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Abstrat

This work deals with the problem of the least-weight design of a omposite sti�ened panel

subjet to requirements of di�erent nature: mehanial onstraints on the admissible me-

hanial properties of the laminates as well as on the global bukling load of the panel,

geometrial and manufaturability onstraints on the geometri design variables of both

skin and sti�eners. To fae this problem, a multi-sale two-level (MS2L) design method-

ology is proposed. This approah aims at optimising simultaneously both geometrial and

mehanial parameters for skin and sti�eners at eah harateristi sale (meso and maro

sales). The MS2L optimisation strategy relies on the one hand on the utilisation of the

polar parameters (in the framework of equivalent single layer theories) for desribing the

marosopi behaviour of eah laminate omposing the panel and on the other hand on

a speial geneti algorithm to perform the solution searh for the onsidered problem. In

this bakground, at the �rst level (marosopi sale) the goal is to �nd the optimum value

of geometri and mehanial design variables of the panel minimising its mass and meeting

the set of imposed onstraints. The seond-level problem fouses on the laminate meso-

sopi sale (i.e., the ply-level) and aims at �nding at least one staking sequene (for eah

laminate omposing the panel) meeting the geometrial and material parameters provided

by the �rst-level problem. The quality of the optimum on�gurations is investigated, a

posteriori, through a re�ned �nite element model of the sti�ened panel making use of ele-

ments with di�erent kinematis and auray (in a global-loal sense) in the framework of

the Carrera's Uni�ed Formulation (CUF).

Keywords: Composites, Finite Element Method, Bukling, Optimisation, Lightweight

strutures.

1. Introdution

Anisotropi materials, suh as �bres-reinfored omposites, are extensively used in

many industrial �elds thanks to their peuliar features: high sti�ness-to-weight and strength-

to-weight ratios that lead to a substantial weight saving when ompared to metalli alloys.

The problem of designing a omposite struture is quite umbersome and an be on-

sidered as a multi-sale optimisation problem. The omplexity of the design proess is

atually due to two intrinsi properties of omposite materials, i.e., heterogeneity and
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anisotropy. Heterogeneity gets involved mainly at the mirosopi sale (i.e., that of on-

stitutive phases), whilst anisotropy intervenes at both mesosopi sale (that of the on-

stitutive lamina) and marosopi one (that of the laminate).

To illustrate the di�ulty of properly design/optimise at eah relevant sale a ompos-

ite struture the study presented in this work fouses on a real-world engineering problem

that an be onsidered as paradigmati: the multi-sale design of a least-weight ompos-

ite sti�ened panel subjet to a given set of onstraints of di�erent nature (geometrial,

mehanial, tehnologial, et.).

Sti�ened panels are widely used in many strutural appliations, mostly beause they

allow for a substantial weight saving. Of ourse, this point is of paramount importane

espeially in airraft design, where an important redution of the strutural mass an be

ahieved if omposite laminates are used in plae of aluminium alloys. A drawbak of suh a

hoie is that the design proess beomes more umbersome than that of a lassial metalli

struture. In fat, though the use of laminated strutures is not a reent ahievement in

strutural mehanis, up to now no general methods exist for their optimum design and

engineers always use some simplifying assumptions or rules to take into aount for some

relevant properties whih are very di�ult to be formalised otherwise.

Several works on the optimum design of omposite sti�ened panels an be found in

literature. Nagendra et al. [1℄ made use of a standard geneti algorithm (GA) to �nd a

solution for the problem of minimising the mass of a omposite sti�ened panel subjet to

onstraints on the �rst bukling load, on maximum allowable strains and �tehnologial�

onstraints on ply orientation angles. In [2℄ Bisagni and Lanzi de�ned a single-step post-

bukling optimisation proedure for the design of omposite sti�ened panels subjeted to

ompression load. The proedure was based on a global approximation strategy, where the

struture response is given by an arti�ial neural network (ANN) trained by means of �nite

element (FE) analyses, while the optimisation tool onsisted in a standard GA. Lanzi and

Giavotto [3℄ proposed a multi-objetive optimisation proedure for the design of omposite

sti�ened panels apable to take into aount the post-bukling behaviour. The proedure

made use of a standard GA and three di�erent methods for surrogate modelling: ANN,

Radial Basis Funtions and Kriging approximation. In [4℄ Barkanov et al. dealt with the

problem of the optimum design of lateral wing upper overs by onsidering di�erent kinds of

sti�eners and loading onditions. Liu et al. [5℄ utilised the smeared sti�ness-based method

for �nding the best staking sequenes of omposite wings with blending and manufaturing

onstraints by onsidering a set of pre-de�ned �bre angles, i.e., 0◦, 90◦ and ±45◦. In [6℄

López et al. proposed a deterministi and reliability-based design optimisation of omposite

sti�ened panels onsidering post-bukling regime and a progressive failure analysis. Further

works on this topi an be found in literature. For example, and without any ambition

of exhaustiveness, the studies of Lillio et al. [7℄, Butler and Williams [8℄, Wiggenraad et

al. [9℄, Kaletta and Wolf [10℄ an be ited too.

A ommon limitation of the previous works is the utilisation of simplifying hypothe-

ses and rules in the formulation of the sti�ened panel design problem. These restritions

mainly fous on the nature of the staking sequene of the laminates onstituting the panel.

These assumptions are used on the one hand to obtain a short-ut to a possible solution,

i.e., to eliminate from the true problem some partiularly di�ult points or properties to be

obtained. On the other hand, some of suh rules are onsidered to prevent the �nal stru-

ture from some undesired phenomena, though this is never learly and rigorously stated

and proved. Unfortunately, the use of these simple rules has a main drawbak: the de-

sign spae is extremely shrunk, thus their utilisation automatially drives the optimisation

algorithm only towards suboptimal solutions.
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Two examples are the use of symmetri staking sequenes, a su�ient but not nees-

sary ondition for membrane-bending unoupling and the use of balaned staks to obtain

orthotropi laminates. When symmetri staks are utilised, the design is done using half

of the layers, whih means also half of the design variables. This kind of stak impliitly

implies a redution of the design spae: it is very di�ult to obtain the lightest stru-

ture under this hypothesis. Conversely, the use of balaned staks, a su�ient ondition

for membrane orthotropy, leads systematially to misleading solutions: whenever suh a

rule is used, bending orthotropy, a rather di�ult property to be obtained [11℄, is simply

understated, assumed, but not really obtained, as in [12�15℄.

In airraft strutural design, some other rules are imposed to the design of omposite

sti�ened panels, although some of them are not mehanially well justi�ed, see for in-

stane [12, 15℄. Among these rules, the most signi�ant restrition is represented by the

utilisation of a limited set of values for the layers orientation angles whih are often limited

to the anonial values of 0◦, 90◦ and ±45◦.
To overome the previous restritions, in the present study the multi-sale two-level

(MS2L) optimisation approah for designing anisotropi omplex strutures [16�18℄ is

utilised in the framework of the multi-sale optimisation of omposite sti�ened panels. The

proposed MS2L approah aims at proposing a very general formulation of design problem

without introduing simplifying hypotheses and by onsidering, as design variables, the full

set of geometri and mehanial parameters de�ning the behaviour of the panel at eah

harateristi sale (mesosopi and marosopi).

In the ontext of the MS2L methodology, the optimisation problem is split in two

distint (but related) sub-problems. At the �rst level (marosopi sale) the goal is to �nd

the optimum value of geometri and mehanial design variables of the panel minimising its

mass and meeting the set of imposed onstraints. The seond-level problem fouses on the

laminate mesosopi sale (i.e., the ply-level) and aims at �nding at least one optimum stak

(for eah laminate omposing the panel) meeting the geometrial and material parameters

resulting from the �rst-level problem. The MS2L approah is based on the utilisation of

the polar formalism [19℄ as well as on a GA previously developed by the �rst author [20℄.

The quality of the optimum on�gurations is investigated, a posteriori, through a re�ned

�nite element model of the sti�ened panel making use of elements with di�erent kinematis

and auray (in a global-loal sense) in the framework of the Carrera's Uni�ed Formulation

(CUF).

The paper is organised as follows: the design problem as well as the MS2L optimisation

strategy are disussed in Setion 2. The mathematial formulation of the �rst-level problem

is detailed in Setion 3, while the problem of determining a suitable laminate staking

sequene is formulated in Setion 4. A onise desription of the Finite Element (FE)

models of the sti�ened panel are given in Setion 5, while the numerial results of the

optimisation proedure are shown in Setion 6. Finally, Setion 7 ends the paper with

some onluding remarks.

2. Multi-sale optimisation of omposite sti�ened panels

2.1. Problem Desription

The optimisation strategy presented in this study is applied to the repetitive unit (RU)

of a omposite sti�ened panel typially utilised in airraft wings. The RU is omposed by

the union of a skin and a �omega� shaped stringer (or sti�ener) as illustrated in Fig. 1. The

overall size of the RU are �xed: a = 150 mm is the width of the RU, while b = 600 mm

is its length whih represents also the distane between two onseutive ribs. It must be
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noted that sti�eners are equispaed over the panel with a step length equal to a. Both skin

and sti�ener are made of arbon-epoxy unidiretional orthotropi laminae whose properties

are listed in Table 1 (taken from [11, 21, 22℄).

The fundamental hypotheses about the marosopi mehanial response of the RU

fous essentially on the laminate behaviour and geometry (for both skin and stringer).

• Eah laminate is made of idential plies (i.e., same thikness tply and material).

• The material of the onstitutive layer has a linear elasti transverse isotropi be-

haviour.

• Eah laminate is quasi-homogeneous and fully orthotropi [18, 22�24℄.

• At the marosopi sale the elasti response of eah laminate is desribed in the the-

oretial framework of the FSDT and the sti�ness matries of the plate are expressed

in terms of the laminate polar parameters [11, 21℄.

• No delamination ours at the plies interfae (perfet bonding ondition).

• No delamination ours at the interfae between stringer bottom �anges and skin.

It is noteworthy that, no simplifying hypotheses are made on the geometri and me-

hanial parameters of the RU (e.g., on the nature of the staking sequenes). Only avoid-

ing the utilisation of a priori assumptions that extremely shrink the solution spae (e.g.,

the utilisation of symmetri, balaned staks to attain membrane/bending unoupling and

membrane orthotropy, respetively) one an hope to obtain the true global optimum for a

given problem: this is a key-point in the proposed approah.

2.2. Desription of the multi-sale two-level optimisation strategy

The main goal of the MS2L optimisation strategy is the least-weight design of the

omposite sti�ened panel subjet to onstraints of di�erent nature, i.e., mehanial, geo-

metrial as well as feasibility and tehnologial requirements. The optimisation proedure

is artiulated into the following two distint (but related) optimisation problems.

First-level problem. The aim of this phase is the determination of the optimal value

of both mehanial and geometri parameters of the laminate omposing the RU of the

panel in order to minimise its weight and to satisfy, simultaneously, the full set of imposed

requirements (formulated as optimisation onstraints). At this level eah laminate is mod-

elled as an equivalent homogeneous anisotropi plate whose behaviour is desribed in terms

of the laminate polar parameters [11, 21℄. Therefore, the design variables of this phase are

the geometri parameters of the RU as well as the laminate polar parameters of both skin

and sti�ener.

Seond-level problem. The seond level of the strategy aims at determining a suitable

lay-up for both skin and stringer laminates (i.e., the laminate mesosopi sale) meeting

the optimum ombination of their material and geometrial parameters provided by the

�rst-level problem. The goal is, hene, to �nd at least one staking sequene (for eah

laminate) whih has to be quasi-homogeneous, fully orthotropi and that has to satisfy the

optimum values of the polar parameters resulting from the �rst step. At this level of the

strategy, the design variables are the layer orientations.
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3. Mathematial formulation of the �rst-level problem

The overall features of the struture at the marosopi sale have to be optimised

during this phase. The mass minimisation of the sti�ened panel RU will be performed by

satisfying the set of optimisation onstraints listed below:

1. a onstraint on the �rst bukling load of the RU;

2. geometri and tehnologial onstraints related to the geometrial parameters of the

RU;

3. feasibility onstraints on the laminate polar parameters of both skin and stringer.

These aspets are detailed in the following subsetions.

3.1. Geometrial design variables

The design variables for the problem at hand are of two types: geometrial and mehan-

ial. Some of the geometrial parameters of the RU of the sti�ened panel are illustrated

in Fig. 1. Of ourse, these parameters are not independent. The independent geometri

design variables are:

• the laminate thikness for both skin and stringer, i.e., tS and tB, respetively;

• the width a2 of the stringer bottom �ange;

• the stringer height h;

• the size a3.

The size a1 an be related to the previous variables,

a1 =
a

2
− a2 − a3 , (1)

while the angle of the inlined wall of the sti�ener is

θ = atan

(

h

a3 −
a2
2

)

. (2)

The previous design variables must satisfy a set of tehnologial and geometrial require-

ments. Firstly, the overall thikness of the laminates omposing the RU is a disrete

variable, the disretisation step being equal to the thikness of the elementary layer, i.e.,

tply (see Table 1):

tα = nαtply , α = S,B , (3)

where nS and nB are the number of layers of skin and sti�ener, respetively. It must be

highlighted that the optimum value of the laminate thikness determines also the optimum

number of layers n to be used during the seond-level design problem (for both skin and

stringer). Seondly, parameters ai, (i = 1, 2, 3) have to meet the following onditions:

a1 > 0,

a3 ≥
a2
2
.

(4)

First inequality is neessary to avoid ontat between two onseutive stringers, while

seond one must be imposed in order to keep θ non-negative. In the framework of the
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mathematial formalisation of the �rst-level problem, it is useful to introdue dimensionless

geometri design variables, as follows:

c1 = 2
a2
a
, c2 = 2

a3
a2

, c3 =
h

a2
. (5)

The dimensionless geometri parameters an be olleted into the vetor of geometri design

variables de�ned as:

ξTg = {nS, nB , c1, c2, c3} . (6)

In this bakground, inequalities of Eq. (4) an be reformulated as:

g1 (ξg) = 2c1 + c1c2 − 2 < 0,

g2 (ξg) = 1− c2 ≤ 0.
(7)

3.2. Mehanial design variables

In the framework of the FSDT [25℄ the onstitutive law of the laminate (expressed

within its global frame R = {0;x, y, z}) an be stated as:







N

M







=





A B

B D











ε0

χ0







, (8)

F = Hγ0 , (9)

where A, B and D are the membrane, membrane/bending oupling and bending sti�ness

matries of the laminate, while H is the out-of-plane shear sti�ness matrix. N, M and

F are the vetors of membrane fores, bending moments and shear fores per unit length,

respetively, whilst ε0, χ0 and γ0 are the vetors of in-plane strains, urvatures and out-

of-plane shear strains of the laminate middle plane, respetively, (in the previous equations

Voigt's notation has been utilised [25℄).

In order to analyse the elasti response of the multilayer struture the best pratie

onsists in introduing the laminate normalised sti�ness matries:

A∗ =
1

t
A,

B∗ =
2

t2
B,

D∗ =
12

t3
D,

H∗ =











1

t
H (basic),

12

5t
H (modified).

(10)

where t is the total thikness of the laminate.

As disussed in [11, 21℄, in the framework of the polar formalism it is possible to

express the Cartesian omponents of these matries in terms of their elasti invariants. It

an be proven that, in the FSDT framework, for a fully orthotropi, quasi-homogeneous

laminate (i.e., a laminate having the same orthotropi behaviour in terms of normalised
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membrane and bending sti�ness matries and whose membrane/bending oupling sti�ness

matrix is null) the overall number of independent mehanial design variables desribing its

mehanial response redues to only three, i.e., the anisotropi polar parameters RA∗

0K and

RA∗

1 and the polar angle ΦA∗

1 (this last representing the orientation of the main orthotropy

axis) of matrix A∗
. For more details on the polar formalism and its appliation in the

ontext of the FSDT the reader is addressed to [11, 21, 26℄.

In addition, in the formulation of the optimisation problem for the �rst level of the

strategy, the feasibility onstraints on the polar parameters (whih arise from the ombi-

nation of the layers orientations and positions within the stak) must also be onsidered.

These onstraints ensure that the optimum values of the polar parameters resulting from

the �rst step orrespond to a feasible laminate that will be designed during the seond step

of the MS2L strategy, see [27℄. Sine the laminate is quasi-homogeneous, suh onstraints

an be written only for matrix A∗
:























−R0 ≤ RA∗

0K ≤ R0 ,

0 ≤ RA∗

1 ≤ R1 ,

2

(

RA∗

1

R1

)2

− 1−
RA∗

0K

R0
≤ 0 .

(11)

In Eq. (11), R0 and R1 are the anisotropi moduli of the ply redued sti�ness matrix [11℄.

As in the ase of geometri design variables, it is very useful to introdue the following

dimensionless quantities:

ρ0 =
RA∗

0K

R0
, ρ1 =

RA∗

1

R1
. (12)

In this bakground, Eq. (11) writes:















−1 ≤ ρ0 ≤ 1 ,

0 ≤ ρ1 ≤ 1 ,

2 (ρ1)
2 − 1− ρ0 ≤ 0 .

(13)

The mehanial design variables must be onsidered for eah laminate onstituting

the panel RU, i.e., for both skin and sti�ener laminates (ρ0α and ρ1α with α = S,B).

Moreover, the main orthotropy diretion of the generi laminate an be set equal to zero,

i.e., ΦA∗

1 = 0 for skin and stringer, whih means that the main orthotropy axis is aligned

with the diretion of the applied load. Therefore, the dimensionless mehanial parameters

de�ned above an be grouped into the vetor of mehanial design variables:

ξTm = {ρ0S , ρ1S , ρ0B , ρ1B} . (14)

First and seond onstraints of Eq. (13) an be taken into aount as admissible intervals

for the relevant optimisation variables, i.e., on ρ0 and ρ1. Hene, the resulting feasibility

onstraints on the skin and stringer dimensionless polar parameters beome:

g3(ξm) = 2 (ρ1S)
2 − 1− ρ0S ≤ 0 ,

g4(ξm) = 2 (ρ1B)
2 − 1− ρ0B ≤ 0 .

(15)

For a wide disussion upon the laminate feasibility and geometrial bounds as well as
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on the importane of the quasi-homogeneity assumption the reader is addressed to [27℄.

3.3. Mathematial statement of the problem

As previously stated, the aim of the �rst-level optimisation is the minimisation of the

mass of the RU of the sti�ened panel by satisfying, simultaneously, onstraints of di�erent

nature. The design variables (both geometrial and mehanial) of the problem an be

olleted into the following vetor:

ξT =
{

ξTg , ξ
T
m

}

. (16)

In this ontext the optimisation problem an be formulated as a lassial onstrained non-

linear programming problem (CNLPP):

min
ξ

M (ξ)

Mref

subjet to:











1.05 −
λ (ξ)

λref
≤ 0 ,

gi(ξ) ≤ 0 , with i = 1, · · · , 4 .

(17)

The design spae of the �rst-level problem, together with the type of eah design variable,

is detailed in Table 2. In Eq. (17) M is the overall mass of the RU, λ is the �rst bukling

load of the sti�ened panel, while Mref and λref are the ounterparts for a referene solution

whih is subjet to the same boundary onditions (BCs) as those applied on the RU of the

panel that will be optimised. The properties of the referene on�guration of the RU are

reported in Table 3.

3.4. Numerial strategy

Problem (17) is a non-onvex CNLPP in terms of both geometrial and mehanial

variables. Its non-linearity and non-onvexity is due on the nature of the bukling load

onstraint that is a non-onvex funtion. In addition, the omplexity of suh a problem is

also due to the non-linear feasibility onstraints on the laminate polar parameters.

The total number of design variables is nine while that of optimisation onstraints is

�ve (see Eq. (17)). Furthermore, the nature of design variables is di�erent (see Table 2):

integer (nS and nB), disrete (c1, c2, c3) and ontinuous (ρ0S , ρ1S , ρ0B , ρ1B) variables are
involved in the de�nition of this CNLPP.

For the resolution of problem (17) the GA BIANCA [20, 28℄ oupled with the FE

model of the panel RU (for alulating the �rst bukling load of the struture) has been

utilised as optimisation tool for the solution searh, see Fig. 2. The GA BIANCA was

already suessfully applied to solve di�erent kinds of real-world engineering problems, see

for example [29�32℄.

As shown in Fig. 2, for eah individual at eah generation, the numerial tool performs

a FE analysis for alulating the �rst bukling load (eigenvalue problem) of the sti�ened

panel as well as its weight. The inputs of the FE model of the RU (implemented in

ANSYS

r
environment) are both geometrial and mehanial parameters (generated by

BIANCA). The GA elaborates the results provided by the FE model in order to exeute

the geneti operations. These operations are repeated until the GA meets the user-de�ned

onvergene riterion.
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The generi individual of the GA BIANCA represents a potential solution for the

problem at hand. The genotype of the individual for problem (17) is haraterised by only

one hromosome omposed of nine genes, eah one oding a omponent of the vetor of

design variables, see Eq. (16).

4. Methematial formulation of the seond-level problem

The seond-level problem fouses on the lay-up design of the both skin and stringer

laminates. The goal is to determine at least one staking sequene satisfying the optimum

values of both geometri and polar parameters resulting from the �rst level of the strategy

and having the elasti symmetries imposed to the laminate within the formulation of the

�rst-level problem, i.e., quasi-homogeneity and orthotropy. In the framework of the FSDT

and onsidering the polar formalism for representing the laminate sti�ness matries, this

problem an be stated in the form of an unonstrained minimisation problem [11, 21℄:

min
δ

I (fi (δ)) , (18)

with

I (fi (δ)) =
6
∑

i=1

fi (δ) . (19)

where δ ∈ R
n
is the vetor of the layer orientations, i.e., the design variables of this phase,

while fi (δ) are quadrati funtions in the spae of polar parameters, eah one representing

a requirement to be satis�ed, suh as orthotropy, unoupling, et. For the problem at hand

the partial objetive funtions are:

f1(δ) =

(

|ΦA∗

0 (δ) − ΦA∗

1 (δ)|

π/4
−KA∗(opt)

)2

, f2(δ) =

(

RA∗

0 (δ)−R
A∗(opt)
0

R0

)2

,

f3(δ) =

(

RA∗

1 (δ) −R
A∗(opt)
1

R1

)2

, f4(δ) =

(

|ΦA∗

1 (δ)− Φ
A∗(opt)
1 |

π/4

)2

, f5(δ) =

(

||C(δ)||

||Q||

)2

,

f6(δ) =

(

||B∗(δ)||

||Q||

)2

,

(20)

where f1 (δ) represents the elasti requirement on the orthotropy of the laminate having

the presribed shape (imposed by the value of KA∗

whih is related to the sign of ρ0 at the
end of the �rst step of the strategy), f2 (δ), f3 (δ) and f4 (δ) are the requirements related to

the presribed values of the optimal polar parameters resulting from the �rst-level problem,

while f5 (δ) and f6 (δ) are linked to the quasi-homogeneity ondition.

I (fi (δ)) is a positive semi-de�nite onvex funtion in the spae of laminate polar

parameters, sine it is de�ned as a sum of onvex funtions, see Eqs. (19)-(20). Nevertheless,

suh a funtion is highly non-onvex in the spae of plies orientations beause the laminate

polar parameters depend upon irular funtions of the layers orientation angles. Moreover,

the absolute minima of I (fi (δ)) are known a priori sine they are the zeroes of this

funtion. For more details about the nature of the seond-level problem see [11, 21℄. It is

noteworthy that problem (19) must be solved two times, i.e., for eah laminate omposing

the skin and the sti�ener.
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In order to simplify the problem of retrieving an optimum stak, the searh spae for

problem (18) has been restrited to a partiular lass of quasi-homogeneous laminates:

the quasi-trivial (QT) staking sequenes whih onstitute exat solutions with respet to

the requirements of quasi-homogeneity, i.e., funtions f5 (δ) and f6 (δ) in Eq. (20) are

identially null for QT staks.

QT solutions an be found for laminates with idential plies by ating only on the

position of the layers within the stak. Indeed, QT staks are exat solutions, in terms

of quasi-homogeneity ondition, regardless to the value of the orientation angle assigned

to eah layer. In this way orientations represent free parameters whih an be optimised

to ful�l further elasti requirements, i.e., funtions f1 (δ), f2 (δ), f3 (δ) and f4 (δ). The

proedure for searhing QT staks is oneptually simple. Let n be the number of layers and

ng ≤ n the number of saturated groups. Plies belonging to a given saturated group share

the same orientation angle θj, (j = 1, ..., ng). The idea is to look for all the permutations of
the position of the plies indexes belongin to eah group whih meet the quasi-homogeneity

ondition. More details on this topi an be found in [33℄.

Suppose now to �x both the number of plies and saturated groups, namely n and ng. As

disussed in [33℄, the problem of determining QT staks for a given ouple of n and ng an

give rise to a huge number of solutions: the number of QT staks rapidly inreases along

with n. To this purpose a database of QT staks has been built for di�erent ombinations

of n and ng.

For the problem at hand, and for eah onsidered ase (i.e., skin and stringer laminates),

the optimum number of plies nα, (α = S,B) onstitutes a result of the �rst-level problem,

while the number of saturated groups ng has been �xed a priori. Let be nsol the number

of QT staks for a partiular ombination of nα and ng. Eah solution olleted within the

database is uniquely de�ned by means of an identi�er IDsol (i.e., an integer) whih varies

in the range [1, nsol]. Therefore, IDsol represents a further design variable along with the

ng orientation angles of the di�erent saturated groups, i.e., θ ∈ R
ng
. The design variables

an be thus olleted into the following vetor,

ηT =
{

IDsol, θ1, ..., θng

}

, (21)

and problem (19) an be reformulated as

min
η

4
∑

i=1

fi (η) , (22)

f5 (η) and f6 (η) being identially null.

In this bakground, the solution searh for problem (22) is performed by means of the

GA BIANCA. In the ase of QT staks the struture of the individual genotype is simple

beause it is omposed of a single hromosome with ng + 1 genes: the �rst one odes the

variable IDsol whilst the remaining genes ode the orientation angles of every saturated

group whih are disrete variables in the range [-89

◦
, 90

◦
℄ with a step length equal to 1

◦
.

5. Finite element models of the sti�ened panel

In this setion two FE models of the sti�ened panel RU are disussed: the �rst one is

used in the framework of the �rst-level problem of the MS2L approah while the seond

one is utilised for veri�ation purposes.

10



5.1. The �nite element model for the optimisation proedure

The FE model of the panel RU used at the �rst-level of the MS2L strategy is built using

the FE ommerial ode ANSYS

r
. A linear eigenvalue bukling analysis is onduted to

determine the value of the �rst bukling load for eah individual, i.e., for eah point in the

design spae, at the urrent generation.

The need to analyse, within the same generation, di�erent geometrial on�gurations

(RUs with di�erent geometrial and mehanial properties), eah one orresponding to

an individual, requires the reation of an ad-ho input �le for the FE ode that has to

be interfaed with BIANCA. The FE model must be oneived to take into aount for a

variable geometry, material and mesh. Indeed, for eah individual at the urrent generation,

the FE ode has to be able to vary in the orret way the previous quantities, thus a proper

parametrisation of the model has to be ahieved.

The FE model of the RU is illustrated in Fig. 3. The model has been built by using

a ombination of eight-nodes shell elements (ANSYS SHELL281 elements) and non-linear

multi-point onstraints elements (ANSYS MPC184 elements) both with six Degrees Of

Freedom (DOFs) per node.

As far as onerns SHELL281 elements, their mehanial behaviour is desribed by

de�ning diretly the homogenised sti�ness matries A∗
, B∗

, D∗
and H∗

.

The ompatibility of the displaement �eld between skin and stringer is ahieved

through ANSYS MPC184 elements whose formulation is based upon a lassial multi-point

onstraint element sheme [34℄. MPC184 elements are de�ned between eah ouple of nodes

belonging to ontiguous shell elements as depited in Fig. 3. In partiular, MPC184 ele-

ments are de�ned between nodes of the middle plane of the skin (master nodes) and those

of the middle plane of the bottom �anges of the stringer (slave nodes).

Furthermore, MPC184 elements have been utilised to rigidify the end transverse se-

tions of the RU, in order to simulate the presene of ribs (these last having an in-plane

sti�ness one/two order of magnitude higher than the �exural sti�ness of the RU). In par-

tiular, two pilot nodes A= {0, 0, ẑ} and B= {b, 0, ẑ} have been de�ned aording to the

RU global frame depited in Fig. 3 (ẑ is the z omponent of the baryentre of lines belong-

ing to a given transverse setion). Then, nodes A and B have been onneted (through

MPC184 elements) to those loated on lines of the orresponding transverse setion, i.e.,

lines belonging to the planes x = 0 and x = b, respetively (see Fig. 3). The BCS for

nodes A and B are

node A: ui = 0, βi = 0;

node B: Fx = −1N, uy = uz = 0, βi = 0,

(i = x, y, z).

(23)

In Eq. (23) ui and βi are nodal displaements and rotations, respetively, whilst Fx is the

x omponent of the nodal fore.

It is noteworthy that in problem (17) the �rst-bukling load of the sti�ened panel

is alulated by onsidering pertinent BCs on its RU. This fat impliitly implies the

hypothesis of a panel having an �in�nite� length along y-axis, aording to the frame

depited in Fig. 3. To take into aount for this aspet, periodi boundary onditions
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(PBCs) must be onsidered:

ui

(

x,−
a

2
, 0
)

− ui

(

x,
a

2
, 0
)

= 0, ∀x ∈ ]0, b[ ,

βi

(

x,−
a

2
, 0
)

− βi

(

x,
a

2
, 0
)

= 0, ∀x ∈ ]0, b[ ,

(i = x, y, z).

(24)

PBCs of Eq. (24) must be de�ned for eah ouple of nodes belonging to the skin lateral

edges (i.e., lines loated at y = ±a/2) exept those plaed on the lines at x = 0 and x = b,
these last being already onneted to the pilot nodes A and B, respetively. PBCs are

de�ned through ANSYS onstraint equations (CEs) [34℄ between homologous nodes of the

skin lateral edges

Finally, before starting the optimisation proess, a sensitivity study (not reported here

for the sake of brevity) on the proposed FE model with respet to the mesh size has

been onduted: it was observed that a mesh having 56959 DOFs is su�ient to properly

evaluate the �rst bukling load of the sti�ened panel.

5.2. The enhaned �nite element model for the veri�ation phase

The validity and auray of the ANSYS model utilised within the optimisation proe-

dure is veri�ed a-posteriori in this work, by using an advaned higher-order formulation.

This re�ned solutions make use of the Carrera Uni�ed Formulation (CUF), aording to

whih the three-dimensional displaement �eld u(x, y, z) an be expressed as a general

expansion of the primary unknowns. In the ase of one-dimensional theories, one has:

u(x, y, z) = Fτ (y, z)uτ (x), τ = 1, 2, ....,M , (25)

where Fτ are arbitrary funtions of the oordinates y and z on the ross-setion of

the beam struture, uτ is the vetor of the generalized displaements whih lay along the

beam axis x and M stands for the number of terms used in the high-order expansion. To

be remarked that in Eq. (25) (as well as in the rest of the equations of this subsetion)

Einstein summation onvention on repeated indies is taitly assumed.

The hoie of Fτ determines the lass of the 1D CUF model that is required and subse-

quently to be adopted. For example, if Lagrange polynomials are used as Fτ , Layer-Wise

(LW) theories for omposite strutures an be easily implemented, see [35℄. Unlike lassial

models for laminates whih are available in ommerial software tools, the unknowns of the

problem (and, thus, the number of DOFs) are layer-dependent in the ase of LW models.

In this manner, it is possible to satisfy the ontinuity of the transverse stresses and the

zig-zag behaviour of the displaements along the thikness of the omposite struture, in

aordane with the equilibrium and ompatibility equations of elastiity.

One of the most important advantages of CUF is that it allows to write the governing

equations and the related �nite element arrays of low-order to high-�delity LW models in

an uni�ed manner. Generally speaking, CUF an be used to generate �nite elements whose

formal mathematial expressions are independent of the theory kinematis. For example, in

this work, the ritial bukling loads are alulated by linearising the geometri nonlinear

governing equations and evaluating the loads that make the linearised tangent sti�ness

matrix singular; i.e. |KT | ≈ |K+Kσ| = 0, where K is the linear sti�ness matrix and Kσ

is the geometri sti�ness matrix.
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The linear sti�ness matrix an be evaluated from the virtual variation of the internal

work, whih holds

δLint =

∫

l

∫

Ω
δǫTσdV , (26)

where ǫ and σ are the strain and stress vetors (Voigt's notation), Ω is the ross-setion of

the beam struture and l is the beam length. By substituting the onstitutive and linear

geometrial relations as well as CUF (Eq. (25)) and a lassial �nite element approximation

along the beam axis x, suh that uτ (x) = Ni(x)uτi, the virtual variation of the strain

energy reads:

δLint = δuT
τiK

ijτs
usj , (27)

where uτi is the vetor of the �nite element unknowns and i represents summation on

the nodes of the beam element. K

ijτs
represents the 3 × 3 fundamental nuleus of the

sti�ness matrix, whih an be expanded aording to (i, j) and (τ, s) to obtain the �nite

element array of the generi beam theory [36℄. Similarly, the gometri sti�ness matrix

Kσ an be expressed in terms of fundamental nuleus by evaluating the linearisation of

the virtual variation of the strain energy and, subsequently, by linearising the nonlinear

geometri relations [37℄. This matrix, in fat, represents the ontribution of the pre-stress

on the sti�ness of the system. It is important to underline that, in this work, as aurate

LW models of the reinfored omposite panels are implemented, the full three-dimensional

stress �eld is taken into aount for evaluating the geometri sti�ness matrix Kσ. This is

not true in the ase of the ANSYS model employed in the optimisation proedure, whih

makes use of standard shell elements based on FSDT assumptions.

6. Numerial results

Before starting the multi-sale optimisation proess a referene struture must be de-

�ned in order to establish referene values for the RU mass as well as for the �rst bukling

load of the sti�ened panel: both material and geometrial properties of the referene solu-

tion are reported in Tables 1 and 3, respetively. The referene solution is subjet to the

same set of BCs, i.e., Eqs. (23) and (24), as those applied on the RU of the panel that will

be optimised. One an notie that the referene struture has a laminated skin omposed

of 28 plies and disposed aording to a symmetri, balaned stak (therefore the result-

ing laminate is unoupled and orthotropi in membrane, but not in bending), whilst the

stringer laminate is made of 32 plies with a symmetri quasi-isotropi stak (the laminate

is unoupled and the membrane sti�ness matrix is isotropi, but the bending one is totally

anisotropi). This referene solution orresponds to a lassial on�guration utilised in

the aeronautial �eld: its mass and its sti�ness properties (in terms of bukling load) still

represent a �good� ompromise between weight and sti�ness requirements.

Regarding the setting of the geneti parameters for the GA BIANCA utilised to per-

form the solution searh for both �rst and seond-level problems they are listed in Table 4.

Moreover, onerning the onstraint-handling tehnique for the �rst-level problem the Au-

tomati Dynami Penalisation (ADP) method has been onsidered, see [28℄. For more

details on the numerial tehniques developed within the new version of BIANCA and the

meaning of the values of the di�erent parameters tuning the GA the reader is addressed

to [20℄.
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6.1. Optimum on�gurations of the panel

The optimum values of both geometri and mehanial design variables (dimensionless

variables) resulting from the �rst-level of the optimisation strategy are listed in Table 5.

When omparing the optimum solution of the �rst-level problem with the referene on�g-

uration, one an notie the number of plies redues from 28 to 20 for the skin laminate and

from 32 to 28 for the stringer. Moreover, both laminates are quasi-homogeneous and fully

orthtropi (both membrane and bending sti�ness matries) with an ordinary orthotropy

shape (parameter KA∗

= 0 beause the anisotropi polar modulus RA∗

0K is positive for both

ases, see [11℄). However, skin laminate gets a lower value of polar parameter RA∗

1 (an

order of magnitude lower than the orresponding value of RA∗

0K) whih means that this

solutions tends to exhibit a square symmetri behaviour (for both membrane and bending

sti�ness matries), as illustrated in the polar diagrams of Fig. 4. For a deeper insight on

these aspets the interested reader is addressed to [11, 21℄.

Table 6 reports the �rst two best staking sequenes, for both skin and stringer, whih

represents just as many solution for problem (22). As stated in Setion 4 the seond-

level problem is solved in the spae of QT staks. In this bakground, after �xing the

number of plies n and the number of saturated groups ng the design variables are the

identi�er of the QT solution as well as the orientation angle of eah saturated group, see

Eq. (21). Beause problem (22) is highly non-onvex in the spae of the orientation angles

of saturated groups, it is possible to �nd several solutions (theoretially an in�nite number)

meeting the optimum value of the laminate polar parameters provided by the �rst-level

problem.

For the problem at hand, the number of plies for both skin and stringer laminates,

(nS and nB, respetively) is a diret result of the �rst level problem, while the number of

saturated group has been set equal to

• three for staks S1 and B1,

• four for stak S2,

• �ve for stak B2.

As it an be easily inferred from the results listed in Table 7, by ombining the previ-

ous staks it is possible to get four di�erent optimum on�gurations of the sti�ened panel.

Indeed, these optimum panels really represent equivalent solutions. Sine they share the

same marosopi geometrial parameters they have the same mass, i.e., M = 0.814 Kg

whih represents a signi�ant redution (−11.5%) when ompared to the referene on�g-

uration. Furthermore, these optimal on�gurations di�er only in terms of the optimum

stak omposing skin and sti�ener laminates but they show almost the same bukling re-

sponse: the perentage inrement of the �rst bukling load (with respet to the referene

value λref) ranges from 9% to 9.5%, see Table 7.

Therefore, eah optimum on�guration is simultaneously lighter and sti�er than the

referene one and this result has been ahieved only by abandoning the usual engineer-

ing rules and hypotheses related to the nature of the staking sequene of the laminates

omposing the panel.

Fig. 4 shows the deformed shape related to the �rst bukling mode as well as the �rst

omponent of the normalised sti�ness matries of the laminate, i.e., A∗
, B∗

and D∗
for

both skin and stringer for the on�guration S1-B1: the solid line refers to the membrane

sti�ness matrix, the dashed one to the bending sti�ness matrix, while the dash-dotted

one is linked to the membrane/bending oupling sti�ness matrix. It an be notied that

the laminate is unoupled as the dash-dotted urve disappears, homogeneous as the solid
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and dashed urves are oinident and orthotropi beause there are two orthogonal axes

of symmetry in the plane. In addition, for both laminates the main orthotropy axis is

oriented at ΦA∗

1 = 0◦ aording to the hypothesis of the �rst-level problem. The same

onsiderations an be repeated also for the rest of the optimum solutions.

6.2. Veri�ation of the optimum on�gurations

A one-dimensional, high-order model based on CUF is used for validating the referene

and optimised RU analyses. The present CUF model employs a LW re�ned kinematis for

the aurate desription of the pre-stress state of the RU subjeted to ompression and,

thus, for enhaned evaluation of bukling loads. The CUF-LW models of the referene and

optimised RU panels have 372588 and 333792 DOFs, respetively.

The �rst bukling mode of the optimum on�guration S1-B1 is shown in Fig. 5. That

of the referene on�guration as well as those assoiated to the other optimum solutions

are equivalent, thus they are not depited for the sake of brevity. For ompleteness reasons,

however, the through-the-thikness stress distributions (see Fig. 6) aording to CUF and

ANSYS are given in Figs. 7 and 8. These �gures show the distributions of axial, σxx, trans-
verse shear, σxz, and transverse normal, σzz, stress omponents. It should be underlined

that the adopted ANSYS model provides a good distribution of axial stresses. In ontrast,

and aording to CUF referene solutions, the ANSYS FE model is not able to take into

aount shear and transverse normal stresses and this would diretly a�et the auray

of the bukling alulation.

Table 8 summarises the �rst ritial bukling loads given by CUF high-order beam

models and they are ompared to those resulting from ANSYS model. The di�erenes

between the results of the ANSYS FE model and the re�ned CUF solution for the optimum

panels range from 7.4% to 7.9%, while for the referene on�guration the perentage

di�erene is signi�ant (up to 14%). This higher disrepany is probably related to the

anisotropi bending behaviour of the referene solution. These di�erenes are reasonable

and are related to the 3D stress distributions within eah onstitutive layer and the di�erent

order of auray haraterising the CUF LW beam model. Of ourse, this stress �eld

strongly a�ets the geometri sti�ness matrix and annot be got by ANSYS shell elements

whih are based on the FSDT hypotheses.

It is noteworthy that, aording to CUF numerial results, the gain in terms of sti�ness

is even higher than that foreseen by ANSYS, ranging from 15, 2% for solution B1-S1 to

15.8% for solution B2-S2.

7. Conlusions

The design strategy presented in this paper is a numerial optimisation proedure

haraterised by several features that make it an innovative, e�etive and general method

for the multi-sale design of omposite strutures. In the present work this strategy has

been applied to the multi-sale optimisation of the repetitive unit of a omposite sti�ened

panel.

On the one hand, the design proess is not submitted to restritions: any parameter

haraterising the struture (at eah relevant sale) is an optimisation variable. This al-

lows searhing for a true global minimum, hard to be obtained otherwise. On the other

hand, the multi-sale design problem has been split into two distint but linked non-linear

minimisation problems whih are solved subsequently within the same numerial proe-

dure. The �rst-level problem fouses on the marosopi sale of the panel: eah laminate

omposing the struture is onsidered as a equivalent homogeneous anisotropi plate (for
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both skin and stringer) and its marosopi mehanial response is desribed in terms of

polar parameters. Furthermore, also geometri design variables desribing the topology

of both skin and sti�ener are involved at this level. The seond level of the proedure is

devoted to the laminate mesosopi sale: the goal is to �nd at least one optimum stak

(for both stringer and skin) meeting on the one hand the elasti requirements imposed to

the laminate (quasi-homogeneity and orthotropy) during the �rst-level problem and on the

other hand the optimum value of the laminate polar parameters resulting from the �rst

step.

At the marosopi sale, the mehanial properties of the multilayer plates are repre-

sented by means of the polar formalism, a mathematial representation haraterised by

several advantages. The main features of the polar method are the possibility to repre-

sent in an expliit and straightforward way the elasti symmetries of the laminate sti�ness

matries, the elasti and geometri bounds for the laminate polar parameters, and to elim-

inate from the optimisation proedure redundant mehanial properties. In addition, the

utilisation of the polar formalism leads the designer to easily formulate the seond-level

problem by taking into aount in a orret and elegant way the requirements on the elasti

symmetries of the struture without making simplifying hypotheses on the nature of the

staking sequene.

As far as the optimisation alulations are onerned, they are arried out by a geneti

algorithm, BIANCA, able to integrate both ontinuous and disrete-valued variables during

the same alulation and to e�etively handle the optimisation onstraints by means of the

very general ADP method. For the solution of the �rst-level problem, the GA BIANCA

has been interfaed with the FE ommerial ode ANSYS that invokes a linear eigenvalue

bukling analysis in order to ompute the objetive as well as the onstraint funtions of

the problem. Moreover, in this work the problem of the least-weight design of a omposite

sti�ened panel is formulated in a very general way, i.e., by abandoning the usual simplifying

hypotheses and the standard rules for laminate lay-up and by inluding all geometrial

and mehanial parameters, haraterising the struture at eah pertinent sale, among

the design variables.

The utilisation of an evolutionary strategy, along with the fat that the problem is

stated in the most general sense, allows �nding some non-onventional on�gurations more

e�ient than the standard ones. In fat, the onsidered numerial example proves that,

when standard rules for tailoring laminate staks are abandoned and all the parameters

haraterising the struture are inluded within the design proess, a signi�ant weight

saving an be obtained: up to 11.5% with respet to the referene struture with enhaned

mehanial properties in terms of �rst bukling load (the perentage inrement range from

9% to 9.5% depending on the onsidered optimum solution).

In a seond time, both referene and optimum on�gurations of the sti�ened panel have

been analysed by means of a higher-order layer-wise FE model developed in the framework

of CUF. This analysis reveals that the bukling load omputed by means of the ANSYS

FE model (whih is built by using shell elements based on FSDT) is overestimated and

that the perentage di�erene ranges from 7.4÷7.9% for optimum solutions to 14% for the

referene on�guration. This disrepany is related to the alulation of the 3D stress �eld

in eah layer whih strongly a�ets the geometri sti�ness matrix used to evaluate the �rst

bukling load of the panel. Of ourse, lassial shell elements based on FSDT are not able

to provide a good approximation of the stress �eld within eah layer due to the hypotheses

related to the kinemati model. Conversely, layer-wise theories an easily perform this

task sine it is possible to satisfy the ontinuity of the transverse stresses and the zig-zag

behaviour of the displaements within eah ply, in agreement with the equilibrium and
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ompatibility equations of elastiity.

Nevertheless, despite these disrepanies, lassial shell elements based on FSDT an be

reliably employed in the framework of the MS2L optimisation strategy beause they allows

�nding true optimum solutions without using �expensive� models, in terms of both DOFs

and omputational ost. Moreover, aording to CUF results, the optimum on�gurations

are really e�ient when ompared to the referene one: the weight saving is always the

same, but the gain in terms of sti�ness is even higher than that foreseen by ANSYS, ranging

from 15, 2% for solution B1-S1 to 15.8% for solution B2-S2.

These results unquestionably prove the e�etiveness and the robustness of the opti-

misation approah proposed in this work and provide on�dene for further researh in

this diretion. As an example, future works may fous on oupling the present MS2L

optimisation strategy with higher-order models based on CUF.

These onsiderations remain still valid if the designer wants to inlude within the pro-

ess onstraints of di�erent nature, e.g., strength, fatigue, delamination, et. or if he wants

to improve the mathematial model to be optimised (i.e. the numerial model simulat-

ing the mehanial response of the struture) by introduing the in�uene of geometrial

imperfetions, material as well as geometrial non-linearity, et. All of these aspets an

be easily integrated within the MS2L optimisation strategy without altering its overall

arhiteture and they do not represent a limitation to the proposed strategy, on the on-

trary they ould be an interesting hallenge for future researhes on real-world engineering

appliations.
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Tables

Tehnial onstants Polar parameters of Q a
Polar parameters of Q̂ b

E1 [MPa℄ 161000.0 T0 [MPa℄ 23793.3868 T [MPa℄ 5095.4545
E2 [MPa℄ 9000.0 T1 [MPa℄ 21917.8249 R [MPa℄ 1004.5454
G12 [MPa℄ 6100.0 R0 [MPa℄ 17693.3868 Φ [deg℄ 90.0
ν12 0.26 R1 [MPa℄ 19072.0711
ν23 0.10 Φ0 [deg℄ 0.0

Φ1 [deg℄ 0.0
Density and thikness

ρ [Kg/mm

3
℄ 1.58 × 10−6

tply [mm℄ 0.125
a
In-plane redued sti�ness matrix of the ply.

b
Out-of-plane shear sti�ness matrix of the ply.

Table 1: Material properties of the arbon-epoxy ply taken from [11, 21, 22℄.

Design variable Type Lower bound Upper bound Disretisation step

ρ0S ontinuous −1.0 1.0 -

ρ1S ontinuous 0 1.0 -

ρ0B ontinuous −1.0 1.0 -

ρ1B ontinuous 0 1.0 -

c1 disrete 0.1 0.45 0.001
c2 disrete 1.00 3.00 0.01
c3 disrete 1.00 3.00 0.01
nS integer 20 32 1
nB integer 20 32 1

Table 2: Design spae of the �rst-level problem.

a [mm℄ 150.00
b [mm℄ 600.00
a2 [mm℄ 15.00
a3 [mm℄ 21.50
h [mm℄ 30.00
Mref [Kg℄ 0.92
λref [N℄ 445074

Staking sequene Part N. of plies

[(45/ − 45/902)2/(45/ − 45)3]s skin (S) 28

[452/02/− 452/904/− 452/02/452]s stringer (B) 32

Table 3: Referene solution for the sti�ened panel design problem.
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Geneti parameters

1

st
level problem 2

nd
level problem

N. of populations 1 1
N. of individuals 200 500
N. of generations 150 500
Crossover probability 0.85 0.85
Mutation probability 0.005 0.002
Seletion operator roulette-wheel roulette-wheel

Elitism operator ative ative

Table 4: Geneti parameters of the GA BIANCA for �rst and seond-level problems.

Geometri parameters

a2 [mm℄ a3 [mm℄ h [mm℄ nS nB

21.300 29.607 31.950 20 28

Polar parameters

RA∗

0K [MPa℄ RA∗

1 [MPa℄

Skin (S) 3511.00 242.36

Stringer (B) 9391.51 12080.84

Table 5: Numerial results of the �rst-level optimisation problem.

ID Best staking sequene N. of plies

Skin (S)

S1 [−63/0/63/0/63/ − 63/0/0/63/ − 63/63/ − 63/0/0/63/ − 63/0/ − 63/0/63] 20

S2 [43/90/0/0/ − 43/90/ − 43/90/0/ − 43/43/90/0/43/0/43/90/90/0/ − 43] 20

Stringer (B)

B1 [1/61/1/1/1/ − 51/1/1/ − 51/1/1/1/61/1/1/ − 51/1/1/1/61/1/1/61/1/1/1/ − 51/1] 28

B2 [0/59/ − 1/− 54/2/0/2/2/2/0/ − 54/ − 1/59/2/0/0/ − 54/− 1/0/59/0/2/59/2/ − 1/ − 54/2/0] 28

Table 6: Numerial results of the seond-level problem (�rst two optimum staks for both skin and stringer).

Panel on�gurations

REF S1-B1 S1-B2 S2-B1 S2-B2

M [Kg℄ 0.920 0.814 (−11.5%)

λ [N℄ 445074 483951 (9%) 483838 (9%) 487493 (9.5%) 487386 (9.5%)

Table 7: Properties of the optimum solution (in terms of mass and bukling load) for di�erent skin-stringer

on�gurations; for eah property the perentage di�erene between the optimum on�guration and the

referene one is indiated in parentheses.
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Panel on�gurations

λ [N℄ REF S1-B1 S1-B2 S2-B1 S2-B2

CUF 390870 450323 450430 451843 452615

ANSYS 445074 (14%) 483951 (7.5%) 483838 (7.4%) 487493 (7.9%) 487386 (7.7%)

Table 8: Comparison of bukling load, λ [N℄, between ANSYS FE model and high-order beam CUF model

for both the referene and optimum solutions; the perentage di�erene between ANSYS and CUF is

indiated in parentheses.
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Figures

Figure 1: (a) Geometry and overall size of the sti�ened panel (only two repetitive units are here represented

for sake of simpliity) and (b) geometri parameters of the repetitive unit.
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Figure 2: Logial �ow of the numerial proedure for the solution searh of the �rst-level problem.
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Figure 3: (a) FE model of the repetitive unit and related referene frame, (b) details of CEs for PBCs

along y-axis and () details of MPC184 elements.
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Figure 4: Numerial properties of the optimum panel S1-B1. (a) Deformed shape of the �rst bukling

mode (normalized displaement) and polar diagram of the �rst omponent of the homogenized laminate

in-plane sti�ness matries [MPa℄ for (b) skin and () stringer.

Figure 5: First bukling mode of optimum panel S1-B1 aording to higher-order CUF model.
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Figure 6: Cross-setion of the panel RU.
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Figure 7: Mid-span distributions of stresses omponents through the skin thikness (A-A') of the optimum

panel S1-B1; solid line ��� is CUF solution, irles �◦� represent ANSYS solution.
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Figure 8: Mid-span distributions of stresses omponents through the stringer thikness (B-B') of the

optimum panel S1-B1; solid line �−−� is CUF solution, irles �◦� represent ANSYS solution
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