (Figure 2.24) and are also depicted
for the interest of clarity (Figure 2.25).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2.25 Example of topologies lying over the boundary curve depicted in Figure 2.24. The
panels are labelled consistently with their representation in the ϑ1-ϑ2 plane in Figure 2.24.

The results pertaining the first buckling load and the first eigenfrequency, for
each of the panels analyzed, are reported respectively in Table 2.1 and Table 2.2. For
the sake of completeness, the results obtained for the real stiffened structures against
those of the two equivalent continuum models, i.e. variable stiffness continuum
model (Eq. V.S.) and constant stiffness constitutive model (Eq. H.), are compared.
The latter comparison being useful to verify whether one can neglect or not the
variability of the properties. It is observed that the mode shapes, either for the
buckling analysis and the modal analysis, assume a particular form which resemble
the orientation of the stiffeners. The variable stiffness continuum model is capable to
represent faithfully such mode asymmetry as shown in Figure 2.26 and in turn gives
a closer estimation of the eigenvalue. On the other hand, the equivalent constant
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Table 2.1 First buckling load [N/mm] of simply supported curvilinearly stiffened panels
subjected to uniaxial compression Nx.

Topology
Stiffened Eq. V.S. ErrR% Eq. H. ErrR%

θ1 θ2

a −45◦ −16.75◦ 291.3 294.8 1.2 355.85 22.2
b −40◦ −14◦ 293.2 300.0 2.3 338.19 15.3
c −30◦ −7◦ 301.9 286.6 -5.1 314.2 3.9
d −20◦ 1.25◦ 278.1 275.2 -1.0 300.84 8.18
e −10◦ 10.25◦ 267.1 270.6 1.3 293.47 9.8
f 0◦ 21.5◦ 272.5 276.5 1.5 302.5 17.6
g 10◦ 34◦ 292.7 293.2 0.2 313.5 7.1
h 16.75◦ 45◦ 296.93 294.9 0.7 355.85 19.8

Table 2.2 First frequencies [Hz] of a simply supported curvilinearly stiffened panels.

Topology
Stiffened Eq. V.S. ErrR% Eq. H. ErrR%

θ1 θ2

a −45◦ −16.75◦ 120.6 120.6 - 126.5 4.7
b −40◦ −14◦ 114.25 115.01 0.7 118.65 3.8
c −30◦ −7◦ 105.7 105.1 -0.5 108.6 2.7
d −20◦ 1.25◦ 101.1 98.0 -3.0 101.7 0.5
e −10◦ 10.25◦ 99.89 95.4 -4.4 98.9 -1
f 0◦ 21.5◦ 101.59 98.8 -2.7 102.5 0.9
g 10◦ 34◦ 103.91 108.78 4.7 112.46 7.6
h 16.75◦ 45◦ 119.98 120.6 0.5 126.5 5.4

model gives rise to an approximation of the eigenvalue and eigenmode which results
in an higher error with respect to the variable stiffness model, as follows looking at
Tables 2.1-2.2 and Figure 2.26. To the author knowledge, the need for modeling a
variable stiffness laminate was already pointed out for AFP composites [50] but not
for curvilinear stiffened structure because of the lack of equivalent continuum model.
It is also worth noting that the two models, in general, overestimate the rigidity of
the structure. The equivalent constant model underestimate the frequencies of the
structure while the variable stiffness model yields, in most of the cases, an higher
frequencies. However, the variable stiffness model in either cases yields a maximum
error within 5% while the EqH model yields a maximum error of 7.6%.
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(a) (b) (c)

Fig. 2.26 Comparison of the buckling modes of a stiffened panel with ϑ1 = −40◦ and
ϑ2 =−14◦. Fig. (a) is the first buckling mode of the stiffened structure, while Fig. (b) and
Fig. (c) are the first buckling mode for the case of variable (EqV S) and constant (EqH)
stiffness respectively.

Figures 2.27 and 2.28 report the eigenvectors obtained with the models adopted
herein for three among the configurations analyzed, for the case of buckling loads
and free vibrations. The eigenvectors reported in Figures 2.27 and 2.28 were obtained
using the EqV S model with 100 subcells. It is worth noting that the eigenvectors
resemble the geometry of the stiffeners and that for the case of ϑ1 = −10◦, ϑ2 =

10.25◦ in either cases, i.e. buckling and free vibrations, the mode shape resemble
that of an orthotropic panel. This serves as further confirmation that when ϑ1 =−ϑ2,
the global behavior of the plate is that of an orthotropic plate.

Despite the limit envelope for curved beam is valid regardless of the thicknesses
of the skin plate and stiffeners, it is worth noting that for sub-stiffeners, i.e. for those
stiffeners having hs ≈ hp is it possible to extend the present procedure to entire set
of orientations, i.e. −45◦ ≤ ϑi ≤ 45◦. For the sake of clarity, let us consider the first
of eqns. 2.38

Ci jM =
2As

i j +Ap
i j

2hs +hp

=
2Qs

i jhs +Qp
i jhp

2hs +hp

=
2Qs

i jhs

hs

(
2+ hp

hs

) +
Qp

i jhp

hs

(
2+ hp

hs

)
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(a) (b) (c)

Fig. 2.27 Comparison of the first buckling mode for different stiffeners topologies, respec-
tively Figure 2.28a ϑ1 = −40◦, ϑ2 = −14◦, Figure 2.28b ϑ1 = −10◦, ϑ2 = −10.25◦ and
Figure 2.28c ϑ1 = 0◦, ϑ2 = 21◦. The figures are obtained considering the variable stiffness
model with 100 subcells. It can be noted that the mode shapes resemble the stiffeners
geometry. For the case reported in Figure 2.28b it can be noted that the mode shape resemble
that of an orthotropic plate.

(a) (b) (c)

Fig. 2.28 Comparison of the first vibration mode for different stiffeners topologies, respec-
tively Figure 2.28a ϑ1 = −40◦, ϑ2 = −14◦, Figure 2.28b ϑ1 = −10◦, ϑ2 = −10.25◦ and
Figure 2.28c ϑ1 = 0◦, ϑ2 = 21◦. The figures are obtained considering the variable stiffness
model with 100 subcells. It can be noted that the mode shapes resemble the stiffeners
geometry. For the case reported in Figure 2.28b it can be noted that the mode shape resemble
that of an orthotropic plate.
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=
2Qs

i j(
2+ hp

hs

) +
Qp

i j
hp
hs(

2+ hp
hs

)

Considering two distinct cases, i.e. hs ≫ hp and hs ≈ hp, one has

Ci jM =

⎧⎨⎩
2Qs

i j
3 +

Qp
i j

3 for hs ≈ hp

Qs
i j

2 +
Qp

i j
hp
hs

2 for hs ≫ hp

. (2.72)

For the case of straight stiffeners oriented at ϑ1 = 0, and considering an isotropic
material for the stiffeners and skin plate, Qs

11 =
Ebs
ds

≪ E
1−ν

= Qp
11 it follows that for

the case of hs ≈ hp the dominant component is due to the skin plate. On the other
hand, when hs ≫ hp, Qs

11 is the dominant component hence the effect of having
neglected the beam curvature into the direct compatibility becomes predominant.
The same conclusion can be drawn considering the expression of Ci jD and Ci jT .
Indeed, the effect is even more relevant if one considers the bending component
because the latter goes with the thickness ratio hp/hs raised to the cube.

Let us consider a rectangular flat plate having the same dimensions of the panels
analyzed previously (a = 500 mm, b = 100 mm, hp = bs = 3 mm) except for the
stiffeners height. In this case we considered the stiffener height hs = 3mm, i.e.
the same as the skin panel thickness. The topology of the stiffeners is taken such
that the radius of curvature is minimum, i.e. ϑ1 = 45, ϑ2 =−45. We compare the
buckling loads of the real structure against those of the variable stiffness model. The
result pertaining this analysis are reported in Table 2.3. For the sake of comparison
we considered the first three buckling loads. The results reported in Table 2.3
demonstrate the following:

• If we consider sub-stiffened structures the equivalent models presented herein
and in Cestino et al [125] are in good agreement and agree also with the resuls
of the stiffned structure.

• If we consider sub-stiffened structures the limit envelope reported in Figure
2.24 is no longer valid therefore the topology of the stiffeners can span all over
the design domain.
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Table 2.3 Buckling loads [N/mm] of a simply supported flat panel with concentric substiffen-
ers.

Mode Stiffened Eq. V.S. ER% Eq. H. ER% Eq. H. [125] ER%

I 40.28 40.11 -0.42 40.77 1.24 40.77 1.24
II 41.76 41.74 -0.05 42.41 1.54 42.77 2.43
III 59.11 58.72 -0.65 59.48 0.63 59.48 0.63

It is worth mentioning that, for the case of stiffened structure with hs = 20 mm and
ϑ1 = 45, ϑ2 =−45, the variable stiffness model yields an error up to 30%.

2.6.2 Effect of the torsional stiffeness

Herein are reported the buckling loads for simply supported panels respectively
neglecting and retaining higher order terms for the torsional stiffness. The two cases
are labelled as ( f .o.) for first order approximation, i.e. Jt = 1/3bsh3

s and h.o. for
higher order approximation, i.e. with 10 terms in the series given in Equation 2.13
The buckling loads retaining and neglecting the torsional stiffness are reported in
Table 2.4. The panel considered herein for comparison is the same as in section 2.6.1.
Without loss in generality, the case of constant stiffness is considered. As can be
seen from Table 2.4, the effect of the higher order terms on the torsional stiffness is
negligible as discussed by [122] and the results obtained with the two methods are
found in good agreement.

2.6.3 Effect of the number of subcells

A parametric study has been performed in order to evaluate the convergence of the
stiffness coefficients to their asymptotic values. We defined the latter as the value
of the stiffness coefficients obtained using 1000 sub-cells. The analysis is limited
to stiffened panels however the same conclusion can be drawn for sub-stiffened
panels. Without loss of generality, the comparison are made considering the bending
coefficients Di j for the case of constant stiffened model.

In Figure 2.30 are reported the non-dimensional bending coefficients d̂i j for
two stiffened panels. The curve are drawn with respect to the number of sub-cells,
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(a) (b) (c)

(d) (e) (f)

Fig. 2.29 Comparison of the buckling modes of a substiffened panel with ϑ1 = 45◦ and
ϑ2 =−45◦. Figures 2.29a-2.29c are the first three buckling modes for the stiffened structure.
Figures 2.29d-2.29f are the buckling modes for the case of variable stiffened properties
derived using 100 sub-cells.
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Table 2.4 Comparison of the first buckling loads of simply supported curvilinearly stiffened
panels with and without higher order terms for the torsional stiffness

Topology Buckling
θ1 θ2 f.o. h.o.

a −45◦ −16.75◦ 371.0 355.85
b −40◦ −14◦ 341.6 338.19
c −30◦ −7◦ 311.5 314.2
d −20◦ 1.25◦ 294.5 300.84
e −10◦ 10.25◦ 286.5 293.47
f 0◦ 21.5◦ 295.8 302.5
g 10◦ 34◦ 325.5 313.5
h 16.75◦ 45◦ 371.0 355.85

aiming at showing the number of sub-cells necessary to reach the convergence of the
stiffness coefficients. The normalized coefficients are obtained by dividing each of
the coefficients with its own asymptotic value, i.e. d̂i j = Di j(ncell)/Dasy

i j . As shown
in Figure 2.30, the stiffness coefficients require few sub-divisions to converge to the
asymptotic value. Depending on the topology of the stiffeners, some of the stiffness
coefficients may converge faster than the other. In general, is not possible to draw an
rule of thumb except for D11, which indeed converges faster. However, despite the
fast convergence it is advisable to increase the number of subcells to get an accurate
estimation of the variable stiffness properties.

2.6.4 Effect of the transverse shear

In the previous section we have seen that the energy equivalence method gives rise
to the stiffness matrices of the equivalent continuum plate. In particular, being the
stiffeners in the concentric configuration, the membrane-bending coupling matrix
[B] is zero. Moreover, it has been shown that the properties of the equivalent
continuum material may differ to a great extend according to the particular topology
of the stiffeners considered. Here the aim is to investigate whether the effect of the
transverse shear can be neglected or not according to the topology of the stiffeners
that one have. The investigation presented herein is limited to rectangular panels
having the same dimension as discussed above, i.e. a = 500 mm, b = 800 mm,
hs = 20, hp = bS = 3 mm and ns = 5. Both the panel and the stiffeners are made by
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Fig. 2.30 Effect of the number of subcell on the normalized bending coefficients d̂i j for two
stiffened panels having (a) ϑ1 = 0◦, ϑ2 = 10◦ and, (b) ϑ1 =−45◦, ϑ2 =−20◦ .
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Aluminum alloy. As a rule of thumb, is known that for plates with span-to-thickness
ratio below 15 the effect of the transverse shear increase and cannot be neglected.
However, this rule of thumb may differ according to the nondimensional ratio of
the material’s moduli. Herein we aim at verify whether the effect of the transverse
shear is negligible or not according to the topology of the stiffeners, or equivalently
according to the effective engineering properties of the equivalent material.

The effect of the transverse shear onto the buckling loads is considered through
a parametric study. Particularly, the buckling loads obtained accounting for the
transverse shear are compared against those obtained neglecting the effect of the latter.
The parametric analysis is performed by varying the orientation of the stiffeners
within the design space ϑ1, ϑ2 and allows the representation of an error map, being
the latter the contour plot of the relative percentage error. The buckling loads were
computed by means of FEA.

Despite limited to one plate with fixed aspect ratio b/a = 1.6 and with span-
to-thickness ratio b/h ≈ 19 and a/h ≈ 12 respectively, the analysis shows some
interesting trends that is worth to discuss. As expected, the error committed ne-
glecting the shear stress depends on the topology of the stiffeners and to the relative
equivalent properties. Particularly it is seen that, in the region −15◦ ≤ (ϑ1,ϑ2)≤ 15◦

the error is minimum. This can be explained looking at the shear-shear coupling (or
Chentsov’s) coefficient and at the mutual coefficients (Figure 2.18). Contrary, when
the Chentsov’s coefficient reaches is maximum, the maximum error is obtained when
the effect of the transverse shear is neglected. However the maximum error obtained
is of the order of 1% as shown in Figure 2.31. In Figure 2.31 is indeed reported the
contour plots of the error between the model with shear matrix retained and omitted.
The contour plots are drawn over the design envelope obtained as in section 2.5.1.
The shaded gray areas are the design zone which violates the assumption for the
Jacobian R/(R− y) to be neglected (see Figure 2.24).

In order to explain why the transverse shear can be neglected is worth deriving
the non-dimensional form of the equations for the Reissner-Mindlin plate. Let us
consider the constitutive equations for the Reissner-Mindlin plate

Nx =A11εxx +A12εyy +A16γxy, (2.73a)

Ny =A21εxx +A22εyy +A26γxy, (2.73b)

Nxy =A61εxx +A62εyy +A66γxy, (2.73c)

Qx =A44γxz +A45γyz, (2.73d)
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Fig. 2.31 Contour plot of the relative percentage error between the buckling loads obtained
retaining and neglecting the effect of the transverse shear.

Qy =A54γxz +A55γyz, (2.73e)

Mx =D11κxx +D12κyy +D16κxy, (2.73f)

My =D21κxx +D22κyy +D26κxy, (2.73g)

Mxy =D61κxx +D62κyy +D66κxy. (2.73h)

The equilibrium eqns. can be written as

Nx,x +Nxy,y = 0, (2.74a)

Nxy,x +Ny,y = 0, (2.74b)

Qx,x +Qy,y + q̄z = 0, (2.74c)

Mx,x +Mxy,y −Qx = 0, (2.74d)

Mxy,x +My,y −Qy = 0. (2.74e)

Now replacing eqns. in 2.73 in eqns. in 2.74 one have:

(A11εxx +A12εyy +A16γxy),x +(A61εxx +A62εyy +A66γxy),y = 0, (2.75a)
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(A61εxx +A62εyy +A66γxy),x +(A21εxx +A22εyy +A26γxy),x = 0, (2.75b)

(A44γxz +A45γyz),x +(A54γxz +A55γyz),y + q̄z = 0, (2.75c)

(D11κxx +D12κyy +D16κxy),x +(D61κxx +D62κyy +D66κxy),y − [A44γxz +A45γyz] = 0, (2.75d)

(D61κxx +D62κyy +D66κxy),x +(D21κxx +D22κyy +D26κxy),y − [A54γxz +A55γyz] = 0. (2.75e)

Rewriting the expression in terms of the displacements, taking the derivatives, and
defining:

u = ūh, v = v̄h, w = w̄h, (·),x =
1
a
(·),ξ , (·),y =

1
b
(·),η ,

A11u(0),xx +A12v(0),yx +A16

(
u(0),yx + v(0),xx

)
+A61u(0),xy +A62v(0),yy +A66

(
u(0),yy + v(0),xy

)
= 0, (2.76a)

A61u(0),xx +A62v(0),yx +A66

(
u(0),yx + v(0),xx

)
+A21u(0),xy +A22v(0),yy +A26

(
u(0),yy + v(0),xy

)
= 0l (2.76b)

A44

(
ψx,x +w(0)

,xx

)
+A45

(
ψy,x +w(0)

,yx

)
+A54

(
ψx,x +w(0)

,xy

)
+A55

(
ψy,y +w(0)

,yy

)
+ q̄z = 0, (2.76c)

D11ψx,xx +D12ψy,yx +D16 (ψx,yx +ψy,xx)+D61ψx,xy +D62ψy,yy +D66 (ψx,yy +ψy,xy)

−A44

(
ψx +w(0)

,x

)
−A45

(
ψy +w(0)

,y

)
= 0,

(2.76d)

D61ψx,xx +D62ψy,yx +D66 (ψx,yx +ψy,xx)+D21ψx,xy +D22ψy,yy +D26 (ψx,yy +ψy,xy)

−A54

(
ψx +w(0)

,x

)
−A55

(
ψy +w(0)

,y

)
= 0.

(2.76e)

Defining:

u = ūh, v = v̄h, w = w̄h, (·),x =
1
a
(·),ξ (·),y =

1
b
(·),η .

The set of Eqns 2.74 can be finally written in the non-dimensional form as follow

ū(0)
,ξ ξ

h
a2 +

A12

A11
v̄(0)
,ηξ

h
ab

+
A16

A11

(
ū(0)
,ηξ

h
ab

+ v̄(0)
,ξ ξ

h
a2

)
+

A61

A11
ū(0)
,ξ η

h
ab

+
A62

A11
v̄(0),ηη

h
b2

+
A66

A11

(
ū(0),ηη

h
a2 + v̄(0)

,ξ η

h
ab

)
= 0,

(2.77a)

A61

A11
ū(0)
,ξ ξ

h
a2 +

A62

A11
v̄(0)
,ηξ

h
ab

+
A66

A11

(
ū(0)
,ηξ

h
ab

+ v̄(0)
,ξ ξ

h
a2

)
+

A21

A11
ū(0)
,ξ η

h
ab

+
A22

A11
v̄(0),ηη

h
b2

+
A26

A11

(
ū(0),ηη

h
b2 + v̄(0)

,ξ η

h
ab

)
= 0,

(2.77b)

(
ψξ ,ξ

1
a
+ w̄(0)

,ξ ξ

h
a2

)
+

A45

A44

(
ψη ,ξ

1
a
+ w̄(0)

,ηξ

h
ab

)
+

A45

A44

(
ψξ ,ξ

1
a
+ w̄(0)

,ξ η

h
ab

)
+

A55

A44

(
ψη ,η

1
b
+ w̄(0)

,ηη

h
b2

)
+ q̄z = 0,

(2.77c)
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ψξ ,ξ ξ

1
a2 +

D12

D11
ψη ,ηξ

1
ab

+
D16

D11

(
ψξ ,ηξ

1
ab

+ψη ,ξ ξ

1
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+
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D11
ψξ ,ξ η

1
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D62

D11
ψη ,ηη

1
b2 +

D66
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(
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)
− A45

D11

(
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)
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(2.77d)

D61

D11
ψξ ,ξ ξ

1
a2 +

D62

D11
ψη ,ηξ

1
ab

+
D66

D11

(
ψξ ,ηξ

1
ab

+ψη ,ξ ξ

1
a2

)
+

D21

D11
ψξ ,ξ η

1
ab

+
D22

D11
ψη ,ηη

1
b2 +

D26

D11

(
ψξ ,ηη

1
b2 +ψη ,ξ η

1
ab

)
− A45

D11

(
ψξ + w̄(0)

,ξ

h
a

)
− A55

D11

(
ψη + w̄(0)

,η
1
b

)
= 0.

(2.77e)

From the Eqns. 2.77, follows that the effect of the transverse shear for the cases
analyzed herein can be neglected. Indeed, the apparent engineering properties of the
bending material, and thus the bending stiffness coefficients, are at least one order
of magnitude smaller than that of the shear matrix. Under these circumstances, γxz

and γyz are small compared with the other strains and can be neglected. After some
algebraic manipulation, omitted for the sake of brevity, is possible recover, from
Eqns. 2.77 those of the Kirchhoff-Love plate theory.

2.6.5 Effect of the panel density

In section 2.5.2 we have defined two equivalent density models namely, constant
density and variable density. Herein we aim at showing the difference between the
two models comparing the first natural frequency of the panels with variable density
against those obtained with the constant density. The panels selected for the present
analysis are the same considered in section 2.5. It is worth mentioning that the
results reported in Table 2.2 were obtained considering the variable density model.
Moreover, in either cases herein considered, we use the variable stiffness model.
From Table 2.5 follows that the two models are in good agreement and hence the
effect of the density variability can be neglected.
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Table 2.5 Effect of the density’s model adopted for free vibrations of simply supported plates.

Topology Frequency [Hz]
θ1 θ2 Variable density Constant density

a −45◦ −16.75◦ 120.6 122.05
b −40◦ −14◦ 115.01 116.49
c −30◦ −7◦ 105.1 106.47
d −20◦ 1.25◦ 98.0 99.40
e −10◦ 10.25◦ 95.4 96.82
f 0◦ 21.5◦ 98.8 100.18
g 10◦ 34◦ 108.78 110.27
h 16.75◦ 45◦ 120.6 122.6

2.7 Case studies

In this section are evaluated the buckling loads and frequencies of simply supported
square panels a = b = 500 mm. In all the cases investigated herein, the constituent
material for the panel and the stiffeners is an Aluminum alloy with Young modulus
E = 73 GPa, Poisson’s ratio ν = 0.3 and density ρ = 2780 kg/m3. In all the cases
analyzed in this section the effect of the transverse shear is retained.

2.7.1 Concentric panel with one family of stiffeners

Consider a stiffened panel having hs = 21.5 mm, hp = bs = 3 mm subjected to
uniaxial compression. The number of stiffeners is ns = 8. The orientation of the
stiffener are: ϑ1 = 0◦, ϑ2 = 10◦. The first three buckling loads are given in Table 2.6
while the frequencies are listed in Table 2.7. The buckling loads and frequencies of
the stiffened structure are compared against those of the variable stiffness equivalent
continuum (Eq.V.S.) model and the constant stiffness model (Eq.H.). In Figure
2.32 is illustrated a 3D view of the first buckling mode of the stiffened structure
obtained from the FEA. In Figure 2.33 are reported the modes relative to the first
three eigenvalues for the case of the stiffened structure and the equivalent model
with variable stiffness. It can be seen that the mode shapes between the two models
agree and thus also the eigenvalue are found in good agreement.
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Fig. 2.32 First buckling mode of a steering stiffened panel with ϑ1 = 0◦, ϑ2 = 10◦.

Table 2.6 Buckling loads for a simply supported, square panel, reinforced with concentric
curvilinear stiffened ϑ1 = 0◦, ϑ2 = 10◦.

# Mode Stiffened Eq V.S. ErrR% EqH ErrR%

1 1106.7 1117.3 0.96 947.8 -14.3
2 1264.2 1273.6 0.74 1156.5 -8.53
3 1773.6 1795.4 1.23 1568.0 -11.59

Table 2.7 Natural frequencies for a simply supported, square panel, reinforced with concentric
curvilinear stiffened ϑ1 = 0◦, ϑ2 = 10◦.

# Mode Stiffened Eq V.S. ErrR% EqH ErrR%

1 300.9 302.1 0.4 292.5 -2.8
2 350.2 350.7 0.14 430.7 23
3 507.8 509.3 0.3 614.4 21

2.7.2 Buckling and free-vibrations of concentric grid stiffened
panel

Let us consider a grid stiffened panel having the following dimensions a = b =

500mm, hs = 21.5mm, hp = bs = 3mm. The panel is made with an Aluminum Alloy
having the same properties listed above. The panel is simply supported along the
edges and it is subjected to uniaxial compression. The orientation of the stiffener are:
ϑ1 = 0◦, ϑ2 = 10◦ and ϑ3 = ϑ4 = 0◦. An exemplification of the panel is depicted in
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(a) (b) (c)

(d) (e) (f)

Fig. 2.33 Comparison of the bending modes of a stiffened panel with ϑ1 = 0◦ and ϑ2 = 10◦.
Figures 2.33a-2.33c are the first three modes for the stiffened structure. Figures 2.33d-2.33f
are the modes for the case of variable stiffened properties derived using 100 sub-cells.
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Fig. 2.34 Example of the orientation angles for a grid stiffened panel

Figure 2.34 The panels has 8 equally spaced stiffeners along the x direction, with
ds = 62.5mm and 4 along the y direction with ds = 125mm. The first buckling load
and natural frequencies are given in Table 2.8. The buckling loads and frequencies of
the stiffened structure are compared against those of the variable stiffness equivalent
continuum model and the constant stiffness model. In this case the stiffnesses of the
equivalent layers are obtained separately for each families of the stiffeners and then
summed to give rise to the stiffness of the equivalent layer.

Table 2.8 First buckling load and first natural frequencies for a simply supported, square
panel, reinforced with grid stiffeners.

# Mode Stiffened Eq V.S. ErrR% EqH ErrR%

Buckling 1716.0 1715.9 - 292.5 -2.8
Frequency 304.6 307.9 1.1 430.7 23
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2.8 Summary and conclusions

In this chapter the equivalent continuum properties of curvilinear stiffened panel
were derived. The equivalent models were derived enforcing the direct compatibility
in the sub-cell and smearing the strain energy density into the repetitive element.
The two models have been assessed through comparative studies via FEA. It is
shown that the two models derived are in good agreement with the results obtained
via FEA. Particularly, the variable stiffness model is more accurate to represent
a curvilinear stiffened structure. The derivation has been extended to derive the
apparent engineering properties of the equivalent layer. The effect of the prominent
parameters has been studied; it is discussed that the curvature give rise to a limit
of validity of the present model. For the case of substiffeners, the limit can be
ignored and model is valid to represent all the design space 45◦ ≤ ϑ1,2 ≤ 45◦. It
has been investigated the effect of the torsional stiffness onto the buckling loads of
the panels. The results shows that the higher order terms in the expression of the
torsional stiffness can be neglected, as discussed by [122]. It is demonstrated that
the effect of transverse shear can be neglected since the equivalent transverse shear
moduli are, in general, an order of magnitude larger that that of the bending. It is
shown that the model converge to the asymptotic values of the stiffnesses with few
subdivisions. However, having noted that the variable stiffness model is more reliable,
it is advisable have an higher number of subdivision to obtain a good approximation
of such stiffness variablity. It has been shown that the stiffness matrices for a grid
structure can be obtained by superposition. Namely, summing the contribution of the
two families of stiffeners after a proper rotation, necessary to dispose the stiffeners
as they are in the grid structure.



Chapter 3

Beam model

3.1 Motivation

This chapter is devoted to the derivation of the equations of motion of a box-beam
made by an arrangement of stiffened and unstiffened panels. As already highlighted
in Chapter 1, the idealized models used during preliminary design have a prominent
effect on the final system. Indeed, outcomes they provide may influence considerably
the entire life-cycle costs [37]. These models represent the physics of the problem,
using a minimum number of degrees of freedom and number of design variables,
rendering the models to have low fidelity that can qualitatively predict the system’s
behavior. Material and functional requirements have to be considered with great care
within the preliminary design stages since, erroneous assumptions and/or improper
material choices can lead to unrealistic responses and ultimately waste of resources.

The model derived in this chapter expand the current body of research in that
it introduces variable stiffness beam and certain couplings which arise from the
particular arrangement of the panels that one can have. The derivation is extended
up to second order nonlinear terms for non-planar, flexural-flexural-torsional motion.

While the need of having a variable stiffness beam has been already pointed-out
in the previous chapter, where the equivalent properties of generally stiffened flat
panels were derived to a different extend, it is worthwhile to emphasize the need of
nonlinearities. According to the definition given in [128], linear structural mechanics
relies on the following ansatz:
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1. The displacements/rotations are small with respect to a characteristic length of
the structure.

2. The strains are infinitesimal.

3. The equilibrium equations are given in the undeformed configuration,

4. The prescribed boundary conditions are linear in the generalized displacement
and/or stress resultant.

5. The material is Hookean, i.e. the strain-stress relation is linear.

When one of more of the hypothesis listed above contravene, the linear theory would
give erroneous qualitative and quantitative predictions. A suitable example is given
by the reduction of modal frequencies of beam members when subjected to large
displacements/rotations. In this case, to get an accurate estimation of the frequencies,
the equations of motion should be written in the deformed configuration and the
frequencies determined for example solving the associated linear eigenvalue problem,
i.e. linearized around the deformed state [22, 23, 43, 45]. The related structural
problem is referred to as geometrically nonlinear problem. Structures may suffer of
other limit states usually referred to as physical or material nonlinearity.

Provided that real engineering structures rarely exhibit a nonlinearity of one type
uncoupled from the nonlinearity of the other type, it is undoubtedly true that, for
a variety of problems of technical interest, material behavior is well described by
linear elastic constitutive laws. The derivation presented in this chapter falls within
this class of nonlinear problems, i.e. geometrically nonlinear problems where linear
elastic constitutive laws hold.

The nonlinear equations of motion presented in the following are derived by
means of the extended Hamiltonian principle and are amenable for perturbation
and numerical methods. A comparison of the present set of equations against those
already presented in the open literature is provided.

3.2 Assumptions on the cross sectional properties

The beam cross sectional properties are derived according to the model presented
by Berdichevsky and Armanios [129, 130], and consistently with the assumptions
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considered by Cestino et al. [64]. For the sake of simplicity, a single cell, closed cross
section anisotropic structure is considered. In the interest of clarity the assumptions
to derive the cross sectional properties are herein summarized below:

1. The transverse shear effects are neglected consistent with the assumption of
modeling high aspect ratio wing.

2. Assume free warping, the bimoment effect and resultant hoop stresses are
neglected.

3. The shear flow Nxs is considered constant according to the Batho-Bredt theory.

4. The strains are presumed small and hence the linear elasticity theory is applied.

Being the box beam made by an arrangement of stiffened and unstiffened panels, as
shown in Figure 3.1, the derivation of the cross sectional properties starts by writing
the reduced stiffness matrix, as in [129, 130], namely⎧⎪⎪⎪⎨⎪⎪⎪⎩

Nxx

Nxs

Mxx

Mxs

⎫⎪⎪⎪⎬⎪⎪⎪⎭=

⎡⎢⎢⎢⎣
A∗

11 A∗
16 B∗

11 B∗
16

A∗
16 A∗

66 B∗
16 B∗

66

B∗
11 B∗

16 D∗
11 D∗

16

B∗
16 B∗

66 D∗
16 D∗

66

⎤⎥⎥⎥⎦ , (3.1)

where the expression of the reduced matrix are given as follow

A∗
11 = A11 −

A2
12

A22
, A∗

16 = A16 −
A12A26

A22
, A∗

66 = A66 −
A2

26
A22

, (3.2a)

B∗
11 = B11 −

B2
12

B22
, B∗

16 = B16 −
B12B26

B22
, B∗

66 = B66 −
B2

26
B22

, (3.2b)

D∗
11 = D11 −

D2
12

D22
, D∗

16 = D16 −
D12D26

D22
, D∗

66 = D66 −
D2

26
D22

. (3.2c)

It is worth noting that in the following analysis the effect of membrane-bending
coupling will be neglected. The latter is a direct consequence of having consid-
ered concentric stiffened panels. Next, relating the axial and shear stresses to the
constitutive equations it is possible to derive the beam stiffnesses in the global
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Fig. 3.1 Exemplification of the generic cross section for the CAS configuration and its
reference system (a) and example of the beam cross section considered in this work

reference ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Fx

Mx

My

Mz

⎫⎪⎪⎪⎬⎪⎪⎪⎭=

⎡⎢⎢⎢⎣
C00 C01 C02 C03

C10 C11 C12 C13

C20 C21 C22 C23

C30 C31 C32 C33

⎤⎥⎥⎥⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ex

ρx

ρy

ρz

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.3)

where ex is the elongation of the beam and ρi are the curvatures.

In the following analysis the effect of the elongation of the beam as well as
the lag-torsion coupling C13 and the flap-lag coupling C23 are neglected. Only the
flap-torsion coupling C12 is retained. This assumption derives from the particular
arrangement of the panels chosen. Indeed it has been chosen to have upper and lower
panel stiffened while the aft and fore panels are unstiffened, which is a common
configuration for aeronautical box-beam. In view of this assumption, the Eqn. 3.3
assumes the following form⎧⎪⎨⎪⎩

Mx

My

Mz

⎫⎪⎬⎪⎭=

⎡⎢⎣C11 C12 0
C21 C22 0
0 0 C33

⎤⎥⎦
⎧⎪⎨⎪⎩

ρx

ρy

ρz

⎫⎪⎬⎪⎭ . (3.4)
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By letting C11 = GJt , C12 = kwϕ , C22 = EI2 and C33 = EI3, one has⎧⎪⎨⎪⎩
M1

M2

M3

⎫⎪⎬⎪⎭=

⎡⎢⎣GJt Kϕw 0
Kwϕ EI2 0

0 0 EI3

⎤⎥⎦
⎧⎪⎨⎪⎩

ρx

ρy

ρz

⎫⎪⎬⎪⎭ (3.5)

where Kϕw = Kwϕ and for the isotropic case Kϕw = Kwϕ = 0. Being Kϕw the only
coupling term hereafter considered, we will refer to it as K.

The circumferentially asymmetric stiffness coefficients are given as follow

GJt =
4Ω2∮

1/A∗
66ds

+4
∮

D∗
66ds, (3.6a)

K = 2Ω

∮ (
A∗

16/A∗
66
)

zds∮
1/A∗

66
ds−2

∮
D∗

16

(
dy
ds

)
ds, (3.6b)

EI2 =
∮

z2
(

A∗
11 −

A∗2
16

A∗
66

)
ds+

[∮
A∗

16/A∗
66zds

]2∮
1/A∗

66ds
+
∮

D∗
11

(
dy
ds

)2

ds, (3.6c)

EI3 =
∮

y2
(

A∗
11 −

A∗2
16

A∗
66

)
ds+

[∮
A∗

16/A∗
66yds

]2∮
1/A∗

66ds
+
∮

D∗
11

(
dz
ds

)2

ds. (3.6d)

The expressions in Eqn. 3.3 can be written in matrix form as

{M}=
(
[C]+ [C̃]

)
{ρ} (3.7)

where [C] is the CAS matrix consistent with the membrane approach as in [131–133],
while [C̃] considers the bending stiffness effect as in [125].

3.2.1 Effect of the stiffeners orientation on to the effective beam
properties

Let us consider the stiffened box-beam represented in Figure 3.2. In the interest of
clarity all the geometry parameters are listed in Table 3.1. For the sake of simplicity,
herein are reported the effective beam properties for the case in which the stiffeners
orientation are assigned at the root and the tip of the beam. Therefore, the orientation
in any point of the beam can be determined using the Eqn. 2.1.
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Fig. 3.2 Exemplification of the box-beam cross section.

Table 3.1 Geometric features of the wing box under study.

Stiffeners’ width bs 3 mm
Stiffeners’ spacing ds 10 mm
Stiffeners’ height hs 4 mm
Number of stiffeners ns 6
Plate’s skin thickness hp 2 mm
Beam’s length L 1100 mm
Spar caps length Lw 20 mm
Spar height hw 40 mm
Spar’s thickness tw 2 mm

In Figures 3.3-3.6 are reported the effective beam properties GJt ,K,EI2,EI3 with
respect to the angles of orientation of the stiffeners ϑ1,ϑ2. It is worth noticing that the
equivalent beam properties can be expressed, in general, as Ci j =Ci j(ϑ1,ϑ2,x). In
the following, for the sake of simplicity, we will consider the case of the homogenized
properties C̄i j therefore eliminating the spatial dependency. The aim here is to give
an estimate of the possible values that the equivalent beam stiffnesses can assume
at different angles. It is also worth mentioning that, in this case, we considered
sub-stiffened panels (hs ≈ hp) therefore, the allowable orientations for the stiffeners
span the entire domain −45◦ ≤ ϑi ≤ 45◦. All the stiffnesses reported in the following
have been nondimensionalized with respect to their maximum value.
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Figure 3.3 reports the normalized torsional stiffness with respect to the angle of
orientations of the stiffeners. It can be noted that, the maximum torsional stiffness
corresponds to the case of straight stiffeners oriented at ϑ1 = ϑ2 =±45◦. The beam
exhibits a local maximum when ϑ1 = −ϑ2 = 45◦ (or equivalently ϑ1 = −ϑ2 =

−45◦), in this case GJt ≈ 0.974, that is 2.6% reduction with respect to the maximum
attainable value. The minimum of the torsional stiffness (GJt ≈ 0.836) is obtained
in the case of straight stiffeners oriented at zero.
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Fig. 3.3 Normalized envelope for the torsional stiffness GJt . The stiffness is normlized with
the maximum attainable value.

Figure 3.4 illustrates the normalized coupling coefficient K̄ with respect to the
stiffeners’ orientations. The maximum coupling coefficient is given when ϑ1 = ϑ2 =

±27.5◦. It is worth noticing that, for the case of equivalent orthotropic plate, i.e.
when ϑ1 =−ϑ2, the coupling coefficient is zero. Indeed, from a cursory inspection
of the second of eqns 3.6 one have K ∝ (A∗

16,D
∗
16) which are both zero for the case

of equivalent orthotropic plate (see Eqns. 3.2).

In Fig. 3.5 is depicted the normalized envelope for the bending stiffness EI2 with
respect to the stiffeners’ orientations. In this case the maximum is achieved for ϑ1 =
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ϑ2 = 0◦. The minimum bending coefficient is reached for straight stiffeners oriented
at ϑ1 = ϑ2 =±45, EI2 ≈ 0.712. Another minimum is observed for the orthotropic
solution when ϑ1 =−ϑ2 =±45◦, here the normalized bending coefficient is EI2 ≈
0.893.

In Fig. 3.6 is depicted the normalized envelope for the bending stiffness EI2 with
respect to the stiffeners’ orientations. In this case the maximum is achieved for ϑ1 =

ϑ2 = 0◦. The minimum bending coefficient is reached for straight stiffeners oriented
at ϑ1 = ϑ2 =±45, EI2 ≈ 0.712. Another minimum is observed for the orthotropic
solution when ϑ1 =−ϑ2 =±45◦, here the normalized bending coefficient is EI2 ≈
0.893.

Figure 3.7 shows the attainable effective beam stiffnesses when ϑ2 varies within
the entire range of possible orientations while ϑ1 is changed parametrically.

Figure 3.8 illustrates the variation of the effective beam stiffnesses with respect
to the beam abscissa x when the upper and lower panels have curved stiffeners with
ϑ1 = 0◦,ϑ2 = 25◦; all the others geometric parameters for the unitized beam are
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listed in Table 5.9. The solid lines are the variable stiffness properties while the
dashed lines are for the homogenized beam stiffnesses.

Aiming at deriving the closed form equations for the cross sectional stiffnesses,
an interpolation method is used. Denoting with Ci j the generic stiffness coefficient,
the interpolant is given as follow

Ci j =
n

∑
k=0

aki jx
n (3.8)

Matlab®polyfit and polyval functions were used to find the coefficients aki j .

3.3 Basic assumptions for the beam model

Let us consider an initially straight beam and define two coordinate systems, the
Cartesian coordinate system xyz, which is used to represent the undeformed configu-
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ration, and the orthogonal curvilinear coordinate system 123 which represents the
deformed configuration. The latter is taken to be principal axes of the beam’s cross
section at the curvilinear abscissa s. Let ix, iy, iz and i1, i2, i3 denote respectively
the unit vectors of the two coordinate systems mentioned above. Moreover, let
u(s, t), v(s, t), w(s, t) be the component of the elastic displacements, with respect
to the centroid C at an arbitrary abscissa s, as shown in Figure 3.9. In absence of
warping, it is reasonable to assume that the motion of the differential beam element
can be described using three traslations and three rotations. Three consecutive Euler
angle rotations can be used to describe the orientations of the centroidal axes 123
with respect to the inertial axis xyz. Crespo Da Silva and Glynn [134], showed
that the sequence ψ(s, t) about iz, ϑ(s, t) about iy1 , ϕ(s, t) about i1 leads to a set of
differential equations suitable to a perturbation method. For the sake of clarity, the
sequence of rotations is shown in Figure 3.10.
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Fig. 3.9 Coordinate systems used in the present derivation.
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Fig. 3.10 Exemplification of the three successive counterclockwise rotations defined to align
the inertial system to the deformed system.

The undeformed and deformed reference system are interrelated by the following
transformation matrix

[T ] =

⎡⎢⎣cosϑ cosψ cosϑ sinψ cosϕ + sinϑ sinϕ cosϑ sinψ sinϕ − sinϑ cosϕ

−sinψ cosψ cosϕ cosψ sinϕ

sinϑ cosψ sinϑ sinψ cosϕ − cosϑ sinϕ sinϑ sinψ sinϕ + cosϑ cosϕ

⎤⎥⎦ . (3.9)

By letting dots denote the time derivative, the angular velocity ω of the centroidal
frame with respect to the inertial frame can be written as

ω(s, t) = ψ̇iz + ϑ̇ iy1 + ϕ̇i1
= (ϕ̇ − ψ̇ sinϑ) i1 +

(
ψ̇ cosϑ sinϕ + ϑ̇ cosϕ

)
i2

+
(
ψ̇ cosϑ cosϕ − ϑ̇ sinϕ

)
i3.

(3.10)

By virtue of the Love’s kinetic analogy, the components of the curvature ρ1 , ρ2 and
ρ3 can be readily obtained replacing the time derivatives with spatial derivatives in
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equation 3.10. The component of the curvature’s vector are given as follow

ρ(s, t) = ψ
′iz +ϑ

′iy1 +ϕ
′i1

=
(
ϕ
′−ψ

′ sinϑ
)

i1 +
(
ψ

′ cosϑ sinϕ +ϑ
′ cosϕ

)
i2

+
(
ψ

′ cosϑ cosϕ −ϑ
′ sinϕ

)
i3 =

= ρ1i1 +ρ2i2 +ρ3i3

(3.11)

where prime denotes the partial derivative with respect to the curvilinear abscissa s.

A total of six generalized displacements have been introduced namely, three
traslations (u,v,w) and three rotations (ψ,ϑ ,ϕ). In the successive derivation, the
extension of the neutral axis, the shear deformation and the warping of the cross
section are neglected. If the above assumptions hold, only three of the six generalized
displacements are independent, since three equations of constraint are introduced.
The inextensibility constraint can be written as:(

1+u′
)2

+ v′
2
+w′2 = 1. (3.12)

From Figure 3.10 follows that the angles ψ(s, t) and ϑ(s, t) can be rewritten as a
function of the derivatives of u(s, t), v(s, t), w(s, t) as

tanψ =
v′

1+u′
, (3.13a)

tanϑ =− w′√
(1+u′)2 + v′

. (3.13b)

The differential equation of motion derived in the following will involve only three in-
dependent variables, namely the flap-wise displacement w(s, t), the lag displacement
v(s, t) and rotation about the curvilinear abscissa ϕ(s, t).

In order to derive the equations of motion in terms of u(s, t), v(s, t), w(s, t), taking
into account the equations of constraint, it is proven being convenient eliminate the
virtual variation δψ(s, t) and δϑ(s, t) from the Lagrangian, as in [134]. Taking the
variation of ψ(s, t) and ϑ(s, t) one has

δψ =
∂ψ

∂u′
δu′+

∂ψ

∂v′
δv′ =−v′δu′+(1+u′)δv′

(1+u′)2 + v′2
, (3.14a)

δϑ =
∂ϑ

∂u′
δu′+

∂ϑ

∂v′
δv′+

∂ϑ

∂w′ δw′ =
w′ [(1+u′)δu′+ v′δv′]−

(
(1+u′)2 + v′

2
)

δw′(
(1+u′)2 + v′2

)1/2 . (3.14b)
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The variation of the curvatures are given as in Pai [135]. Applying a Taylor series
expansion up to order two to the coefficients of the transformation matrix [T ] yields

T31 =−w′, T21 =−v′, (3.15a)

T32 =−ϕ, T22 = 1, (3.15b)

T33 = 1, T23 = ϕ. (3.15c)

where only those terms useful in the following steps of the derivation are retained.
The expression of the curvature components, retaining only second order terms, are
given by the following expression

ρ1 = ϕ
′+ v′′w′, (3.16a)

ρ2 =−w′′+ v′′ϕ, (3.16b)

ρ3 = v′′+w′′
ϕ. (3.16c)

3.4 Derivation of the equations of motion of variable
stiffness beam

This section presents the derivation of the equation of motion of the beam model.
The equation of motion are derived by means of the extended Hamiltonian principle

L =
∫ t2

t1
(δT −δΠ+δWnc)dt (3.17)

where δT is the variation of the kinetic energy, δΠ is the variation of the potential
energy and finally δWnc is the work done by the non-conservative forces. Particular
emphasis is posed onto the stiffness contribution since the latter are presumed varying
continuously span-wise.

3.4.1 Variation of the potential energy

The variation of the potential energy is given by

δΠ =
∫ L

0

(
M1δρ1 +M2δρ2 +M3δρ3

)
ds. (3.18)
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Expliciting terms the expression of the potential energy can be written as follow

δΠ =
∫ L

0

[(
−M′

1δρ1 −M1ρ3δρ2 +M1ρ2δρ3
)
+
(
M2ρ3δρ1 +−M′

2δρ2 −M2ρ1δρ3
)
+

+
(
−M3ρ2δρ1 +M3ρ1δρ2 −M′

3δρ3
)]

ds+
(
M1δρ1 +M2δρ2 +M3δρ3

)
|L0 .

(3.19)

Gathering like variations leads to the following equation

δΠ =
∫ L

0

[(
−M′

1 +M2ρ3 −M3ρ2)δρ1 +
(
−M1ρ3 −M′

2 +M3ρ1
)
δρ2+(

M1ρ2 −M2ρ1 −M′
3
)
δρ3

]
ds+

(
M1δρ1 +M2δρ2 +M3δρ3

)
|L0 .

(3.20)

The variation of the curvature are given as follows

δρ1 = δϕ +w′
δv′, (3.21a)

δρ2 =−T32δv′−T33δw′, (3.21b)

δρ3 = T22δv′+T23δw′. (3.21c)

Substituting the Eqn. 3.21 into Eqn. 3.20 yields

δΠ =
∫ L

0

[(
−M′

1 +M2ρ3 −M3ρ2)
(
δϕ +w′

δv′
)
+
(
−M1ρ3 −M′

2 +M3ρ1
)(
−T32δv′−T33δw′)+(

M1ρ2 −M2ρ1 −M′
3
)(

T22δv′+T23δw′)]ds+
(
M1
(
δϕ +w′

δv′
)
+

+M2
(
T32δv′−T33δw′)+M3

(
T22δv′+T23δw′))|L0

(3.22)

Finally, gathering like the variations of the generalized displacement δϕ , δv and δw,
one have

δΠ =
∫ L

0

{(
−M′

1 +M2ρ3 −M3ρ2)δϕ +
[(
−M′

1 +M2ρ3 −M3ρ2)w′]′
δv+

+
[(

M1ρ3 +M′
2 −M3ρ1

)
T32
]′

δv+
[(

M1ρ2 −M2ρ1 −M′
3
)
T22
]′

δv+

+
[(

M1ρ3 +M′
2 −M3ρ1

)
T33
]′

δw+
[(

M1ρ2 −M2ρ1 −M′
3
)
T23
]′}ds.

(3.23)

3.4.2 Linear terms

Herein are reported the first order term of the case of variable stiffness anisotropic
beam

δϕ : −(GJ)′ ϕ ′−GJϕ
′′+ k′w′′+ kw′′′, (3.24a)
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δw : −k′′ϕ ′−2k′ϕ ′′− kϕ
′′′+(EI2)

′′ w′′+2(EI2)
′ w′′′+EI2wIV , (3.24b)

δv : (EI3)
′′ v′′+2(EI3)

′ v′′′+EI3vIV . (3.24c)

It can be noted that with respect to the case of constant stiffness there are two
additional terms in the equation of δϕ , four terms more for the case of δw and two
terms more for the case of the variation δv. The case of isotropic structure can be
easily recovered by assuming the coupling term k equal to zero.

3.4.3 Second order terms

The nonlinear second order terms are reported below, higher order nonlinearities that
arises substituting eqns 3.21 in to eq. 3.23 have been neglected.

δϕ : −(GJ)′ v′′w′−GJ
(
v′′w′)′+ k′v′′ϕ + kv′′′ϕ +(EI3 −EI2)v′′w′′. (3.25)

In this case there are two additional terms in the variation δϕ with respect of the
case of constant stiffness.

δw :− (GJ)′ ϕ ′v′′−GJ
(
ϕ
′v′′
)′− k′′v′′w′+ k′v′′w′′−2k′v′′w′− k

(
v′′′w′)′+

+(EI3 −EI2)
′′ (v′′ϕ)+2(EI3 −EI2)

′ (v′′ϕ)′+(EI3 −EI2)
(
v′′ϕ

)′′
.

(3.26)

The second order expression in the variation δw presents six terms more with respect
to the case of constant stiffness. Likewise the equation of the variation δv has six
additional terms with respect to the case of constant stiffness.

δv :− (GJ)′ ϕ ′w′′−GJ
(
ϕ
′w′′)′+ k′′

(
ϕ
′
ϕ
)
+2k′

(
ϕ
′
ϕ
)′− k′w′′w′′+ k

[(
ϕ
′′
ϕ
)′
+
(
ϕ
′
ϕ
)′]−

− k
(
w′′w′′)′+(EI3 −EI2)

′′ (w′′
ϕ
)
+2(EI3 −EI2)

′ (w′′
ϕ
)′

+(EI3 −EI2)
(
w′′

ϕ
)′′
.

(3.27)

In summary, the system of governing equations obtained presents 22 additional
terms with respect to the case of constant stiffness. Particularly, those terms, are the
slope (first derivatives) and the curvature (second derivatives) of the beam’s stiffness.
It is presumed that those additional terms can enlarge the design space for tailoring.
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3.4.4 Equations of motion

In the following, motivated by the results of the previous chapter, we speculate that
the mass and the moment of inertia of the structure, are constant, meaning that the
effect of the variation of the mass is assumed a higher order effect, i.e. neglected
herein. Moreover, we speculated that the center of gravity of the structure lays on
the x−axis. Denoting with j the mass moment of inertia about the beam’s axis, m
the wing mass, xα the position of the center of mass and qϕ , qw, qv the generalized
forces. The governing equations of the flexural-flexural-torsional beam with variable
stiffness are given as follows

jϕ̈ +mxα ẅ− (GJ)′ϕ ′−GJϕ
′′+ k′w′′+ kw′′′− (GJ)′ v′′w′

−GJ
(
v′′w′)′+ k′v′′ϕ + kv′′′ϕ +(EI3 −EI2)v′′w′′ = qϕ ,

(3.28a)

mẅ+mxα ϕ̈ − (GJ)′ϕ ′v′′−GJ
(
ϕ
′v′′
)′− k′′v′′w′+ k′v′′w′′−2k′v′′w′− k

(
v′′′w′)′

+(EI3 −EI2)
′′ (v′′ϕ)+2(EI3 −EI2)

′ (v′′ϕ)′+(EI3 −EI2)
(
v′′ϕ

)′′
− k′′ϕ ′−2k′ϕ ′′− kϕ

′′′+(EI2)
′′w′′+2(EI2)

′w′′′+EI2wIV = qw,

(3.28b)

mv̈+(EI3)
′′ v′′+2(EI3)

′ v′′′+EI3vIV − (GJ)′ϕ ′w′′−GJ
(
ϕ
′w′′)′+ k′′

(
ϕ
′
ϕ
)

+2k′
(
ϕ
′
ϕ
)′− k′w′′w′′+ k

[(
ϕ
′′
ϕ
)′
+
(
ϕ
′
ϕ
)′]− k

(
w′′w′′)′

+(EI3 −EI2)
′′ (w′′

ϕ
)
+2(EI3 −EI2)

′ (w′′
ϕ
)′
+(EI3 −EI2)

(
w′′

ϕ
)′′

= qv.

(3.28c)

Neglecting the first and second derivatives of the stiffnesses, the set of equations
derived agree with the equations derived in [64, 134, 136, 137]. The following set of
boundary conditions for a clamped-free beam is considered

v = w = 0, ϕ = 0, w,x = v,x at x = 0

M1 = M2 = M3 = 0, V2 =V3 = 0 at x = 0.
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3.4.5 Second order linearized equations

In the following it is reported the linearization of one of the equations reported above.
Being understood that also the inertia terms should be linearized consistentlym
here we limit our interest to the structural part since it represents the novelty with
respect to the models already available in the open literature. Let ϕ̄, w̄, v̄ be small
perturbations around the deformed states ϕ0,w0,v0, i.e.

ϕ = ϕ0 + ϕ̄, w = w0 + w̄, and v = v0 + v̄. (3.29)

The linearized equations can be written as follows

− (GJ)′ ϕ̄ ′−GJϕ̄
′′− (GJ)′

(
v′′0w̄′+ v̄′′w′

0
)
−GJ

(
v′′0w̄′+ v̄′′w′

0
)′
+ k′w̄′′+ k′

(
v′′0ϕ̄ + v̄′′ϕ0

)
+ kw̄′′′+ k

(
v′′′0 ϕ̄ + v̄′′′ϕ0

)
+(EI3 −EI2)

(
v′′0w̄′′+ v̄′′w′′

0
)
.

(3.30)

The same procedure briefly summarized herein can be applied to the other equations
to obtain a set of second-order linearized equations. The latter being useful to
calculate the eigenvalues of the linearized system or, in other words, the natural
frequencies of the system perturbed around the deformed configuration.

3.4.6 Solution methodology

In order to solve the set of the governing differential equations, the displacements’
functions are approximated by modal analysis technique, i.e. assuming that the
generic displacement p can be written as in [64]

p(x, t) = p0(x)+
∞

∑
i=1

fi(x)p(t) (3.31)

where fi(x) are the mode shapes derived from a vibrating, non-rotating, uniform
cantilever beam while p(t) are the generalized coefficients. Particularly

fw,v =cosh(αiLx̂)− cos(αiLx̂)−βi [sinh(αiLx̂)− sin(αiLx̂)] (3.32a)

fϕ =
√

2sin(γiLx̂) (3.32b)

where αi, βi and γi depend on the number of modes considered.
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3.5 Summary and conclusions

In this chapter are derived the equation of motion of a second order flexural-flexural-
torsional beam. The nonlinear equation of motion are derived considering that the
beam has variable stiffnesses properties span-wise. The variation of the mass and
inertial term is neglected. Particular emphasis is posed on the structural terms. The
complete equation of motion are provided.

The chapter provides also a parametric study on to the attainable beam stiffnesses
with respect to the stiffeners orientations. Particularly it is shown that varying the
stiffeners path result in remarkably different stiffeness and hence structural behavior
which open up a variety of opportunity for tailoring.



Chapter 4

Trace-based scaling of anisotropic
structures

Some of the contents and derivations presented in this chapter have been previously
published, below are provided the references

Danzi, F., Frulla, G. and Romeo, G. ”An Invariant-based Performance-Oriented
Procedure for Preliminary Design of Composite Structures”. AIRCRAFT ENGI-
NEERING AND AEROSPACE TECHNOLOGY, Volume 90, Issue 3, pp.532-541,
https://doi.org/10.1108/AEAT-11-2016-0228.

Danzi, F.,Frulla, G., Cestino, E. and Gibert, J. M. ”MDO/MSO of Slender Thin
Walled Box Beam Model”. Proc. of AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference (2017). Denver, Colorado (USA), 5-9 June 2017, https:
//doi.org/10.2514/6.2017-4323.

4.1 Motivation

The chapter presents an introduction and some examples pertaining trace-based
scaling of anisotropic structures with application to static and dynamic structural
performances. For the sake of simplicity, in the examples presented in this chapter,
is considered the case of a second order nonlinear beam with constant stiffness.
Examples pertaining variable stiffness model are reported in the next chapter.

https://doi.org/10.1108/AEAT-11-2016-0228
https://doi.org/10.2514/6.2017-4323
https://doi.org/10.2514/6.2017-4323
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4.2 Trace-based scaling: theoretical framework

Stiffness and compliance for composite materials are second order tensors and, as
such, they possess three quantities that are invariants with respect to the ply’s orien-
tation [138]. Particularly, in the following we consider the hydro-static component
of the stiffness tensor, i.e., the stiffness trace (first invariant). Physically, when a
material is selected, the invariant imposes limits on the total stiffness potential of the
multi-directional laminate made with this material. Moreover, it easy to verify that
the following identities hold

Tr(QQQ) = Tr
(

AAA
h

)
= Tr

(
12 DDD

h3

)
(4.1)

hence, for a given material: (a) Trace is constant whether we are considering plate
and laminates and (b) Trace is the same irrespective of the ply orientation (see Figure
4.1). Indeed it follows from the definition of the reduced stiffness matrix that the
stiffness trace can also be written as

Tr =
Ex +Ey

1−νxyνyx
+Es (4.2)

which shows that the stiffness trace is a material property, since it is a function of the
unidirectional ply engineering constants.

The invariant-based procedure presented herein is envisaged to be useful, within
preliminary design stages, to predict the performance of different anisotropic materi-
als avoiding cumbersome material selection optimization. Particularly, the aim is to
show that irrespective of the structural behavior being linear or nonlinear, a given
performance of an anisotropic structure can be scaled. In other words, knowing the
performance of a structure made by an anisotropic material, the effect of changing
the material can be predicted using a scaling equation. This is because the second
Piola-Kirchhoff tensor transforms like a scalar, therefore the prediction of how an
anisotropic material behaves can be made by means of linear scaling, exactly as it
happens with isotropic materials when one uses the Young’s modulus. Denoting with
χ the generic structural performance, the scaling equation will assume the following
form

χ = χMP g(R) (4.3)
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Fig. 4.1 Trace-normalized reduced stiffened components and Trace for different angle of
orientation ϑ .

where MP is the Master Ply, R is the Trace ratio, i.e. the ratio of the stiffness traces
of two different materials. We will see in the following how to select the function
g(R) accordingly to the particular structural response we aim to predict. Equation 4.3
holds if all the geometry parameters are retained and only geometric nonlinearities
are considered. In the following only linear invariants will be considered. It is known
that second order invariants exist [139].

The procedure consists of the following steps:

1. defining the material sample,

2. evaluating the Master Ply Elastic properties,

3. evaluatiing the structural performance(s) of interest,

4. scaling,

5. determining the rank of the material sample.

4.2.1 Definition of the material sample

The material sample definition is straightforward and it is up to factors like, for
example, material availability and costs, and will be not discussed herein; there are
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Table 4.1 Engineering properties of the materials’ sample considered.

Material
E11 E22 G12 ν12 Tr
GPa GPa GPa - GPa

T300/N5208 181.0 10.3 7.17 0.280 206.5
IM6/Epoxy 203.0 11.2 8.40 0.320 232.2
AS4/3501 138.0 8.96 7.10 0.300 162.0
M40/914V 209.3 6.89 4.26 0.305 225.4

M55J/Epoxy 270.0 5.80 4.10 0.300 284.5

no particular restrictions on this step, High Modulus (HM) or Intermediate Modulus
(IM) CFRPs can be used as well as High Strength and so on, provided that the
trace-normalized stiffness components of the different materials are comparable to
each other. We will show later on that GFRP (Glass Fiber Reinforced Plastic) cannot
be scaled on the basis of a Master Ply defined using CFRP. Let us consider the set of
composite materials listed in Table 4.1. In the last column of the Table4.1 is reported
the Trace of each of the material considered herein. The aim is to show that the
stiffness tensor can be written as a function of material properties and geometrical
properties.

4.2.2 Definition of the Master Ply

The Master Ply is a fictitious material that is representative of the materials’ sample
under consideration. Particularly, the Mater Ply has the trace-normalized stiffness
component that are the mean (or median) of those of the material sample1. The
elastic properties of the Master Ply are calculated based on the trace-normalized
stiffness components defined on the basis of the material sample that one have. It is
worth mentioning that the trace-normalized stiffness components are evaluated as
follow

Q∗
i j =

Qi j

Tr
A∗

i j =
Ai j

hTr
D∗

i j =
12Di j

h3Tr
(4.4)

being h the laminate thickness. Once the normalized trace stiffness component
are obtained, it is possible to calculate the engineering constants of the Master

1There is an ongoing discussion about using the mean or median. However, since the trace
normalized components of different CFRPs match closely, the choice of mean or median is just a
matter of style. The accuracy of the predictions will remain of the same.
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Table 4.2 Trace-normalized reduced stiffness components.

Material
Q∗

xx Q∗
xy Q∗

yy Q∗
ss Tr

MPa MPa MPa MPa MPa

T300/N5208 0.8805 0.0140 0.0501 0.0347 206
IM6/Epoxy 0.8790 0.0155 0.0485 0.0362 232
AS4/3501 0.8567 0.0167 0.0556 0.0438 162
M40/914V 0.9315 0.0094 0.0307 0.0189 225

M55J/Epoxy 0.9508 0.0061 0.0204 0.0144 285

Master Ply 0.8900 0.0148 0.0477 0.0311 222

Ply through the inversion of the compliance matrix [140–144]. The Master Ply is
particularly useful if the material sample contains several materials. For the material
sample under consideration, the reduced stiffness components Q∗

i j are reported in
Table 4.2. It can be noted how the in-plane normalized stiffness components match
closely for the different materials. The reduced stiffness matrix of the Master Ply is

Q = Tr Q∗ = 105

⎡⎢⎣1.9758 0.0329 0
0.0329 0.1059 0

0 0 0.0690

⎤⎥⎦ [N/mm2] (4.5a)

The compliance matrix is then given as

S = Q−1 = 10−3

⎡⎢⎣ 0.0051 −0.0016 0
−0.0016 0.0949 0

0 0 0.1448

⎤⎥⎦ [mm2/N] (4.5b)

and recalling that the compliance matrix for an orthotropic layer is given as

S =

⎡⎢⎣
1

E11
− ν12

E11
0

− ν21
E22

1
E22

0
0 0 1

Gss

⎤⎥⎦ (4.5c)

it is easy to calculate the MP elastic properties. The elastic properties of the MP are
reported in Table 4.3

Tables 4.4 and 4.5 report the trace-normalized in-plane and bending components
respectively for all the materials of the sample reported in Table 4.1. For the case
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Table 4.3 Engineering properties of the Master Ply.

Material
E11 E22 G12 ν12 Trace
GPa GPa GPa - GPa

MP 196.56 10.535 6.904 0.31 222

Table 4.4 Trace normalized in-plane components A∗
i j = (Ai j)/(h Tr) for [0/± 45/90]S

laminates.

Material A∗
11 A∗

12 A∗
13 A∗

22 A∗
23 A∗

33

T300/N5208 0.370 0.109 0 0.370 0 0.130
IM6/Epoxy 0.370 0.109 0 0.370 0 0.130
AS4/3501 0.368 0.105 0 0.368 0 0.132
M40/914V 0.373 0.118 0 0.373 0 0.128

M55J/Epoxy 0.373 0.119 0 0.373 0 0.127

of in-plane and bending trace-normalized components a quasi-isotropic laminate
is selected. However, for the sake of completeness also the case of hard- laminate,
i.e. a laminate with a higher degree of anisotropy, is considered. In this latter
case the laminate layup is [05/± 452/90]S. For the sake of brevity, in the case of
hard laminate, only the trace-normalized bending components are reported. For
all the cases reported in Tables 4.4, 4.5 and 4.6, the trace-normalized components
for the different materials are comparable. If one compares the trace-normalized
bending components reported in Table 4.5 and 4.6 respectively, follows that for
different lay-up the components are different. In view of the above, it is reasonable
to assume that if the lamination holds and all the geometry parameters (dimension
of the structure, constraints, loads and lay-up) are fixed, the behavior of different
anisotropic materials can be predicted using the stiffness trace. The reason will be
highlighted in the next section. Aiming at unveiling the theory behind the universal
master ply concept, Ha and Cimini [145] considered a materials’ sample with 44
materials belonging to four different classes namely, high modulus carbon/epoxy,
standard modulus carbon/epoxy, aramid/epoxy, and glass/epoxy. They noted that the
master ply concept can be applied for high modulus carbon/epoxy, standard modulus
carbon/epoxy, and aramid/epoxy material systems but not to glass/epoxy. They
defined the theoretical trace normalized longitudinal modulus, i.e. E∗

X = Ex/Tr and
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Table 4.5 Trace normalized bending components D∗
i j = (12Di j)/(h3 Tr) for the family

[0/±45/90]S.

Material D∗
11 D∗

12 D∗
13 D∗

22 D∗
23 D∗

33

T300/N5208 0.621 0.092 0.039 0.154 0.039 0.112
IM6/Epoxy 0.621 0.092 0.039 0.154 0.039 0.112
AS4/3501 0.610 0.088 0.038 0.159 0.038 0.125
M40/914V 0.647 0.098 0.042 0.140 0.042 0.107

M55J/Epoxy 0.656 0.098 0.043 0.132 0.043 0.106

Table 4.6 Trace normalized bending components D∗
i j = (12Di j)/(h3 Tr) components for

[05/452/90]S laminates.

Material D∗
11 D∗

12 D∗
13 D∗

22 D∗
23 D∗

33

T300/N5208 0.804 0.038 0.008 0.079 0.008 0.059
IM6/Epoxy 0.804 0.038 0.008 0.078 0.008 0.059
AS4/3501 0.784 0.038 0.007 0.084 0.007 0.066
M40/914V 0.848 0.036 0.008 0.061 0.008 0.046

M55J/Epoxy 0.864 0.034 0.008 0.051 0.008 0.042
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noted that by increasing Ex the trace normalized longitudinal modulus E∗
x presents

a plateau and hence is less sensitive to the variation of Ex. Glass/epoxy are instead
located in the region in which the curve E∗

x −Ex is nonlinear therefore the concept
of master ply cannot be applied because of the relative high variation of the trace
normalized longitudinal modulus with respect to the longitudinal modulus. We will
show later on in the chapter that although the concept of universal master ply does
not apply for Eglass/epoxy the trace based scaling still works provided that the
scaling is performed with the correct material.

4.2.3 Scaling

For isotropic materials the scaling is straightforward. Let us consider, for example,
the tip deflection w of a beam made by steel, subjected to a concentrated load F
applied at the beam tip, one have

w =
FL3

3EI

Suppose that we are wondering how much the deflection will be if all the geom-
etry parameters holds and the load remains unchanged, but the beam is made by
aluminum; the answer is simply

wAl = wsteel
Esteel

EAl

Following the same idea, it is easy to show that the frequencies f of a beam can be
scaled as follow

fAl = fsteel

√
EAl

Esteel

√
ρsteel

ρAl
(4.6)

The same rule applies also for the case of the buckling of an isotropic panel, that is

Ncr =
π2EKct

12(1−ν)2

( t
b

)2
(4.7)

and the scaled load will be

NcrAl = Ncrsteel

(
EAl

Esteel

)
(4.8)
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It is worth noting that the ratio of the Young’s modulus for the case of buckling and
bending frequency is the reciprocal for that of the beam deflection. The reason is due
to the the buckling and frequency are directly proportional to the stiffness while for
the tip deflection there is an inverse proportionality. For orthotropic plates one have

λ
(m,n)
cr =

π2
[
D11

(m
a

)4
+2(D12 +2D66)

(n
b

)2 (m
a

)2
+D22

(n
b

)4
]

Nx
(m

a

)2
+Ny

(n
b

)2 (4.9)

In view of the results reported in section 4.2.2, we know that all the Di j are propor-
tional to a constant (i.e. invariant) quantity I, which is the stiffness Trace. The eq.
4.9 can be rewritten as

λ
(m,n)
cr = Tr

⎧⎨⎩π2
[
D∗

11
(m

a

)4
+2
(
D∗

12 +2D∗
66
)(n

b

)2 (m
a

)2
+D∗

22
(n

b

)4
]

Nx
(m

a

)2
+Ny

(n
b

)2

⎫⎬⎭ (4.10)

where D∗
i j = 12Di j/(Tr H3). We speculate that the stiffness Trace (Tr) retains all

the information related to the stiffness, exactly as the Young’s modulus does for
isotropic structures. All the other information related to geometry of the panel and
lay-up are retained in the reference solution. In this case, the expression between
curly braces in the equation above is constant (or almost constant) and the scaling
rule for the buckling load of an orthotropic material is hence given as

λcrnewmaterial = λcr
Trnew material

TrMP
(4.11)

It is worth mentioning that, since the term between curly braces is not exactly
constant for different materials, the scaling procedure will introduce a discrepancy
between the scaled performance and those obtained solving the structural problem
for each of the material in the sample.
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4.3 Application of trace based scaling for anisotropic
structures

4.3.1 Scaling of buckling loads

A symmetric, square flat plate (100x100 mm) 1mm thick, with [0/45/90/− 45]S
lay-up is considered for the Trace-based scaling of buckling loads under uniaxial
compression Nx. Two different boundary conditions were considered namely, simply
supported (SSSS) and clamped (CCCC). The numerical analysis has been performed
by means of FEA. Analytical and scaled loads along with the percentage relative
errors resulting from the scaling procedure are reported in Table 4.8. The scaled
loads are computed using the following scaling rule

Nxnew material = Nx
Trnew material

TrMP
(4.12)

In this case the material sample considered is given in Table 4.7. The trace-
normalized components of the MP, computed as above, are: Q∗

11 = 0.8946, Q∗
12 =

0.0147, Q∗
22 = 0.0494 and Q∗

66 = 0.0280 while the stiffness trace is Tr = 195 GPa.
The procedure to obtain these values is the same that has been already discussed in
the previous section, provided that here the material sample is larger.

The maximum scaling error is obtained for the M55J-Epoxy composite. In either
cases, simply supported and clamped panels, the scaling error is bounded within
few percentages. In this case where bending matrix is concerned, the scaling error
is proportional to the discrepancy of the trace-normalized bending components of
the different materials. In Table 4.5 we have seen that the trace-normalized stiffness
components of T300-N5208 and IM6-Epoxy match closely. Suppose now that,
instead of using the MP as a reference solution, we want predict the buckling load of
the IM6 on the basis of the buckling load of the T300, we have

NxIM6 = Nx
TrIM6

TrT 300
=−21.646

232
206

=−24.378 (4.13)

and the scaling error in this case is ER% = 0.21%, which is closer to the analytical
value; indeed the scaling error obtained using the MP was ER% = −0.533%. Pre-
viously we have mentioned that the trace-based scaling does not work consistently
for GFRPs. Moreover, Ha and Cimini [145] noted that the concept of Master Ply
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Table 4.7 Engineering properties of the materials’ sample considered.

Material
E11 E22 G12 ν12 Tr
GPa GPa GPa - GPa

M55J/Epoxy 270.0 5.80 4.10 0.300 285
M40/914V 209.3 6.89 4.26 0.305 225

T1000/UF332 186.0 7.30 4.10 0.280 202
IM6/Epoxy 203.0 11.2 8.40 0.320 232

T300/N5208 181.0 10.3 7.17 0.280 206
T800/Epoxy 160.0 9.20 5.00 0.350 180

AS43501 138.0 8.96 7.10 0.300 162
T700/EPOXY 121.0 8.00 4.70 0.300 139

Kevlar49/Epoxy 76.0 5.50 2.30 0.340 87
Boron 204.0 18.5 5.59 0.230 235

MP 173.9 9.60 5.47 0.298 195

Table 4.8 Analytical (a) and scaled (s) buckling loads for simply supported (SSSS) and fully
clamped (CCCC) panels.

Material
SSSS CCCC

Nn
x Ns

x ER% Nn
x Ns

x ER%

M55J/Epoxy -29.180 -29.776 2.044 -86.697 -86.964 0.308
M40/914V -23.333 -23.588 1.093 -68.879 -68.891 0.018

T1000/UF332 -20.956 -21.149 0.923 -61.728 -61.768 0.066
IM6/Epoxy -24.431 -24.301 -0.533 -70.701 -70.974 0.387

T300/N5208 -21.646 -21.610 -0.169 -62.871 -63.113 0.386
T800/Epoxy -18.992 -18.879 -0.597 -55.312 -55.137 -0.316

AS43501 -17.139 -16.956 -1.069 -49.202 -49.521 0.647
T700/EPOXY -14.692 -14.564 -0.873 -42.545 -42.536 -0.020

Kevlar49/Epoxy -9.198 -9.082 - 1.262 -26.748 -26.526 -0.832
Boron -24.847 -24.567 -1.130 -72.439 -71.749 -0.953

MP -20.447 -59.717
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Table 4.9 Membrane and bending stiffness normalized components for E-glass composite
laminate [0/±45/90]S.

Material D∗
11 D∗

12 D∗
16 D∗

22 D∗
26 D∗

66 Tr [GPa]

E-glass/Epoxy 0.5325 0.0875 0.0258 0.2225 0.0258 0.1225 56.824
E-glass/MY750 0.4838 0.0932 0.0182 0.2655 0.0182 0.1254 77.916
E-glass/LY556 0.4965 0.0980 0.0198 0.2600 0.0198 0.1218 87.420

does not apply to E-glass materials. However, we have just seen that the predic-
tion made by scaling can be improved selecting a proper material, i.e. a material
with trace normalized stiffness components which are closer to that of the mate-
rial we aim to consider. Let us consider the E-glass material having the following
properties: E11 = 38.6GPa, E22 = 8.27GPa, G12 = 4.14GPa and ν12 = 0.26. The
trace-normalized membrane and bending components are listed in Table 4.9. Com-
paring the data reported in the first row of Table 4.9 with those listed in Table 4.5
follows that the trace-normalized component are far away from that of the material
sample considered herein. In this case, considering for the sake of brevity only the
case of simply supported panels, the scaling prediction would give Nx = 5.85N/mm,
the buckling load computed is instead 6.46 therefore the scaling error is approxi-
mately 10%. Let us consider three different E-glass/Epoxy with bending-normalized
components reported in Table 4.9; performing the scaling for the buckling loads
using as a reference material the E-glass Epoxy, follows that the trace-based scaling
still works and the accuracy is bounded within 0.5%, as shown in Table 4.10. It
follows that the accuracy of the prediction is given by the difference among the
trace-normalized stiffness components, the closer the trace-normalized components
the better the prediction. Moreover, it can be concluded that the concept of universal
master ply cannot be applicable, as stated in [145], however different master plies
can be defined on the basis of the material sample select, i.e. splitting the material in
different classes. To this end, a good practice to discern whether one universal master
ply or more have to be used is useful look at the trace-normalized components.

4.3.2 Scaling of post-buckling deflections

Let us consider the same plate analyzed in the previous section. In this case, we aim
at scaling the plate deflection in the post critical regime when the load increment is
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Table 4.10 Analytical (a) and scaled (s) buckling loads for simply supported (SSSS) GFRP
composite panels.

Material
SSSS

Na
x Ns

x ER%

E-glass/Epoxy -6.46 - -
E-glass/MY750 -8.90 -8.86 0.45
E-glass/LY556 -9.97 -9.94 0.30

fixed. The out-of-plane deflection for a plate in the post-critical regime is a quadratic
function of the load level therefore the scaling requires a square root of specific
ratios. The analytical and scaled post-buckling deflections along with the scaling
error are reported in Table 4.11. The analytical solutions have been obtained using
the POBUCK code, developed by Romeo and Frulla [146]. Also for the case of
post-buckling, the scaled deflections agree with those computed. The maximum
scaling error in this case is less than 1%.

4.3.3 Scaling for divergence speed

A typical HALE UAV is considered herein aiming at showing the effectiveness of
the trace-based scaling procedure to predict the divergence speed. The layup and
dimensions of the wing box are reported in Appendix A. In this case the material
sample considered is the one reported in Table 4.1. The wing box is modeled as a
cantilever beam with 20 elements with piece-wise constant stiffnesses evaluated on
the basis of the eqns. 3.6. The divergence speed is calculated solving the eigenvalue
problem given as

det([K]−λ [A]) = 0 (4.14)

where [K] is the stiffness matrix and [A] is the aerodynamic matrix. In Table 4.12 are
listed the scaled and numerical divergence speed along with the scaling error. The
scaled divergence speeds are evaluated using the following equation

V s
div =V a

div

√
Trnew material

TrMP
(4.15)

The scaled and analytical divergence speeds are found in good agreement. The
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Table 4.11 Analytical (a) and scaled (s) post buckling deflection w for simply supported
(SSSS) and fully clamped (CCCC) panels. The load increment with respect to the buckling
load is fixed at 1.5.

Material
SSSS CCCC

wa ws ER% wa ws ER%

M55J/Epoxy 1.569 1.571 0.100 1.760 1.746 0.783
M40/914V 1.576 1.577 0.057 1.750 1.748 0.131

T1000/UF332 1.578 1.579 0.080 1.753 1.748 0.267
IM6/Epoxy 1.587 1.591 0.235 1.740 1.746 0.316
T300/N5208 1.586 1.589 0.212 1.743 1.746 0.144
T800/Epoxy 1.592 1.591 0.051 1.754 1.752 0.134

AS43501 1.590 1.595 0.320 1.737 1.743 0.358
T700/EPOXY 1.592 1.593 0.092 1.746 1.749 0.176

Kevlar49/Epoxy 1.599 1.597 0.150 1.758 1.756 0.102
Boron 1.598 1.596 0.153 1.754 1.757 0.187

MP 1.587 1.750

Table 4.12 Comparison of the trace based scaled and numerical computed divergence speed
of an HAR wing.

Material V a
div V s

div ER%

T300/N5208 173.87 170.48 1.95
IM6/Epoxy 184.94 182.25 1.45
AS4/3501 157.68 152.30 3.41
M40/914V 173.37 179.48 -3.52

M55J 192.25 202,00 -5.07

Master Ply 178.28

maximum scaling error is obtained for the case of M55J as expected, indeed the M55J
presents the higher discrepancy of the trace-normalized component with respect to
the master ply.
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Table 4.13 Comparison of the trace based scaled and numerical flap/coupled frequencies of
an HAR wing under moderate deformations.

Material f a
f lap f s

f lap ER%

T300/N5208 4.75 4.72 0.66
IM6/Epoxy 5.03 5.04 -0.25
AS4/3501 4.18 4.21 -0.89
M40/914V 5.03 4.97 1.20

M55J 5.68 5.59 1.56

Master Ply 4.93

4.3.4 Scaling for normal frequencies

Considering the same wing box of the previous section, here we compare the analyti-
cal and scaled vibration frequencies. The frequencies are evaluated considering the
complete set of second order nonlinear equations reported in eqns. 3.30, linearized
around the deformed configuration. It is worth mentioning that the variability of
the stiffness span-wise has been neglected, i.e. the case of constant stiffness is
considered. For the sake of simplicity, a single mode per dof is used. The scaling
will work consistently irrespective of the number of mode shapes per dof used in the
approximation. The frequencies are proportional to the square root of the stiffness,
the scaled frequencies and are computed as follows

f s
div = f a

div

√
Trnew material

TrMP
(4.16)

The analytical and scaled frequencies are reported in Tables 4.13, 4.14 and 4.15. A
good agreement between scaled and analytical frequencies is found.

4.3.5 Scaling for buckling loads of curvilinear stiffened panels

In Chapter 2 we have derived an equivalent model of unitized panels, here we aim at
scaling the buckling loads of those panels calculating the stiffness traces. The traces
are calculated on the basis of the homogenized model, particularly considering the
trace-normalized bending components. Moreover, herein the scaling is performed
using as a reference the panel with ϑ1 = 45, ϑ2 = 16.75, i.e. panel h. It is worth
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Table 4.14 Comparison of the trace-based scaled and numerical flap/coupled frequencies of
an HAR wing under moderate deformations.

Material f a
f lap f s

f lap ER%

T300/N5208 22.14 21.99 0.66
IM6/Epoxy 23.48 23.51 -0.11
AS4/3501 19.46 19.64 -0.93
M40/914V 23.37 23.15 0.93

M55J 26.41 26.06 1.33

Master Ply 23.00

Table 4.15 Comparison of the trace-based scaled and numerical torsional/coupled frequencies
of an HAR wing under moderate deformations.

Material f a
tors f s

tors ER%

T300/N5208 135.94 133.39 1.88
IM6/Epoxy 144.55 142.59 1.35
AS4/3501 123.10 119.16 3.20
M40/914V 136.10 140.43 -3.18

M55J 152.16 158.05 -3.87

Master Ply 139.49
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Table 4.16 Scaled buckling loads for flat panles with cured stiffeners.

Panel D∗
11 D∗

12 D∗
16 D∗

22 D∗
26 D∗

66 Trace

a 0.5267 0.1856 -0.2950 -0.0989 -0.1284 0.1872 2086.8
b 0.6114 0.1606 -0.2955 0.0644 -0.0956 0.1621 2001.8
c 0.7840 0.0956 -0.2525 0.0217 -0.0402 0.0971 1872.7
d 0.9188 0.0358 -0.1471 0.0065 -0.0097 0.0374 1796.7
e 0.9705 0.0112 0.0021 0.0040 0.0001 0.0128 1771.4
f 0.9031 0.0431 0.1661 0.0077 0.0126 0.0446 1804.7
g 0.7165 0.1228 0.2774 0.0348 0.0599 0.1243 1917.9
v 0.5267 0.1856 -0.2950 -0.0989 -0.1284 0.1872 2086.8

Table 4.17 Scaled buckling loads for flat panels with cured stiffeners.

Panel Na
x Ns

x ER%

a 0.5267 296.9 -1.27
b 293.2 300 5.65
c 301.9 284.8 4.183
d 278.1 266.5 4.04
e 267.1 256.3 7.50
f 272.5 252.1 12.26
g 292.7 256.8 8.09
v 296.9 272.8 -

noting that the equivalent model gives rise to trace-normalized components which,
differently for the case of CFRPs, shows an higher discrepancy among each other as
shown in Table 4.16. The label reported in Table 4.16 are the same used in Table 2.1.
Notwithstanding the discrepancy between the trace-normalized components for the
different plates, which, as mentioned before, will yields an higher error between the
scaled and the analytical buckling loads, the maximum scaling error is 12% as shown
in Table 4.17. It can be concluded that the trace-based scaling in this case provide a
first approximation of the attainable performance however it is not advisable because
the trace-normalized components are sparse and therefore the prediction is not as
accurate as it was for composite materials previously analyzed.
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4.4 Summary and conclusions

The chapter is devoted to the introduction of a scaling procedure for anisotropic
structures. The procedure relies on the objective properties of the stiffness invariants
and is envisaged to be useful instead of Material Selection Optimization (MSO).
It has been shown that the generic structural response of anisotropic structure can
be seen as a combination of geometry parameters and stiffness trace. The stiffness
trace is the only parameter that accounts for the material properties and plays the
same role as the Young’s modulus for isotropic materials. Buckling loads, post-
buckling deflection, frequencies and divergence speeds are among the structural
performances that can be scaled. Linear and nonlinear structural performances can
be faithfully predicted as long as the nonlinearities are geometric. The scaling error,
i.e. the discrepancy between the structural performance predicted through the scaling
procedure and the analytical solution, is bounded between few percentages. The
scaling procedure can be used to investigate the structural behavior of different
materials and help gain insights for material selection. Indeed, once a materials’
sample is chosen, the MP can be defined and perform all the design and optimization
on the basis of the MP. Subsequently, the performance of all the materials of the
sample can be evaluated with simple calculations. The advantage given by trace-
based scaling is twofold: (a) the material can be chosen on the basis of structural
performances rather then index, and (b) the procedure is computationally cost-less
compared against material selection optimization.



Chapter 5

Optimization of anisotropic plates
and beams

Some of the results presented in this chapter, pertaining the buckling load maximiza-
tion of composite flat panels through the Studp GA have been already published in
the Structural and Multidisciplinary Optimization Journal, the full citation is provided
below.

Danzi, F., Frulla, G. and Cestino, E. ”Constrained combinatorial optimization of
multi-layered composite structures by means of Stud GA with proportionate selection
and extinction”. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION.
Volume 55, Issue 6, pp. 2239–2257, ISSN 1615-1488, https://doi.org/10.1007/
s00158-016-1638-4.

5.1 Introduction

In this chapter the aim is to optimize anisotropic thin-walled structures to achieve
desired structural performances.

In section 5.2 is presented a novel optimization algorithm, namely the Studp

GA, originally conceived in the framework of this PhD Thesis. The algorithm is a
revised version of the Stud GA which implements the breeding farm paradigm, i.e.
the linebreeding and outcrossing concepts. The section details the main features and
capabilities of the algorithm.

https://doi.org/10.1007/s00158-016-1638-4
https://doi.org/10.1007/s00158-016-1638-4
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Section 5.3 provides a short overview of the results obtained using the Studp GA
to maximize the buckling load of composite flat panels along with the mathematical
formulation of the problem.

Section 5.4 presents the optimization of a unitized box beam under static con-
straints. The optimization problem is formulated and hence solved using the Studp

GA. The topology optimization problems are formulated as constrained combina-
torial problem, i.e. seeking the orientations of the stiffeners at prescribed control
points located span-wise. Three different load cases are considered. Where available,
numerical results are compared against those obtained using a commercial FE code
and experiment.

In section 5.5 is presented the optimization of an High Aspect Ratio wing. The
objective of the optimization is to minimize the difference between the frequencies
of the deformed and undeformed structure. The optimization problem is formulated
and hence solved by means of the Studp GA.

It is worth mentioning that for the unitized beam problems, the beam tip defor-
mation are limited to one-tenth of the beam length, consistently with the second
order model derived in the previous chapter. Indeed, the case of large deformations
cannot be described faithfully with second order nonlinear model and a third order
nonlinear model should be adopted, see for example [147, 148].

5.2 Studp GA

The Stud GA is a relatively novel version of the GA, introduced by Khatib and
Fleming in [149]. Although it was presented as a mini revolution in evolutionary
computing, its applications to real engineering problems are limited. Herein a revised
version of the Stud GA, suitable for constraint combinatorial problem, is introduced.
The algorithm has been developed in the framework of this thesis.

The unique difference between the standard GA and the Stud GA is the mating
pool structure. Contrary to the standard version of GA, the basic idea behind the
Stud GA is to use the best individual in the population (the Stud) to mate with all
others to produce new offspring. It follows that the original version of Stud GA does
not include stochastic selection.
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The author believes that the Stud GA can be used as a starting point to raise the
selective pressure aiming at increasing the convergence rate of the algorithm. In fact,
it is well known that retaining the best individual within the population is useful to
improve the algorithm efficiency. To increase the selective pressure to the highest
level, in contrast with what has been done in the Stud GA, which let the stud mating
with all the individual of the population, here a stochastic selection strategy is used.
In [150] they stated

Bonnet macaques demonstrate an example of increased reproductive
success from high rank. High-ranking males have more access to fertile
females and consequently partake in most of the mating within the
group, demonstrated by one population in which only three males were
responsible for over 75% of mating. In this population, males often
vary in their rank, and as they gain rank, they gain more time spent
exclusively with fertile females; the opposite relationship is seen as
males drop in rank

Instead of having more than one stud, herein it is preferred to have only one. This
preference is influenced by the work of Khatib and Fleming ([149]). This situation
is similar to the breeding farm when the breeder want to establish some genetic traits
in his own bloodline1. The usage of only one stud has been conceived to accelerate
the exploration capabilities (raising the selective pressure) of the algorithm and try
to fix one of the issue related with GA, i.e. the low convergence rate.

In turn, the increase of the selective pressure leads to an increase in exploita-
tion capabilities and several issues in the exploration potentialities. In this case,
premature convergence may arise and the algorithm could get trapped in local opti-
mum. To prevent convergence to local optimum a diversity-preservation technique
is implemented. The diversity preservation technique is essentially an extinction
that carries out the same function of the infusion of different bloodline carried out
in the breeding farm. In other words, the diversity preservation technique spreads
the differences among the offspring increasing the exploration capabilities of the
algorithm. A pictorial view of the mating pool structure of the algorithm is depicted

1The eighteenth century English breeder, Robert Bakewell,is recognized as the father of the
Science of animal improving. His success as a breeder is attributed to his care in the detection of
the recordings and the use of consanguinity to secure the desired type - from: Elements of Dog’s
Genetics, Roberto Leotta, Faculty of Medical Veterinary, University of Pisa
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in Figure 5.1. The two novelties briefly discussed above, namely the proportional
selection and the extinction, in conjunction with the use of the Stud, stems from
the breeding farm paradigm. Indeed, the proportionate selection and the use of the
Stud replicates the concept of inbreeding (or linebreeding) while the extinction and
the subsequent infusion of new offspring simulates the outcrossing. The fòowchart
describing the mating’s pool structure is depicted in Figure 5.2.

Fig. 5.1 Schematic representation of linebreeding and outcrossing.

5.2.1 Implementation of the breeding farm paradigm

Original Stud GA’s genetic operators were diversity-dependent. Particularly, depend-
ing on the diversity between offspring, in terms of hamming distance, the operator
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Fig. 5.2 Flowchart of the mating’s pool structure for implementing the inbreeding (or line
breeding) and outcrossing.

could be crossover or mutation. Furthermore, the mutation employed in [149], was a
binary mutation with a low probability, that ranges from 0.001 to 0.003.

In the present work a modified Stud GA, namely Stud p GA is introduced where
"p" stands for proportionate. In fact, contrary to the original version of Stud GA,
stochastic selection is used to select the elements that can mate with the Stud. Shuffle
(or crossover) probability is set to 1 as well as the probability of mutation. The
contemporary use of Stud and proportionate selection could increase the selective
pressure in such a way that the algorithm might achieve premature convergence
and hence lose in reliability. The reliability is a metric that gives the number of
runs in which the algorithm, initialized at random, yields the same optimal solution.
According to Liu et al [151], are considered being reliable all the runs that return
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a fitness function which differs no more than 0.5% with respect to the optimum
solution. In order to measure the reliability of the algorithm, a preliminary assessment
is carried out. The results pertaining the assessment are reported in section 5.2.2.

Because the number of runs is limited to 100, if all the attempts return a reliable
value then the reliability is 99% instead of 100%. To avoid the premature convergence
that may arise due to the endogamic process, a diversity preservation technique is
also included in the novel algorithm, as discussed above. Squillero and Tonda [152],
noted that in absence of any domain-specific information on the problem, extinction
is the preferable methodology to ensure diversity preservation.

The extinction was firstly introduced by Greenwood et al [153]. Contrary to
Greenwood et al which used a probability of extinction equals to one [153] and,
based on the assessment performed in the following, a probability of extinction
of 40% is introduced. When activated, extinction concerns a certain number of
individuals. All the offspring with a scaled fitness (ψ̃i) lower than the stress factor
(η) are eliminated. Follows that the extinction ”filters” the population and let survive
only those elements with ψ̃i ≥ η . The resulting empty slots are replaced with mutants
of the Stud. The mutants are generated by applying a simple mutation, i.e. changing
at random one gene of the genotype. The scaled fitness is given by the following
equation

ψ̃i = α +(1−α)
ψstud −ψi

ψstud −min(ψ)
(5.1)

where ψ is the objective function while α is the strategy parameter. The strategy
parameter is equal to the mean value of Hamming distance between offspring and
the Stud of a given population divided by the number of plies of the laminate, thus
0 ≤ α ≤ 1. Let us consider the following strings

1 0 1 1 1 0 1 Stud

1 0 0 1 0 0 1 offspring a

1 1 0 1 1 0 1 offspring b

Defining the Hamming distance as the number of positions at which two strings of
equal length are different, for the strings reported above the Hamming distance with
respect to the Stud is: 2 for the offspring ”a” and 1 for the offspring ”b”. In other
words, it measures the minimum number of substitutions required to change one
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string into the other, or the minimum number of errors that could have transformed
one string into the other.

When the stress parameter η increases, increases also the selective pressure. This
is because the number of individuals eliminated increases. In the limit for stress
parameter equal to 1, the whole population, except the Stud, is replaced by mutants
of the Stud. In fact, if η = 1, the only one individual that has a scaled fitness equal to
1 is the Stud; it follows that the remaining n−1 empty slots are replaced with Stud’s
mutants. In this case premature convergence arises and hence having the extinction
combined with an higher stress parameter has a detrimental effect.

It is important to point out that the stress parameter η acts on the scaled fitness.
Thus, η does not give the information about the amount of individuals eliminated
neither it means that individuals with fitness lower than η% with respect to the Stud
are eliminated. The latter statement is true only if the strategy parameter α is zero.

� �� ���

Fig. 5.3 Mean Hamming distance (µ) and standard deviation of Hamming distance (σ )
between the Stud and others offspring with respect to number of iterations for load case
3. The figure shows the effect of the extinction in spreading the diversity among offspring
when they tend to the best individual. The extinction causes the increasing of the standard
deviation when the Hamming distance goes under 0.2.

The strategy parameter α is adaptive thus, varies during the computation accord-
ingly to the hamming distance between the Stud and all other individuals. As shown
in Figure 5.3, at early stages, the hamming distance is high (zone I); this means that
the population is heterogeneous thus the extinction concerns a small percentage of
the population with higher Hamming distance with respect to the best individual
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(the Stud). When the diversity among individuals decreases (zone II), the second
term of equation 5.1 gains more weight thus, the extinction strikes more and more
individuals, even the ones similar to the Stud. That is, the extinction speeds up
the exploration capability at early stages by removing the worst individuals (zone
I) while, prevents the premature convergence by spreading the diversity when the
offspring are more similar (zone II). Indeed, the standard deviation of the mean
Hamming distance, which is represented by the shaded area in Figure 5.3, becomes
higher when the mean Hamming distance decreases. In zone III the convergence
has been already achieved but the algorithm is still running because of the first
termination criteria defined below.

5.2.2 Effect of η and Pext on the algorithm’s reliability and effi-
ciency

The algorithm’s performances depend on a great extent to the values of the stress pa-
rameter η and probability of extinction Pext . A parametric study has been performed
in order to find a suitable combination of η and Pext . It is worth noting that the
best combination of η and Pext may varies according to the particular optimization
problem considered. However, for all the optimizations reported in the following,
the same probability of extinction and the same stress parameter will be used. In
view to compare results, the following cost-effectiveness parameter is defined

ξ =
reliability

number of iterations

In [153], in order to prevent premature convergence, it is suggested to eliminate a
big amount of individuals; this is done, in this parametric study, by imposing that
the stress parameter ranges from 0.7 to 0.9. Meanwhile the probability of extinction
ranges from 30% up to 100%. Without loss of generality, the parametric analysis is
done considering the problem of buckling load maximization of a composite square
panel (a= b= 609.6mm). The panel is subjected to the following in-plane loads Nx =

−10000N/mm, Ny =−2000N/mm and Nxy = 1000. The allowable orientations are
0◦,±45◦,90◦. The number of plies for each of the allowable orientation is fixed. The
laminate is symmetric; particularly, for the optimization problem in hand one have:
n0 = 7, n45 = 15 and n90 = 7. The total number of plies is therefore 78, since the
number of plies given in the fourth column of Table 5.1 refers to half the laminate
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Table 5.1 Loads applied and optimal plies numbers for composite laminate panels under
study

Load Applied Load (lb/in)
N<0,45,90> NTotalcase Nx Ny Nxy

1 -20000 -2000 1000 (9, 18, 9) 36
2 -15000 -2000 1000 (8, 17, 8) 33
3 -10000 -2000 1000 (7, 15, 7) 29
4 -5000 -2000 1000 (6, 12, 6) 24
5 0 -2000 1000 (4, 8, 4) 16
6 0 -16000 8000 (8, 16, 8) 32
7 15980 -14764 10160 (9, 8, 13) 30
8 -16657 1963 828 (13, 7, 15) 35

Table 5.2 Physical properties of the composite material (graphite/epoxy) used for the opti-
mization

Laminae’s properties

Longitudinal modulus E11= 127.59 GPa
Transverse modulus E22= 13.03 GPa
Shear modulus G12= 6.40 GPa
Poisson ratio ν12=0.3
Ply thickness 0.127mm

and noting that the ±45 are stacked in pairs. The mechanical properties along with
the ply thickness for the composite material considered herein are reported in Table
5.2. Results reported in Table 5.3 are averaged over 50 attempts.

Table 5.3 Effect of probability of extinction and stress parameter on the number of evaluations
and reliability of the Studp GA for a composite panel subjected to load case 3 Table 5.1.

Stress Probability of extinction, Pext
factor, η 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.70 176(88) 198(90) 156(86) 193(84) 209(82) 227(82) 264(86) 229(84)
0.75 169(90) 195(96) 196(94) 214(90) 239(86) 253(86) 217(88) 253(84)
0.80 190(99) 186(99) 210(92) 240(90) 235(88) 274(86) 219(88) 274(98)
0.85 194(98) 202(94) 192(90) 247(88) 250(88) 269(90) 307(88) 387(82)
0.90 191(94) 254(82) 238(76) 299(76) 390(64) 444(64) 362(64) 471(54)

In Table 5.4 are reported the results in term of cost effectiveness parameter.
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Table 5.4 Effect of probability of extinction and stress parameter on the cost-effectiveness of
the Studp GA for load configuration 3 (see Table 5.1).

Stress Probability of extinction, Pext
factor, η 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.70 0.500 0.454 0.544 0.435 0.339 0.361 0.326 0.367
0.75 0.532 0.492 0.447 0.420 0.360 0.339 0.406 0.332
0.80 0.521 0.532 0.438 0.375 0.374 0.314 0.402 0.358
0.85 0.505 0.465 0.468 0.356 0.352 0.335 0.287 0.212
0.90 0.492 0.322 0.319 0.352 0.164 0.144 0.177 0.115

As a general rule, at a given value of the stress parameter the number of iterations
required to achieve the optimum value increases when the extinction probability’s
increases (Table 5.3). In other words the algorithm becomes less efficient when
higher probability of extinction are set. When the probability of extinction is given,
the algorithm reaches highest reliability for η that ranges from 0.75 to 0.85. At
the extreme values for η the algorithm results less reliable. In particular, when η

is 0.9, the selective pressure is too high since a large number of individual have
to be eliminated. This affects the algorithm performances giving worst efficiency
and reliability.At Pext = 1 and stress parameter η = 0.9 is associated the minimum
cost-effectiveness value, meaning that because of the higher selective pressure,
nonwithstanding an high level of infusion of new solutions, the algorithm get trapped
in local optimum.

The best values of cost-effectiveness are far away from the highest value of
probability of extinction for each value of η highlighting how a trend among the two
exists (Table 5.4). In particular the highest cost-effectiveness are reached respectively
for the following pairs of parameters (η = 0.75,Pext = 30%), (η = 0.8,Pext = 40%),
(η = 0.7,Pext = 50%). Among these, it is chosen the pair (η = 0.8,Pext = 40%) since,
even though (η = 0.7,Pext = 50%) ensure higher cost-effectiveness its reliability is
lower than those of the other two pairs of values. The combination (η = 0.75,Pext =

30%) is a promising combination. To chose among the two we considered how many
of the 50 attempts give exactly the same optimum value. The pair (η = 0.8,Pext =

40%) give the same optimum value 41 times against 37 of the pair (η = 0.75,Pext =

30%). For this reason, it has been chosen the pair (η = 0.8,Pext = 40%).
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5.2.3 Selection strategy

The selection method chosen for the developed algorithm is the fitness proportionate
selection, also known as roulette wheel selection. Fitness value is used to associate a
probability of selection to each chromosome. Let ϕi is the fitness of the ith individual,
its probability of being selected Prepi is given as:

Prepi =
ϕi

n
∑

i=1
ϕi

(5.2)

where ϕi is the value of the fitness function of the ith chromosome and n is the
population size.
Once the probability of reproduction of each chromosome is known, the algorithm
computes the number of mating that each individual could make. According to
the following equation, the higher the fitness the higher the number of offspring
generated

no f f springi = Prepi ·n (5.3)

where no f f springi is therefore rounded to the next integer.
The population size is fixed to 150 individuals. As appears clearly from equation
5.3, the number of offspring may vary through the iterations. The algorithm checks
at each iteration the population size and, if the population’s size tends to increase,
the algorithm decreases the number of offspring that parents would generate starting
from the worst individual. On the other hand, if the population size decreases the
fittest element is promoted to the next generation (elitism).
It must be noted that in our algorithm the population size is 15 times larger than those
used for SGA, PMX and GR in [151] as well as the one used in [154]. This is due
to the fact that, since our algorithm is centered on the difference between offspring,
to have a correct estimate of the diversity among offspring a larger population is
required. Quite often, population size affects the efficiency of GA algorithm. In
[155], they shown that increasing the population size increases the accuracy of the
GA but also causes a loss in terms of rate of convergence. That is, our algorithm
might benefit of the bigger population in term of accuracy but, at the same time,
should lose in term of efficiency.
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5.2.4 Reproduction and genetic operators

New offspring are generated by means of single point crossover and genetic modifi-
cations. The crossover point is randomly selected by the algorithm. The probability
of crossover is set to 1. Three different genetic operators have been defined as follow

• mutation, randomly modification of one gene in the stacking sequence. The
operator ensures that the new gene is different from the one that have been
replaced;

• interchange, changes the position of two genes randomly selected in the
stacking sequence, being the gene the orientation of a given ply for the case of
buckling loads maximization or, for the case of unitized beam, the orientations
of a pair of control points;

• swap, flips the stacking sequence of a sub-laminate or, in the case of unitized
beams, inverts the vector of the stiffeners orientation. The initial and final
point of swapping are randomly chosen.

The probability of undergoing genetic modifications is set to 1. Mutation and
interchange have a probability of 10 % while, since the swap is the most effective
operator due to the fact that strongly affects the bending stiffness, its probability is
set to 80%. It is worth noting that, for the case of unitized beam with two control
points, interchange and swap operators perform the same tasks.

Liu et al [151] defined a mutation operator that uses a partial repair operator.
In addition they used an interchange mutation operator called stack-swap. The
SGA used a standard two-point crossover meanwhile, since they observed that the
permutation coding tend to produce infeasible children from feasible parents, they
have introduced two different types of cross-over, the PMX ([156]) and the GR (Gene
Rank). The GR, introduced by Liu and his colleagues ([151]), takes into account the
fact that the outermost plies, hence leftmost genes, affect flexural stiffnesses more
than the inner plies.

Both Liu et al [151] and Jing et al [154] have introduced a repair strategy to deal
with contiguity constraint which has not be implemented in the Studp GA.
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5.2.5 Termination criteria

Three termination criteria are defined as follow

1. limit number of iterations without any change of the fittest element;

2. maximum amount of individuals that can share the same fitness in each gener-
ation;

3. limit number of iterations.

5.3 Buckling load maximization of composite panels

Having detailed the main characteristics of the algorithm, here we aim at solving
benchmark constrained combinatorial problems. Particularly, the focus is on to the
buckling load maximization of composite flat panels. The panels are symmetric and
balanced.

During normal flight conditions, aircraft panels are usually subjected to combined
loads (tension/compression, bi-axial compression and shear), herein the effect of
normal and shear loads are firstly considered separately. The combined effect is then
included by means of the interaction equation reported in the following.

Because of symmetry there is no bending-extension coupling as well as, in view
of the fact that the panel is balanced, the extension-shear coupling is zero. The
governing equation for symmetric angle-ply laminate subjected to in-plane normal
load is

D11
∂ 4w
∂x4 +4D16

∂ 4w
∂x3∂y

+2(D12 +2D66)
∂ 4w

∂x2∂y2+

4D26
∂ 4w

∂x∂y3 +D22
∂ 4w
∂y4 = λnNx

∂ 2w
∂x2 +λnNy

∂ 2w
∂x2

(5.4)

where λn is the load multiplier and Di j are the elements of bending stiffness matrix.
Following [151, 154] we assumed that the plate is specially orthotropic, i.e. no
bending-torsion coupling exists and hence D16 and D26 are zero. This is a common
assumption for angle-ply laminate, as the ones analyzed in this work, where the
bending-torsion terms are negligible with respect to the other terms of the stiffness
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matrix. In this case the equation (5.4) assumes the form

D11
∂ 4w
∂x4 +2(D12 +2D66)

∂ 4w
∂x2∂y2 +D22

∂ 4w
∂y4 =

λnNx
∂ 2w
∂x2 +λnNy

∂ 2w
∂x2

(5.5)

Solutions to the equation (5.5) can be obtained via direct approach assuming that the
displacement w can be expressed as

w(x,y) =
∞

∑
m=1

∞

∑
n=1

Wm,nX̄(x)Ȳ (y) (5.6)

where X̄ and Ȳ are sets of functions complete and orthogonal that satisfy the boundary
conditions. Due to the uniform convergence, a finite number of functions is required
to achieve the desired accuracy. For a simply supported plate along the edges, the
boundary conditions are given as follow

for x = 0,a w = Mx =−D11
∂ 2w
∂x2 −D12

∂ 2w
∂y2 = 0

for y = 0,b w = My =−D12
∂ 2w
∂x2 −D22

∂ 2w
∂y2 = 0

where a and b are respectively the dimensions along x and y directions of the plate.
Given the boundary conditions, the equation (5.6) can be expressed as

w(x,y) =
∞

∑
m=1

∞

∑
n=1

Wm,n sin(
mπx

a
)sin(

nπy
b

) (5.7)

where m and n are the number of half-waves in which the panel buckles in x and y
direction respectively. For a simply supported panel subjected to uni-axial compres-
sion Nx, the panel buckles for n = 1 and m to be determined in order to minimize
the critical load N̄x ([157]). When the panel is subjected to combined load is it not
possible to determine a priori the value of m and n which leads the minimum, thus
critical, load. Therefore, we let m and n vary between 1 and 5 and then we take the
minimum, thus critical, value. Substituting equation (7.17) in equation (5.5) one can
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obtain the load multiplier λn as:

λ
m,n
n = π

2 D11(
m
a )

4 +2(D12 +2D66)(
m
a )

2(n
b)

2 +D22(
n
b)

4

Nx(
m
a )

2 +Ny(
n
b)

2 (5.8)

A second buckling mechanism is shear buckling. Assuming that the panel has an
infinite length along x, an estimation of the critical shear load amplitude is given as
follow

λs =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4β1(D11D3

22)
1/4

b2Nxy
1 ≤ Γ ≤ ∞

4β1
√

D22(D12+2D66)

b2Nxy
0 ≤ Γ ≤ 1

(5.9)

with

Γ =

√
D11D22

D11 +2D66

while β1 is given in ([158]).

The effect of combined loads, both normal and shear, is taken into account by
the following interaction equation

1

λ
(m,n)
c

=
1

λ
(m,n)
n

+
1

λ 2
s

(5.10)

where λn is the normal buckling load factor, λs is the shear buckling factor and λc

is the combined buckling load factor. The combined buckling load factor λ
m,n
c is

always more critical than normal buckling factor λ
m,n
n . To prevent buckling both

λ
m,n
c and λs have to be greater than one. Overall buckling load factor λ is taken to

be the minimum of the load factors:

λ = min{|λs|,λ m,n
c } (5.11)

Therefore λ is the parameter to maximize. It appears clearly from equations (5.8)
and (5.9) how λ depends on a great extent on the elements of flexural stiffness matrix.
For a composite laminate panel made of a single fibrous material, the elements Di j

of the bending stiffness matrix can be computed as follow:

[D] =
1
3

N

∑
k=1

[Q̄](k)(z3
k − z3

k−1) (5.12)
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where N is the total number of plies, [Q̄] is the ply’s transformed reduced stiffness
matrix and zk and zk−1 are respectively the outermost and innermost distances of the
kth ply from the mid-plane. The transformed reduced stiffness matrix is given by the
following equation

Q̄t (k) =[Λ(k)]−1[Q(k)
p ][Λ(k)]−T

[Λ](k) =

⎡⎢⎣ cos2 ϑ sin2
ϑ 2cosϑ sinϑ

sin2
ϑ cos2 ϑ −2cosϑ sinϑ

−cosϑ sinϑ cosϑ sinϑ cos2 ϑ − sin2
ϑ

⎤⎥⎦
(k)

(5.13)

where [Q(k)
p ] and ϑ are respectively the reduced stiffness matrix and the fiber angle

of the kth ply.

Following the approach given by Tsai [159], the first of the equations 5.13 can
be rewritten introducing the trigonometric identities given below to rewrite the
transformation eqns. from the fourth powers of trigonometric functions to those of
multiple angles

cos4
ϑ =

3+4cos2ϑ + cos4ϑ

8

cos3
ϑ sinϑ =

2sin2ϑ + sin4ϑ

8

cos2
ϑ sin2

ϑ =
1− cos4ϑ

8
(5.14)

cosϑ sin3
ϑ =

2sin2ϑ − sin4ϑ

8

sin4
ϑ =

3−4cos2ϑ + cos4ϑ

8

Substituting in the eq. 5.13 the identities given above (eq. 5.14) one can obtain a
set of linear combinations of the principal stiffness, say U1,U2,U3,U4,U5 and the
integral of the trigonometric multiple angle W1 and W2. It is a common practice use
the integral of the trigonometric multiple angle in their normalized form respectively,
W ∗

1 and W ∗
2 , where W ∗

i = 12
h3 Wi and h is the laminate’s thickness. Given the new

formulation of the transformation eqns in terms of multiple angles, it is easy to
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rewrite the terms of stiffness matrix reported in the equation 5.12 as follow

D(k)
11 =

h3

12
(U1 +U2W ∗

1 +U3W ∗
2 )

D(k)
12 =

h3

12
(U4 −U3W ∗

2 )

D(k)
22 =

h3

12
(U1 −U2W ∗

1 +U3W ∗
2 )

D(k)
66 =

h3

12
(U5 −U3W ∗

2 )

(5.15)

where

W ∗
1 =

8
h3

N/2

∑
k

cos2ϑ
(k)
(

k3 − (k−1)3
)

W ∗
2 =

8
h3

N/2

∑
k

cos4ϑ
(k)
(

k3 − (k−1)3
) (5.16)

For a specified stacking position k the bending stiffness parameters D(k)
i j depends

only on the trigonometric functions of ply orientation ϑ (k) (equations 5.15, 5.16).
Moreover, is straightforward observe that the overall bending stiffness parameters
Di j can be expressed as sum of D(k)

i j . It follows that, for an assigned stacking position
k, the fiber orientation ϑ k is the only design variable in the optimization of flexural
stiffness parameters.

The problem of maximizing the buckling load can be seen as the maximization
of the flexural stiffness parameters (see eqns. 5.8 and 5.9) thus, as follows form
eqns. 5.15 and 5.16, a combinatorial maximization problem. In view of the fact that
the total number of plies, as well as the number of plies for each orientation, are
assigned, the problem is also constrained.

5.3.1 Objective function

The objective of the optimization is to maximize the buckling loads of composite
layered panels subject to technological constraints. Following Liu et al [151],
the objective function is defined as a combination of fitness function and penalty
functions. The fitness function is the buckling load factor λ (equation 5.11). An
example of panel subjected to combined load is depicted in Figure 5.5. Penalty
functions are defined to avoid matrix cracking and to guarantee that the number



132 Optimization of anisotropic plates and beams

�/ 

�/ 

�

�
!"# �

!

$

k-th ply

Fig. 5.4 Example of the stacking sequence of laminate plates.

of plies for each orientation is the one given as constraint to cope with blending
requirements (Table 5.1). The objective function is therefore defined as follow

ϕ =
λ

Pcontiguity
r2 (5.17)

where Pcontiguity is the penalty function to cope with matrix cracking and r is the
penalty for violation of blending requirements. The stacking rule commonly used
to cope with matrix cracking requirements consists in avoiding that more than four
plies with same orientation are stacked together. In this work the Pcontiguity is defined
as follow

Pcontiguity =

⎧⎪⎨⎪⎩
1 Ncontϑ < 5

∏
ϑ=0,90

2(Ncontϑ −3) Ncontϑ ≥ 5 (5.18)

where Ncontϑ is the number of plies with same orientation ϑ stacked together. It
is important to point out that, when the contiguity penalty is considered, many
sub-optimal solutions exist. The extinction should enhance the performance of the
algorithm in finding the global optima. For this reason, extinction is allowed only
when the contiguity constraint is considered.
In Liu et al [151], the penalty for matrix cracking, say contiguity constraint, is PNcont

cont

where the penalty parameter Pcont is set to 1.05. while Ncont is the total number of
same-orientation contiguous plies in excess of four same orientation.
Jing and co-workers [154] used swap’s operator to obtain the global optimal sequence
of the laminate and two other operators, namely delete and insert, to deal with
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continuity constraints. Both ([151] and [154]) have than introduced a repair strategy
to deal with the contiguity constraint. In contrast, we preferred to have a more strict
penalty function with respect of those of [151] instead of implement a repair strategy.
Let us consider the case in which 5 plies with the same orientation are stacked
together. In this case our Pcontiguity would be 4, while the one of [151] is 1.2763. So
our penalty will lower the objective function more than three times with respect to
that used by Liu and his colleagues. In the same way, if the number of contiguous
plies is 6, our penalty function is about 4.48 times greater than those reported in
[151] and so on. In other words, we preferred to penalize more the stacking sequence
that violates the contiguity constraint instead to have a repair strategy. From our
view point, a strict penalty function is closer to what happen in nature and aims to
replicate the natural selection.
Penalty used for blending r is the same defined in [151], thus:

r = ∏
ϑ=0,±45,90

rϑ (5.19)

with

rϑ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

nϑ+1
nϑg+1 if nϑ < nϑg

1 if nϑ = nϑg
nϑg+1
nϑ+1 if nϑ > nϑg

where nϑg is the given number of plies for each orientation listed, case by case, in
Table 5.1 while nϑ is the actual number of plies for each orientation.

5.3.2 Results

In this section we aim to show the efficiency and reliability of the proposed algorithm
in optimizing the stacking sequence of composite structures. To relate the reliability
and the efficiency of the algorithm we introduced the cost-effectiveness parameter,
ξ . In view of comparing our results, we extended the calculation of the cost-
effectiveness parameter also to the GAs reported in [151] and to the PS algorithm
reported in [154]. Without loss in generality, the developed algorithm is validated by
means of standard test cases, reported in [151].
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Fig. 5.5 Example panel subjected to combined loads.

The square panel (a=b=609.6mm) made by composite (graphite/epoxy) material
is symmetric, balanced and simply supported along the edges. The physical prop-
erties of graphite/epoxy material used in this work are listed in Table 5.2. Eight
different load configurations are analyzed, as listed in Table 5.1. The optimization
objective is maximizing the overall buckling load factor for a given number of plies,
NTotal . The set of allowable orientation is 0◦, ±45◦, 90◦. In addition, the number of
plies for each orientation nϑg is fixed. Stacking rules are defined by means of penalty
functions.

Because of symmetry and due to the fact that plies at 0◦ and 90◦ are stacked
in pairs, only one quarter of the laminate is considered in the encoded space. For
each load configuration the optimization is performed without and with contiguity
constraint. The optimized stacking sequences, as well as the buckling load factors,
are reported in Table 5.5. To evaluate reliability and efficiency of the proposed
algorithm, for every load configuration, 100 runs are performed. Results reported in
Table 5.6 and Table 5.7 are therefore averaged over 100 attempts.
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Table 5.5 Optimized stacking sequence from GA

Case Stacking sequence without and with contiguity constraint λ

1 [(±45)18/(902)9/(02)9]S 0.9484
[(±45)18/(902)2/02/(902)2/02/(902)2/(02)2/902/(02)2/902/02]S 0.9483

2 [(±45)17/(902)8/(02)8]S 0.9486
[(±45)17/(902)2/02/(902)2/02/902/02/902/(02)2/902/(02)2/902/02]S 0.9483

3 [(±45)15/(902)7/(02)7]S 0.9102
[(±45)15/(902)2/02/902/02/902/(02)2/902/02/902/02/902/02]S 0.9097

4 [(±45)12/(902)6/(02)6]S 0.8715
[(±45)12/(902)2/02/902/02/902/(02)2/902/02/902/02]S 0.8705

5 [(±45)8/(902)4/(02)4]S 0.7809
[(±45)8/(902)2/02/902/(02)2/902/02]S 0.7756

6 [(±45)16/(902)8/(02)8]S 0.7809
[(±45)16/(902)2/02/902/02/(902)2/(02)2/902/(02)2/902/(02)2/902]S 0.7740

7 [(±45)8/(902)13/(02)9]S 1.6246
[902/(±45)2/(902)2/(±45)2/(902)2/(±45)2/(902)2/±45/902/±45/902/02/902/(02)2/902/(02)2/902/(02)2/902/(02)2]S 1.6153

8 [(±45)7/(902)15/(02)13]S 1.1026
[(902)2/(±45)3/902/±45/(902)2/(±45)2/902/±45/902/±45/902/02/902/(02)2/902/(02)2/902/(02)2/902/(02)2]S 1.1022

Table 5.6 reports the number of iteration required to achieve the convergence
for the five algorithms herein compared. From Table 5.6 follows that the proposed
algorithm outperforms others GAs, as well as PS, in term of computational efficiency
when contiguity constraint is ignored. The reliability given by Studp GA is higher
than those of GAs and equal to that of the PS. It must be noted that in our work we
considered as reliable only the solutions that differ no more than 0.5% to the optimal
solution, in agreement with what have been done in [151]. While Jing et al [154]
considered as reliable all the runs that return a buckling load equal or higher to the
optimum. Table 5.7 shows how overall performances of the Studp GA are better than
the other GAs as well as the PS also when the contiguity constrain is activated.

Table 5.7 shows that

• the contemporary presence of Pcontiguity and extinction, slows the convergence
rate;

• the buckling load factor decreases when Pcontiguity is activated, as reported in
Table 5.5.

These results are in agreement with those reported in [151, 154].

Because of convergence criterion 1, the number of iterations required by the
Studp GA for load configurations 4 and 5, with and without contiguity constraint, is
always higher than that of PS. For the same reason SGA outperforms, in terms of
efficiency, the Studp GA for load cases 5 and 8 with contiguity penalty, even though
SGA’s reliability is lower those of the proposed algorithm. In section 5.2.5 we wrote
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Table 5.6 Comparison of computational efficiency between Studp GA, PS and other three
GAs without contiguity constraint (SGA = standard GA, PMX = partially mapped crossover,
GR = gene rank).

Load case
Number of evaluations required for

99% reliability 80% reliability

StudpGA PS SGA PMX GR

1 156 (56) 256 10432 1328 1184
2 151 (51) 226 8600 1224 856
3 139 (39) 196 5216 1024 776
4 131 (31) 139 3304 824 608
5 114 (14) 63 1672 560 408
6 145 (45) 207 5112 848 480
7 211 (111) 570 2176 336 360
8 153 (53) 316 5024 840 296

that the standard approach to calculate reliability is letting the algorithm run for a
fixed number of iteration, generally large, and check at which iteration arose the
convergence. In view of that, ignoring the stopping criterion 1, for each of the cases
considered, we can state that the convergence was achieved 100 iterations before.
We report in Table 5.6 and Table 5.7 both values. The number of iterations without
the stopping criterion 1 are reported between brackets.

Generally speaking Studp GA outperforms the other algorithms taken as a refer-
ence in this work. To highlight the validity of the proposed algorithm we compare its
cost-effectiveness with those of PS and SGA, PMX and GR (Table 5.8). The most
important result that arises from Table 5.8 is that, in terms of cost-effectiveness, the
StudpGA performs better than PS as well as other GAs for all the cases considered
if one ignore the stopping criterion 1 (results between brackets in Table 5.8). Vice
versa, if one takes into account the stopping criterion 1, the PS has a better cost-
effectiveness for load cases 4 and 5. Overall the algorithm is reliable and efficient
and will be used to address also the other optimization problems presented in this
chapter.
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Table 5.7 Comparison of computational efficiency between Studp GA, PS and other three
GA with contiguity constraint (SGA = standard GA, PMX = partially mapped crossover, GR
= gene rank).

Load case
Number of evaluations required for

99% reliability 80% reliability

StudpGA PS SGA PMX GR

1 226 (126) 262 672 792 456
2 221 (121) 232 536 792 400
3 186 (86) 203 368 658 352
4 164 (64) 143 224 496 304
5 146 (46) 65 80 272 184
6 168 (68) 211 400 552 416
7 275 (175) 579 3512 336 288
8 221 (121) 333 48 696 352

Table 5.8 Comparison of the cost-effectiveness between Studp GA, PS and other three GA
with contiguity constraint (SGA = standard GA, PMX = partially mapped crossover, GR =
gene rank).

Load case
Number of evaluations required for

StudpGA PS SGA PMX GR

1 0.438 (0.786) 0.378 0.119 0.101 0.175
2 0.447 (0.818) 0.427 0.149 0.101 0.200
3 0.532 (1.151) 0.488 0.217 0.122 0.227
4 0.604 (1.547) 0.692 0.357 0.161 0.263
5 0.678 (2.152) 1.523 1.000 0.294 0.435
6 0.589 (1.456) 0.469 0.200 0.145 0.192
7 0.360 (0.566) 0.171 0.023 0.238 0.278
8 0.448 (4.714) 0.297 1.667 0.115 0.227
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Fig. 5.6 Exemplification of the beam’s cross section considered in [125].

5.4 Linear static optimization of unitized beam

In this section is performed the optimization of a unitized box beam. The box
beam has the geometry shown in Figure 5.6. The beam under study is the same
considered in [125, 160]. For the interest of clarity, the geometric characteristics of
the box-beam are listed in Table 5.9. Three different load cases are considered: (a)
concentrated tip load, (b) uniform distributed load and (c) triangular load. The first
load considered herein is the same as in [125, 160]. The resultant load is the same
for all the load configurations selected. The optimization is meant to investigate the
effect that the load distribution has on the stiffeners path.

Table 5.9 Geometric features of the wing box under study.

Stiffeners’ width bs 3 mm
Stiffeners’ spacing ds 10 mm
Stiffeners’ height hs 4 mm
Number of stiffeners ns 6
Plate’s skin thickness hp 2 mm
Beam’s length L 1100 mm
Spar caps length Lw 20 mm
Spar height hw 40 mm
Spar’s thickness tw 2 mm
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It is worth noting that, when idealized beam model are adopted, the optimization
of the unitized beam comprises also the following steps

• Evaluation of the equivalent properties of the stiffened panel once the geometry
of the stiffeners is assigned, and

• calculation of the equivalent beam properties;

The flowchart which exemplifies the steps to follow for calculating the beam stiff-
nesses is reported in Figure 5.7.

Given
ϑ1,ϑ2, . . . ,ϑn

Compute A, D (eqns. 2.25a, 2.25c)

Compute A∗, D∗ (eqns. 3.2)

Compute Ci j (eqns. 3.6)

Closed-form Ci j(x) (eqns. 3.8)C
ij
(x
)

E
V

A
L

U
A

T
IO

N

Fig. 5.7 Flowchart for the evaluation of the beam’s stiffnesses.

Aiming at identifying the stiffeners topology which maximize the bending-
torsion coupling, Cestino and Frulla [125] used an idealized beam model; they
performed a parametric analysis instead of optimizing the beam and considered
straight but oriented stiffeners. It is worth noting that, while the calculation of the
beam cross sectional properties is the same adopted herein (see eqns. 3.6), the model
adopted in [125] to calculate the equivalent properties of the stiffened panels is
different, as already discussed in chapter 2. Cestino and Frulla [125] performed
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also an experimental study to validate their model. We will use the results of such
experiment to validate the model presented in this work.

Cestino et al [160] performed the topology optimization of the same beam,
subjected to tip concentrated load, by means of Altair OptiStructTM. The topology
optimization was performed by means of the SIMP method (Solid Isotropic Material
with Penalization [161]). The objective of the optimization was maximizing the
bending-torsion coupling provided that the constraints on minimum tip rotation and
maximum tip deflection were fulfilled.

5.4.1 Problem formulation

The topology optimization problem, for the three load cases considered, are for-
mulated such that the design variables are the stiffeners’ orientations at prescribed
control points. All the other geometric parameters are fixed (see Table 5.9). The func-
tional to be maximized is the strain energy (compliance), the optimization problem
can be formulated as follows

max
1
2

∫ L

0

(
M2

y GJt

GJtEI2 − k2

)
dx (5.20)

subject to: Ku = q

ϑ
i+1
1 = ϑ

i
2

−45◦ ≤ ϑi ≤ 45◦

ϕtip ≥ ϕ0

wtip ≤ w0

where u is the vector of the generalized displacement u = [ρx ρy ρz]
T , K is the

stiffness matrix, ϑi is the angle of orientation of the stiffeners at the i− th control
point , and q = [Mt M f lap Mlag]

T is the generalized force vector. The stiffness matrix
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is given as follow

K =

⎡⎢⎣GJt K 0
k EI2 0
0 0 EI3

⎤⎥⎦
In this case, following Cestino et al [125, 160], planar deformations are considered
(i.e. ρz = 0) therefore the stiffness matrix given above becomes

K =

[
GJt K
k EI2

]

It is worth noting that the topology optimization problem, written as in eq. 5.20,
assumes the form of a constrained combinatorial optimization. Indeed, recalling the
eqns 3.6, the stiffness properties can be written as

GJt = GJt (x,A∗
66,D

∗
66,b,hw,Ω)

K = K (x,A∗
16,A

∗
66,D

∗
16,b,hw,Ω)

EI2 = EI2 (x,A∗
11,A

∗
16,A

∗
66,D

∗
11,b,hw,Ω)

where the reduced matrix A∗, D∗ can be derived form the complete matrix of the
equivalent panels A, D by means of the eqns. 3.2. Recalling that, for a given panel,
the membrane and bending matrices are given as

A = A(x,ϑ1,ϑ2,hs,hp,bs,ns,E,G,ky,kz)

D = D(x,ϑ1,ϑ2,hs,hp,bs,ns,E,G,ky,kz)

Being all the other geometric parameters fixed, the membrane and bending matrices
A and D depend only on the stiffeners’ orientations and on the spatial coordinate x,
as shown in chapter 2. It follows that the beam stiffnesses become only function of
the stiffeners’ orientations at the control points and of the spatial coordinate x.

GJt =GJt (x,ϑ1,ϑ2, . . . ,ϑn)

K =K (x,ϑ1,ϑ2, . . . ,ϑn)

EI2 =EI2 (x,ϑ1,ϑ2, . . . ,ϑn)

It is worth noting that, regardless of the model adopted, being this variable stiffness
or constant stiffness, the design variables are the orientations of the stiffeners at the
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control points. Indeed, recalling that the spatial variation of the stiffeners orientation
is governed by eqn. 2.1, it follows that the orientation in any point of the structure
is known once the orientations at the control points are known. Thus, the spatial
coordinate x is the indipendent variable rather than a design variable. It has been

��������������
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����

Fig. 5.8 Exemplification of a clamped free beam with control-points distributed span-wise.

hence shown that, regardless the beam’s model adopted, the topology optimization
problem becomes a combinatorial optimization, as for the buckling optimization
problem.

The beam tip displacement and rotation are calculated by means of the Principle
of Virtual Work (PVW), as follow

w =
∫ L

0
Ma(x)Mb(x)Γ1(x)dx (5.24a)

ϕ =
∫ L

0
Ma(x)Mb

t (x)Γ2(x)dx (5.24b)

where

Γ1(x) =
GJt(x)

EI2(x)GJt(x)−K2(x)
and (5.24c)

Γ2(x) =− K
EI2(x)GJt(x)−K2(x)

(5.24d)

The moment Mb is the bending moment due to a unit dummy load applied at the
beam tip and Mb

t is a unit dummy torque applied at the beam tip. The constraints
on beam tip deflection and rotation have been adjoned to the objective function by
means of lagrangian multipliers, i.e. we used Lagrangian relaxation to restate the
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problem as follow

max
1

2λϕ |ϕ −ϕ0|λw|w−w0|

∫ L

0

(
M2

y GJt

GJtEI2 − k2

)
dx (5.25)

subject to: Ku = q

ϑ
i+1
1 = ϑ

i
2

−45◦ ≤ ϑi ≤ 45◦

In this way, tuning the two lagrangian weights λw and λϕ one have that two amongst
the three constraints are relaxed through the introduction of the augmented objective
function given in eqn. 5.25. In the following, two control points will be used,
as in Cestino [125]. The two control points are located at the beam root and tip
respectively.

5.4.2 Results and discussion

The optimization is carried out by means of the Studp GA. A stress parameter η

of 0.4 and a probability of extinction of 0.8 have been selected as for the cases of
buckling loads maximization presented in the previous section. Standard mutations
as those listed above are used; the cross over probability is set to 1. The allowable
orientations range from ϑ =−45◦ to ϑ = 45◦ with a set space of 2.5◦. For all the
optimization performed herein, contrary to the optimization of the previous section,
a population of 20 chromosome is used. Indeed, it is worth noting that the cardinality
of the problem in hand is orders of magnitude less than the that of the buckling loads
maximization hence is worthed to decrease the number of individuals within the
population. Investigating the effect of the population size on to the performances of
algorithm is out of the scope of the present optimization, one may refer for example
to [162–164] for major details.

The box beam under study is made by Al 6060 Aluminum alloy (E = 58000 MPa,
v = 0.33 and ρ = 2780 kg/m3). With reference to Fig. 5.6, all the other geometrical
parameters, i.e. aft and fore panels thicknesses tw, plate’s skin thickness hp, stiffeners
width bs and height hs, cross sectional width b and height of the shear webs hw are
all fixed. In the interest of clarity, the corresponding values are listed in Table 5.9. As
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mentioned above, three static cases are considered, namely: (a) tip concentrated load,
(b) uniform distributed load and (c) triangular load. For all the cases considered, only
a transverse load qw is applied. The load is applied at the cross-sectional centroid
which, being the beam symmetric, coincides with the beam axis. The following
pairs of tip displacements w0 and rotations ϕ0 are given for the three problems
in hand, namely: concentrated load {14 mm, 0.287◦}, uniformly distributed load
{4.6 mm, 0.08◦} and triangular load {3.3 mm, 0.06◦}. For the case of concentrated
load, the constraints on tip deflection and rotation are the same adopted in [160].

The first load case is the same used in Cestino [125, 160] considered herein
as benchmark to validate the mathematical model derived. The beam is clamped
at one end and subjected to a concentrated load F = 41.37 kg applied with an
offset of e = 40 mm with respect to the beam tip. In Figure 5.9 is reported the
comparison between the stiffnesses predicted with the present model and those
obtained as in [125]; it is worth noting that in Figure 5.9 only straight stiffeners
(ϑ1 = ϑ2) are considered, consistently with [125]. A small deviation with respect
to the stiffnesses computed as in [125] is appreciable; the deviation is due to the
model adopted to calculate the bending stiffnesses. It is worth nothing that, in this
case, the stiffeners’ height is comparable with that of the skin plate therefore the
aforementioned discrepancy is small, as already discussed in chapter 2 for sub-
stiffened structures.

Figure 5.10 reports the bending displacement and the rotation of the beam
measured at the beam’s tip. Different models, namely: (a) solid FE mode, (b)
theoretical derivation as in Cestino [125], (c) experiment and (d) present derivation
for the case of straight stiffeners oriented at 25◦ are compared against each other. The
results reported in Figure 5.10 are obtained applying different loads, as it was done
in the experiment performed by Cestino and Frulla. It should not surprise that the
tip rotation obtained with the present model (red diamond in Figure 5.10) is closer
to that obtained experimentally, in fact the torsional stiffness GJt is proportional to
the D∗

66 coefficient which, as discussed previously, is more accurate in the present
model than that used in [125]; moreover, the coupling terms K computed with the
two models are coincident, since the stiffeners are straight (see Figure 5.9). Indeed,
looking at eqn 3.6b, the coupling coefficient for straight stiffeners is only function of
the membrane coefficients since D16 and hence D∗

16 are zero. It is also worth noting
that all the models adopted match closely to each other. According to the results
reported in Figures 5.9 and 5.10, the present model underestimates the deflection
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(overestimates the bending stiffness), contrary to what expected. However, it is worth
mentioning that the discrepancy is of the order of 0.5% and it is mainly due to the
fact that either the manufactured model and the solid FE model have, in some portion
of the beam, for manufacturing reasons, 5 stiffeners rather than 6.

Fig. 5.9 Comparison of the stiffnesses obtained with the presented model and the model
adopted in [125] considering straight stiffeners ϑ1 = ϑ2.

For the interest of clarity, in Figure 5.11 is reported the experiemtal setup used
by Cestino and Frulla [125].

Although the model presented herein and in [125] are found in good agreement,
the optimization yields a slightly different results in terms of optimal stiffeners
topology. Indeed the optimal solution identified by means of the Studp GA yields to
straight stiffeners oriented at 27.5◦, rather than 25◦ as in [125]. In order to explain
this result, is worth while noting that the value obtained with the Studp GA is that
which yields the maximum coupling term K. This result has also been qualitatively
confirmed in [160] where a thick plate was used as an initial guess and the topology
optimization was performed using the SIMP algorithm. The topology synthesized by
the SIMP algorithm, depicted in Figure 5.12, resembles that obtained with the present
method. In this case, starting form a thick plate, the SIMP algorithm removes the
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Fig. 5.10 Comparison of the mean tip displacement and tip rotation obtained with different
models and experiments.

material until the strain energy is maximum, and the pair of maximum tip deflection
and minimum tip rotation as given above are met ({14 mm, 0.287◦}).

It is worth mentioning that the topology of the stiffeners obtained in [160] slightly
changes from one stiffener to another, as shown in Figure 5.12; this result cannot be
obtained with the present model since it is presumed that all the stiffeners have exactly
the same topology. Moreover, one should also consider that the model adopted herein
is an idealized model so the effect of stress concentration at tip and root of the beam
cannot be represented. The local effects may influence locally the topology of the
stiffeners leading to small variation of the stiffeners’ oreintation. It is also worth
noting that, the shape of the stiffeners in the present model is fixed, particularly only
blade stiffeners were considered, while, comparing with the results obtained in [160],
it can be noted that the stiffeners synthesized by the SIMP algorithm resemble a L
or Z shape (Figure 5.13). Notwithstanding the aforementioned differences, the two
optimizations yields results that are qualitatively in good agreement.
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Fig. 5.11 Experimental setup for the first load case with straight stiffeners oriented at 25◦.

Fig. 5.12 Optimized stiffeners topology obtained with Altair OptiStruct (published with
permission [160])

The beam tip deflection and rotation for the different load cases considered
are listed in Table 5.10. The last column of Table 5.10 exemplifies the optimized
topology for the stiffeners path.

Examining the case of uniformly distributed load, the optimization leads to
curved stiffeners with ϑ1 = 20◦ and ϑ2 = 22.5◦. It is seen that the problem is multi-
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Fig. 5.13 Detailed view of the stiffeners cross section as obtained in [160] (published with
permission)

Table 5.10 Results of the topology optimization for the static cases.

Load ϑi[deg] w[mm] ϕ[deg] Topologyi

qw = δ (L+ e)F

�  

!"#"$%&"'( ϑ1 = 27.5
ϑ2 = 27.5

-13.89 -0.29

qw = F
L

�

 (!) ϑ1 = 20
ϑ2 = 22.5

-4.654 -0.081

qw = F
L

(
1− x

L

)
�

 (!) ϑ1 = 5
ϑ2 = 12.5

-2.195 -0.064

i The beams are drawn out of scale.

modal, particularly, since the homogenized model have been considered herein,
the solution ϑ1 = 20◦ and ϑ2 = 22.5◦ is equivalent to the solution ϑ1 = 22.5◦ and
ϑ2 = 20◦. The same behavior has been observed for the case of triangular distributed
load, in this case the optimum orientations are ϑ1 = 5◦ and ϑ2 = 12.5◦.
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In this two cases, since the optimization lead to curved stiffeners, it is worth to
perform the optimization with the variable stiffness model rather than the homoge-
nized model. The reason is twofold: (a) investigating if the two beam’s models lead
to the same optimal solution irrespective of the beam model adopted (homogenized
model vs variable stiffness model) and (b) understanding if the problem is still multi-
modal also for the case of variable stiffness, i.e. if the solution ϑ1,ϑ2 is equivalent to
ϑ2,ϑ1. In order to account for the stiffness variability we need to evaluate the closed
form equation for each of the beam’s stiffnesses, namely EI2, GJt and K. This task
is performed as explained in chapter 3, hence using a curve fitting method with a
polynomial basis. It is seen that odd polynomials (cubic or quintic) are best suited
for this purpose. The procedural steps to calculate the variable stiffness properties
has been previously discussed and it is exemplified in Figure 5.7.

Performing the optimization for the load case 2, allowing the beam to have
variable stiffness, it is seen that the optimized topology is again ϑ1 = 20◦, ϑ2 = 22.5◦.
In this case it has been noted that the solution ϑ1 = 20◦, ϑ2 = 22.5◦ is no more
equivalent to the solution ϑ1 = 22.5◦, ϑ2 = 20◦, hence the problem is no more
multi-modal if one considers the variable stiffness model. The solution ϑ1 = 20◦,
ϑ2 = 22.5◦ is the one that respect all the constraints and maximize the strain energy
indeed, while the strain energy is higher for the second solution (ϑ1 = 22.5◦, ϑ2 =

20◦), the constraint on the maximum tip displacement is violated. This is possible
because of the augmented objective function defined in eqn. 5.25. In this case it
can be concluded that the homogenized model and the variable stiffness model give
the same optimal topology; however, the deflection and rotation computed using
the homogenized model differ from that of the variable stiffness model. In Table
5.11, are reported the results of the optimization obtained using the two models. For
the sake of completness we reported also the solution obtained with the variable
stiffness model with (ϑ1 = 22.5◦, ϑ2 = 20◦). From Table 5.11, it can be noted that
the solution ϑ1 = 20◦, ϑ2 = 22.5◦ obtained with the variable stiffness model respects
all the constraints. In Figure 5.14 are reported the normalized trends of the stiffnesses
with respect to the normalized abscissa x̂ for the case of ϑ1 = 20◦, ϑ2 = 22.5◦.

The same behavior discussed above has been also seen for the load case 3, i.e.
triangular distributed load. Allowing the beam to have variable stiffness, it is seen
that the optimized topology is again ϑ1 = 5◦, ϑ2 = 12.5◦. In this case it has been
noted that the solution ϑ1 = 12.5◦, ϑ2 = 5◦ is no more equivalent to the solution
ϑ1 = 5◦, ϑ2 = 12.5◦, hence the problem is no more multi-modal if one considers the
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Table 5.11 Comparison of the tip deflection and tip rotation obtained with the different
models for different topologies for the case of uniformly distributed load.

Model
ϑ1 ϑ2 w ϕ

[deg] [deg] mm [deg]

Opt. Homogenized
20 22.5 4.65 -0.082

22.5 20 4.65 -0.082

Opt. Var. Stiff. 20 22.5 4.62 -0.081

Non opt. Var. Stiff. 22.5 20 4.69 -0.083
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Fig. 5.14 Normalized optimum beam stiffness for the case of uniformly distributed load. The
stiffness are normalized with respect to their value at the root.

variable stiffness model. In this case, contrary to the load case 2, we have seen that
neither the variable stiffness nor the homogenized stiffness model strictly respect
the optimization constraint of the maximum deflection (w0 ≤ 2.2). However, due to
relaxation a near optimum solution has been identified, which is the solution with
ϑ1 = 5◦, ϑ2 = 12.5◦. In Table 5.12 are reported the beam tip deflection and rotation
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Table 5.12 Comparison of the tip deflection and tip rotation obtained with the different
models for different topologies for the case of traingular load.

Model
ϑ1 ϑ2 w ϕ

[deg] [deg] mm [deg]

Opt. Homogenized
5 12.5 2.215 -0.063

12.5 5 2.215 -0.063

Opt. Var. Stiff. 5 12.5 2.206 -0.052

Non opt. Var. Stiff. 12.5 20 2.224 -0.075

obtained with the different models. For the sake of completness, we reported also the
solution obtained with the variable stiffness model with (ϑ1 = 12.5◦, ϑ2 = 5◦). The
results obtained in this case, confirm that the variable stiffness model is more accurate
that the homogenized model and that the problem is not multi-modal. In Figure 5.15
are reported the normalized stiffnesses with respect to the nondimensional abscissa x̂
for the case of ϑ1 = 5◦, ϑ2 = 12.5◦.

For the interest of clarity is worth to remark that, the fact that the algorithm
identify near optimum solutions does not mean that the optimization algorithm itself
fails. Indeed, we allowed for such near optimal solutions to be identified through
the use of the Lagrangian’s relaxation. If one aims to identify solutions that respect
all the constraints one can either increase the Lagrangian’s weights or enlarge the
design space allowing for a narrower set space between the stiffeners orientation, for
example halving the set space.

Comparing figures 5.14 and 5.15 follows that for the case of triangular load
the increment of the K required to fulfill the optimization objective is remarkably
higher, while the span-wise variation of GJt and EI2 are comparable for the two
cases analyzed. It should not surprise that the beam bending stiffness decrease since
the bending moment decrease moving towards the beam tip. Contrary, the coupling
and the torsional stiffness both increase for the two cases analyzed; this might seems
inchoerent with the objective of the optimzation. To this end is worth noting that
the optimization problem is nonlinear, due to the function Γ1 and Γ2. However,
engineering reasoning can be used to get some insights. The optimum solutions,
once the load configuration is selected, are a trade-off between Γ1 and Γ2. If we aim
to minimize the bending deflection and maximize the tip rotation, we can roughly
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Fig. 5.15 Normalized optimum beam stiffness for the case of triangular load. The stiffness
are normalized with respect to their value at the root.

say that we are aiming to minimize the function w
ϕ

. With some algebraic steps, one
have

min
(

w
ϕ

)
≡

GJt
EI2GJt−K2

K
EI2GJt−K2

=
GJt

K
(5.26)

which in turns shows that an higher increment on the coupling stiffness with respect
to the torsional stiffness is required to met the objective of the optimization. The
importance of this parameter was also pointed out in [125].
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As a general conclusion, the section as highlighted the need for variable stiffness
beam to get an accurate structural response.

5.5 Dynamic tailoring of HAR box-beam with curvi-
linear stiffeners

The configuration selected for the optimization is that of a typical High Altitude
Long Endurance (HALE) aircraft, adopted by Cestino et al in [64]. The analysis is
performed on to a scaled configuration suitable for a wind-tunnel test, rather than
on the full scale model. The wing-box objective of the optimization is depicted
for the interest of clarity in Figure 5.16. The properties of the constitutive material
are given as follows: E = 73GPa, v = 0.3. The center of mass and the torsional
center are coincident, xCG = xc = 0. The structural mass per unit length is ms =

1.095 10−5kg/mm. The nonstructural mass is mns = 1.095 10−5kg/mm while the
inertia per unit length due to the non-structural mass is 3.4 10−3kgmm.

Fig. 5.16 Isometric view of the High Aspect Ratio wing considered herein for the analysis.



154 Optimization of anisotropic plates and beams

The wing-box has a rectangular cross section with a = 20mm, b = 2.61mm.
The upper and lower panels thickness is hp = 0.2mm while the shear webs have
a thickness tw equal to 0.22 mm. The wing span is 522 mm. The model adopted
herein differs from that used in [64] because considers stiffened panels for the upper
and lower walls of the box-beam. Aiming at rewriting the topological problem in
the form of combinatorial optimization, as in the previous section, we first need to
establish a model with straight stiffeners oriented at zero which exhibits comparable
value of the stiffnesses as that of the wing-box used in [64]. The model with the
stiffeners oriented at zero will be henceforth referred to as benchmark model.

5.5.1 Identification of the benchmark model

This section is ment to identify the number of stiffeners required and their cross
sectional dimensions such that the stiffened wing-box (benchmark model) exhibits
the same (or approximately the same) stiffnesses of the scaled wing-box adopted
by Cestino et al in [64]. We first perform a static assessment applying unit dummy
load at the beam tip. In view of the selected geometry, i.e. stiffened upper and
lower panels with straight stiffeners oriented at zero, the wing-box is decoupled
(K = 0) and the stiffnesses are constant span-wise. It follows that the bending and
torsional stiffness can be calculated with ease. It is seen that a wing-box with ns = 10
sub-stiffeners having hs/hp = 1.5, bs = hp approximates with a good agreement the
wing-box considered in Cestino et al [64]. In Figures 5.17-5.19 are reported the
static deflections/rotation of the model considered herein. The value of the stiffnesses
are found in agreement with those reported in Cestino et al in [64] with negligible
differences. For the sake of comparison, the resulting stiffnesses of the model are
reported in Table 5.13 along with the stiffnesses of the wing box given in Cestino et
al in [64].

The assessment of the benchmark model procedes performing the dynamic
analysis and comparing the natural frequencies of the wing-box given in [64] with
that obtained with the stiffened wing-box considered herein. It is seen that the
wing-box model presented herein has comparable natural frequencies with that given
in Cestino et al [64], as shown in Table 5.14.

A uniform distributed load q has been applied to the structure; particularly, the
distributed load is given as q = 1/2ρV 2cClα α where, ρ = 1.225kg/m3 is the air
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Fig. 5.17 Static aseessment of the edgewise stiffness for the benchmark wing-box.

Fig. 5.18 Static assessment of the flat-wise stiffness for the benchmark wing-box.

Fig. 5.19 Static assessment of the torsional stiffness for the benchmark wing-box.

density, V is the flight speed (V = 20m/s), c is the mean aerodynamic chord (c =),
Clα = 2π and α = 1.1◦. A nonlinear analysis has been performed to evaluate the
frequencies of the deformed structure. In Figure 5.20 is reported the nonlinear static
deformation of the wing box. It is seen that also the frequencies of the deformed
configuration are found in good agreement with those given in [64], as shown in
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Table 5.13 Comparison of the wing box stiffnesses between the benchmark model established
herein and that given in Cestino et al in [64].

Model
EI2 EI3 GJt K

[Nmm2] [Nmm2] [Nmm2] [Nmm2]

Present 3.33 105 1.26 107 3.75 105 0
Ref [64] 3.41 105 1.27 107 3.41 105 0

Table 5.14 Linear and nonlinear frequencies [Hz] of the benchmark problem ( ϑ1 = 0◦,
ϑ2 = 0◦).

#f Linear Nonlinear

1 7.67 5.70
2 47.55 38.9
3 48.14 44.59
4 126.55 111.73
5 130.60 122.55

Table 5.14. The first three mode shapes of the deformed configuration are reported
in Figures 5.21, 5.22 and 5.23.

Comparing the results obtained for the static and dynamic assessments, it can
be concluded that the benchmark model has been established. Henceforth, all the
design parameter will remain fixed and only the stiffeners’ orientations will change
aiming at decreasing the difference between the frequency of the linear system in the
undeformed and deformed configuration.

Fig. 5.20 Nonlinear static deformation of the benckmark box-beam
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Fig. 5.21 First nonlinear mode shape of the wing box.

Fig. 5.22 Second nonlinear mode shape of the wing box.

Fig. 5.23 Third nonlinear mode shape of the wing box.
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5.6 Formulation of the optimization problem

The optimization problem can be formulated as follows

max ∑
i
∥ωi − ω̂i∥ (5.27)

subject to:
[
−ω

2M+K
]

u = 0⃗[
−ω̂

2M̂+ K̂
]

û = 0⃗

ϑ
i+1
1 = ϑ

i
2

−45◦ ≤ ϑi ≤ 45◦

wtip ≤
b

10

where ω and ω̂ are respectively the frequencies of the undeformed and deformed
configuration, M and K are the mass and stiffness matrices, b is the wing-box span;
the quantities indicated with hat are those of the configuration linearized around the
deformed state. Also in this case, as highlighted in Section 5.4, the optimization
problem, written as in eqn. 5.27 is in the form of combinatorial optimization. It
is worth mentioning that in the following we consider the structural mass being
uniformely distributed, the reason is tow fold: (a) in chapter 2 we have shown that
the effect of mass variability is negligible and a good approximation can be achieved
considering a uniform distributed mass and, (b) the inertia due to the nonstructural
mass, for the wing-box considered herein, is the dominant component.

In this case, the optimization is performed by means of finite element analysis.
The beam is modeled with CQUAD4 elements. The non-structural masses are
attached with an offset to the aft and fore wing spars through rigid elements (RBE2).
The beam has 522 element edgewise and 10 flatwise. The equivalent variable stiffness
plate properties are calculated within the in-house Matlab code. The upper and lower
panels are modeled as thick plates (MAT2) as in chapter 2. In this case however,
only membrane and bending behavior are considered while, in view of the results of
chapter 2, the shear behavior is neglected. The Studp GA has been used to perform
the optimization. A population size of 20 chromosome is used. All the other relevant
parameters for the Studp GA remains unchanged with respect to the optimization
performed for the static cases considered in Section 5.4. Once the optimum solution
has been identified, the results obtained by means of the FEA are compared against
those obtained using the reduced order model derived in chapter 3. For the purpose
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Table 5.15 Linear and nonlinear frequencies [Hz] of the otpimized wing box ( ϑ1 = 0◦,
ϑ2 = 10◦).

#f Linear
Nonlinear

FEA ROM

1 7.67 5.79 5.81
2 47.55 39.6 39.9
3 48.16 44.86 45.1
4 126.59 113.79 114.3
5 130.60 122.00 124.6

of this comparison, 5 modes are used for the approximation as in eqn. , namely, two
flatwise modes, two edgewise modes and one torsional mode. In view of the results
and discussions of the previous section (Sec. 5.4), here we used only the variable
stiffness beam model.

5.6.1 Optimization with two control points

In the first case study there are only two control points, namely at X = 0 and
x = L. The algorithm converges within few iterations to the optimum values, namely
ϑ1 = 0◦, ϑ2 = 10◦. The nonlinear static deflection of the optimum solution is shown
in Figure 5.24. The value of the static deformation is wopt

NL = mm. The resulting
natrual frequencies of the undeformed and deformed configurations respectively
are reported in Table 5.15. In the fourth column of Table 5.15 are reported the
frequencies of the deformed configuration obtained with the second order varaible
stiffness model described in chapter 3. It is worth noting that for the first three
frequencies are found in good agreement with that of the FEA, while for the fourth
and fifth frequencies the discrepancy with the frequencies calculate by FEA is higher.
The reason could be that higher modes, not included in the basis function, may
interact with the fourth and fifth frequencies leading the approximation to be less
accurate. To achieve better approximation the number of basis functions used should
be increased.

Comparing the frequencies of the undeformed and deformed configuration for
the optimized solution it is worth noting the following
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• a small deviation of the linear frequencies of the optimized configuration with
respect to the benchmark model is found

• except for the case of the fifth frequency, all the other frequencies are higher
for the optimized wing-box compared with that of the benchmark model.

Altought the increase of the natural frequencies is not such that the frequencies of the
deformed and undeformed configuration coincides, it can be concluded that in this
case allowing the stiffeners to be oriented has a certain benefit on the tailorability of
the structural response. It should not surprise that the optimization has synthesized
moderately curved stiffeners, indeed this behavior was also observed in , for the
NASA Common Research Model (CRM).

The first three mode shapes are depicted in Figures 5.25 5.26 and 5.27. Partic-
ularly, it is seen that the third mode is a lag-torsion coupled mode. This type of
behavior was also observed by Cestino et al. [64] for the wing-box they analyzed.

Fig. 5.24 Nonlinear static deformation for the optimized wing box with two control points (
ϑ1 = 0◦, ϑ2 = 10◦).

5.6.2 Optimization with three control points

The second case study considers the same benchmark model, in this case however
there are three control points placed at x=0, x=256 mm and x=522mm. Also in
this case the algorithm converges within few iterations to an optimum solutions
having the value of the fitness function f (ϑ1,ϑ2) =. The orientations at the control
points are given as follows: ϑ1 =−2.5,x = 0, ϑ2 = 5,x = 0.5b and ϑ3 = 12.5,x = b.
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Fig. 5.25 First nonlinear mode shape of the optimized wing box with two control points (
ϑ1 = 0◦, ϑ2 = 10◦).

Fig. 5.26 Second nonlinear mode shape of the wing box with two control points( ϑ1 = 0◦,
ϑ2 = 10◦).

Despite some differences, the two solutions are found in good agreement. The
nonlinear static deformation of the optimized solution, for the case of three control
points is depicted in Figure 5.28. The linear and nonlinear natural frequencies of
the optimized wing.box are reported in Table 5.16. The nonlinear mode shapes are
illustrated in Figures 5.29,5.30 and 5.31. Also in this case a lag-torsion coupling is
observed.

In this case, the natrual frequencies of the deformed configuration are higher
than that of the benchmark model highlithing the beneficial effect of the dynamic
tailoring. Comparing the results reported in Table 5.16 with that given in Table 5.15
it follows that the results obtained with three control points outperforms that of the
case of the control points. This result could have been somehow predicted, indeed
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Fig. 5.27 Third nonlinear mode shape of the wing box with two control points ( ϑ1 = 0◦,
ϑ2 = 10◦).

Table 5.16 Linear and nonlinear frequencies [Hz] of the otpimized wing box ( ϑ1 =−2.5◦,
ϑ2 = 5◦,ϑ3 = 12.5◦).

#f Linear
Nonlinear

FEA ROM

1 7.67 5.81 5.84
2 47.55 39.86 39.91
3 48.16 44.92 44.94
4 126.59 114.31 114.56
5 130.61 121.82 123.6

increasing the number of control points increase the cardinality of the problem and
hence results in a wider search space. Also in this case, the frequencies determined
with the reduced order model using as basis functions two modes for the flatwise
and edgewise displacement, and one for the torsional displecement, leads to a good
approximation of the frequencies determined via FEA. The discrepancy increase
with the increase of the frequencies highlighting the need for an increased number of
basis functions.

It is worth noting that the optimum values of the objective functions are close
to each other and hence, the solution obtained with three control points can be
considered as a near optimal solution. It is important point out also that the so-
lution obtained with three control points it could have been found also with two
control points. Indeed, being the variation of the stiffeners orientations linear in the
indipendent variables x (see eqn. ), and being the total variation of the orientation
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Fig. 5.28 Nonlinear static deformation for the optimized wing box with three control points (
ϑ1 =−2.5◦, ϑ2 = 5◦,ϑ3 = 12.5◦).

Fig. 5.29 First nonlinear mode shape of the optimized wing box with three control points (
ϑ1 =−2.5◦, ϑ2 = 5◦,ϑ3 = 12.5◦).

Fig. 5.30 Second nonlinear mode shape of the wing box with three control points ( ϑ1 =
−2.5◦, ϑ2 = 5◦,ϑ3 = 12.5◦).

in the case of three control points equal to 15◦, follows that ∆ϑ/2 = 7.5 and hence
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Fig. 5.31 Third nonlinear mode shape of the wing box with three control points ( ϑ1 =−2.5◦,
ϑ2 = 5◦,ϑ3 = 12.5◦).

(a) (b)

Fig. 5.32 Exemplification of the stiffeners geometries synthesized with (a) 2 and (b) 3 control
points.

ϑ(x = L/2) = 5, which in turn is equal to the value of ϑ2 identified by the algorithm
for the case of three control points.

It is also possible, despite only two case of optimization are performed, identify
some trends. The results confirm what has been observed by Jutte and Stanford [55]
for the Common Research Model of future transport aircraft. Indeed, moderately
curved stiffeners are necessary to tailor the strucutral response and indeed are
preferred by the optimization with respect to the straight ones. Moreover, as noted
by Jutte and Stanford [55] it is seen that the optimum solutions has the stiffeners
which led towards the leading edge of the wing. However, contrary to [34], it is
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noted herein that at the wing tip the stiffeners are oriented in the direction of the
trailing edge of the wing. As discusses by Stanford, having the stiffners that lead
toward the leading edge is advantageous for postponing the occurence of the flutter.
Flutter is not considered in this preliminary analysis. Aiming at minimizing the set
space between the linear and nonlinear frequencies, and being the latter influenced
by the amount of the nonlinear static deflection, the algorithm tries implicitly to
reduce the static deformations. As a consequence, the point in which the maximum
flap stiffness is located in shifted forward with respect to the root. The reason for not
having the stiffeners parallel and oriented at zero, which would have guaranteed the
maximum flap rigidity, is due to the coupling that arise when nonlinear geometrical
deformations arise.

From Figure 5.33 to 5.36 are reported respectively the beam stiffnesses GJt , K
EI2, EI3 with respect to the non-dimensional abscissa x̂ for the optimized solutions
with two and three control points. The beam stiffnesses have been normalized with
respect to their maximum value. As can be seen from Figure 5.33- 5.36, for the two
optimized configurations all the stiffeness components match closely all over the
span, indeed only few percentage variation is seen between the stiffness obtained
with the two control points and that with three control points model. It can be noted
that for the two optimized solutions the edgewise stiffness EI2 decreases span-wise,
meaning that when the beam undergoes nonlinear deformations, not necessarely
increasing the edgewise rigidity can lead to a decrease of the static deflection and
hence to an increased set space among the linear and nonlinear frequencies. The
increase or decrease of the nonlinear static deformations is instead a combination of
all the stiffness component, as expected. Qualitatively the same conclusions drawn in
Section 5.4 can be drawn herein. Indeed it is worth noting that the optimization yields
higher values of the coupling and torsional stiffnesses at the beam’s tip. Moreover,
also in this case the increase of the coupling term K is remarkably higher compared
against that of the torsional stiffness GJt .

5.7 Conclusions

In this chapter it has been introduced a revised version of the Stud GA with the aim
of improve the algorithm efficiency without penalizing its reliability. The tuning
parameters of the algorithm, originally introduced herein, have been identified and
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Fig. 5.33 Comparison of the torsional stiffness distribution with respect to the normalized
abscissa for the case of 2 and 3 control points.
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Fig. 5.34 Comparison of the coupling stiffness distribution with respect to the normalized
abscissa for the case of 2 and 3 control points.

discussed. It has been shown that, contrary to what was known, a higher extinction
rate can lower the performance of the algorithm. The algorithm has been tested
considering benchmark constrained combinatorial problems for composite layered
structures. The performances of the algorithm have been compared against those
of other algorithms available in the open literature. It has been demonstrated that
the Studp GA outperform the other heuristic methods for all the cases considered.
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Fig. 5.35 Comparison of the edge-wise stiffness distribution with respect to the normalized
abscissa for the case of 2 and 3 control points.
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Fig. 5.36 Comparison of the flat-wise stiffness distribution with respect to the normalized
abscissa for the case of 2 and 3 control points.

Particularly, with respect to other three GAs, the algorithm presented herein is also
more reliable (99% against 80% of the SGA,PMX, GR).

The optimization algorithm has been then used to optimize two thin-walled box
beams with curvilinear stiffeners. The topology optimization problem has been
rewritten as a constrained combinatorial problem, where the design variables were
the orientation of the stiffeners in a set of control points, assigned a priori.
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In the first case, the optimization aims at attaining a desirable static performance,
i.e. maximizing the bending-torsion coupling while ensuring a minimum tip deflec-
tion. Three different load cases were considered. For the case of tip concentrated
load, the results obtained are found in agreement with that available in the open
literature. It has been shown that a trade-off between torsional and coupling stiffness
is necessary to ensure a desired coupled behavior.

In the last optimization problem addressed, the objective of the optimization was
to reduce the set space among the linear and nonlinear frequencies. Particularly, the
first five frequencies have been considered herein. The optimization has been carried
out considering two and three control points. A population of 20 individuals has
been used, with probability of mutation of 0.1 and probability of crossover of 1. Pre-
liminary results obtained shows that the set space between the nonlinear frequencies
can be effectively broaden through the use of moderately curved stiffeners. It can be
concluded that the introduction of curvilinear stiffeners, and more in general variable
stiffness properties, open up a variety of possible solutions to tailor the static and
dynamic structural responses, as already highlighted in [34, 165, 166]. The results
of the optimization obtained via FEA are compared against those obtained with the
reduced order model presented in chapter 3. It has been noted that, for the wing-box
under study, the approximation with 2 flatwise modes, 2 edgewise modes and one
torsional mode yield to a good approximation of the first three frequencies. The
discrepancy with respect to the frequencies determined through FEA increases if one
considers higher frequencies highlighting the need to increase the number of basis
functions. It has been hence shown that reduced order beam model can faithfully
represent the behavior of complex structure, contrary to what stated in [36].



Chapter 6

Topology synthesis of planar ground
structures

Some of the contents pertaining the optimization of Ground Structures have been
previously published in

Danzi, F., Gibert, J. M., Cestino, E. and Frulla, G. ”Topology Synthesis of Planar
Ground Structures for Energy Harvesting Applications”. Proc. of SPIE Smart Struc-
tures+Nondestructive Evaluation and Health Monitoring (SS/NDE), Portland, Oregon
(USA), 25-29 March 2017 https://doi.org/10.1117/12.2257351

Danzi, F., Gibert, J. M., Frulla, G. and Cestino, E. ”Graph-based element removal
method for topology synthesis of beam based ground structures”. STRUCTURAL
AND MULTIDISCIPLINARY OPTIMIZATION. Volume 57, Issue 4, pp. 1809–1813,
ISSN 1615-1488, https://doi.org/10.1007/s00158-017-1818-x

6.1 Introduction and motivation

In this chapter we formulate and solve the optimization of a planar Ground Structure
(GS) aiming at identify solutions that exhibit commensurate frequencies. Having
noted that the vast majority of Homogenization Design Method (HDM) leads to
truss-like structures, in the following, we parameterize the design domain using the
Ground Structure method. In order to synthesize meaningful, i.e. manufacturable,
structure we conceived a double filtering scheme described below.

https://doi.org/10.1117/12.2257351
https://doi.org/10.1007/s00158-017-1818-x
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The Graph-based Element Removal Method (GERM) presented herein has been
also applied for the topology synthesis of compliant mechanisms. However, the
results pertaining the optimization of compliant mechanisms have not been included
in this chapter and are summarized in Appendix D.

6.2 Topology optimization

According to Howell [167], structural optimization can be classified as follow: a)
size optimization, b) shape optimization and c) topology optimization. Among the
three categories, topology optimization offers the largest design space therefore
is considered as the most general optimization problem. Numerical methods for
topology optimization can be roughly classified as: a) Homogenization Design
Method (HDM) and b) Ground Structure Method.

HDM is a truly continuum-based optimization where the design domain can be
seen as a micro structural arrangement of voids and material. HDM has been applied
to a broad range of problems including, but not limited to, compliant mechanism
design problems [168, 169], multiple constraints problems [170] and optimal design
of vibration based energy harvesters [171–174].

On the other hand, topological optimization of truss or ground structures is
generally limited to the optimization of size variables, i.e. cross sections or beams’
length. Much less effort have be done to truly topological variables, such as, the
pattern of connection of members. Despite the most general form of a discrete
structure can be described also by configuration variables which, for truss structures,
are the nodal coordinates, we chose to keep the nodal coordinates fixed. Owing the
complexity of simultaneous optimization of geometry, topology and cross-section,
this is a common choice in structural layout optimization. The ground structure
method has been historically used for the design of bridges and civil structures
[175–177] and recently adopted for the synthesis of compliant mechanisms [178].

Topological and geometrical variables define the structural layout. It is well
recognized that the structural layout can greatly affect the mechanical behavior of
the structure. In general in fact, potential savings affected by shape optimization are
more significant than those given by a fixed-shape structure. Indeed, mathematically,
fixing a priori the structural shape means limiting the research area on a subset VC
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of the possible solutions V , VC ⊂V . Moreover, in most of the cases, some further
constraint additionally limit the design space. For example, in the specific case of the
optimization of the dynamic response, the frequency’s bandwidth is generally defined
a priori [79, 179]. It is worth noting that mathematically this further constraint limits
the design subset to VD, where VD ⊂VC ⊂V .

It is in view of the above mentioned restrictions, we chose to state the optimization
problem in its non-dimensional form to maintain as large as possible the design set
and use highly connected ground structures to seek for innovative configurations.
Particularly, the GS allows to have members that are generally oriented rather than
be adjoined at 0◦ or 90◦. This will be shown to be crucial to identify novel solutions
to the problem in hand.

6.3 Ground structure

The ground structure (GS) method was first proposed by Dorn to solve the Michell
problem [180]. It provides an efficient means to identify near-optimal solutions for
topologies of trusses, and later was extended to compliant mechanisms,[178]. The
ground structure can be defined as a highly connected truss/beam structure which
presents a fixed number of nodes in a given domain Ω ∈ Rn; this work is restricted
to planar ground structures, i.e. n = 2. An example of the GS used in this chapter is
depicted in Figure 6.1. Arguably the major drawback of the GS method is that it can
lead to complex designs that can be difficult to realize physically.

The classic ground structure approach consists of letting the members’ cross
sections vary between the upper and lower bound and then removing members which
have the cross section equal or closer to the lower bound, simplifying the complexity
of the optimized topology. The complexity in the design and manufacturability
arises from the high number of members in the synthesized topology. Moreover,
in structural optimization problems there may be multiple optimal solutions. Sved
and Ginos [181], noted that one must search all perfect structures obtained omitting
members is necessary to ensure that a global minimum is reached. Researchers ([182–
185, 177, 186, 187]) have proposed different methods to handle design complexity
during the optimization or in post-processing. To the author’s knowledge, the first
conceiving a graph parameterization for a ground structure were Giger and Ermanni
[188], subsequentlly adopted also by Sauter [189–191]. Instead of classic genotype
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for evolutionary optimization, they defined a graph-based genotype, where each gene
in the parametrization have the following information:

1. A unique identifier that is assigned to each node.

2. Nodal coordinates that is stored with the identifier.

3. A boolean parameter that is used to determine whether the node can be moved
during the optimization process or not.

4. Two unique identifiers that are assigned to a members’ nodes.

5. The cross-sectional area of each node is stored, since they considered variable
thickness beams.

In this work, we adopt a similar graph based parametrization of the design domain.

6.3.1 Parameterization of the design domain

Aiming at identify solution that exhibit commensurable bending frequencies, we
parameterize our design domain Ω using beam-based GS. However, the latter choice
is not self-explanatory because GS can have different parameterization, and different
level of connectivity, therefore some assumptions have to be made to define uniquely
the cardinality of the problem. The parameterization we chose is based on the
following assumptions

1. The line segments of connecting nodes must be contained in the design domain
Ω, i.e. Ω is a convex set.

2. Beams may intersect but they cannot repeat in the parameterization.

3. Only beams with the shortest connection between nodes are admissible in the
parameterization.

4. A beams’ intersections does not generate additional nodes; that is, beams that
cross are able to slide past each other.

With reference to Figure 6.1b, assumption 3 implies that node 1, 5 and 9 are connected
by two members, i.e. the beam from node 1 to 5 and the beam from node 5 to
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9. Beams 5-1 and 9-5 do not exist because of assumption 2. According to the
assumptions listed above, a ground structure with M×N nodes has the following
number of beams

nbeams =

(
MN

2

)
−

[
M

N

∑
i=3

(i−2)+N
M

∑
j=3

( j−2)+2
Q

∑
k=2

(N − k)(M− k)

]
(6.1)

where Q = min(N − 1,M − 1),
(MN

2

)
is the number of beam of the full connected

graph, i.e. the one obtained neglecting all the assumptions 1 to 3. Equation 6.1
defines the cardinality of the problem that one would have considering the full
connected GS, i.e the one with all the members retained in the design.

�

 

(a)

1 2 3

4 6

7 8 9

5

(b)

Fig. 6.1 Example of a Ground Structure with 7×7 nodes and 856 members, clamped in the
center node along the Y side (Figure 6.1a), and a 3×3 GS clamped in node 1 (Figure 6.1b).

6.4 Graph Based Element Removal Method

The Graph-based Element Removal Method (GERM) is based on the observation
that regardless of the level of connectivity specified in a GS parameterization, the
GS is an undirected graph, G(V,E), where V = {v1,v2, . . .vn} with |V |= n is a set
of vertexes (nodes) connected by a set of edges (members) E = {e1,e2, . . .em} with
|E| = m <n and where | · | defines the cardinality of the set ([192]). The GERM
algorithm is a double filtering scheme consisting of

1. threshold limit removal, i.e., removing members whose cross sectional areas
are under a lower bound;
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2. graph based search and cut, i.e., removing any elements that is not reachable
from a specified root node(s).

Particularly, the need of having a double filtering scheme will be highlighted subse-
quently. The cross sectional dimensions, for each of the member in the parameteriza-
tion, are given according to the following equation

xi = xl +
xu − xl

2s k (6.2)

being k the cross sectional parameter and xu,xl the upper and lower limits for the cross
sectional dimensions. The cross sectional parameter k is an integer, 0 ≤ k ≤ 2s −1,
represented using a binary encoding and s is the size of the binary vector. The limits
xu and xl are adaptive and may either increase or decrease during the optimization
according to the previously identified optimum topology. The original connectivity
matrix is frozen once the M×N GS is selected. This allow us to define uniquely the
cardinality of the genotype, according to equation 6.1.

Contrary to Giger and Ermanni and related works [188–191], the genotype we
defined has only one data per gene, i.e. the cross sectional parameter k. It follows
that the dimension of the genotype coincides with the cardinality of the GS (nbeams)
according to equation 6.1. The reason for having a condensed genotype, in terms
of information retained for each member, with respect to the one used by Giger
and Ermanni [188], arises from the way we tackled the topology optimization and
deserves some discussion.

First and foremost, we chose to fix the nodal position at the beginning of the
optimization, this allows us to define uniquely the node positions and the elements
length. Moreover, having chosen to have a genotype with a cardinality equals to
the number of beams in the parameterization, the label of the "active" members is
uniquely identified since coincides with the position of the gene in the genotype.
Herein, with "active" members we mean those members that pass the two filtering
schemes. Finally, since the GS is also fixed at the beginning of the optimization,
also the original connectivity matrix is fixed and therefore we don’t need to store the
node’s identifier for each beam. Indeed, the node identifier are the elements of the
original connectivity matrix contained at the i− th column, being i the number of
that particular beam into the parameterization (or equivalently the edges of the graph
or the position of the gene in the genotype). In other words, all the information are
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Fig. 6.2 Exemplification of the doubly linked list implemented in the optimization algorithm
to recover all the information need to construct the Finite Element Model. All the data
enclosed between the dashed line are frozen within the optimization and are only used to
reconstruct the geometry of the synthesized structure.

retained considering the graph as a set of doubly linked lists. An exemplification of
the data storage strategy is depicted in Figure 6.2. It is worth mention that Figure 6.2
uses the classic definition of a doubly linked list used in computer science. In this
sense node stands for a data pointer which points from one list ("PREV") to another
("NEXT").

The effect of the application of GERM onto a 3×3 GS is instead illustrated in Fig-
ure 6.3. The concatenated lists, hereafter referred to as intermediate and background
connectivity, will be described concurrently with the two filtering schemes.

6.4.1 Threshold Limit Removal

The first filtering scheme removes all the members that have the width (or equiv-
alently height) 1 lower than a threshold limit, τ . This task is usually performed a
posteriori on the optimized structure; conversely, in our Element Removal Method
(ERM), as in [188–191], it is performed within the optimization by defining the
threshold limit for the cross sections. Similar to [177], members with a cross section,
x2

i , under the threshold limit are removed from the structure. The threshold limit
is an input of the ERM and is given as fraction of the maximum cross sectional
width (height). Being the latter updated at each iteration, or at least whenever a new

1In our case we considered square cross sections
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Fig. 6.3 Effect of GERM on the ground structure: (6.3a) shows a generic solution after one
iteration of optimization, all the members in green are under the threshold limit (|V | = 9,
|E| = 28); (6.3b) the first filtering scheme, the member in red is the resulting bouncing
structure (|V1|= 5, |E1|= 3); (6.3c) DFS performed on the filtered topology starting from
the constrained node to seek for bouncing (unconnected) structures; and(6.3d) optimized
topology, (|V2|= 3, |E2|= 2).
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optimum solution is identified, it follows that the ERM is adaptive and the threshold
limit varies during the optimization. The TLR (Threshold Limit Removal) can be
written as

T LR(x,τ, i) =

⎧⎨⎩1 if xi
max(xj)

< τ, 0< τ < 1,

0 otherwise.
(6.3)

where max(xj) is the thickness of the j− th member of the structure (genotype). It
is worth noting that the TLR does not operates directly onto the genotype, but on an
intermediate connectivity matrix IENIM, i.e. a revised connectivity which contains
only those members with cross sectional dimension higher than the threshold limit.
It is also worth mention that being the GERM coupled with a Genetic Algorithm
(GA), i.e. with a population based algorithm, within the population there could be
solutions with remarkably different thicknesses. This allows us to navigate the entire
design domain avoiding to be stuck in a particular area. In other words, through the
definition of TLR we enhance the exploration capability of the algorithm maintaining
a certain level of diversity of the population.

The initial removal of elements after each iteration of the optimization requires
an intermediate connectivity matrix, henceforth referred to as IENIM, which contains
only the members with cross sectional dimensions higher than the threshold limit.
The filtered structure will have new set of nodes (V1) and members (E1) so that |V1| ≤
|V | and |E1| ≤ |E|, thus IENIM is 2×|E1| matrix, for truss or beam based ground
structures. The removal of elements leads to unconnected or floating structures
within the design, as shown in Figure 6.4, that in turns leads to singular stiffness
and mass matrices. Particularly, in Figure 6.4a we report the case of one bouncing
structure laying between node 6 and 8 while, in Figure 6.4b is illustrated the case of
two bouncing structures resulting after one iteration in the optimization. In order to
eliminates the bouncing structure from the topology and hence eliminate any source
of singularity within the code, we conceived the second filtering scheme.



178 Topology synthesis of planar ground structures

2 3

4 6

8 9

5

(a)

1 2 3

4
6

7 8 9

5

(b)

Fig. 6.4 Examples of resonators synthesized to have 1:2 frequency ratio. Structures (a) and
(b) were synthesized from 3x3 ground structure (GS). It is important notice that structure
(a) has one bouncing member, i.e. the beam between nodes 6 and 8. Structures (b) has two
bouncing members, that is beams enclosed between nodes 6-8 and 8-9 respectively.

6.4.2 Graph Based Search and Cut

The second filtering scheme begins with a graph search. A depth first search (DFS)2

is performed to identify and eliminate the floating structures from a given design.
The DFS is performed on the adjacency matrix A of the GS (or equivalently of the
graph G). The adjacency matrix, A(G) is a |V1|× |V1| matrix whose elements are
defined as

ai, j =

⎧⎨⎩1 if i, j ∈ E1,

0 otherwise.
(6.4)

The adjacency matrix is updated at each iteration using the intermediate connectivity,
and is based on the topology after the first filtering. The DFS starts with a discovery
phase from the root node/vertex and explores, as far as possible, along each branch
before "backtracking”. The root node in our case is the node where the structure is
clamped. The DFS can output several arrays depending on the implementation. In the
GERM, the relevant array is a vector d (1×|V1| vector); its elements contain either
the discrete time of a node’s discovery or −1 if the node cannot be reached from the
target node and is identified as a vertex of a floating structure. The result of the second
filter is a second set of nodes (V2) and members (E2). The cardinality of the new

2GERM could also be implemented with a breath first search (BFS) since the algorithm only
requires identifying reachable nodes based on our vertex/root node. Algorithms for both the DFS and
BFS are found in [193] .
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sets satisfies |V2| ≤ |V1| and |E2| ≤ |E1|. This leads to a 2×|E2| matrix background
connectivity matrix, IENBG. It should be noted that the graph-representation of the
GS allows the following:

• permits to identify all the unconnected members, i.e. members that have been
removed after the TRL and/or bouncing structure, and

• allows to handle the intermediate and background connectivity matrix as a
adjacency matrix.

Input: τ , IENFull(original connectivity), xxx0, target.node(s)
1 Initialization: remove = [ ], IENIM = [ ]
/* Threshold Limit Removal */

2 for i:=1 to All members do
3 if x(i)≤ τxmax then
4 Add: i to remove
5 end
6 end
7 IENIM= IENFull(~remove)
/* Graph Based Search and Cut */

/* Write adjacency matrix, A */

8 A=0
9 for i:=1 to All nodes do

10 if i == any(IENIM(1, :)) then
11 Assign: CurrentNode = i
12 Assign: NearNode = IENIM(2, i)
13 Construct: A(NearNode, CurrentNode)=1,
14 A(CurrentNode, NearNode)=1
15 end
16 end
17 IENIM= IENFull(~remove)
18 Perform DFS on A, d = DFS(A, target)
19 Remove bouncing members d from IENIM

Output: IENBG

GERM: pseudocode

In the interest of clarity, we report the pseudo-code of the GERM algorithm.
Figure 6.3 presents a pictorial overview of one iteration in the algorithm. Figure 6.3a
shows a solution after one iteration of optimization, members in the lower bound
are in green and the root node is node 1. After the threshold limit removal, Figure
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6.3b, there is a floating structure, i.e. the members between node 3 and 8. The DFS
searches along all reachable nodes from the root node (Figure 6.3c) and returns
the structure in Figure 6.3d. All the intermediate operations are performed on the
intermediate connectivity during the first filtering scheme and onto the background
connectivity during the graph search and cut. Finally the finite element matrices are
constructed based on the background connectivity. All the other necessary necessary
data to construct the finite element matrices, such as nodes’ position and elements’
length, are recovered backtracking from the genotype.

It is important to point out that one of the main difficulties in topology optimiza-
tion of trusses and frames is that the globally optimal solution cannot be obtained
if unnecessary members are completely removed from the ground structure, indeed
some members may be reused after removal at intermediate steps. In the developed
method the members are removed from the real structure that is represented using
the background connectivity. This allows us to perform the FEA with only the
active numbers within a particular design. In addition, it improves the computational
efficiency. In fact, the linear system to solve has a cardinality of 3V2×3V2. However,
all the genetic operators, i.e. cross over and mutation, are applied to the original
ground structure that contains all the members and related data (nodes location, cross
sectional dimensions, lengths and so on). This allows the reuse of elements in the
successive generation.

6.5 Case Study: Optimization of planar
resonators

Many MEMS based resonators, exploit the nonlinear phenomena known as internal
resonances3. One condition necessary for an internal resonance is for the system to
have modal frequencies as a ratio, e.g., 1:2 or 1:3. The topology of the resonator
is one dominant factor in determining whether a given modal ratio can occur. A
common geometric configuration of resonators exhibiting this integer ratio of modal
frequencies are L-shaped structures. L-shaped resonators have been of interest to the
dynamics community for several decades [88–91].

3Internal resonance in a system exist when there are strong nonlinear interactions resulting in an
energy exchange between different modes of vibration when the system is excited.
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Fig. 6.5 Number of active members of the optimum solution during the optimization. It
can be noted that the number of members does not decrease monotonically therefore the
algorithm allows the reuse of element previously removed.

Previous efforts in synthesizing these resonators were restricted to consider
members orthogonal to each other, [79]. In determining the topology of resonators
we pose the problem as minimization problem using an augmented objective func-
tion, [194], with only one equality constraint. The optimization problem is hence
formulated as follow

min
xi

:

{
nb

[
∑
j−1

(
η −

ω j

ω1

)2

+
1

ε̄xxεxx  
objective

]}
+wγ

(
γ − V ∗

Vg

)2

  
adjoint constraint

, (6.5)

subject to:
[
−ω

2M+K
]

u = 0⃗.

where xi are the sections width/height (design variables, square sections are con-
sidered), j-1 is the number of commensurate frequencies sought, j = 2 if one
commensurate frequency is sought or j = 2,3 if two commensurate frequencies are
sought, nb is the number of beams in the structure, η is the targeted frequencies ratio,
ω are the bending frequencies, εxx and ε̄xx are respectively the maximum and the
average bending strain in the GS, γ is the targeted volume ratio, wγ is the weight
for the volume constraint. The term V ∗/Vg, is the ratio between the actual volume
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V ∗ and the volume of the guess structure Vg, finally γ is the targeted volume ratio.
M and K are the global mass and stiffness matrices, ω is the modal frequency, uuu is
the eigenvector containing the modal displacements at a node. Since square cross
sections are considered, the area moment of inertia are evaluated as 1/12x4

i .

The GERM algorithm is implemented in Matlab. It operates on a fully connected
GS whose members are Euler-Bernoulli beams4, with square cross sections and
3-degrees of freedom per node. The stiffness and mass matrices of the element
used are written in the non-dimensional form and their representation is given in
the subsequent section. The optimization is performed using an in-house genetic
algorithm (GA). The cross sections width (design variables) are represented by binary
encoding; we use populations of 20 chromosomes, fitness proportionate selection,
single cross over and probability of mutation of 10%.

The GERM algorithm is applied after each iteration of the GA to evaluate the
specified objective function. Since GERM retains the original connectivity of the
structure, in the next iteration the non zeros design variables are applied to the parent
whose elements have not been removed. All the genetic operators are applied to
the original connectivity, the reason is twofold: (1) in this way there is no need to
handle the changes of active members within the particular solutions therefore the
chromosomes maintain the same dimension, (2) members with lower-bound value of
variable that were removed may reappear by mutation to a larger value or crossover
with another solution with larger value. The initial population is chosen at random
while the dimension of the ground structure, i.e. the number of nodes M and N is
given as input.

Figure 6.6, reports solutions for resonators with two and three commensurate fre-
quencies. The target node is designated as the fix node at the joint and is constrained
in all 3-degrees of freedom. In Figure 6.6a the algorithm recovers an L-shaped
beam as one solution, with ω2/ω1 = 2 using, 3×3 full GS. However, the solution
depends on the initial GS as shown in Figure 6.6b. Perhaps the example that best
illustrates the GERM algorithm’s ability to filter a design is the 7×7 full GS and
the resulting V -shaped beam in Figure 6.6c. The original GS has 856 members
and GERM leads to a solution with 2 members. Figure 7.9b, shows the optimized
topology of a resonator with 3 commensurable frequencies

4Beam elements were chosen to avoid the loss of global equilibrium found in GSs composed of
trusses.
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Fig. 6.6 Optimized topology for planar resonators: (6.6a) 3× 3 full GS with ω2/ω1 = 2;
(6.6b) 3× 3 full GS with ω2/ω1 = 2; (6.6c) 7× 7 full GS with ω2/ω1 = 2; and (7.9b)
3× 3 full GS ω2/ω1 = 2 and ω3/ω1 = 3. All initial GS are generated at random. The
optimized dimensions of the members of the optimized structure are: (6.6a) h2/h1 = 0.70,
L2/L1 = 1.0; (6.6b) h2/h1 = 0.24, L2/L1 = 0.71; (6.6c) h2/h1 = 0.68, L2/L1 = 0.61; and
(7.9b) h2/h1 = 0.61, h3/h1 = 0.32, L2/L1 = 0.63, L3/L1 = 0.45. The threshold limit is set
to τ = 0.20.

Figure 6.7 provides an expanded view of the results of solving Eqn. 6.5 by show-
ing the optimal topology of a base excited structure with integer modal frequency
ratios. The first column in Figure 6.7 shows target frequency ratios, the second
columns presents the optimized topology, the final column show the first two/three
mode shapes. Examining Figure 6.7 brings to the forefront several observations

1. In designing resonators where the first two modes occur at integer ratio of two,
the algorithm recovers the L shaped structure, Figure 6.7 a ;

2. The L shaped design is not unique; a resonator that has its members in a 45◦

angle between each other also has a 1:2 ratio of the first two modal frequencies,
Figure 6.7 b . We will refer to resonators similar topologies as a V -shaped;

3. It is possible to design resonators that have multiple integer modal frequency
ratios, Figure6.7 c , d , an e , are resonators with integer frequencies ratios
of 1:2 between the first and second modal frequencies, and 1:3 between the first
and third modal frequencies. Figure 6.7 d shows the optimal topology for a
resonator with integer frequencies ratios of 1:2 between the first and second
modal frequencies, and 1:4 between the first and third modal frequencies.

4. Only in certain cases does the algorithm consider orthogonal members in the
optimal topology to achieve modal frequencies that have integer ratios;
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5. Penalizing the number of members in the structure, has the result that total
numbers of members in the resonator is equal to the number of commensurate
frequencies.

Note that the present discussion does not consider the amplitude of the response
at each modal frequency. However, it clearly shows the importance of the relative
orientation of the structural members on the modal frequencies of the resonator. It is
important note that other researchers have noted the importance of the angle of on
the modal frequencies of the structures however, they have been limited to predicting
natrual frequencies of folding wings [195–197]. Furhtermore, allowing the members
to be attached at an arbitrary angle expands the possible design space for planar
resonator. We will explore the nature of this design space and linear behavior of
resonators that occupy this space in the next chapter.

6.6 Summary and conclusions

A novel ERM has been conceived to address the topology optimization of ground
structures. The ERM proposed herein uses a double filtering scheme to simplify the
topology of a truss-like structure getting rid of the unnecessary beams. Moreover,
the double filtering scheme allows to build non-singular mass and stiffness matrices
otherwise possible because of bouncing structures. The ERM has been shown to
provide optimum topologies for both compliant mechanisms and resonators.

Specifically, in determining the optimum topology of resonators the discrete
optimization problem has been formulated in its non-dimensional form to eliminate
the constraints on the frequency bandwidth. Furthermore, an augmented objective
function has been defined to formulate the problem in its unconstrained form gaining
in terms of computational efficiency. The ERM coupled with a standard genetic
algorithm has been proven to be effective to optimize the topology of ground structure
which exhibit commensurate frequencies.

Previous efforts at designing these type of resonators have constrained the rel-
ative orientation of the members to be inline or perpendicular to each other. The
topological optimization problem implies that the relative orientation of the member
plays an important role in determining the frequency characteristics of the structure
and that the number of commensurate frequencies is dependent on the number of
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Fig. 6.7 Example of optimized topologies: a) and b) have one integer frequency ratios,
ω2/ω1 = 2; c), d), f) have two integer frequency ratio, ω2/ω1 ≈ 2, ω3/ω1 ≈ 3. The resonator
in d) has the two frequencies ratios such that ω2/ω1 ≈ 2, ω3/ω1 ≈ 4. The figure shows that
the number of members is one less the number of integer frequencies ratio sought or equal to
the number of the commensurable frequencies.
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members in the structure. Examining the results obtained one may conclude the
following:

1. A 2-DOF systems can be designed to have the first two frequencies that occur
at an integer ratio based on the topology of the resonator.

2. In all the optimum topologies the fixed member is thicker than the secondary
member.

3. The algorithm always finds N distinct elements of the structure corresponding
to the integer frequency ratio.

4. The L-shaped beam is not the solely solution to have commensurate frequen-
cies having 1:2 ratio. In fact, it is not the preferred orientation obtained by the
optimization routine. The algorithm prefers angled orientation, or "V-shape"
structure.

In conclusion, we observe that regardless of the type of elements dealt with,
whether they are beams or rods of a ground structure, or shells of a 2D continuum, or
even solid elements in a 3D structure, the connectivity matrix of finite elements can
always be rewritten in terms of adjacency matrix of a graph. Therefore, the GERM
has the potential to be applied to a wide range of topology synthesis problems with
only minor changes with respect to the form presented herein.

Aiming at further investigate the dependency of the angle between the members
and the correlation between the number of commensurate frequencies to the number
of members of which the structure is composed, in the next chapter it is derived the
analytical and the reduced order model for a multi-members structure.



Chapter 7

Analytical and semi-analytical model
for multi-member structures

Part of the derivation presented in this chapter has been previously published in The
Journal of Sound and Vibration and in the SPIE SS/NDE Conference Proceedings.
The full citation is provided below

Danzi, F., Gibert, J. M., Frulla, G. and Cestino, E. ”Generalized topology for resonators
having N commensurate harmonics”. JOURNAL OF SOUND AND VIBRATION.
Volume 419, 2018, pp 585-603, ISSN 0022-460X, https://doi.org/10.1016/j.jsv\
.2017.10.001.

Danzi, F. and Gibert, J. M. ”Exact dynamics of an angle-shaped resonator for energy
scavenging applications”. Proc. of SPIE Smart Structures and Materials + Nondestruc-
tive Evaluation and Health Monitoring, 2018, Denver, Colorado (USA), 5-8 March
2018, https://doi.org/10.1117/12.2296642.
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Ground Structures for Energy Harvesting Applications”. Proc. of SPIE Smart Struc-
tures+Nondestructive Evaluation and Health Monitoring (SS/NDE), Portland, Oregon
(USA), 25-29 March 2017, https://doi.org/10.1117/12.2257351.

7.1 Introduction

Influenced by the results obtained with the topological synthesis presented in the
previous chapter, we develop herein the analytical and semi-analytical model of a
multi-member structure with members adjoined to each other at a folding angle ϕ .

https://doi.org/10.1016/j.jsv\.2017.10.001
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Section 7.2 presents the derivation of the equations of motion and the analytical
solution for the case of a V-shaped structure, i.e. an angle-shaped structure with
two members adjoined to an angle ϕ . Consistent with the results presented in the
previous chapter, the structure is clamped at one edge and free on the other side. The
governing equation and the boundary conditions are derived by taking the variation
of the Hamiltonian. The resulting boundary value problem is solved analytically
giving rise to the characteristic equation of the system.

In Section 7.3, we present the derivation of the semi-analytical model for a
fixed-free, multi-member structure, having N beams. The equations of motion are
derived by means of the Euler-Lagrange equation and then solved by means of
the Rayleigh-Ritz method. A root-finding algorithm is used to identify solutions
having commensurate frequencies. Solutions for two and three members structures,
namely V-, Y- and Z- shaped resonators, are presented. The dynamic of the V-shaped
resonator is analyzed in depth. The effect of the folding angle ϕ on to the frequency
response function to harmonic base excitation is investigated; the sensitivity of the
solution to the position of the center of gravity of the entire system is shown through
a parametric study.

Section 7.4 presents the universal design map for the one-to-two, V-shape res-
onators. The latter are design maps which allow for fast design of resonators once
the dimensions and frequency of a prismatic cantilever beam are known.

7.2 Formulation of the Governing Equations

This section focuses on the dynamics of the angled structure having two members
adjoined at an angle ϕ as shown in Figure 7.1.

7.2.1 Equation of motion of angle-shaped resonator having two
members adjoined at an angle ϕ

The problem is analyzed by having a global XXX −YYY coordinate system that describes
the overall motion of the resonator. A local xxx1 − yyy1 coordinate system is oriented
along the first beam’s undeformed position and the coordinate system xxx2−yyy2 is fixed
along the second beams undeformed position. The local coordinate systems have
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unit vectors iii, jjj, and iii′′′, jjj′′′, respectively. The symbols x1 and x2 denote position along
each beam’s length and w1(x1, t) and w2(x2, t) represent the transverse displacement
of the first and second beam’s in their respective local reference frame.

Utilizing kinematics and neglecting nonlinear terms, the velocity at an arbitrary
point along the first and second beam can be written as

vvvp1 = ẇ1(x1, t) jjj and vvvp2 = ẇ1(L1, t) jjj+ ẇ2(x2, t) jjj′′′+ x2
∂ ẇ1(L1, t)

∂x1
jjj′′′. (7.1)

The unit vectors from each local coordinate system are related by the following
transformation (

iii′′′

jjj′′′

)
=

[
cosϕ sinϕ

−sinϕ cosϕ

](
iii
jjj

)
. (7.2)

Utilizing Hamilton’s Extended Principle the action integral H can be written as

Y
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x
�

y
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y
 

x
 

Fig. 7.1 Schematic of Angle-shaped resonator composed of two prismatic beams having a
folding angle ϕ .

H =
∫ t2

t1
L dt =

∫ t2

t1

{∫ L1

0

{
1
2

µ1vvvp1 · vvvp1 −
1
2

E1I1

(
∂ 2w1

∂x2
1

)2
}

dx1

+
∫ L2

0

{
1
2

µ2vvvp2 · vvvp2 −
1
2

E2I2

(
∂ 2w2

∂x2
2

)2
}

dx2

}
dt, (7.3)

where L is the Lagrangian, defined as L = T −U , where T and U are the kinetic
and potential energy respectively. Utilizing Hamilton’s Extended Principle the
Lagrangian assumes the following form

δH =
∫ t2

t1
δL dt =

∫ t2

t1
(δT −δU)dt = 0, (7.4)
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where the virtual changes of the kinetic energy can be written as

δT =
∫ L1

0
µ1ẇ1δ ẇ1dx1+ (7.5)

∫ L2

0
µ2

[
ẇ1

⏐⏐⏐⏐
L1

+ ẇ2 cosϕ + x2
∂ ẇ1

∂x1

⏐⏐⏐⏐
L1

cosϕ

]
δ ẇ1

⏐⏐⏐⏐
L1

dx2+

∫ L2

0
µ2

[
x2

2

(
∂ ẇ1

∂x1

)⏐⏐⏐⏐
L1

+ x2ẇ2 + x2ẇ1

⏐⏐⏐⏐
L1

cosϕ

]
∂ ẇ1

∂x1

⏐⏐⏐⏐
L1

dx2+

∫ L2

0
µ2

[
ẇ2 + x2

(
∂ ẇ1

∂x1

)⏐⏐⏐⏐
L1

+ ẇ1

⏐⏐⏐⏐
L1

cosϕ

]
δ ẇ2dx2.

Integrating by parts in time yields

∫ t2

t1
δT dt =

∫ L1

0

[
−
∫ t2

t1
µ1ẅ1δw1dt +µ1ẇ1δw1

⏐⏐⏐⏐t2
t1

]
dx1+ (7.6)
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0
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]
δw1
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]
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[
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+ ẅ1

⏐⏐⏐⏐
L1

cosϕ

]
δw2dt

]
dx2+
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]
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The virtual change in the potential energy can be written as

δU =
1
2

2

∑
i=1

∫ Li

0
EiIi

(
∂ 2wi

∂x2
i

)
δ

(
∂ 2wi

∂x2
i

)
dxi, (7.7)

=
2
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The third term of Eqn. (7.8) can be integrated by parts to yield
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The total variation of the potential energy can be written as

δU =
2

∑
i=1

EiIi
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∂ 2wi

∂x2
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+
2

∑
i=1

∫ Li

0

∂ 2

∂x2
i

(
EiIi

(
∂ 2wi

∂x2
i

))
δwidxi.

The dot products of the velocities as reported in equation leads to the following
expressions

vvvp1 · vvvp1 =ẇ2
1, and

vvvp2 · vvvp2 =ẇ2
2 + ẇ2

1

⏐⏐⏐⏐
L1

+ x2
2

∂ ẇ1

∂x1

⏐⏐⏐⏐
L1

+2x2ẇ2
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+2ẇ2ẇ1

⏐⏐⏐⏐
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+2x2
∂ ẇ1
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⏐⏐⏐⏐
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ẇ1

⏐⏐⏐⏐
L1

cosϕ.

The symbols µ1 and µ2 are the mass density per unit length of the first and second
beams, respectively. The terms E1I1 and E2I2 represent each beam’s rigidity, where
Ei is the modulus of elasticity and Ii is the area moment of inertia of each beam.
Next, taking the variations in both w1 and w2 leaves the following

δH =
∫ t2

t1

(∫ L1

0
−µ1ẅ1δw1dx1 −
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0
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dx2 (7.11)
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where the constants Ȧ1, Ȧ2, Ȧ3 can be written as

Ȧ1 = ẅ1
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∂ ẅ1

∂x1

⏐⏐⏐⏐
L1

+ ẅ1
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Gathering like virtual displacements leads to the following governing equations

E1I1
∂ 4w1

∂x4
1

+µ1ẅ1 = 0, (7.12)
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+ ẅ1
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)
= 0. (7.13)
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The associated geometric and forced boundary conditions are

w1 (0, t) =
∂w1

∂x1
(0, t) = 0, w2 (0, t) =

∂w2

∂x2
(0, t) = 0, and (7.14)

E2I2
∂ 2w2

∂x2
2
(L2, t) = 0,

∂

∂x2

(
E2I2

∂ 2w2

∂x2
2
(L2, t)

)
= 0. (7.15)

Finally, continuity of the shear and moments at the interface between the two beams
can be written as

∫ L2
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⏐⏐⏐⏐
L1

.

(7.16a)

It is worth noting that when ϕ = π/2, the equations reduce to the governing
equations of the L-shaped beam given by Bang [198].

7.2.2 Characteristic equation

In order to derive the characteristic equation, the Fourier method or separation of
variables is used to decompose the displacements as a spatial function multiplied by
unknown temporal coordinate

w1(x1, t) =W1(x1)T1(t) and w2(x2, t) =W2(x2)T2(t). (7.17)

Substituting the definition of w1(x1, t) in Eqn.(7.17) into Eqn.(7.12) leads to the
following

E1I1W ′′′′
1 (x1)T1(t)+µ1W1(x1)T̈1(t) = 0,

which can rearranged as

T̈1(t)
T1(t)

=−E1I1

µ1

W ′′′′
1 (x1)

W1(x1)
=−ω

2. (7.18)

the prime denotes the derivative with respect to the spatial coordinate. Solutions to
Eqn.(7.18) is given as

W1(x1) =C1 sinγ1x1 +C2 cosγ1x1 +C3 sinhγ1x1 +C4 coshγ1x1, (7.19)

where γ4
1 = ω2µ1/E1I1. Applying the geometric boundary conditions for W1(x1)

W1(0) =C2 +C4 = 0, and W ′
1(0) = γ1 (C1 +C3) = 0. (7.20)
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Therefore, Eqn. (7.19) can be written as

W1(x1) =C1 (sinγ1x1 − sinhγ1x1)+C2 (cosγ1x1 − coshγ1x1) . (7.21)

Likewise, Eqn. (7.13) can be written as

E2I2W ′′′′
2 (x2)T2(t)+µ2

[
W2(x2)T̈2(t)+ x2W ′

1(L1)T̈1(t)+W1(L1)T̈1(t)cosϕ
]
= 0. (7.22)

In order for Eqn. (7.22) to be valid at any arbitrary time t, T1(t) = T2(t); Eqn. (7.22)
then reduces to

E2I2W ′′′′
2 (x2)−ω

2
µ2
[
W2(x2)+ x2W ′

1(L1)+W1(L1)cosϕ
]
= 0. (7.23)

The solution to Eqn. (7.23) can be written as

W2(x2) =D1 sinγ2x2 +D2 cosγ2x2 +D3 sinhγ2x2 +D4 coshγ2x2−

W ′
1(L1)x2 −W1(L1)cosϕ,

(7.24)

where γ4
2 = ω2µ2/E2I2. It is worth noting that the equation above presents the

complementary solution, i.e. the solution to the homogeneous equation, plus the
particular solution. The latter has been obtained by means of the method of undeter-
mined coefficients, assuming W2p(x2) = Ax2 +B. Substituting Eqn. (7.24 ) into the
boundary conditions yields

W2(0) = D2 +D4 +W1(L1)cosϕ = 0, (7.25a)

W ′
2(0) = γ2 (D1 +D3)+W ′

1(L1)x2 =

= γ2 (D1 +D3)− γ1C1 (cosγ1L1 − coshγ1L1)+ γ1C2 (sinγ1L1 + sinhγ1L1) .
(7.25b)

Hence, Eqn. (7.24) can be rewritten as

W2(x2) =D1 sinγ2x2 +D2 (cosγ2x2 − coshγ2x2)+D3 sinhγ2x2+

−W ′
1(L1)x2 +W1(L1)cosϕ (1− coshγ1x1) .

(7.26)

Substituting the second of Eqn. (7.17) into Eqn.(7.15) and Eqn.(7.16a) leads to

E2I2W ′′
2 (L2) = 0, and E2I2W ′′′

2 (L2) = 0, (7.27a,b)

−ω
2
∫ L2

0
µ2
(
W1(L1)cosϕ +W2 +W ′(L1)cosϕ

)
= E1I1W ′′′

1 (L1), (7.27c)

−ω
2
∫ L2

0
µ2
[
W2 + x2W ′

1(L1)+W1(L1)cosϕ
]
x2dx2 =−E1I1W ′′

1 (L1). (7.27d)
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Substituting Eqns. (7.21) and (7.26) into the Eqns. defined (7.27) and adjoining
Eqn. (7.25b) lead to the following algebraic system⎡⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

A51 A52 A53 0 A55

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

C1

C2

D1

D2

D3

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
, (7.28)

The determinant of the coefficients matrix A gives the characteristic equation. The
expression of the coefficients Ai j are reported below.

A11 =−E1I1γ
3
1 [cos(γ1L1)+ cosh(γ1L1)]+m2ω

2 cos2
ϕ [−sin(γ1L1)+ sinh(γ1L1)]

−m2ω
2 (sinh(γ1L1)− sin(γ1L1))+

ρ2

γ2
ω

2 cos2
ϕ sinh(γ2L2) [sin(γ1L1)− (sinh(γ1L1)] ,

(7.29a)

A12 = E1I1γ
3
1 [sin(γ1L1)− sinh(γ1L1)]+m2ω

2 [cos(γ1L1)− cosh(γ1L1)]
(
1− cos2

ϕ
)

+
ρ2

γ2
ω

2 cos2
ϕ sinh(γ2L2) [cos(γ1L1)− cosh(γ1L1)] ,

(7.29b)

A13 =
ρ2

γ2
ω

2 cosϕ [1− cos(γ2L2)] , (7.29c)

A14 =
ρ2

γ2
ω

2 cosϕ [sin(γ2L2)− sinh(γ2L2)] , (7.29d)

A15 =−ρ2

γ2
ω

2 cosϕ [1− cosh(γ2L2)] , (7.29e)

A21 = cosϕ [cosh(γ2L2)sin(γ1L1)− cosh(γ2L2)sinh(γ1L1)] , (7.29f)

A22 = cosϕ [cos(γ1L1)cosh(γ2L2)− cosh(γ1L1)cosh(γ2L2)] , (7.29g)

A23 =−sin(γ2L2), (7.29h)

A24 =−cos(γ2L2)− cosh(γ2L2), (7.29i)

A25 = sinh(γ2L2), (7.29j)

A31 = cosϕ [sin(γ1L1)sinh(γ2L2)− sinh(γ1L1)sinh(γ2L2)] , (7.29k)

A32 = cosϕ [cos(γ1L1)sinh(γ2L2)− cosh(γ1L1)sinh(γ2L2)] , (7.29l)

A33 = cos(γ2L2), (7.29m)

A34 = sin(γ2L2)− sinh(γ2L2), (7.29n)

A35 = cosh(γ2L2), (7.29o)

A41 =
µ2ω2

γ2
2

cosϕ

{
sin(γ1L1)

[
1− cosh(γ2L2)

]
− sinh(γ1L1)

[
1− cosh(γ2L2)

]}
+

E1I1γ
2
1

[
sin(γ1L1)+ sinh(γ1L1)

]
+

µ2ω2L2

γ2
cosϕ sinh(γ2L2)

[
sin(γ1L1)− sinh(γ1L1)

]
,

(7.29p)
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A42 =
µ2ω2

γ2
2

cosϕ

{
cos(γ1L1)

[
1− cosh(γ2L2)

]
− cosh(γ1L1)

[
1− cosh(γ2L2)

]}
+

E1I1γ
2
1

[
cos(γ1L1)+ cosh(γ1L1)

]
+

µ2ω2L2

γ2
cosϕ sinh(γ2L2)

[
cos(γ1L1)− cosh(γ1L1)

]
,

(7.29q)

A43 =−µ2ω2L2

γ2
cos(γ2L2)+

µ2ω2

γ2
2

sin(γ2L2), (7.29r)

A44 =
µ2ω2

γ2
2

[
cos(γ2L2)+ cosh(γ2L2)−2

]
+

µ2ω2L2

γ2

[
sin(γ2L2)− sinh(γ2L2)

]
, (7.29s)

A45 =
µ2ω2L2 cosh(γ2L2)

γ2
− µ2ω2 sinh(γ2L2)

γ2
2

(7.29t)

A51 = γ1 cosh(γ1L1)− γ1 cos(γ1L1), (7.29u)

A52 = γ1 sin(γ1L1)+ γ1 sinh(γ1L1), (7.29v)

A35 = γ2, (7.29w)

A55 = γ2. (7.29x)

Examining the the L-shaped structure when ϕ = π/2, the characteristic equation
coincides with the one given by Gürgöze [199]. Moreover, after some algebraic
manipulations, the frequencies equation when ϕ = 0 reduce to that of a straight
beam, i.e. 1+ cos(γL)cosh(γL).

7.2.3 Validation of the analytical model

In this section we aim at validating our analytical model against results already
available in the open literature. Particularly, the frequencies obtained for the L-
shaped structure presented by Gürgöze [199] and of a straight beam are compared
to the present analysis. In the latter case, we considered a cantilevered structure
divided into two equal members. The numerical parameters for the two structures
are reported in Table 7.1. In both cases, the roots of the frequencies equation are
obtained using Wolfram Mathematica®. Solutions for the L-shaped beam reported in
Table 7.2 agree with those given by Gürgöze [199]; solutions for the straight beam
reported in the last row of Table 7.2; both are found to be in agreement with the
analytical solutions.1

1The solutions for the straight beam are given by f = k2
√

EI
ρAL4 , where ρ is the density in kg/m3,

L = L1 +L2 and k=1.8751, 4.694, 7.855, 10.995, 14.135, 17.279 and 20.4203.
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Table 7.1 Parameters for the two validation structures.

Structure
L1 L2 µ1 µ2 ϕ E1I1 E2I2
m m kg/m kg/m deg Nm2 Nm2

L 4.249 2.215 0.0045 0.0060 90 0.0267 0.0147
Straight 0.210 0.210 0.0694 0.0694 0 0.5512 0.5512

Table 7.2 Bending frequencies [rad/s] for the straight and L-shaped structures.

Structure ω1 ω2 ω3 ω4 ω5 ω6 ω7

Gürgöze [199] 0.2247 0.7940 2.6814 5.7715 8.0768 14.6665 18.5553
Present L-shaped 0.2247 0.7940 2.6814 5.7715 8.0768 14.6665 18.5553
Straight 56.1891 352.131 985.978 1932.12 3193.94 4771.19 6663.89
Present straight 56.1891 352.131 985.978 1932.12 3193.94 4771.19 6663.89

7.3 Generalized Reduced Order Model

Let us consider the multi-member beam structure shown in Fig. 7.2. Following
Haddow et al. [89], we assume a polynomial admissible function of undetermined
constants based on the equilibrium equation of each member in the absence of
external loading. The polynomials are then substituted into the associated boundary
and continuity conditions, yielding an overdetermined system in determining the
unknown constants. The free variables in this system become the generalized
coordinates. Writing the admissible functions in terms of the free variables and
substituting into the Lagrangian of the system results in the equations of motion of
the system.

7.3.1 Determining the Admissible Functions

Figure 7.2 shows a cantilevered truss structure composed of N beams that are
prismatic, homogeneous and isotropic. The generalized structure can have f free
boundary nodes and θ internal nodes. We denote the set of free boundary and internal
nodes as F and Θ, respectively. Particularly, in Figure 7.2 there are 2 free nodes (i.e.
nodes 4 and 5), while the nodes 2 and 3 are internal nodes. Let ξi be the local axial
coordinate, w∗

i the bending displacement in the local ξi−ηi reference frame. Finally,
Li denotes the length of the i− th beam. The governing equations for the vertical
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Fig. 7.2 Generalized model representing a 4-DOF structure with N = 4 elements, F= 2 free
nodes, and θ=2 internal nodes.

displacements can be written, in the local coordinate system, as follows

∂ 4w∗
i

∂ξ 4
i

= 0 for 0 ≤ ξi ≤ Li.

Solutions to the fourth order differential equations are third order polynomials that
can be written in the following form:

w∗
i (ξi, t) = a0,i +a1,iξi +a2,iξ

2
i +a3,iξ

3
i , (7.30)

where i = 1,2, . . . ,N indicates the ith beam. The 4N constants a j,i, are the unknown
generalized coordinates of the beams. The generalized boundary conditions can be
written as follows:

w∗
i
(
0, t
)
= 0,

∂w∗
i

∂ξi

(
0, t
)
= 0, (7.31a)

E f I f
∂ 2w∗

f

∂ξ 2
f
(L f , t

)
= 0, and (2b)

Eβ−Iβ−

∂ 2w∗
β−

∂ξ 2
β−

(Lβ− , t
)
= ∑

β+

Eβ+
Iβ+

∂ 2w∗
β+

∂ξ 2
β+

(0, t
)
. (2c)

where E and I are the Young’s modulus and the area moment of inertia respectively
while β , denotes all the beams that share an internal node θ . Particularly, we denote
with β− the member that has the reference system pointing towards the node θ , all
the other members are denoted with β+, as shown Figure 7.3. Let us denote with p
and q respectively the first and second node of each member in the local reference
system. Note that in Figure 7.3 the node qi of the ith beam is also an internal node.
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Now considering the generalized problem one can write: 1) F zero moment
equations for each free node; 2) N equations as each beam was clamped in ξi = 0,
that is Eqn. (7.31a) and 3) N −F equilibrium equations in each internal node. In
total, the equations governing the motion of the resonators has 4N unknowns and
F +2N +(N −F) = 3N constraint equations. Thus the equations of motion of the
system can be written as a function of N free variables, that are the generalized
coordinates and assume the following form:

a0,i =a1,i = 0, (7.32a)

a2,i =
Eβ−Iβ−(a2,β− +3a3,β−Lβ−)

EiIi
−∑

Eβ+
Iβ+

a2,β+

EiIi
,

where β+ := {members|pβ+
= qi},

(7.32b)

a3,i =

⎧⎨⎩unknown if p, q ∈ Θ,

− a2,i
3Li

if p ∈ Θ, q ∈ F.
(7.32c)

Once the displacement field has been parameterized in terms of the free variables,
the equations of motion can be obtained by means of the Euler-Lagrange equation:

d
dt

(
∂L

∂ q̇i

)
− ∂L

∂qi
= 0, (7.33)

ii

Fig. 7.3 Detail of an internal node β of the structure.

where, L is the Langrangian defined as T −U , where T and U are as above the
kinetic and the potential energy of the system. The energies can be written as:

T =
1
2

N

∑
i

∫ Li

0
µiv̇2

i dξi, and U =
1
2

N

∑
i=1

(EiIi)
∫ Li

0

(
∂ 2w∗

i

∂ξ 2
i

)2
dξi,

µi = ρiAi are the mass per unit length of the beams and v j are the absolute velocities
with respect to the global XXX −YYY coordinate system. It must be noted that the potential
energy is written with respect to the local reference system. While, the kinetic energy
of the structure, is written in the global reference system. The generalized kinetic
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energy expression assumes the following form:

Ti =
1
2

∫ Li

0
µi
(
ẇi

2
2 + u̇i

2
2
)
dξ2, (7.34)

where
ẇ1(ξ1) = ẇ∗

1 + ẇB,

ẇi(ξi) =

(
ẇ∗

i +ξi ∑
j=1

ẇ j,ξ j|L j

)
cos(ϕi)+ ẇi−1|Li−1

,

u̇i(ξi) =

(
ẇ∗

i +ξi ∑
j=1

ẇ j,ξ j|L j

)
sin(ϕi)+ u̇i−1|Li−1

.

(7.35)

where ẇ∗
1 and ẇB denote respectively the vertical velocity of the first member and

the base velocity, ẇ∗
i is the transverse velocity in the local reference of the i− th

member, the summation is extended to all the beam members ( j) from the clamped
edge to the node p of the ith beam, ẇi−1|Li−1

and u̇i−1|Li−1
are the absolute velocities

of the structure in pi and finally, the term ẇ j,ξ j|L j
is the angular velocity in pi. The

latter term ensures the continuity of the curvature between two contiguous beams
and it is the result of having assumed a1,i = 0.

The equation of motion in matrix form can be written as follows:[
M
]{

äaa
}
+
[
K
]{

aaa
}
=
{

fff
}
, (7.36)

where [M] and [K] ∈ RN×N are the mass and stiffness matrices, respectively, and
{aaa} ∈ RN is the vector of the generalized coordinates; the dot indicates the time
derivatives. Finally, { fff} ∈ RN are the generalized forces. The associate eigenvalue
problem assume the following form:[

K−Ω2M
]{

AAA
}
=
{

000
}
, (7.37)

where ω2
i = ω2

i (E j,ρ j,h j,b j,L j,ϕ j) j = 1 . . .N, are the eigenvalues of the system
associated to the eq. (7.37). Note that for the modal frequencies to be integer
multiples, they must also be commensurable:

c1ω1 + c2ω2 + · · ·+ cNωN = 0, where ci ∈ Z (7.38)

where ω2
i = ω2

i (E j,ρ j,h j,b j,L j,ϕ j) j = 1 . . .N, are the eigenvalues of the homo-
geneous system associated to the eq. (7.40), i.e. the square of the natural frequencies.
Each beam has six sets of design parameters, namely, the beam’s density ρi, the
Young modulus Ei, the cross section dimensions bi and hi, the beam’s length Li and
the angle of orientation of each beam with respect to the global reference frame ϕi.
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Table 7.3 Geometric and Material Properties for N-DOF Resonators

Resonator’s properties
Length, L1 (mm) 150.00
Thickness, h1 (mm) 10.00
Young’s Modulus, E1 (GPa) 73.00
Density, ρ1 (kg/m3) 2780.00

In general the solutions to the eq. (7.38) are a hyper-surface S, which can be defined
as the set

S ∈ R6N ={
ω(E j,ρ j,h j,b j,L j,ϕ j) ∈ R6N+1|

N

∑
i

ciωi(E j,ρ j,h j,b j,L j,ϕ j) = 0, j = 1 . . .N, ci ∈ Z
}
. (7.39)

Hereafter, the analysis is accomplished by restricting the material parameters and
the geometry of the cross section, i.e. ρ and E are fixed and equal for each beam, and
each beam has a square cross section. These constraints reduce the total of number
of parameters to 4N.

Next, we examine the design space by utilizing a root finding algorithm to identify
all the possible solutions to the Eqn. (7.38). It should be noted that design space
has two constraints that can be imposed to prevent unrealistic designs, i.e., the angle
between two contiguous beams can never equal 180◦ and h/L > 1/10. The first
constraint prevents the structure from folding back on itself and the second prevents
violation of the Euler-Bernoulli beam assumption. These unfeasible solutions are
discarded in the envelopes reported in the following sections.

Frequency response of the resonator

In determining, the linear frequency response we assume a base excitation of the
form, ẅb(t) = GeiΩt and the response is of the form aaa = AAAeiΩt , subsequently the
force vector becomes fff = FFFeiΩt . The equations of motion can then be written in the
form [

K−Ω2M
]{

AAA
}
=
{

FFF
}
, (7.40)
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The response can be recovered using the relations in eqns. (7.32) a)-c), and the
displacement field in Eqn. (7.30). Finally, in examining the design space for the
resonators we specify the first member with the properties shown in Table 7.3.

7.3.2 Case N = 2: V-shaped resonator

Consider the 2-DOF system shown in Figure 7.4. In this case the resonator has

11

22

Element

Node

1 2

3

Y

L
1

L
2

X

Fig. 7.4 V -shaped resonator with a 2-DOF structure with N =2 elements, F=1 free nodes,
and θ=1 internal nodes.

eight design parameters. In order to highlight the importance of the member’s
relative orientation, we set L1,h1,b1,E, and ρ1 as the fixed set of parameters. While,
l̂ = L2/L1, ĥ = h2/h1 = b2/b1, and ϕ are the design variables whose effects we
analyze. The set of boundary conditions in Eqn.(7.31) becomes:

w∗
1
(
0, t
)
= 0,

∂w∗
1

∂ξ1

(
0, t
)
= 0, w∗

2
(
0, t
)
= 0,

∂w∗
2

∂ξ2

(
0, t
)
= 0, (7.41a)

E2I2
∂ 2w∗

2

∂ξ 2
2
(L2, t

)
= 0, and E1I1

∂ 2w1

∂ξ 2
1
(L1, t

)
= E2I2

∂ 2w∗
2

∂ξ 2
2
(0, t

)
. (7.41b)

Substituting the Eqns. in (7.30) into the Eqns. in (7.41b) yields the following

a0, j = a1, j = 0, for j = 1,2 (7.42a)

a2,2 =
E1I1

E2I2

(
a2,1 +3a3,1L1

)
, and (7.42b)

a3,2 =−
a2,2

3L2
. (7.42c)

which agree with the equations in (7.32). The motion of the system is described by
two generalized coordinates a2,1 and a3,1.
The expression of the potential energy is trivial and therefore omitted. The kinetic
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energy T can be written as:

T =
1
2

∫ L1

0
µ1ẇ2

1dξ1 +
1
2

∫ L2

0
µ2
(
ẇ2

2 + u̇2
2
)
dξ2, (7.43)

where
ẇ1 = ẇ∗

1 + ẇB(t),

ẇ2 = ẇ∗
2 cos(ϕ)+ ẇ1,ξ1|L1

ξ2 cos(ϕ)+ ẇ1|L1 ,

u̇2 = ẇ∗
2 sin(ϕ)+ ẇ1,ξ1|L1

ξ2 sin(ϕ).

(7.44)

The square of the natural frequencies are the eigenvalues of the system reported in
Eqn. (7.37). The eigenvalues are:

ω
2
1,2 =

n11 +n12 ±
√
(n11 −n22)2 +n12n21

2∆
,

where

n11 =k11m22 − k12m12, n12 = k12m22 − k22m12,

n21 =k12m11 − k11m21, n22 = k22m11 − k12m21,

∆ =m11m22 −m2
12.

The stiffness matrix for the Rayleigh of the V -shaped resonator approximation are
written as

k̂11 =
4L2E2

1 I2
1

3E2I2
+4L1E1I1,

k̂12 =
4L2E2

1 I2
1 L1

E2I2
+6E1I1L2

1 = k̂21,

k̂22 =
12L2E2

1 I2
1 L2

1
E2I2

+12E1I1L3
1.

Likewise, the mass matrix is given as

m̂11 =
A1L5

1ρ1

5
+

4A2L2
1L3

2ρ2

3
+

11A2E2
1 I2

1 L5
2ρ2

105E2
2 I2

2
+

11A2E1I1L1L4
2ρ2

15E2I2
+

+
A2E1I1L2

1L3
2ρ2 cos(ϕ)

2E2I2
+A2L4

1L2ρ2 +2A2L3
1L2

2ρ2 cos(ϕ),

m̂12 =
A1L6

1ρ1

6
+

5A2L4
1L2

2ρ2 cos(ϕ)
2

+
33A2E1I1L2

1L4
2ρ2

20E2I2
+

11A2E2
1 I2

1 L1L5
2ρ2

35E2
2 I2

2
+

+
A2E1I1L3

1L3
2ρ2 cos(ϕ)

E2I2
+A2L5

1L2ρ2 +2A2L3
1L3

2ρ2 = m̂21,

m̂22 =
A1L7

1ρ1

7
+

33A2E2
1 I2

1 L2
1L5

2ρ2

35E2
2 I2

2
+

33A2E1I1L3
1L4

2ρ2

10E2I2
+

3A2E1I1L4
1L3

2ρ2 cos(ϕ)
2E2I2

+



7.3 Generalized Reduced Order Model 203

+A2L6
1L2ρ2 +3A2L4

1L3
2ρ2 +3A2L5

1L2
2ρ2 cos(ϕ).

And finally the expression of the generalized forces assume the following form

f̂1 =

(
1
3

ρ1A1L3
1 +

(
ρ2A2L2(4E2I2L2

1 +L2(4E2I2L1 +E1I1L2)cos(ϕ)
4E2I2

))
ẅB(t),

f̂2 =

(
ρ1A1L1E2I2L3

1 +ρ2A2L2(4E2I2L2
1 +3L2(2E2I2L1 +E1I1L2)cos(ϕ))

4E2I2

)
ẅB(t).

In this case, to have commensurable frequencies one must have:

Λ =
ω2

ω1
= c, where c ∈ Z (7.46)

Plugging the solution of the eigenvalue problem into Eq. (7.46) leads to the equation
Λ(ĥ, l̂,ϕ) = c. This equation is the general form of the level curve of a family of
hyper-surfaces S, S ∈ R4. Solutions to the Eq. (7.46) are obtained by means of a
root-finding algorithm. We report solutions to the Eqn. (7.46), in the form of level
surfaces (3D) and level sets (2D), respectively. The solutions reported are referred to
c = 2.

In order to find the solutions by means of the bisection method, we solve for
the optimal l̂ over a range of ϕ and ĥ. At a fixed ϕ and ĥ, the equation Λ(ĥ, l̂,ϕ)
is quadratic in l̂. Particularly, there are two families of solution hereafter referred
as outer l̂ ≥ 1, i.e., the second beam is longer than the fixed beam, and inner curve
l̂ ≤ 1, the second beam is shorter than the fixed beam, respectively.

Figure 7.5 plots the solution by restricting the design domain by letting ĥ = 1
and having ϕ vary so that 0 ≤ ϕ < 2π . The resulting curve is closed and bound by
points that resemble saddle node bifurcations. Two solutions coexist in the region
115◦ . ϕ . 245◦ and are annihilated for angles outside this region. Note there is
good agreement with the present semi-analytical model indicated by the dashed line,
with a finite element analysis that has 10 elements per member indicated by the
orange line.

The solution forms a surface by letting ĥ vary so that 0.5 ≤ ĥ ≤ 2 and 0 ≤ ϕ < 2π .
Considering solutions that lie between 0◦ and 180◦ and splitting the surface on the
bifurcation line (red) yields the plot in Fig. 7.6 a) and b) in the form of inner and
outer level surfaces. The green line indicates the L-shaped beams envelope. For sake
of clarity, the inner and outer level surfaces are reported separately. Figure 7.6 shows
that increasing the ratio ĥ the set of possible folding angles, to have commensurable
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the present semi-analytical model for ω2/ω1 = 2 as a function of ϕ for ĥ = 1. Solutions in
white region are for l̂(ϕ)> 1, and solutions in gray region for are for l̂(ϕ)< 1.

frequencies, decreases. This can by explained by realizing that the system is sensitive
to the position the center of gravity. Figure 7.7 plots the normalized distance of the
CG from the fixed end for the 1:2 resonator with ĥ = 0.5. The inner envelope has a
bigger design space, 62◦ ≤ ĥ< 180◦ with respect to the outer envelope nonetheless
it exhibits only 8% variation of the CG distance; meanwhile, the outer envelopes,
has almost 16% of variation despite having a smaller design space. This motivates
also why the surface exhibits the bifurcation mentioned before between the inner
and outer envelope when ĥ increases.

Figure 7.8 plots the frequency response function of a V -shaped resonator ω2/ω1 =

2 at u2(L2) and ĥ = 0.5. The contours of the FRF are projected on the folding angle-
frequency space. Note just as in the surface plot in Fig. 7.6 there are two length
ratios that give commensurate frequencies there also two corresponding FRF’s, i.e.,
Fig. 7.6 a) for l̂ < 1, and Fig. 7.6 b) for l̂ > 1. The solid lines indicate individual
FRF’s are folding angles of 75◦, 90◦, 100◦, 120◦, and 150◦. The plots of the FRF
assume modal damping of the ζ = 0.01 for all modes.

Note for l̂ < 1 the response at the first modal frequencies is greater than the
response at the second modal frequencies for all allowable folding angles. However,
if l̂ > 1 the maximum response at the modal frequencies depends on the folding
angles. This may be advantageous in designing MEMS bases sensors that rely on
the second modal frequency of the resonator [76, 200].
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Fig. 7.6 Contour plots for (a) l̂ < 1 and (b) l̂ > 1 with ω2/ω1 =2 as a function of ϕ . The
envelopes are obtained considering square cross sections with various ĥ = h2/h1.

7.3.3 Case N = 3: Y-shaped resonator

Figures 7.9 a) and b) show the topology of the Y and Z resonators, respectively.
Using the process outlined the Y and Z resonators are 3-DOF structures and have 12
design parameters. The set of boundary conditions in Eqn. (7.31) for the case of the
Y -shaped structure can be written as:

w1
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(7.47)
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Fig. 7.7 Nondimensional distance of the center of gravity, d̂, from the fixed end. The distance
from the fixed end to the CG changes with respect to the folding angle ϕ for a family of
resonators where ω2/ω1 = 2 with ĥ = 0.5. The outer envelope exhibits an higher variation
of the normalized distance of the CG from the fixed end despite the design space, in term of
folding angle ϕ , is smaller compared with that of the inner envelope.

Substituting the Eqns. in (7.47) into the Eqns. in (7.30) leads to:

a0, j = a1, j = 0, for j = 1,2,3 (7.48a)

a2,3 =
E1I1

(
a2,1 +3a3,1L1

)
−E2I2a2,2

E3I3
, (7.48b)

a3,2 =−
a2,2

3L2
, (7.48c)

a3,3 =−
a2,3

3L3
. (7.48d)

The motion of the system is described by three generalized coordinates, i.e., a2,1,
a3,1 and a2,2.
The kinetic energy T can be written as:

T =
1
2

∫ L1

0
µ1ẇ2

1dξ1 +
1
2
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0
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ẇ2
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µ3
(
ẇ2

3 + u̇2
3
)
dξ3, (7.49)

(7.50)
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Fig. 7.8 Polar surface plot of FRFs at u2(L2) due to a base excitation for a V -shaped resonator
with respect to folding angle ϕ for ĥ = 0.5 that have 1:2 commensurate frequencies, contours
of the FRF are projected on the polar domain: a) FRF for commensurate frequencies for
l̂ < 1, solutions exist approximately ranging from 62◦ to 175◦, b) FRF for commensurate
frequencies for l̂ > 1, solutions exist for angles approximately ranging from 76◦ to 175◦.
The plots assume equal modal damping of ζ = 0.01.
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Fig. 7.9 Topology of Y and Z shaped resonators: a) Y - shaped resonator with a 3-DOF
structure with N = 3 elements, F= 2 free nodes, and θ= 1 internal nodes, and b) Z- shaped
resonator with a 3-DOF structure with N = 3 elements, F= 1 free nodes, and θ= 2 internal
nodes.
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where

ẇ1 = ẇ∗
i + ẇB, (7.51)

ẇ2 = ẇ∗
2 cos(ϕ1)+ ẇ1,ξ1|L1

ξ2 cos(ϕ1)+ ẇ1|L1 , (7.52)

u̇2 = ẇ∗
2 sin(ϕ1)+ ẇ1,ξ1|L1

ξ2 sin(ϕ1), (7.53)

ẇ3 = ẇ∗
3 cos(ϕ2)+ ẇ1,ξ1|L1

ξ3 cos(ϕ2)+ ẇ1|L1 , (7.54)

u̇2 = ẇ∗
2 sin(ϕ2)+ ẇ1,ξ1|L1

ξ3 sin(ϕ2). (7.55)

The squares of the modal frequencies are the eigenvalues of the system in Eqn. (7.40.)
The coefficients of the stiffness and mass matrix for the Y -Shaped resonator are
reported in Appendix C.1. Appendix C.1 also provides the expression of the general-
ized forces given a generic base excitation.

7.3.4 Case N = 3: Z-shaped resonator

Following the same approach, the BC’s for the Z-shaped structure, have the following
form:
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(7.56)

that yields the following:

a2,2 =
E1I1(a2,1 +3a3,1L1)

E2I2
, (7.57a)

a2,3 =
E2I2(a2,2 +3a3,2L2)

E3I3
, (7.57b)

a3,3 =−
a2,3

3L3
. (7.57c)

The generalized coordinate are a2,1, a3,1 and a2,2. The expression of the kinetic
energy T is:

T =
1
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where
ẇ1(ξ1) = ẇ∗

i + ẇB,

ẇ2 = ẇ∗
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2 sin(ϕ2)+(ẇ1,ξ1|L1
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.

(7.59)

The expression of the stiffness and mass matrix, as well as those of the generalized
forces, for the Z-shaped structure are reported in Appendix C.2.

Qualitatively the same conclusions drawn for the V -shaped resonator can be
extended to these two families of resonators presented in this section. However, for
sake of brevity we report in Tables 7.4 and 7.5 some of the possible solutions and
the corresponding non-dimensional ratios. Note that by varying the folding angles
allows the design of resonators with various topologies that have modal frequencies
with ω2/ω1 = 2 and ω3/ω1 = 3.

Table 7.4 Non-dimensional ratios for Y -shaped resonators with ω2/ω1 = 2and ω3/ω1 = 3
resonances. It is assumed that the resonators have square cross sections and are made by the
same material.
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Table 7.5 Non-dimensional ratios for Z-shaped resonators with ω2/ω1 = 2and ω3/ω1 = 3.
The resonators have square cross sections and each member is composed of the same material.
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ĥ1 = 1.00
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7.4 Design charts for the V-shaped resonator

In the spirit of this work, this section presents the design chart for the V-shaped resonators.
Furthermore, the folding angle ϕ plays the role of packing (or unpacking) the mass and
increasing (or decreasing) the stiffness of the structure while maintaining the frequencies
in a given integer ratio. The effect of the folding angle ϕ on the frequency is shown in
Figures 7.10 and 7.11. The frequencies are normalized with respect to those of a cantilevered
beam having the dimension of the first member of the resonator. The normalized bending
frequencies ω̃ is the ratio between the first bending frequency of the resonator and the
first bending frequency of the cantilever beam. The non-dimensional frequency are the
dotted curves meanwhile the solid line are the non-dimensional lengths l̂. Provided that the
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non-dimensional ratios are maintained, Figures 7.10 and 7.11 are universal charts useful to
design one-to-two resonators with square cross sections. It must be noticed that the presence
of the second member allows the following advantages: (a) the first bending frequencies
of the resonator is lower than the cantilevered beam counterpart; (b) the resonator has
exactly two commensurate frequencies, equal to the number of members. While the main
focus is on designing resonators with commensurate frequencies vary the orientation of the
members in a given volume allows for design of energy harvesting devices for low frequency
applications [96].
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Fig. 7.10 Design chart for ω2/ω1 = 2 resonator with square cross sections. Curves are
solutions ω̃(ϕ , ĥ, l̂) from the outer envelope for different ĥ. The dotted lines are the
nondimensional bending frequencies; the solid lines are the nondimensional length l̂. Note
also that beside the advantage of having two commensurable frequencies, the first bending
frequency of the resonator ranges between 0.45 and 0.2 of the cantilevered beam counterpart.

In the interest of clarity herein is reported an example of resonator sizing using the design
chart illustrated above. Let us consider the case of a cantilever beam having the following
dimensions a = b = 10 mm and L = 150 mm. The beam is made by an aluminum alloy
having the following properties: Young’s modulus E = 73 GPa, Poisson’s ratio ν = 0.3 and
density ρ = 2780 kg/m3. The first two bending frequencies are respectively f1 = 188 Hz and
f2 = 1176 Hz. Let us suppose that we are interested at designing a resonator having about
40% of reduction of the first bending frequencies with respect to the cantilever beam and
with the second frequency commensurate in a ratio one-to-two and suppose that the thickness
ratio should be ĥ = 0.75. Let us draw a line starting from the right hand side of the design
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ĥ =1.0
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Fig. 7.11 Design chart for ω2/ω1 = 2 resonator with a square cross section. The figure
reports solutions ω̃(ϕ , ĥ, l̂) from the inner envelope for different ĥ. The dotted lines are
the non-dimensional bending frequencies; the solid lines are the nondimensional length l̂.
The design map allows the rapid design of resonator once the geometry of the first element
is fixed. The inset shows a zoomed view of the two envelopes with ĥ = 1.5 and ĥ = 2.0
respectively. Note also that beside the advantage of having two commensurable frequencies,
the first bending frequency of the resonator can be adjusted to be lower than its cantilevered
counterpart in the range of 28% to 90%.
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map at ω̃ = 0.6. We cross the line of ĥ = 0.75 at ϕ = 111◦. Now that the angle has been
identified, the value of l̂ is identified moving along the direction of the green arrow reported
in Figure 7.12 until one cross the solid black line at ĥ = 0.75. The value of l̂ is therefore
identified and it is l̂ = 0.73. Substituting this value into the reduced order model yields the
following frequencies: f1 = 114.5Hz and f2 = 229.1Hz. The two bending are therefore in a
ratio 2.0013 and are in the range of frequencies sought.
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ĥ = 1.5

ĥ
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Fig. 7.12 Exemplification of the usage of the universal chart to design a resonator in a ratio
one-to two.

7.5 Summary and conclusion

In this chapter, the equations of motion of a multi-member angle-shaped resonator have been
derived. The equations are then specialized for the case of a two members and three members
structure. The equation are then parametrically solved using a root finding algorithm to
identify solutions which exhibit commensurate frequencies in the ratio one-to-two for the
V-shaped and 1:2 ,1:3 for the three members resonator. For the case of the V-shaped
resonator, it is seen that solutions are quadratic in the parameter l̂, meaning that in general
two solutions exists. However, in some cases, only one solution exists, in this case the locus
of solutions (hyper-surface) presents a sort of bifurcation. A discussion on the physic behind
the bifurcation phenomena seen for the solutions is provided, particularly on the effect of
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the position of the overall center of gravity of the system to the solution identified. It is
shown how solution belonging to the outer envelope affect more the overall CG position. The
analytical solution for the frequencies equation of the V-shaped resonator has been derived.
The reduced order model and the analytical model have been validated through a comparative
study against finite elements. It has been shown that a rule of thumb holds, i.e. the number
of commensurate frequencies equals the number of the members composing the structure.
Moreover, it has been shown that higher frequencies with respect to the ones sought have
a certain set space and are not commensurate, meaning that the system can effectively be
modeled as a N-DOF system. Universal design chart have been provided, to help sizing the
resonator at a glance.



Chapter 8

Electro-mechanical model for the
V-shaped resonators

Part of the derivation presented in this chapter has been previously published in the
SPIE SS/NDE Conference Proceedings. The full citation is provided below

Danzi, F. and Gibert, J. M. ”Exact dynamics of an angle-shaped resonator for energy
scavenging applications”. Proc. of SPIE Smart Structures and Materials + Nondestruc-
tive Evaluation and Health Monitoring, 2018, Denver, Colorado (USA), 5-8 March
2018, https://doi.org/10.1117/12.2296642.

8.1 Introduction

This chapter presents the derivation of the linear electro-mechanical equation of motion for
the angle-shaped resonators. The electro-mechanical equation of motion are obtained by
means of the extended Hamiltonian principle and then solved using a Rayleigh-Ritz approach
to obtain the discretized electromechanical equations. 1. Following Haddow et al [89] and
consistently with the derivation presented in the previous chapter, we assumed a polynomial
admissible function of undetermined constants based on the equilibrium equation of each
member in the absence of external loading. The electro-mechanical model accounts for the

1The Rayleigh-Ritz approach leads to the same discretized equations of motion of the assumed
mode approach, as discussed in Meirovitch [201]. Indeed the two methods are closely related despite
the first begins with the spatial discretization of the eigenvalue problem while the second is concerned
with the spatial discretization of the boundary-value problem.

https://doi.org/10.1117/12.2296642
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presence of a unimorph layer of Polyvinylidene fluoride (PVDF) attached to the first member
for a length lp starting from the root.

Once the model is established, the performance of the resonator when subjected to
multiple harmonic excitations are investigated. Excitation with different energy content in
the two harmonics are considerd. The investigation considers also for the presence of a phase
excitation α among the two harmonics. A metric defined as in [202] is used to investigate
the sensitivity of the harvester to the phase excitation. The performances of five resonators at
different folding angle ϕ are compared. The resonators are designed such that they have the
same bending frequencies. The design procedure to arrive to the dimensional parameters
of the resonators under study is summarized in section 8.2. Particularly, three resonators
are taken from the inner envelope, i.e. for those locus of solutions in which L2 < L1 (or
equivalently l̂ < 1) while the other two solutions are from the outer envelope, namely l̂ > 1.

Among the possible non-transient excitations suitable for energy harvesting from vi-
brations, we focus on excitations containing a dominant harmonic component and multiple
subharmonics and/or super harmonics [203]. These signals can have substantial amount of
energy contained in their fundamental frequency component and smaller amounts of energy
in their sub and super harmonic components. These spectrums are seen in many rotary ma-
chines such as: helicopter rotors, car engines, wind turbines etc. Figure 8.1 shows the power
spectrum from a dc motor illustrating this phenomena [204]. The vibrations are measured in
three directions. In all directions the dominant energy content lies at approximately 50 Hz,
while the higher order components contain a significantly smaller amount of energy.
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Fig. 8.1 Accelerometer measurements from a Ward Leonard DC generator: (a) x-axis,
(b) y-axis, and (c) z-axis. Data was downloaded from the EH Network Data Repository
(http://eh-network.org/data).
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Energy can be extracted from this source of excitation using: a harvester that is paramet-
rically excited[203, 205, 206]2, array of fixed frequency vibration energy harvesters each
one tuned at the frequency of interest, or a single harvester designed to operate at two modal
frequencies [208–212]. In this analysis the modal frequencies are restricted to be integer
multiples of the dominant harmonic in the excitation, particularly herein are considered the
case of one-to-two frequency’s ratio.

8.2 Resonator Design

In elucidating the effect of folding angle we seek resonators that have the same bending
frequencies. However, designing resonators that have the same modal frequencies with
different configurations is not a trivial task. The process begins by arbitrarily picking five
solutions from the design envelope of planar resonator reported in Figure 8.2. As it has
been already discussed in the previous chapter, the solutions to the frequency equation
of the reduced order model that exhibit commensurate frequencies are hyper-surfaces S,
S ∈ R12 [213]. Assuming that the two members are made of the same material, fixing the
orientation of the first beam, the width b of the both beams, and defining the non dimensional
ratios l̂ = L2/L1, ĥ = h2/h1, solutions to the frequencies equations collapse in dimensionality
to a surface S̄, S̄ ∈R3. This surface allows one to design the resonators based on the thickness
ratio, the folding angles and the length ratios. Further, constraining the thickness parameter
(ĥ) to a fixed value, solutions to the frequencies equation become a planar curve C , i.e.
C ∈ R2. Figure 8.2 presents the design curve, C , for the 1:2 angle-shaped resonators as a
function of the length ratio l̂ and the folding angle ϕ when the thickness ratio is ĥ = 0.5.
Those solutions are obtained for rectangular cross sections; the width of the beam members
is fixed and it is b = 12mm. Markers placed on Fig. 8.2 indicate the folding angle and
lengths of the five configurations selected. As can be seen From Figure 8.2, at ϕ equal to
80◦ corresponds only one solution, namely that of the inner surface. Contrary at ϕ = 90◦

and ϕ = 120◦ solutions are found on both the inner and outer envelope. Table 8.1 reports the
nondimensional ratios, folding angles and the first bending frequencies for the resonators
corresponding to these configurations. Henceforth, the resonators are named as V80, Li,
V i

120, Lo, V o
120 according to the folding angle ϕ , the apex stands for solution from the inner

2Parametrically excited systems are characterized by differential equations with time varying
coefficients. In nonparametric excitations a large amplitude response is only present when the
frequency of excitation is close to the linear natural frequency. Conversely, parametric excitations
produce a large amplitude response even if the excitation frequency is away from the linear natural
frequency. [207]
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Table 8.1 Non-dimensional ratios for the different resonators and first bending frequency
[Hz]. The solutions are obtained using a root finding algorithm to have commensurable
frequencies in a ratio 1:2 using the reduced order model. [194]

Resonator ĥ l̂ ϕ[deg] f1 f2

V80 0.5 0.8019 80 16.86 33.72
Li 0.5 0.6646 90 20.79 41.58
Lo 0.5 1.0778 90 12.07 24.14
V i

120 0.5 0.5621 120 25.84 51.68
V o

120 0.5 1.1967 120 11.23 22.46

i and outer o envelope respectively. Table 8.2 lists the dimensions and properties of these
resonators.
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Fig. 8.2 Polar representation of the solution having 1:2 frequency ratio as a function of the
folding angle ϕ , ĥ = 0.5. The envelope is obtained considering rectangular cross sections
for a fixed beams width (b). Solutions in the white region are for l̂(ϕ)> 1, solutions in gray
region are for l̂(ϕ)< 1. The markers indicate the five resonators considered for the sake of
comparison.

Now that the configurations are chosen, we note that constraining the geometry of the first
beam and the thickness ratio between beams leads to structures that exhibit different bending
frequencies, as reported in Table 8.1. In all configurations the ratio of modal frequencies
remains 1:2; however, the frequencies increase with an increase in the folding angle for the
case of the inner envelope while, for solutions of the outer envelope the bending frequencies
decrease when the angle increase. In order to have five resonators with the same bending
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Table 8.2 Configuration parameters for the angled resonators.

h1 h2 b µ1 µ2 E1I1 E2I2
mm mm mm kg/m kg/m Nm2 Nm2

2 1 12 0.0694 0.0694 0.5512 0.0689

frequencies, the structures are resized according to the following scaling equation

l1scaled = l1

√
f

fV80

. (8.1)

It is worth noticing from Eqn. (8.1) that the frequencies of the V80 resonator has been
considered as the reference value. The scaled length of the Li, V i

120, Lo, V o
120 of the first

members of the resonator considered are listed in Table 8.3. For the sake of completness,
Table 8.3 reports also the beding frequencies obtained after the scaling. Notice that the
non-dimensional ratios listed in Table 8.1 still hold and the dimensions of the second beam
can be easily determined. aving noted that the frequencies of the structure are sensitive to the
dimensions of the member as well as to the folding angle, three among the five resonators
considered herein were cut out from an aluminum rectangular plate using a water jet cutter
(WJC). Indeed, the WJC has the following advantages: high precision at sharp corner at the
joining of the two members, (b) no heat-affected zone are present.

In Table 8.4 are reported the bending frequencies obtained by means of the analytical
model and the reduced order model presented in the previous chapter along with those
obtained with a finite element analysis (FEA) and, finally, for the solutions of the inner
envelope, with experiments. The solutions from each analysis agrees with each other
and,where present, with the experiments. Figure 8.3 reports the mode shapes of the five
resonators considered herein. Additionally, the mode shapes obtained with the analytical
solution, the reduced order model and the FEA match closely. Particularly, the results
pertaining the FEA were obtained employing 100 elements per member. For the sake of
comparison we report herein the mode shapes obtained with the reduced order model, Fig 8.3
and the FEA. Figure 8.4 illustrates the experimental setup used for the experiments. It is
worth mention the following: a) the third bending frequency has a set space from the first
two and, b) neither the third not the higher order frequencies are commensurate. This allow
to handle the system as a two degree of freedom system. In particular, the third bending
frequency are given as follow: 149.12Hz for the V i

80 resonator, 175.70Hz and 126.70 for
the inner and outer L-shaped resonator respectively, finally for the V120 the third bending
frequency is 126.00Hz for the inner solution and 112.36Hz for the outer solution. It is
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Table 8.3 Scaled design: first beam length, and first two modal frequencies.

Resonator L1
ii f1[Hz] f2[Hz]

V i
80 210.0 16.86 33.72

Li 233.2 16.86 33.72
Lo 177.7 16.86 33.72
V i

120 260.0 16.86 33.72
V o

120 171.4 16.86 33.72

ii L1is scaled to have the same bending frequencies of the V80 resonator, 1:2 configurations are
obtained using a root finding algorithm detailed in Danzi et al[194].

also noted, thanks to the FEA that the resonators have a torsional frequency in between
the second and the third bending frequency. Particularly, the torsional frequency varies
between 35.75Hz for the Lo resonator and 50.1Hz for the V i

120 resonator. In view of the
above observations, the use of the reduced order model derived in the previous section, to
study the performance of the harvesters, is justified.

Table 8.4 Natural frequencies [Hz] of the angle-shaped resonators under study.

Resonator
Analytical FEAi ROM Experimental

f1 f2 f1 f2 f1 f2 f1 f2

V i
80 16.79 33.26 16.84 33.18 16.86 33.72 17.0 33.8

Li 16.82 33.11 16.84 33.18 16.86 33.72 16.77 33.70
Lo 16.82 33.11 16.71 33.50 16.86 33.72 - -
V i

120 16.80 33.19 16.80 33.22 16.86 33.72 17.0 34.0
V o

120 16.80 33.19 16.80 33.22 16.86 33.72 - -

i 102 elements per member

8.3 Electro-mechanical equation of motion

The governing equation for the coupled electro-mechanical system is obtained by means of
the extended Hamiltonian principle, that is∫ t2

t1
L dt =

∫ t2

t1
(T −V +Wie)dt (8.2)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 8.3 First and second mode shape of the five resonators under study, drawn to scale: (a)
and (b) V i

80 shaped resonator; (c) and (d) Li shaped resonator; (e) and (f) V i
120 resonator, (g)

and (h) Lo resonator and (i) and (j) V o
120 resonator
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(a) (b)

Fig. 8.4 Experimental setup: a) the V80 resonator mounted on the rigid support and connected
to the base of the APS Dynamics ELECTRO-SEIS Shaker, b) the data acquisition system.

Table 8.5 Geometric and Material Properties of the PVDF

Young’s Modulus, Ep 3000 MPa
Length, Lp 50 mm
Width, wp 12 mm
Thickness, tp 0.5 mm
Density, ρp 1700 kg/m3

Piezoelectric strain constant, d31 30 pC/N
Relative dielectric constant, ε33/ε0 12

where L is the Lagrangian and T , V and Wie are the kinetic energy, the total potential
energy and the internal electrical energy, respectively. The expression of the kinetic and
potential energy are modified with respect to those reported in the previous chapter to account
for the presence of the piezoelectric layer laying on the first member for a length lp. The
electro-mechanical properties of the PVDF layer adopet in this analysis are listed in Table
8.5.

The internal electrical energy of the harvester can be expressed as follow

Wie =
1
2

∫
V

E3D3dV (8.3)

where E3 is the electric field in the y-direction and D3 is the electric displacement in the y-
direction. The Rayleigh approximation give rise to the following stiffness matrix coefficients

k11 =
4L2E2

1 I2
1

3E2I2
+4L1E1I1, (8.4)
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k12 =
4L2E2

1 I2
1 L1

E2I2
+6E1I1L2

1 = k21, (8.5)

k13 =e31blp (hs + tp) (8.6)

k22 =
12L2E2

1 I2
1 L2

1
E2I2

+12E1I1L3
1, (8.7)

k23 =
3e31bl2

p (hs + tp)

2
(8.8)

k33 =1/R. (8.9)

Likewise, the expression of the mass matrix coefficient can be written as

m11 =
A1L5

1ρ1

5
+

4A2L2
1L3

2ρ2

3
+

11A2E2
1 I2

1 L5
2ρ2

105E2
2 I2

2
+

11A2E1I1L1L4
2ρ2

15E2I2
+ (8.10)

+
A2E1I1L2

1L3
2ρ2 cos(ϕ)

2E2I2
+A2L4

1L2ρ2 +2A2L3
1L2

2ρ2 cos(ϕ),

m12 =
A1L6

1ρ1

6
+

5A2L4
1L2

2ρ2 cos(ϕ)
2

+
33A2E1I1L2

1L4
2ρ2

20E2I2
+

11A2E2
1 I2

1 L1L5
2ρ2

35E2
2 I2

2
+ (8.11)

+
A2E1I1L3

1L3
2ρ2 cos(ϕ)

E2I2
+A2L5

1L2ρ2 +2A2L3
1L3

2ρ2 =

m21,

m22 =
A1L7

1ρ1

7
+

33A2E2
1 I2

1 L2
1L5

2ρ2

35E2
2 I2

2
+

33A2E1I1L3
1L4

2ρ2

10E2I2
+

3A2E1I1L4
1L3

2ρ2 cos(ϕ)
2E2I2

+ (8.12)

+A2L6
1L2ρ2 +3A2L4

1L3
2ρ2 +3A2L5

1L2
2ρ2 cos(ϕ).

The electro-mechanical damping coefficient becomes

c31 =be31lp (hs + tp) (8.13)

c32 =
3be31l2

p (hs+ t p)
2

(8.14)

c33 =−
bε33lp

t p
(8.15)

It is worth notice that the complete damping matrix is obtained superimposing to the coef-
ficients reported above, those obtained considering a proportional damping. In particular
we assumed ζ = 0.1, begin the latter the modal damping coefficient. The expression of the
generalized force are given as follow

f1 =

[
1
3

ρ1A1L3
1 +

ρ2A2L2
(
4E2I2L2

1 +L2 (4E2I2L1 +E1I1L2)cos(ϕ)
)

4E2I2
+

ρpApl3
p

3

]
ẅB(t),

(8.16)



224 Electro-mechanical model for the V-shaped resonators

f2 =

[
1
4

ρ1A1L4
1 +

ρ2A2L2
(
4E2I2L3

1 +3L2
(
2E2I2L2

1 +E1I1L1L2
)

cos(ϕ)
)

4E2I2
+

ρpApl4
p

4

]
ẅB(t).

(8.17)

A cursory inspection of Eqn. 8.16 allow one to speculate about the possible advantage
offered by the angle-shaped resonator with respect to the L-shaped resonator. Indeed, it is
worth noting that the term which multiply the cosϕ become zero for the case of the L-shaped
resonator.

8.4 Analysis of the performances

8.4.1 Identification of the optimal resistance

The comparison starts with the evaluation of the optimal resistance for each of the harvester
selected. In the following analysis each harvester will work with its optimal resistance.
The analysis is performed by parametrically changing the resistance between the upper
and lower bounds and comparing the output the output power. Figure 8.5, reports the
optimal resistances for the three resonators considered herein. It can be seen that the optimal
resistance increase with the increasing of the folding angle. Only the resonator of the inner
envelope are considered, because the resonator of the outer envelope are generally heavier
and leads to a lower energy density.
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 (

m
W

)

R (MW)

Fig. 8.5 Optimum resistance for the three angled resonators.
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8.4.2 Performances of the resonator of the inner envelope

In the following we examine the power that can be scavenged from the harvesters when
subjected to multiple harmonic excitations. Particularly, we focus on the following kind of
excitation

ẅb = ẅb1 cos(ωt +α)+ ẅb2 cos(nωt) (8.18)

where α is the phase difference between the two harmonic excitations, n = 2. Three cases
of excitation are considered: a) ẅb1 = ẅb2 = 0.1g, b) ẅb1 = 0.1g and ẅb2 = 0.05g and c)
ẅb1 = 0.05g and ẅb2 = 0.1g. The instantaneous power scavenged is given as: P(t)=V 2(t)/R,
where R is the leakage resistance while V (t) is the instantaneous voltage. Consistently with
the assumption of harmonic base excitation, V (t) can be written as

V (t) =
1
2

V0 exp( jωt)+
1
2

V̄0 exp(− jωt) = |Vω |cos(ωt +ϑ) (8.19)

where V0 is V0 = V0R + jV0I and ϑ = tan−1(V0I/V0R). In case of two base excitations with
commensurate frequencies and phase shifting α among them, the Eq. 8.19 becomes

V (t) = |Vω1 |cos(ω1t +ϑ1 +α)+ |Vω2 |cos(nω1t +ϑ2) (8.20)

Since the system is linear one can use superposition to obtain the total voltage, eq. 8.20. In
order to guarantee that the effect of nonlinearities is negligible we limited the base motion
to low base acceleration. To investigate the effect of the phase shifting between the base
excitations on the power harvested, we used the metric introduced in [202] defined as

P̄ =
max

t
P(t,α)

min
α

max
t

P(t,α)
(8.21)

referred in the following as the power normalized peak in time.

Figure 8.6 depicts the FRFs of the Voltage and of the Power density (power per unit
mass) for each resonator. The resonators are subjected to a base excitation whose frequency
is allowed to vary. As expected in all the plots ones sees two resonant peaks occurring at a
1:2 frequency ratio. Additionally, Figure 8.6 illustrates that as the folding angle increases,
the power per unit density harvested from the first harmonic component, i.e., the one with
the frequency coincident with the first resonance of the structure, increase with respect to
that scavenged from the second harmonic component. This leads to the observation that
for folding angle greater than π/2 harvest more power from the primary component of the
excitation. The latter observations also apply to the Voltage. In fact, the same conclusion can
be drawn considering Figure 8.5. Indeed, if one draw a fictitious line at a fixed value of the
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resistance in Figure 8.5, it can be seen that the resonators with higher folding angle ensure
an higher output power. Figure 8.7 reports the power extracted over a cycle of oscillation.
Also in this case, it appears from a cursory inspection of the curve reported in Figure 8.7
that the harvester having folding angle higher than π/2 is advantageous in terms of powered
scavenged. Moreover, from Figure 8.7 one can notice that the variation of the power in time is
limited if the second member is in the second quadrant(ϕ > 90◦). Examining the normalized
power defined in Eqn.(8.21) for the three resonators considered herein are: P̄120 = 1.06,
P̄90 = 1.22 and P̄80 = 1.30. The latter results can be interpreted as the sensitivity of the
harvester, at various folding angle ϕ , to the phase excitation. The lower the peak power in
time the lower the sensitivity of the structure to the phase excitation.
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Fig. 8.6 FRF of Voltage(left) and of Power Density (right) for the three resonators under
study, respectively from top to bottom V80 , L and V120.
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Fig. 8.7 Power harvested as a function of time over one cycle of oscillation: a) V80 resonator,
b) L resonator, and c) V120 resonator.
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In Figure 8.8 are reported the instantaneous volatge and power harvested in a cycle of
oscillation. Figures 8.8a and 8.8b report the instantaneous voltage and power when the
two harmonic have the same energy content, namely 0.1g. In Figures 8.10c and 8.10d are
depicted the istantaneous volatge and power when the energy content in the first harmonic is
0.1g while in the second harmonic is 0.05g. Finally in Figures 8.10e and 8.10f are illustrated
the istantaneous volatge and power when the second harmonic has an higher energy content,
respectively ẅb1 = 0.05g and ẅb1 = 0.1g. Comapring the istantaneous power reported in
Figure 8.10d with respect to that of Figure 8.10f, it can be seen as the power harvested
is more when the first harmonic has the higher energy content. Comparing the maximum
attainable power in Figure 8.8, follows that a noticiable effect of the phase excitation can
be seen: a) in the case of two frequencies with the same energy content or, b) when the
second harmonic has an higher energy content with rispect to the first excitation. A small
variation of the power is seen when the second harmonic has a smaller energy content. This
results is confirmed also looking at the peak power in time which, indeed is a measure
of the sensitivity of the harvester to the base excitation. It is also worth noticing that the
maximum attainable power for the different phase excitation present an antisimmetry with
respect ot the phase excitation. Particularly, looking at the curve with α = 0 and α = π/2
it can be noted that those are antysimmetric with respect to the half period of obscillation
but the same peak power can be obtained. The same applies also to the pairs α = π/12
and α = 11/12π , α = π/6 and α = 5π/6 and so on. This can be explained with simple
trigonometric reasoning looking at the equation 8.20. Moreover, in terms of power scavenged
it can be noted that the case of excitation a) and b) are favorable while, when the second
harmonic has an higher energy content the power attainable decrease considerably.

Next, are compared the performance of the Li harvester. The same trends discussed
above can also be observed in Figure 8.10, where are depicted the instantaneous voltage and
power for the case of the Li resonator for the three sources of excitation. The harvester is less
sensitive to the phase excitation when the second harmonic component has the higher energy
content. Comparing the Figures 8.8 and 8.10 follows that, under the same base excitation
the V i

120 is advantageous with respect to the Li in term of the power harvested. This can be
explain because of the intrinsic coupling behavior that a general angle shaped structure has
with respect to the L-shaped configuration, as it as been already pointed out by looking at
the generalized force vectors. However, the L-shaped structure presents a smaller value of
the peak power in time in all the cases analyzed, meaning that the L-shaped is less sensitive
than the V i

120 to the phase excitation.
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Fig. 8.8 Effect of the phase shifting angle α on the instantaneous voltage ( Figures (a)-(c)-
(e)) and instantaneous power ( Figures Figures (b)-(d)-(f) ) produced by the V i

120harvester
subjected to double harmonics. Figures (a) and (b) are relative to the case of exicitation
with the same energy content. Figures (c) and (d) are those of exictation with ẅb1 = 0.1g
and ẅb1 = 0.05g. Finally Figures (e) and (f) are relative to the case with ẅb1 = 0.05g and
ẅb1 = 0.1g.
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Fig. 8.9 Effect of the phase shifting angle α on the instantaneous voltage ( Figures (a)-(c)-(e))
and instantaneous power ( Figures Figures (b)-(d)-(f) ) produced by the Liharvester subjected
to double harmonics. Figures (a) and (b) are relative to the case of exicitation with the same
energy content. Figures (c) and (d) are those of exictation with ẅb1 = 0.1g and ẅb1 = 0.05g.
Finally Figures (e) and (f) are relative to the case with ẅb1 = 0.05g and ẅb1 = 0.1g.

8.5 Conclusions

In this chapter the electro-mechanical equation of motion of the angle-shaped resonator have
been derived by means of extended Hamiltonian principle. For the sake of comparison, the
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Fig. 8.10 Effect of the phase shifting angle α on the instantaneous voltage ( Figures (a)-(c)-
(e)) and instantaneous power ( Figures Figures (b)-(d)-(f) ) produced by the V i

120harvester
subjected to double harmonics. Figures (a) and (b) are relative to the case of excitation
with the same energy content. Figures (c) and (d) are those of exictation with ẅb1 = 0.1g
and ẅb1 = 0.05g. Finally Figures (e) and (f) are relative to the case with ẅb1 = 0.05g and
ẅb1 = 0.1g.

electro-mechanical equation are solved for three topologies arbitrarily selected among the
possible solutions. It has been derived a scaling rule to desing the resonator such that they
have the same bending frequencies. It has been shown that the folding angle plays a crucial
role in determining the performances of the harvester. Particularly, it is seen that at different
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folding angle correspond at different value of the optimal resistance. It is seen also that when
the folding angle increase, the power density increases as well. Moreover, structures with
folding angle higher than π/2 are less sensitive to the phase shift between the harmonic
components of the excitation. Folding angles higher than π/2 are preferable when the energy
content of the first harmonic is higher than those of the other harmonics.



Chapter 9

Summary and outlook

9.1 Contribution to knowledge

The major contributions of this work are summarized below.

Contribution 1 is the formulation of two-new equivalent plate models. The models provide
insight into the attainable performance of curved stiffened structures based on their topology.

• Chapter 2 contains the derivation of the equivalent continuum layer models of curvilin-
ear stiffened structures. The stiffeners were modeled as piecewise rectilinear members
oriented at an angle ϑ with respect to the plate global reference frame. The derivation
is a hybridization of the direct compatibility method and the energy equivalence
method and uses two basic repetitive units for the purpose of smearing the strain
energy density of the stiffened structure and hence derive an equivalent continuum
model. It has been shown that, for curved stiffeners, the homogenization method give
rise to full rank matrices. The effect of the curvature on to the equivalent properties
has been investigated. Additionally, it has been shown that the method presented is
valid for moderately curved stiffeners. A limit envelope has been provided. Using the
method presented herein the effective engineering properties can be then calculated,
allowing one to examine the effect of the transverse shear. A preliminary parametric
study, performed on a plate having the aspect ratio b/a = 1.6 with 5 stiffeners, has
shown that neglecting the effect of the transverse shear the error committed is of the
order of few percent. The effect of the number of subdivisions of repetitive element
has been investigated. It is seen that the method converges to the asymptotic values of
the stiffnesses using few subdivisions of the repetitive element. The homogenization
method has been assessed through a comparison of the buckling loads and natural
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frequencies of simply supported panels. It has been shown that the equivalent contin-
uum model which consider the stiffness variability is more accurate than the constant
stiffness model. It has also been shown that, at least for the case investigated in chapter
two, the effect of the variability of the mass is negligible when compared with that of
the variability of the stiffness.

Contribution 2 is the development of a low fidelity reduced order model that can qualitatively
predict the behavior of coupled structures with variable stiffnesses.

• In Chapter 3 the equations of motion of a second order nonlinear flexural-flexural-
torsional beam has been derived. It has been shown that, having considered the
variable properties yields up to thirty terms more in the system of governing equations.
As a result the design domain has been enlarged resulting in a greater tailorability of
the structural response.

• The reduced order model has been used to optimize the topology of the stiffeners of
tow unitized box beams. In the first case, the objective of the optimization was to
maximize the strain energy while maintaining the tip deflection bounded and ensuring
a minimum tip rotation. Three different load cases were analyzed. The results
presented agree with those obtained with a commercial code where the optimization
was carried out using the SIMP algorithm in combination with a Finite Element
Analysis. Results were found in agreement also with experiments. The second
optimization problem aimed at decoupling the mode shapes of a scaled wing model of
a High Altitude aircraft. The objective of the optimization was having the frequencies
of the deformed structure as close as possible to the undeformed wing. It has been
shown that moderately curved stiffeners can beneficial affect the behavior of the
wing box. It has been demonstrated that the reduced order model presented herein,
having few degrees of freedom and a limited number of design variables, is able to
qualitatively predict the structural response of variable stiffness beam in presence of
structural couplings;

Contribution 3 is the development of an invariant-based scaling for predicting the perfor-
mances of anisotropic structures.

• The theoretical framework for scaling of anisotropic structure has been briefly summa-
rized in Chapter 4 and the steps to apply the scaling procedure have been explained. A
preliminary analysis has been performed on a High Aspect Ratio box-beam showing
that, taking advantage of the objective properties for tensors, it is possible to predict the
performances of a given structure when one varies the constitutive material, provided
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that a reference solution is known. The scaled results are found in good agreement
with those evaluated numerically. Other examples pertaining trace-based scaling have
been reported; particularly, it has been shown that buckling loads and post-buckling
deflections can be scaled consistently once a reference solution is known. The scal-
ing procedure is envisaged to be useful within preliminary design stages and could
potentially replace cumbersome material selection optimization.

Contribution 4 is the development of a novel population based optimization algorithm has
been introduced to overcome the low convergence rate of GAs and improve the exploration
capabilities.

• In Chapter 4 a novel optimization method, derived from the Stud GA, has been pre-
sented. The optimization method emulates the concept of linebreeding and outcrossing,
used in breeding farm, to improve the exploration and exploitation capabilities of the
algorithm. The optimization method adopts two parameters, namely the probability
of extinction and the stress parameter, to enhance the performance of the algorithm. A
parametric study has been performed aiming at identify the correct tuning parameters,
particularly it has been shown that a lower probability of extinction is sufficient to
enhance the exploration capability of the algorithm, in contrast with the common
practice of having extinction at each iteration. The Studp GA algorithm has been
tested on benchmark problems for buckling loads maximization of composite flat
panels. It has been shown that the algorithm outperforms other heuristics as well as
the permutation search (PS) algorithm on the same set of problems.

Contribution 5 is the development of systematic framework to design planar resonators for
desired set of modal characteristics.

• The synthesis of planar resonator has been preliminary addressed as topology opti-
mization of Ground Structures aiming at gaining useful insight on the design. The
optimization aimed at identify structure having commensurate frequencies. It has
been shown that, despite the level of complexity of the initial ground structure, the
topology synthesis yields structure with few members. Particularly, in the case of
two commensurate frequencies, in any integer ratio, the algorithm recovered a two
members structure; while, for the case of three commensurate structure the algorithm
identifies structures having three members. The optimization algorithm was able to
recover, among the solutions identified, the L-shaped beam. However, the latter was
not the preferable solution. In most of the cases the algorithm preferred a structure
having members oriented at an angle ϕ;
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• In Chapter 6, aiming at investigating the effect of the folding angle onto the frequencies
of the resonators, the analytical solution for the case of the angle-shaped resonators
along with a generalized reduced order model were derived. It has been shown that
the solution to the problem of having commensurate frequencies are hyper-surface
belonging to R6N , being N the number of members of the structure. The reduced order
model has been then specialized to the case of two and three members, or equivalently
to the case of two and three commensurate frequencies. Three planar configurations
for the resonators were identified, namely the V, Y and Z-shaped resonators. An in-
depth study of the V-shaped resonator has been presented. Particularly, the cardinality
of the problem has been reduced assuming fixed some parameters and the 3D and
2D envelopes were provided. It has been shown that solutions are quadratic in the
length parameter and that the 3D envelope exhibits a sort of bifurcation in the design
domain, i.e. for certain angle solutions exist in the inner envelope only. It is seen that
solution of the outer envelope are more sensitive to the variation of the position of the
center of gravity, this motivates the bifurcation phenomenon. Universal design charts
were provided. The latter being useful to design resonators knowing the dimension
and frequencies of a cantilever beam. An examples of design based on the universal
chart was provided. Universal design chart are the answer to the query of identify a
systematic way/method to design resonators;

• Chapter 7 presents the derivation of the equation of motion of the electro-mechanical
V-shaped resonator. Three topologies of the resonator were selected aiming at inves-
tigating the effect of the folding angle on to the energy harvested. The resonators
were designed such that the first two bending frequencies for the different topologies
coincide. Moreover all the resonators were operated at their optimal resistance. In-
deed, it has been shown that at different folding angle corresponds a different optimal
resistance. It has been shown that when the folding angle increase, the power density
increases as well. Moreover, structures with folding angle higher than π/2 are less
sensitive to the phase shifting between the harmonic components of the excitation.
Folding angles higher than π/2 are preferable when the energy content of the first
harmonic is higher than those of the other harmonic(s), which is a common situation
for vibration due to rotary machines.

Contribution 6 is the formulation of a novel filtering scheme for topology synthesis of
planar ground structures.

• Chapter 5 presented a novel topology synthesis method based on a double filtering
scheme for the topology optimization of ground structures. The double filtering
scheme has been conceived based on the observation that regardless of the level of
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connectivity in the ground structure, the GS is a graph i.e. a connection of nodes
by means of arch. Using standard graph exploration algorithm it has been possible
to navigate the structure and identify those members that were unconnected to the
rest of the structure. The unconnected structure arises from the first filtering scheme
which instead removes members with a cross section less than a threshold limit.
The algorithm has been proven to be effective in synthesizing planar resonators and
compliant structures

9.2 Outlook

Based on the premise that having a set space between torsional and bending frequencies
postpones the occurrence of aeroelastic instabilities, the analysis reported in this thesis are
limited to the study of the nonlinear dynamic response of unitized box beam. A natural
extension of the work will consider an unsteady aerodynamic model coupled to the beam
model in order to investigate the effect of the stiffeners’ topology on to the flutter speed
of HAR wings. Moreover, beam’s rotation angular velocity can be included to model, for
example, helicopters’ blades and wind turbines. Higher order nonlinearities can be included
in the model to account for larger deformations. The model can also be adopted in a two-level
optimization strategy where at the local level the aim is to maximize the buckling loads
and or minimizing the post-buckling deflection while, at the global level the model can be
adopted to calculate flutter speed, wing deflection and so forth.

Because of the enlarged design space, variable stiffness structures, represent a promising
options for designing of compliant structures to achieve shape adaptation. Other coupling
terms, herein neglected, can have beneficial effect on to the structural response.

Invariant-based failure criterion, such as Omni-circle, have been already defined and
can be used in combination with trace-based scaling for optimization purposes to allow for
effective ways of designing anisotropic structures.

Resonator studies in this work are limited to the linear analysis. A research is on-going
to study the nonlinear dynamic behavior of the angle-shaped resonators. It is known that
broad-band energy harvesting capability can be achieved exploiting nonlinearities. Indeed
one of the drawback of linear energy harvester which operates at their resonance is the
narrow range of applicability. The effect of the folding angle on to the frequency bandwidth,
is under investigation. The dynamics of multi-member resonators is an interesting research
area that deserves dedicated studies.
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Looking at the global picture and framing together the two problems addressed in this
work, it is also worth mentioning the following:

• The mode shapes of the V-shaped structure can be used as a modal basis to study
dihedral wing, in contrast to the usual modal basis used, i.e. the mode shapes of the
cantilever beam.

• So far, resonators have been study for applications to small scales. A solution which
would be worthwhile study, for energy harvesting purposes, is a resonating wing
which exploit ambient vibrations induced, for example, by gusts. Indeed, multiple
integer frequencies may arise from the folding angle (dihedral angle in the usual
aeronautic jargon) as well as variable stiffness properties or a combination of the two.
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Appendix A

Typical HAR HALE wing box

A.1 Lay-up of the composite wing box used for scal-
ing

The aircraft under study has a rectangular, untapered and unswept wing. The wingspan is 32
m and the MAC (Mean Aerodynamic Chord) is 1.41 m. The wing aspect ratio is AR=22.7.
The aircraft under study is the same considered in Cestino et al [64]. The aircraft’s operating
altitude is 20 km (air density ρz=0.088 kg/m3). The aft and fore panels have a layup of
[02/±452]S. The layup of the upper and fore panels is given in Table A.1.1. The wing box
is divided in sections, the wing sections are labelled in alphabetic order starting with the
section A at the wing root. Are the panels are symmetric.



A.1 Lay-up of the composite wing box used for scaling 255

Table A.1.1 Number of plies for the wing box used for scaling.

Load N<0,45,90> NTotal

A1 (8, 9, 10) 72
A3 (5, 5, 5) 40
B1 (8, 8, 8) 64
B3 (5, 5, 5) 40
C1 (8, 8, 8) 64
C3 (5, 5, 5) 40
D1 (8, 8, 8) 64
D3 (5, 5, 5) 40
E1 (6, 7, 8) 56
E3 (2, 2, 2) 16
F1 (6, 7, 8) 56
F3 (2, 2, 2) 16
G1 (6, 7, 8) 56
G3 (2, 2, 2) 16
H1 (6, 6, 6) 48
H3 (2, 2, 2) 16
I1 (6, 6, 6) 48
I3 (2, 2, 2) 16
J1 (6, 6, 6) 48
J3 (2, 2, 2) 16
K1 (4, 5, 6) 40
K3 (2, 2, 2) 16
L1 (4, 5, 6) 4’
L3 (2, 2, 2) 16
M1 (4, 4, 4) 32
M3 (2, 2, 2) 16
N1 (4, 4, 4) 32
N3 (2, 2, 2) 16
O1 (4, 4, 4) 32
O3 (2, 2, 2) 16
P1 (4, 3, 2) 24
P3 (2, 2, 2 ) 16
Q1 (4, 3, 2) 24
Q3 (2, 2, 2) 16
R1 (2, 2, 2) 16
R3 (2, 2, 2) 16
S1 (0, 1, 2) 8
S3 (2, 2, 2) 16



Appendix B

Non-dimensional Euler-Bernoulli
beam element

B.1 Derivation of the non-dimensional form of the
Euler Bernoulli beam model

In chapter 6, we wrote that a priori assumptions and or constraints limits the design domain
to be a subset of the design space. Aiming at identify generalized solutions which exhibit
commensurate frequencies in a integer ratio, we formulate the optimization problem in
its non-dimensional form. We have already seen in section 6.4.1, that the cross sectional
dimensions are given as non-dimensional ratio. Consistently with that, we wrote the finite
element matrices of a two nodes Euler Bernoulli beam, in the non-dimensional form.

Let us consider the two nodes finite element reported in Figure B.1.1. Let w̄ = w/LT

and ū = u/LT the non-dimensional bending and axial displacement respectively and LT a
characteristic length of the structure; here we assumed LT being the element length Li. Let
the non-dimensional time is τ = ωnt, it follows:

d (·)
dt

=
d (·)
dτ

dτ

dt
= ωn

d (·)
dτ

,
d2 (·)
dt2 = ω

2
n

d2 (·)
dτ2

where ωn is the bending natural frequency of the beam.

Considering the following set of non-dimensional parameters (α =A/AT , ℓ= L/LT ,hr =

h/hnom,r = L/LT , ℓm = LT/hnom), where the subscript T denotes characteristic length the



B.1 Derivation of the non-dimensional form of the Euler Bernoulli beam model257

�
 

!
 

β
 

β
"

!
"

�
"

#
$

Fig. B.1.1 Exemplification of the two node, 6 degree of freedom finite element adopted in
the present analysis

mass and stiffness matrices for rod and beam elements are

Mrod =
αr
6

[
2 1
1 2

]
, (B.1.1)

Krod = 12αℓℓ2
m

[
1 −1
−1 1

]
, (B.1.2)

Mbeam =
αr
420

⎡⎢⎢⎢⎣
156 22r 54 −13r
22r 4r2 13r −3r2

54 13r 156 −22r
−13r −3r2 −22r 4r2

⎤⎥⎥⎥⎦ , (B.1.3)

Kbeam = αh2
r

⎡⎢⎢⎢⎣
12ℓ3 6ℓ2 −12ℓ3 6ℓ2

6ℓ2 4ℓ −6ℓ2 2ℓ
−12ℓ3 −6ℓ2 12ℓ3 −6ℓ2

6ℓ2 2ℓ −6ℓ2 4ℓ

⎤⎥⎥⎥⎦ . (B.1.4)

Being {u1,w1,β1,u2,w2,β2}T the displacement vector, the complete mass and stiffness
matrix for the element in hand assume the following structure:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0
0 0

0 0 0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where are the components of the rod matrices while the are the components of the beam
matrices.



Appendix C

Coefficients of the stiffness and mass
matrices

C.1 Case p = 3, Y-shaped resonator

The mass matrices for the Rayleigh approximation of the Y -shaped resonator are written as:

m̂11 =
A1L5

1ρ1

5
+

4A2L2
1L3

2rho2

3
+

4A3L2
1L3

3ρ3

3
+

11A3E2
1 I2

1 L5
3ρ3

105E2
3 I2

3
+

11A3E1I1L1L4
3ρ3

15E3I3
+

A3E1I1L2
1L3

3ρ3 cos(ϕ2)

2E3I3
+

+A2L4
1L2ρ2 +A3L4

1L3ρ3 +2A2L3
1L2

2ρ2 cos(ϕ1)+2A3L3
1L2

3ρ3 cos(ϕ2),

m̂12 =
A1L6

1ρ1

6
+

5A2L4
1L2

2ρ2 cos(ϕ)
2

+
5A3L4

1L2
3ρ3 cos(ϕ2)

2
+

33A3E1I1L2
1L4

3ρ3

20E3I3
+

11A3E2
1 I2

1 L1L5
3ρ3

35E2
3 I2

3
+

A3E1I1L3
1L3

3ρ3 cos(ϕ2)E3I3 +A2L5
1L2ρ2 +A3L5

1L3ρ3 +2A2L3
1L3

2ρ2 +2A3L3
1L3

3ρ3 = m̂21,

m̂13 =
A2ρ2 cos(ϕ)L2

1L3
2

4
−

A3E2I2L3
3ρ3 cos(ϕ2)L2

1
4E3I3

+
11A2ρ2L1L4

2
30

−
11A3E2I2L4

3ρ3L1

30E3I3
−

11A3E1E2I1I2L5
3ρ3

105E2
3 I2

3
= m̂31,

m̂22 =
A1L7

1ρ1

7
+

33A3E2
1 I2

1 L2
1L5

3ρ3

35E2
3 I2

3
+

33A3E1I1L3
1L4

3ρ3

10E3I3
+

3A3E1I1L4
1L3

3ρ3 cos(ϕ2)

2E3I3
+A2L6

1L2ρ2+

A3L6
1L3ρ3 +3A2L4

1L3
2ρ2 +3A3L4

1L3
3ρ3 +3A2L5

1L2
2ρ2 cos(ϕ)+3A3L5

1L2
3ρ3 cos(ϕ2),

m̂23 =
A2ρ2 cos(ϕ)L3

1L3
2

4
−

A3E2I2L3
3ρ3 cos(ϕ2)L3

1
4E3I3

+
11A2ρ2L2

1L4
2

20
−

11A3E2I2L4
3ρ3L2

1
20E3I3

−

11A3E1E2I1I2L5
3ρ3L1

35E2
3 I2

3
= m̂32,
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m̂33 =
11A2L5

2ρ2

105
+

11A3E2
2 I2

2 L5
3ρ3

105E2
3 I2

3
.

The stiffness matrices for the Rayleigh approximation of the Y -shaped resonator are written
as:

k̂11 =
4L3E2

1 I2
1

3E3I3
+4L1E1I1,

k̂12 =
4L3E2

1 I2
1 L1

E3I3
+6E1I1L2

1 = k̂21,

k̂13 =− 4E1E2I1I2L3

3E3I3
= k̂31,

k̂22 =
12L3E2

1 I2
1 L2

1
E3I3

+12E1I1L3
1,

k̂23 =− 4E1E2I1I2L1L3

E3I3
= k̂32,

k̂33 =
4L3E2

2 I2
2

3E3I3
+

4L2E2I2

3
.

The generalized forces of the Y -shaped resonator are written as:

f̂1 =

{
L2

3

[
2A3L1ρ3 cos(ϕ2)+

A3E1I1L3ρ3 cos(ϕ2)
2E3I3

]
2

+
A1L3

1ρ1

3
+,

A2L2
1L2ρ2 +A3L2

1L3ρ3 +A2L1L2
2ρ2 cos(ϕ)

}
ẅB(t),

f̂2 =

{
L2

3

[
3A3ρ3 cos(ϕ2)L2

1 +
3A3E1I1L3ρ3 cos(ϕ2)L1

2E3I3

]
2

+,

A1L4
1ρ1

4
+

3A2L2
1L2

2ρ2 cos(ϕ)
2

+A2L3
1L2ρ2 +A3L3

1L3ρ3

}
ẅB(t),

f̂3 =

{
A2ρ2 cos(ϕ)L3

2
4

−
A3E2I2L3

3ρ3 cos(ϕ2)

4E3I3

}
ẅB(t).
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C.2 Case p = 3, Z-shaped resonator

The mass matrices for the Rayleigh approximation of the Z-shaped resonator are written as:

m̂11 =
A1L5

1ρ1

5
+

4A2L2
1L3

2ρ2

3
+

4A3L2
1L3

3ρ3

3
+

A2E2
1 I2

1 L5
2ρ2

5E2
2 I2

2
+

11A3E2
1 I2

1 L5
3ρ3

105E2
3 I2

3
+

A3E2
1 I2

1 L4
2L3ρ3

E2
2 I2

2
+

+
4A3E2

1 I2
1 L2

2L3
3ρ3

3E2
2 I2

2
+

A2E1I1L1L4
2ρ2

E2I2
+

11A3E1I1L1L4
3ρ3

15E3I3
+

2A2E1I1L2
1L3

2ρ2 cos(ϕ)
3E2I2

+

+
A3E1I1L2

1L3
3ρ3 cos(ϕ2)

2E3I3
+

8A3E1I1L1L2L3
3ρ3

3E2I2
+

4A3E1I1L1L3
2L3ρ3

E2I2
+

2A3E2
1 I2

1 L3
2L2

3ρ3 cos(ϕ −ϕ2)

E2
2 I2

2
+

+
A3E1I1L1L2L3

3ρ3 cos(ϕ −ϕ2)
E3I3

+
2A3E1I1L2

1L2
2L3ρ3 cos(ϕ)

E2I2
+

2A3E1I1L2
1L2L2

3ρ3 cos(ϕ2)

E2I2
+

+
6A3E1I1L1L2

2L2
3ρ3 cos(ϕ −ϕ2)

E2I2
+

11A3E2
1 I2

1 L2L4
3ρ3

15E2E3I2I3
+

A3E2
1 I2

1 L2
2L3

3ρ3 cos(ϕ −ϕ2)

2E2E3I2I3
+

+A2L4
1L2ρ2 +A3L4

1L3ρ3 +2A2L3
1L2

2ρ2 cos(ϕ)+2A3L3
1L2

3ρ3 cos(ϕ2)+4A3L2
1L2

2L3ρ3+

+4A3L3
1L2L3ρ3 cos(ϕ)+4A3L2

1L2L2
3ρ3 cos(ϕ −ϕ2),

m̂12 =
A1L6

1ρ1

6
+

5A2L4
1L2

2ρ2 cos(ϕ)
2

+
5A3L4

1L2
3ρ3 cos(ϕ2)

2
+

9A2E1I1L2
1L4

2ρ2

4E2I2
+

33A3E1I1L2
1L4

3ρ3

20E3I3

+
3A2E2

1 I2
1 L1L5

2ρ2

5E2
2 I2

2
+

11A3E2
1 I2

1 L1L5
3ρ3

35E2
3 I2

3
+

4A2E1I1L3
1L3

2ρ2 cos(ϕ)
3E2I2

+

+
A3E1I1L3

1L3
3ρ3 cos(ϕ2)

E3I3
+

4A3E2
1 I2

1 L1L2
2L3

3ρ3

E2
2 I2

2
+

6A3E1I1L2
1L2L3

3ρ3

E2I2
+

9A3E1I1L2
1L3

2L3ρ3

E2I2
+

+
6A3E2

1 I2
1 L1L3

2L2
3ρ3 cos(ϕ −ϕ2)

E2
2 I2

2
+

4A3E1I1L3
1L2

2L3ρ3 cos(ϕ)
E2I2

+
4A3E1I1L3

1L2L2
3ρ3 cos(ϕ2)

E2I2
+

+
3A3E2

1 I2
1 L1L4

2L3ρ3

E2
2 I2

2
+

9A3E1I1L2
1L2L3

3ρ3 cos(ϕ −ϕ2)

4E3I3
+

27A3E1I1L2
1L2

2L2
3ρ3 cos(ϕ −ϕ2)

2E2I2
+

+
11A3E2

1 I2
1 L1L2L4

3ρ3

5E2E3I2I3
+

3A3E2
1 I2

1 L1L2
2L3

3ρ3 cos(ϕ −ϕ2)

2E2E3I2I3
+A2L5

1L2ρ2 +A3L5
1L3ρ3 +2A2L3

1L3
2ρ2+

+2A3L3
1L3

3ρ3 +6A3L3
1L2

2L3ρ3 +5A3L4
1L2L3ρ3 cos(phi)+6A3L3

1L2L2
3ρ3 cos(ϕ −ϕ2) = m̂21,

m̂13 =
2A2L1L5

2ρ2

5
+

A2L2
1L4

2ρ2 cos(ϕ)
4

++
3A3L2

1L2
2L2

3ρ3 cos(ϕ2)

2
+

A2E1I1L6
2ρ2

6E2I2
+

2A3E1I1L3
2L3

3ρ3

E2I2
+

+
A3E1I1L5

2L3ρ3

E2I2
+

11A3E2I2L1L2L4
3ρ3

10E3I3
+

5A3E1I1L4
2L2

3ρ3 cos(ϕ −ϕ2)

2E2I2
+

A3E1I1L3
2L3

3ρ3 cos(ϕ −ϕ2)

E3I3
+

+
3A3E2I2L2

1L2L3
3ρ3 cos(ϕ2)

4E3I3
+

11A3E1E2I1I2L2L5
3ρ3

35E2
3 I2

3
+

3A3E2I2L1L2
2L3

3ρ3 cos(ϕ −ϕ2)

2E3I3
+

+2A3L1L4
2L3ρ3 +2A3L1L2

2L3
3ρ3 +A3L2

1L3
2L3ρ3 cos(ϕ)+4A3L1L3

2L2
3ρ3 cos(ϕ −ϕ2)+

33A3E1I1L2
2L4

3ρ3

20E3I3

= m̂31,
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m̂22 =
A1L7

1ρ1

7
+

9A2E2
1 I2

1 L2
1L5

2ρ2

5E2
2 I2

2
+

33A3E2
1 I2

1 L2
1L5

3ρ3

35E2
3 I2

3
+

9A2E1I1L3
1L4

2ρ2

2E2I2
+

33A3E1I1L3
1L4

3ρ3

10E3I3
+

+
3A3E1I1L4

1L3
3ρ3 cos(ϕ2)

2E3I3
+

9A3E2
1 I2

1 L2
1L4

2L3ρ3

E2
2 I2

2
+

12A3E1I1L3
1L2L3

3ρ3

E2I2
+

18A3E1I1L13L3
2L3ρ3

E2I2
+

12A3E2
1 I2

1 L2
1L2

2L3
3ρ3

E2
2 I2

2
+

2A2E1I1L4
1L3

2ρ2 cos(ϕ)
E2I2

+
6A3E1I1L4

1L2
2L3ρ3 cos(ϕ)

E2I2
+

+
6A3E1I1L4

1L2L2
3ρ3 cos(ϕ2)

E2I2
+

9A3E1I1L3
1L2L3

3ρ3 cos(ϕ −ϕ2)

2E3I3
+

18A3E2
1 I2

1 L2
1L3

2L2
3ρ3 cos(ϕ −ϕ2)

E2
2 I2

2
+

+
27A3E1I1L3

1L2
2L2

3ρ3 cos(ϕ −ϕ2)

E2I2
+

33A3E2
1 I2

1 L2
1L2L4

3ρ3

5E2E3I2I3
+

9A3E2
1 I2

1 L2
1L2

2L3
3ρ3 cos(ϕ −ϕ2)

2E2E3I2I3

+A2L6
1L2ρ2 +A3L6

1L3ρ3 +3A2L4
1L3

2ρ2 +3A3L4
1L3

3ρ3 +3A2L5
1L2

2ρ2 cos(ϕ)+3A3L5
1L2

3ρ3 cos(ϕ2)+

+9A3L4
1L2

2L3ρ3 +6A3L5
1L2L3ρ3 cos(ϕ)+9A3L4

1L2L2
3ρ3 cos(ϕ −ϕ2),

m̂23 =
3A2L2

1L5
2ρ2

5
+

A2L3
1L4

2ρ2 cos(ϕ)
4

+
3A3L3

1L2
2L2

3ρ3 cos(ϕ2)

2
+

A2E1I1L1L6
2ρ2

2E2I2
+

3A3E1I1L1L5
2L3ρ3

E2I2
+

+
6A3E1I1L1L3

2L3
3ρ3

E2I2
+

99A3E1I1L1L2
2L4

3ρ3

20E3I3
+

33A3E2I2L2
1L2L4

3ρ3

20E3I3
+

3A3E2I2L3
1L2L3

3ρ3 cos(ϕ2)

4E3I3

+
15A3E1I1L1L4

2L2
3ρ3 cos(ϕ −ϕ2)

2E2I2
+

3A3E1I1L1L3
2L3

3ρ3 cos(ϕ −ϕ2)

E3I3
+

9A3E2I2L2
1L2

2L3
3ρ3 cos(ϕ −ϕ2)

4E3I3

+
33A3E1E2I1I2L1L2L5

3ρ3

35E2
3 I2

3
+3A3L2

1L2
2L3

3ρ3 +3A3L2
1L4

2L3ρ3 +6A3L2
1L3

2L2
3ρ3 cos(ϕ −ϕ2)+

+A3L3
1L3

2L3ρ3 cos(ϕ) = m̂32,

m̂33 =
A2L7

2ρ2

7
+

33A3E2
2 I2

2 L2
2L5

3ρ3

35E2
3 I2

3
+

33A3E2I2L3
2L4

3ρ3

10E3I3
+

3A3E2I2L4
2L3

3ρ3 cos(ϕ −ϕ2)

2E3I3
+A3L6

2L3ρ3+

+3A3L4
2L3

3ρ3 +3A3L5
2L2

3ρ3 cos(ϕ −ϕ2).

The stiffness matrices for the Rayleigh approximation of the Z-shaped resonator are written
as:

k̂11 =
4E2

1 I2
1 L2

E2I2
+

4E2
1 I2

1 L3

3E3I3
+4E1I1L1,

k̂12 =
(12E2

1 I2
1 L1L2

E2I2
+

4E2
1 I2

1 L1L3

E3I3
+6E1I1L2

1 = k̂21,

k̂13 =
2E1I1L2(2E2I2L3 +3E3I3L2)

E3I3
= k̂31,

k̂22 =
36E2

1 I2
1 L2

1L2

E2I2
+

12E2
1 I2

1 L2
1L3

E3I3
+12E1I1L3

1,

k̂23 =
6E1I1L1L2(2E2I2L3 +3E3I3L2)

E3I3
= k̂32,

k̂33 =
12L3E2

2 I2
2 L2

2
E3I3

+12E2I2L3
2.
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The generalized forces of the Z-shaped resonator are written as:

f̂1 =

{
L2

2

[
2A2L1ρ2 cos(ϕ)+ 2A2E1I1L2ρ2 cos(ϕ)

3E2I2

]
2

+

L2
3

[
A3ρ3 cos(ϕ2)

(
2L1 +

2E1I1L2
E2I2

)
+ A3E1I1L3ρ3 cos(ϕ2)

2E3I3

]
2

+

+A3L3ρ3

[
L2

1 +2cos(ϕ)L1L2 +
E1I1 cos(ϕ)L2

2
E2I2

]
+

A1L3
1ρ1

3
+A2L2

1L2ρ2

}
ẅB(t),

f̂2 =

{
L2

2

(
3A2ρ2cos(ϕ)L2

1 +
2A2E1I1L2ρ2cos(ϕ)L1

E2I2

)
2

+

L2
3

[
A3ρ3cos(ϕ2)

(
3L2

1 +
6E1I1L2L1

E2I2

)
+ 3A3E1I1L1L3ρ3 cos(ϕ2)

2E3I3

]
2

+A3L3ρ3

[
L3

1 +3cos(ϕ)L2
1L2 +

3E1I1 cos(ϕ)L1L2
2

E2I2

]
+

A1L4
1ρ1

4
+A2L3

1L2ρ2

}
ẅB(t),

f̂3 =

{
L2

3

[
3A3ρ3 cos(ϕ2)L2

2 +
3A3E2I2L3ρ3 cos(ϕ2)L2

2E3I3

]
2

+
A2L4

2ρ2 cos(ϕ)
4

+A3L3
2L3ρ3 cos(ϕ)

}
ẅB(t).



Appendix D

Optimization of compliant
mechanisms

It is well known that the design of compliant mechanisms poses unique challenges; the
mechanism should be flexible to undergo a desired motion but rigid enough to maintain
a load carrying capability. This problem can be addressed by defining a multi-criteria
optimization, [214], where the functional to maximize is a combination of the two objectives.
Similar to the previous section, we add the criteria to minimize the number of beams, nb.
The multi-criteria optimization problem can be formulated as follows:

max
xi

:
1
nb

[
vT

BK1uA

uT
BK2uB

]
=

1
nb

[
MPE
SE

]
subject to: K1uA = fA, K1vB = fB,

K2uB =−fB, V ≤V0, xi ≤ τ max(x),

(D.0.1)

where fA is the nodal vector containing the load need for the flexibility of the structure, fb

is the nodal force vector containing a dummy load in the direction of desired displacement
and rigidity, ∆. The corresponding nodal displacements and global stiffness matrices for
each load vector are: uA and uB, and K1 and K2. The MPE = vT

BK1uA (Mutual Potential
Energy) and SE = uT

BK2uB (Strain Energy) are the functionals for the mechanism design
and structure design respectively; V and V0 are respectively the mechanism volume and
maximum allowable volume; xi is the cross section width of each member of the mechanism;
τ is the threshold limit. The goal is to maximize the displacement in B along a desired
direction when the set of nodal forces fA is applied in A.
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D.1 Preliminary Numerical Results
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Fig. D.1.1 Starting structure and optimized topology for the compliant mechanisms: (D.1.1a)
is the internal gripper and (D.1.1b) is the crimping mechanism. The non-dimensional ratio
for the beams heights h2/h1 = 1.59, h3/h1 = 1.12 in the internal gripper. Similarly, the
optimized heights of the beams are h2/h1 = 0.45, h3/h1 = 1.0, h4/h1 = 0.86, h5/h1 = 0.8,
h6/h1 = 0.45, h7/h1 = 1.0 for the crimping mechanism. Structures in red are in their
deformed positions. The threshold limit is set to τ = 0.25 for the internal gripper, and
τ = 0.35 for the crimping mechanism.

Figures D.1.1a and D.1.1b presents two compliant mechanism designs: an internal
gripper and a crimper. In both cases the target node is at A the location of the applied
force. The DFS search is modified to ensure that only viable solutions are retained, i.e., they
must have node B and at least one boundary node. Again, the GERM algorithms simplified
the design from 109 to 3 members in the internal gripper and from 203 to 7 members in
the crimper. Furthermore, in both designs the threshold limit has been adjusted to prevent
overlapping elements. The results are in agreement with those found in literature ([214]).
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