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A network-based analysis of a turbulent channel flow numerically solved at Re, = 180 is proposed as an
innovative perspective for the spatial characterization of the flow field. Two spatial networks corresponding to
the streamwise and wall-normal velocity components are built, where nodes represent portions of volume of the
physical domain. For each network, links are active if the correlation coefficient of the corresponding velocity
component between pairs of nodes is sufficiently high, thus unveiling the strongest kinematic relations. Several
network measures are studied in order to explore the interrelations between nodes and their neighbors. Specifically,
long-range links are localized between near-wall regions and associated with the temporal persistence of coherent
patterns, namely high and low speed streaks. Furthermore, long-range links play a crucial role as intermediary for
the kinematic information flow, as emerges from the analysis of indirect connections between nodes. The proposed
approach provides a framework to investigate spatial structures of the turbulent dynamics, showing the full poten-
tial of complex networks. Although the network analysis is based on the two-point correlation, it is able to advance
the level of information, by exploiting the texture created by active links in all directions. Based on the observed
findings, the current approach can pave the way for an enhanced spatial interpretation of the turbulence dynamics.
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I. INTRODUCTION

Turbulence dynamics represents an interdisciplinary branch
of research with a wide range of interests, since most flows
occurring in nature or in industrial applications are turbulent
[1]. Examples are the oceanic currents and the fluvial streams,
the atmospheric boundary layer, combustion processes, as well
as wake flows behind vehicles, flows through pipes, and pumps.
Turbulent flows are characterized by complex spatiotemporal
fields with many interacting scales, displaying an intrinsic
chaotic behavior [2,3]. A wide range of mathematical tools—
e.g., high order moments, structure and correlation functions,
spectral and principal component (POD) analysis—have been
largely employed to extract information for a better under-
standing of turbulence, both theoretical and phenomenological.

Within turbulent flows, particular attention has been given
to wall turbulence, mainly due to the importance of the
fluid-wall interaction and related energy losses [4]. The main
wall turbulence topics include the analysis of the wall-normal
structure and scaling (e.g., mean velocity and fluctuations dis-
tributions), the investigation and characterization of coherent
structures (e.g., near-wall streaks or large scale motions), as
well as the interaction between different turbulent scales, that
have been fostered by the increasing possibility to explore
higher Reynolds number flows [5,6]. In fact, only in the
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latest decades experimental and numerical simulations have
provided a sufficiently large amount of detailed data, driven by
the notable increase of the available computational capabilities
[4,7]. However, although widely investigated, several issues
regarding wall-bounded turbulent flows still remain open, such
as detection and characterization of coherent structures as
well as their implementation in engineering models [5,6,8,9].
Therefore, new interdisciplinary approaches are required, in
order to properly handle the large amount of detail represented
by the so called big data [10].

A remarkable example of innovative tool for the analysis
of real-world complex systems is offered by complex network
theory. By combining graph theory and other disciplines such
as statistical mechanics and data mining [11-13], the complex
network approach proves to be a powerful and versatile
framework, in which a system can be studied through the
properties of its constituents (corresponding to the nodes of
the network) and the interrelations (namely, the /inks) between
them [14]. From this point of view, complex networks act as
a bridge between the graph representation and the underlying
complex system [15]. Network science has successfully been
applied to many research fields [16—18], from social dynamics
to Internet, economy, climate, biology, and transportation
systems. The application of the complex network analysis to
physical or engineering problems is a very recent research
frontier. Specifically, the investigation of fluid flow regimes
has mainly comprised geophysical flows [19,20], turbulent jets
[21,22], two-phase flows [23-25], fully developed turbulence

©2018 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.013107&domain=pdf&date_stamp=2018-07-27
https://doi.org/10.1103/PhysRevE.98.013107

IACOBELLO, SCARSOGLIO, KUERTEN, AND RIDOLFI

PHYSICAL REVIEW E 98, 013107 (2018)

[26-28], reacting flows [29,30], isotropic turbulence [31,32],
and biomedical flows [33]. In this context, the network-based
approach relies on spatiotemporal data, so that networks have
been typically built in two ways: (i) by assigning nodes to
the samples of time series at a fixed position, and exploiting
the temporal structure of the series to create links [34]; (ii)
by identifying nodes as spatial locations in the flow field, and
using a functional relation between the time series to activate
links [32,35,36].

In this work, we propose a network-based analysis of
fully developed turbulent channel flow to offer an innovative
approach to study wall turbulence dynamics. To the best of our
knowledge, the application of network analysis to spatially
investigate wall turbulent data has not been pursued to date. A
fully developed turbulent channel flow was first solved through
a direct numerical simulation (DNS), in which the velocity
field is computed in each grid point. Two networks are built,
corresponding to the streamwise and wall-normal velocity
components, respectively. The nodes of the network were
associated to the cell volume of the spatial grid points of the
simulation, leading to a spatial network where nodes represent
physical portions of the domain. For each network, a link
between a pair of nodes is activated if the Pearson correlation
coefficient of the corresponding velocity component is above
a suitable threshold, thus highlighting the strongest (linear)
kinematic relations. Although other metrics able to account for
nonlinear relations (e.g., mutual information) can be exploited
to build the networks, the correlation coefficient—due to its
simplicity and its extensive use in the turbulence literature
[3,37,38]—represents the most suitable metric to show the
potential of complex network analysis of wall turbulence.

The present approach provides a framework to system-
atically investigate the turbulent dynamics (i) by preserving
the spatial information, and (ii) by exploiting the topology
of the interactions between the components. Different from
other techniques, where the spatial collocation of the two-point
correlation is lost due to pre- or postprocessing operations (e.g.,
see Ref. [9]), here the outcomes can be precisely localized in
the physical domain and retain, through the network formal-
ism, the multipoint effects of direct and indirect links in all
directions.

The paper is organized as follows. The methodology
adopted is reported in Sec. II. Specifically, the overall features
of the simulation are described in Sec. II A, the network
definitions and metrics are introduced in Sec. IIB, and the
network building procedure is explained in Sec. IIC. The
results are presented in Sec. III, highlighting the interrelations
between nodes and their neighbors (i.e., between different
channel regions). The network analysis is carried out at three
different scales, namely global scale (Sec. III A), mesoscale
(Sec.III B), and local scale (Sec. III C). Finally, the conclusions
are outlined in Sec. IV.

II. METHODS

A. Data description and pre-processing

Direct numerical simulation (DNS) of the turbulent channel
flow was solved at Re, = 180, where Re, is the Reynolds
number based on the frictional velocity u,. The geometrical
domain has a length 47 H in the streamwise direction x (with

576 grid points), 2H in the wall-normal direction y (with 193
grid points) and 4/37w H in the spanwise direction z (with
288 grid points), where H denotes half the channel height. In
particular, the computational domain is periodic in the x and z
directions. The number of time steps in the simulation is 5000,
which corresponds to a time Tu,/H = 1.25, or TT = 225,
where the superscript 4+ denotes wall units. Time is expressed
in units of H /u, and velocity in units of u,. Full details of the
simulation are reported in Appendix A.

In order to have a manageable network size, we reduced
the computational domain in the streamwise and spanwise
homogeneous directions. Since the results are mainly depen-
dent on the wall-normal coordinate (i.e., the inhomogeneous
direction), this operation does not alter the significance of the
results. We then selected one out of every four grid points in the
x direction, resulting in N| = 144 equally spaced grid points,
and N/ = 150 consecutive grid points in the z direction. As a
result, the streamwise spacing increases as Ax’ = 4Ax, while
the spanwise size of the domain reduces to L, = L;N/N, =
25/36m H. Inthe wall-normal direction, instead, the grid points
corresponding to the walls (i.e., y© = 0 and y™ = 360) were
excluded, since in those locations the velocity time series are
constantly zero, so that N/, = 191. By doing so, the resulting
domain is only periodic in the x direction. The final domain
sizeis (Ly, Ly, L) = (4w H,2H,25/36m H), corresponding
to a total volume Vo = L,LyL. ~ 54.8H*, while the final
spatial discretization is (N, N;, N]) = (144, 191, 150).

The whole length of the domain is maintained in the x and y
directions because the streamwise and wall-normal directions
are of crucial importance. Indeed, they are the directions
of advection and inhomogeneity of the flow, respectively.
Moreover, taking the whole domain in the streamwise direction
guarantees to entirely capture elongated turbulent structures
such as streaks, which have scales of the order of L, [4].

The choice to take a coarser spatial discretization in the
streamwise direction than in the spanwise direction is moti-
vated by the typical spatial scales of the correlation field in
the homogeneous directions. Indeed, the spatially averaged
correlation evaluated along the spanwise direction (at fixed
y*) decreases more rapidly than the one evaluated in the
streamwise direction [see Fig. 11(b) in Appendix A].

B. Complex networks: Definitions and metrics

In this section, a summary of the network metrics investi-
gated in the present work is reported. Some of the concepts
described here are typically used in network theory (e.g., the
degree centrality, the neighborhoods and the shortest path)
[12,39,40], while some others are here introduced ad hoc (e.g.,
the volume-weighted connectivity and the number of regions).

A network is defined as a graph G(N,, N.) = (V, £), where
V={1,2,..., Ny} is a set of N, labeled nodes (or vertices)
and £ =1{1,2,...,N,} is a set of N, links (or edges). The
structure created by node interactions is called the network
topology [41]; a complex network is therefore a network with
nontrivial topological features.

The adjacency matrix, A;;, defined as

ij
~_J o0jifi=jor{i,j} ¢¢E,
Aij { Lif {i, j} € &, W
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FIG. 1.
neighborhood (illustrated as blue and brown dots, respectively). The
first neighbors in the short- and long-range regions, Rs and R,
are highlighted by dashed circles colored in orange and magenta,
respectively. An example of shortest path between node i and a generic
node j is shown in black.

Sketch of anode i (depicted in red) and its first and second

indicates the existence of a link between a pair {i, j} of nodes.
In particular, in this study the direction of the link is not taken
into account, i.e., A; ; = A;;, and the network is undirected.
The degree centrality k of a node i is defined as k(i) =
Z?’;l A;j, quantifying the number of nodes linked to i. The
degree centrality is then a measure of the cardinality of the set
of nodes directly connected to a node i. This set is called the
first neighborhood, l"il, of i and the nodes belonging to T} are
called first neighbors of i (e.g., see in Fig. 1 the red node and its
first neighbors in blue). In general, a set of nodes constitutes the
Nth neighborhood, I"iN , of a node i if the minimum number of
different links connecting i and FiN isequalto N, with N > 0
and, by definition, F? = i. For example, in Fig. 1 the second
neighborhood of the red node 7, Fl.z, is shown as brown points.
Therefore, the N value indicates the topological distance of the
shortest path between a node i and the nodes in I'" (see the
black path in Fig. 1, representing the shortest path between
the red node i and the node j € Fl.(’). The Nth cumulative

neighborhood, FiN “. of a node i is the union of its first N
neighborhoods (including ).

A network is made up of a discrete set of nodes, that in
this work correspond to fixed spatial positions in the computa-
tional domain. An appropriate way to represent a nonuniform
physical domain is to assign to each node a weight indicating
the spatial extension of that node. This choice is due to the
inhomogeneity of the computational grid in the y* direction, so
that nodes at different y ™ have different weights. This approach
is typically adopted in climate networks, where nodes represent
regions of different area on the Earth’s surface as a function
of the latitude [36,42]. In this work, we assign to each node
i=1,..., N,aweight, Vi(y") = (Ax'Ay;(yT)Az), equal to
the volume of that node. In particular, in the streamwise and
spanwise direction the spacings are uniform (i.e., Ax’ = 4Ax

and Az are constant), while in the wall-normal direction
the spacing depends on y*. The Ay;(y™) length is then
calculated as the sum of the previous and next half heights
of the grid spacing in the y direction, Ay; = (yi+1 — Yi—1)/2.
Accordingly, we define the volume-weighted connectivity of a
node i as

Ny
Ch(i)=— > A}V ()

ot S
where Viy is the total volume of the physical domain, and
A+, = A, j + §; ; is the extended adjacency matrix [43], with
8, the Kronecker delta. The extended adjacency matrix is used
in Eq. (2) to ensure that C¥ (i) ranges in the interval [0, 1].
C" (i) represents the node-weighted degree of a node i and
corresponds to the fraction of volume to which the node i is
connected. As the degree centrality, C" is an indicator of the
most important vertices in a network. The fraction of nodes in
the network with a given value of C" is the C" distribution,
p(C™), and represents the probability that a randomly chosen
node has a given value of C". In order to smooth the statistical
fluctuations present in the tails of p(C") [12], we define the

cumulative C¥ distribution as
cv

P(C")=1- Y p(C™), 3)

=0

which is the probability to find a node with volume-weighted
connectivity greater than or equal to C*.

The average nearest neighbors C* of anode i is defined as
[43]

w 1 Vi g
Cn® = gy Z 7€), )
Jer;
representing the weighted average of the C* values of the first
neighbors of i. If there is no correlation between C* (i) and
Cy (i) the network is said to be nonassortative; if, instead,
»(i) is an increasing (decreasing) function of C* (i) the
network is classified as assortative (disassortative).

Since to each node of the network corresponds a volume
in a fixed spatial grid position, nodes that are close in space
can be grouped according to a connectivity criterion. In this
work, we say that a set of nodes forms a spatially connected
region (or simply a region), R, if each node in R is distant one
grid spacing (in any Cartesian direction, +Ax, +Ay(y™) or
+Az) from at least another node of the set [44]. The volume,
Vr, occupied by a region R, is Vi = Zi V;, with i € R.
Notice that in our definition the nodes in a region only satisfy a
geometrical condition, but they are not necessarily linked with
each other (topological condition). Accordingly, it is possible
to group the Nth neighborhood I'Y of a node i into a number
N(I'V) of spatially connected regions. For example, in Fig. 1,
the first neighborhood of the red node i can be partitioned
into V' (l"il) = 3 regions (colored in blue), while its second
neighborhood, I'?, forms only one region (colored in brown).
In particular, we say that a node j is a short-range neighbor
of i if both i and j belong to the same region, R (see nodes
grouped in orange in Fig. 1). On the contrary, j is called a
long-range neighbor of i, if j and i do not belong to the
same region. The sets of long-range neighbors of a node i
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are then indicated as R, (e.g., see nodes grouped in magenta
in Fig. 1). For every node in a network, N(Rs) =1 and
NTH=NRs) +NRL) =1+ N(R.), thus long-range
neighbors are present only if A(I'!) > 1. By extension, we
refer to short- and long-range links to indicate the connections
between pairs of short- and long-range neighbors, respectively.
It should be pointed out that long-range neighbors of a node i
are nodes “detached” from the short-range region, regardless
of the physical (Euclidean) distance from i. Namely, there is a
spatial gap (at least greater than one grid step, in each direction)
that divides short- and long-range regions.

Finally, the weighted physical distance, dw (i, j), in the
Cartesian direction « € {x, y, z}, between a node i and one
of its first neighbors j is here defined as dw (i, j) = |o; —
a;j|V;i/Vie, with j € Fl.l. The average weighted physical dis-
tance between a node i and its first neighbors in a region R is
then evaluated as

1
(o)) = 3= > dw.ali, j). (5)

JjER

with Ve = 3~ 2 Vj/ Vi and R C T}

C. Network building

We first assigned a node to each selected grid point,
resulting in spatial networks with N, = 144 x 191 x 150 =
4125600 ~ 10° nodes. The Pearson correlation coefficients
C; j, based on the time series of the streamwise and wall-
normal velocity components, u(x,y, z,t) and v(x,y, z,1),
were evaluated for each pair of nodes, {i, j}. The correlation
coefficients are calculated from the whole simulation time 7' =
1.25 (by taking all the Ny = 5000 time samples), correspond-
ing to about 1.5 times the flow through time (L, / U}, where U,
is the bulk velocity). Links are active if the absolute value of
the correlation coefficient is greater than a suitable threshold
7, which was here set equal to 0.85, i.e., |C; ;| > T. A high
value of the threshold t was chosen to highlight the strongest
positive and negative correlations and to have a manageable
number of links. Therefore, the total number of links N,
depends on the correlation threshold value. For T = 0.85, we
obtain N,, = 857693107 ~ 10° and N, , = 226842435 ~
108 links, for the network based on the u and v components,
respectively. The corresponding network edge density values
are e,y = Ne,u/Ne,tol ~ 10* and Pe,v = Ne,v/Ne,tol ~ 10_5,
where N, or = Ny(N, —1)/2 is the maximum number of
possible edges in a network of N, nodes. The values of
pe are very low, meaning that the networks are sparse. In
general, the choice of the threshold is a nontrivial aspect in the
analysis of correlation networks. A threshold that is too high
leads to extremely sparse networks, in which mainly trivial
connections are unveiled. On the contrary, a too low value of
T results in networks where the statistical significance of the
links is arguable, thus making the interpretation of the network
structure confused or misleading. Consequently, to highlight
the strongest (linear) relations we performed the main analysis
at the same high threshold value (i.e., T = 0.85) for both u
and v, while a parametric analysis of the results for different
values is reported in Appendix C.

The networks so built allow us to spatially characterize
the turbulent channel flow from a kinematic point of view

(since the velocity components were considered), with linear
relations among nodes (since the Pearson correlation was
evaluated). Since the continuity and Navier-Stokes equations
are numerically solved through a direct numerical simulation,
and they represent conservation laws of mass and momen-
tum, the dynamical constraints are actually embedded in the
resulting flow field. Therefore, the flow dynamics features
and constraints are inherited in the kinematic description of
the relations in the flow. Specifically, the streamwise and
wall-normal velocities were selected here because they are
two of the most significant variables to characterize a turbulent
channel flow. Indeed, the streamwise velocity is the component
containing the largest part of the kinetic energy, while v is
the velocity component corresponding to the inhomogeneous
direction [45]. However, the procedure carried out in this work
can also be applied to other physical quantities (e.g., turbulence
kinetic energy, or the vorticity field). The correlation-threshold
approach is one of the simplest and most adopted techniques
to construct complex networks [46,47], but other internode
relations are also exploited (e.g., mutual information [36,48],
Granger causality [49] or eigentechniques [50]). Our choice
of the correlation as measure to create links is in line with
the exploratory nature of this work. Due to its simplicity and
its broad use in the turbulence literature [37,38], correlation
represents the most suitable metric to start showing the poten-
tial of complex networks applied to wall-bounded turbulence.
Although nonlinear effects might be included by exploiting, for
instance, the mutual information, its evaluation would require
a detailed and refined phase of calibration and testing, which
is out of the scope of this work.

III. RESULTS AND DISCUSSION

Results are presented to highlight how the kinematic in-
formation (i.e., related to the u and v velocity components)
spatially flows in the temporal window considered, and how
this kinematic information is organized at three different
scales:

(1) Global scale. The overall characteristics of the whole
network are investigated (i.e., considering all nodes, without
any distinction); in particular, the centrality of nodes (in terms
of C" probability) and the similarity among nodes (in terms
of assortativity, C) are explored.

(2) Mesoscale. The attention is given to the topological
features of groups of nodes; specifically, we study the network
metrics (i) as a function of y*, and (ii) focusing on the most
central nodes (in terms of C"%).

(3) Local scale. The analysis is focused on single nodes;
here, we explore the neighborhoods of representative nodes
with extremely different features.

The analysis at different scales allows us to study the cen-
trality of nodes and the structure of neighborhoods at different
level of details. Present results are related to the specific DNS
realization performed. However, since the turbulent channel
flow analyzed is statistically stationary, we expect similar
results from other DNS runs, provided Re, is the same.

A. Global scale analysis

The global behavior of the networks is studied by investigat-
ing C", which represents the fraction of volume kinematically
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FIG. 2. Global analysis of the network built on the streamwise velocity component. (a) Cumulative C* distribution, P(C"), and exponential
fitting. The inset is a zoomed view for small C* values, indicated by the red box. The ranges of H — C"* and L — C" (shown in the inset) are
highlighted. (b) Weighted average nearest neighbors assortativity measure, C, (i), as a function of C"(i). Colors indicate the joint probability

values (in log,, scale) of variables C* (i) and C;,

connected to anode [see Eq. (2)]. First, we focus on the network
of the streamwise velocity component. In order to understand
how C" is distributed in the network, in Fig. 2(a) we show
the C¥ cumulative probability, P(C"). The probability to
have higher values of C" decreases exponentially, suggesting
there is a relatively small number of nodes that are strongly
connected with respect to the other nodes, thus representing
the hubs of the network. The P(C™) distribution can be
exploited to classify the centrality of nodes in the network. In
the following, for the networks of both velocity components,
we will define a node as a H — C" node (i.e., with a high
C" value) if its C satisfies P(C") < 1072 (corresponding to
the 99th percentile). On the contrary, we will refer to nodes
with a low C% value as L — C" nodes, indicating that their
C" value satisfies P(C*) = 99 x 1072 (corresponding to the
first percentile). H — C" nodes represent parts of the domain
kinematically similar to large portions of the physical domain,
in the temporal window considered.

C" is a measure of the centrality of nodes in the network,
but it is not able to quantify whether the centrality of a node
is similar or not to the centrality of its first neighbors. To this
aim, a typical metric to investigate the interrelation among
nodes is the assortativity, revealing if nodes tend to link to other
nodes with similar or dissimilar C* values. The average C* of
neighbors of a genericnode i, C,’, (i) [see Eq. (4)], asafunction
of C"¥ (i) is shown in Fig. 2(b). An almost linear relationship
holds between C* and C},, displaying that most nodes tend to
link to other nodes with quite the same C" value, resulting in
a strongly assortative network. The joint probability between
C"¥ and Cy), is also evidenced with different colors in Fig. 2(b):
higher joint probability values concentrate along the bisector
and for small C¥ values. More in detail, low-C" nodes tend to
have neighbors with similar or higher C* values, while high
C" nodes tend to link to nodes with similar or slightly lower
C" values. This outcome implies that parts of the domain
with (linearly) similar time series of the streamwise velocity
u (i.e., high correlation coefficients values) have also similar
neighborhood spatial extensions. In other words, the fraction
of volume highly correlated with a node i and the fraction of

(7). The bisector is also displayed as a black dashed line.

volume highly correlated with the first neighbors of i are of
the same order of magnitude.

In the network based on the wall-normal velocity time
series, a sharp decay of P(C") is found. Therefore, the same
definition of H — C" and L — C"¥ nodes also holds for the
network based on the v component. Moreover, as for u, the
network based on the wall-normal velocity displays a strong
positive assortative behavior. More details can be found in
Fig. 12 in Appendix B.

The analysis at global scale points out that hubs are
generally rare in the networks and, as all the other nodes, they
tend to connect with each others.

B. Mesoscale analysis

Moving from a global to a mesoscale level of analysis, the
structure of the networks as a function of the wall-normal
coordinate y* is first investigated. Due to the symmetrical
behavior of the results with respect to the center of the channel,
the plots of the metrics as a function of y* are shown as
averages of both halves of the channel (i.e., y* € [0, 180]).
Next, the analysis at mesoscale is focused on the most central
nodes of the network.

1. Analysis along y* direction

Mean and standard deviation values of C" in planes at
constant y* are first considered, for both u and v. As shown
in Fig. 3, the local maxima of mean C" values are found at
distances (relative to each wall) of about y* = 10 and around
the center of the channel. In particular, for the network built
on the u component, the highest peak is located at about
y+ = 120. Such local peaks of the average values suggest the
presence of a large number of H — C" nodes around those
locations. Local maxima of the standard deviation are found
at about 3 < y* < 10 and 120 < y* < 180, that are almost
at the same y™ as the local peaks of the average value. This
implies that H — C* nodes increase the variability of the C*
values at these wall-normal locations.
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FIG. 3. Mean and standard deviation values of the volume-weighted connectivity, C*, as a function of y*, and averaged over the two
homogeneous directions. (a) Network based on the streamwise velocity; (b) network built on the wall-normal velocity.

Next, we investigate the relation between nodes and their
first neighbors, I'}. In particular, we inspect where the first
neighbors of a node i are located in the domain, whether
they spread all over the domain or there is some kind of
spatial organization. To this end, we characterize the first
neighborhood I'' of nodes at different y*, through its most
significant features, such as the number of regions in which
the neighborhood is divided, its position, and its correlation
sign with respect to each corresponding node.

First, the network built on the streamwise velocity u is
considered. As for the neighborhood repartition, we evaluate
the average and the standard deviation values of the number
of regions, N'(I'!), formed by I'! neighbors of nodes at fixed
yT. We recall that a region is defined as a set of geometrically
connected nodes, where the geometrical connectivity is a six
orthogonal connectivity in the Cartesian discretization. As
shown in Fig. 4(a), the first neighborhood of nodes close to the
wall tends to be composed of more than one region (noninteger
values are due to the averaging), while from y* = 70 up to the
center of the channel, the first neighbors I'' form only one
region (with standard deviation equal to zero).

To explore the location of the first neighbors in the domain,
the probability that an arbitrary source node at a fixed y* plane
has a neighbor at another y* value is shown in Fig. 4(b). Nodes
at any y™ have first neighbors close to themselves (diagonal
part of the plot), but only nodes at a distance y* < 70 from
one wall have nonzero probability values also near the other
wall. Therefore, in the network built on the # component there
are wall-wall links (both between nodes close to the same wall
and at different walls) and center-center links, but there are
no direct wall-center connections. These long-range regions,
R L, are also present in the homogeneous directions, as shown
in Fig. 4(c). Here, the spatial separation in the streamwise
and spanwise directions between nodes at fixed y* and their
long-range neighbors is investigated by evaluating the average
physical distances, (dw ) and (dw ;) [see Eq. (5)]. Figure 4(c)
shows the average and standard deviation values of (dw )
and (dy ) for nodes in planes at constant y*: moving from
the center towards the wall, the long-range neighbors of a

node tend to be located at increased distance (on average) in
the streamwise and spanwise directions. Moreover, long-range
neighbors of nodes at the same y™ are quite scattered in the x
and z directions, as suggested by the high values of the standard
deviation in Fig. 4(c).

From the two-point spatial autocorrelation definition
[51,52], it is straightforward to expect that some of the first
neighbors of each node i in the network are always located
close to i, forming the short-range region R . This can be seen
in Fig. 4(b), where the highest probability values are in the
diagonal part of the plot, and in Figs. 4(a) and 4(c) for y* > 70,
where the neighborhood I'!' coincides with R g. Instead, what is
not trivial is the emergence of long-range links in all directions,
more specifically inter- and intrawall links occurring for
y* < 70. By analogy with the climate analyses, we refer to
long-range links as teleconnections [48,53—57]. In atmospheric
sciences, teleconnections indicate climate relations (in terms
of temperature, rainfall, pressure, or other quantities) between
geographically remote regions, farther than the correlation
length scale of the variable. Climate teleconnections are mainly
caused by the energy transport and propagation of waves, pro-
viding information about the recurrence of climate variability
of distant locations. Here, the emergence of teleconnections of
the streamwise velocity can be interpreted as the footprints of
the top-down interactions, which similarly act from the outer
layer to both near-wall regions [58,59]. In fact, teleconnections
are always individuated between regions close to the two walls
(or close to the same wall), revealing an analogous response of
the two wall regions to the large-scale structures (i.e., turbulent
structures with size of the order of the integral space scale). On
the contrary, teleconnections are never found between inner
and outer layer regions, where the interplay dynamics are
deeply different from each other. Therefore, complex networks
are able to unveil the presence of teleconnections, which are
usually hidden by the spatial averaging of the correlation
coefficient values. Teleconnections create a texture of links
(highlighted by the network metrics) between distant locations,
in which similar (streamwise) kinematic information persists
in time. This result is the main difference with respect to other
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FIG. 4. Characterization of the first neighborhood I'! as a function of y* for the network built on streamwise velocity. (a) Mean and standard
deviation values of the number of regions, N (I" 1), as a function of the distance to the wall, y*, and averaged over the two homogeneous directions.
(b) The probability (in log scale) that a source node at a given y™ is linked to a neighbor at another y™ value. (c) Mean and standard deviation
of weighted physical distances between nodes at fixed y* and their long-range neighbors, averaged over the two homogeneous directions. The
distances are normalized with the maximum distances, 0.5L, = 27 and L’z = 25/36m, in the (x, z) directions. Due to the periodicity of the
domain, the maximum distance in the x direction is L, /2 instead of L,. (d) The fraction of nodes at constant y* with at least one negatively

correlated link.

approaches in the turbulence research, where the usual spatially
averaged correlation only retains average information about the
spatial behavior of the correlation field.

To complete the analysis as a function of y*, we examine
the distribution of the sign of the correlation coefficient of
links between nodes and their first neighbors. By construction,
links in the network are active if the absolute value of the
correlation coefficient C; ; is above T = 0.85, but links can
have either negative or positive C; ; values. In Fig. 4(d), the
fraction of nodes at fixed y™ with at least a negative-correlated
neighbor is shown as a function of the wall-normal coordinate.
Negative-correlation links are found (in the network based on
u) only for y™ < 70, with a peak at y* = 3.5 that coincides
with the peak of the average number of regions in Fig. 4(a).
In particular, among the nodes with negatively correlated
neighbors, the occurrence of negative links is (on average)
about 10% of total links. Based on what observed so far, we
can infer that negative correlation links are possible due to the
presence of teleconnections (i.e., y© < 70), while short-range
links are only activated by positive correlation values (as for
y* 2 70).

For the network built on the wall-normal velocity compo-
nent, the number of regions, A/ (T'1), of the first neighborhood

is shown in Fig. 5(a), while the probability that an arbitrary
source-node has a neighbor at another y* value is illustrated
in Fig. 5(b). In analogy with Fig. 4(a), values of the average
number of regions greater than 1 are found only close to the
wall. However, in this case, the average values are close to 1,
with very low standard deviation. This implies the substantial
absence of long-range links in the network of the wall-normal
component, i.e., teleconnections rarely appear. This behavior
is also confirmed by the probability to have a neighbor at a
given yT. As shown in Fig. 5(b), most of the nodes connect
with nodes close to them, and only few points very close
to the wall have teleconnected neighbors close to the other
wall.

2. Analysis of the most central nodes

We here focus on the hubs of the networks (i.e., H — C%
nodes) and their first neighbors, to understand whether they
form spatial patterns and how the neighborhood of such hubs
is structured. As in the previous section, the network built on
the streamwise velocity u is explored first.

The spatial location of the H — C" nodes is shown in a
three-dimensional (3D) view in Fig. 6(a). Highly connected
nodes are not scattered in the domain, but they tend to locally
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(in log scale) that a source node at a given y™ is linked to a neighbor at another y™ value.

group into clusters elongated in the streamwise direction (the
longest one with a streamwise extension of about Ax™ =~ 600).
According to the definition of region R, the H — C" nodes
form in this case 31 regions, which we call regions of hubs
(RoHs). It is important to remind that nodes in the same RoH
are not necessarily all linked to each other; some of them may
be linked, but the RoHs merely identify groups of high C*
nodes belonging to the same spatially connected region. Such
RoHs have different sizes, as illustrated in Fig. 6(a) where
colors indicate the fraction of volume occupied by each RoH,
namely Vron/ Vior. The RoHs are present at different y*, as
displayed in Fig. 6(b), in which the wall-normal coordinate
of the center of mass of each RoH is shown. From here it
emerges that the presence of the biggest RoHs (around y* =~
15, RoHs 7-12, 24, 26, and y* ~ 120, RoHs 15, 16, 22, 23) is
mainly responsible for the local peak values of C*, previously
observed in Fig. 3(a).

The occurrence of similar patterns of RoHs throughout the
domain is a remarkable outcome. In fact, one would expect
different spatial patterns of H — C* nodes at different y*,
because the two-point correlation of the streamwise velocity
changes along y* [see the average behavior at different y™*
in Fig. 11(b)]. Instead, although the network is based on
the two-point correlation, it is able to advance the level of
information by retaining, all at once, the multipoint effects
of active links in all directions. This outcome emphasizes the
potential of the complex network approach to enrich the spatial
characterization of wall turbulence.

H — C" nodes of the network built on the v component
also tend to form RoHs elongated in the streamwise direction,
but they appear around the center of the channel, as already
shown in Fig. 3(b) (more details are reported in Fig. 13 in
Appendix B). Therefore, the elongated shape of the RoHs is
not strongly dependent on the variable selected, but it can be
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FIG. 6. (a) 3D view of H — C" nodes, namely regions of hubs, RoHs, for the network built on streamwise velocity. Color scale refers to
the fraction of volume occupied by distinct RoHs, Vron/ Vie- RoHs are labeled for increasing values of the wall-normal coordinate of their
center of mass. Periodicity of the domain in the x direction is visible from the RoHs labeled 8, 11, 12, and 22. (b) Weighted y* component
of the center of mass, CoM-y™, of the RoHs shown in panel (a), where CoM-y* = 3", (i Vi/ Vi)/N (RoH), with i € RoH and A/ (RoH) the
number of nodes in each RoH. Colors indicate the fraction of volume of each RoH as shown in (a). The reader is referred to the online version

for a high color resolution.
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FIG. 7. (a) 3D view of nodes in an RoH (black) and two R, regions formed by long-range neighbors of nodes in the RoH (only a fraction
of nodes in the RoH is actually linked to each R, 1, region, because these regions are the union, and not the intersection, of the neighborhoods
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y* of the RoH is y* =~ 11. The blue and red colors indicate a positive and negative correlation with the RoH, respectively. (b) Time series of
the streamwise velocity fluctuations u’ of two different pairs of nodes; times are in terms of H /u,. The black shaded series correspond to nodes
in the RoH, while blue and red shaded series correspond to nodes in R ; and R », respectively. The values of the correlation coefficients and
the temporal limits of the maximum time interval with the same u’ sign for the two pairs of nodes are also reported.

seen as an effect of the mean flow in the streamwise direction.
Turbulent structures are indeed advected downstream by the
mean flow in the x direction, and the typical time scale in which
turbulence evolves is larger than the advection time scale (this
is the so-called Taylor’s hypothesis [6,60]). Consequently, this
feature is not detected for high-degree nodes in the correlation
network for homogeneous isotropic turbulence [32].

Regarding the neighborhood of the most central nodes,
since the hubs are clustered into RoHs, we consider the first
neighborhood of all nodes in the RoHs. In particular, here we
focus on the u-based network, since nontrivial teleconnection
patterns represent the most notable outcome and they are
mainly found in this network. By exploring the long-range
neighborhoods of nodes in the RoHs, we found that they
exhibit a peculiar behavior. Not only do first neighbors of
nodes at y* < 70 form long-range regions (as already observed
in Fig. 4), but here we find that hubs belonging to the same
RoH generate long-range regions which are physically close
to each other. In other words, long-range neighbors of nodes
in the same RoH are not scattered in the domain but constitute
themselves spatially connected regions. In Fig. 7(a) we show
an example of RoH (depicted in black and corresponding to the
ninth RoH in Fig. 6) and two regions (R ; and R », depicted
inblue and red, respectively) formed by the union of long-range
neighbors of the nodes in the RoH. As can be seen, the regions
Rr.1—» inherit the same elongated shape in the streamwise
direction x and similar volumes of the corresponding RoH.
Such a behavior is found for all RoHs and their long-range
neighbors; another example can be found in the Supplemental
Material [61].

This outcome extends the meaning of teleconnections
from nodes to regions: in the domain, there are regions of
highly connected nodes (i.e., the RoHs) that are strongly
linked with distant spatially connected regions. These pairs of
teleconnected regions, therefore, represent near-wall portions
of the domain tightly correlated over time from the streamwise
velocity point of view, i.e., spatially extended regions sharing
similar dynamics in time. A movie of a representative RoH
and the corresponding teleconnected regions is provided in the
Supplemental Material (see Movie SM1) [61].

A further element to characterize the neighborhood of the
hubs (or RoHs) is the sign of the correlation of links. For a
generic node i, we find that the first neighbors belonging to
a region are either all positively or all negatively correlated
with 7. In other words, for any node i in the network, the
regions formed by its neighbors are never partially positively
or negatively correlated with i, but always exhibit the same
correlation sign. This means that, considering again long-range
links only, each region formed by the union of long-range
neighbors of nodes of an RoH has a unique correlation sign with
the corresponding RoH. For example, in Fig. 7(a), the nodes of
the selected RoH (colored in black) are all positively correlated
with the corresponding neighborsin R ;. ; (colored in blue), and
all negatively correlated with those in R » (colored in red).

The mesoscale analysis evidences the presence of spatially
connected regions of highly linked nodes (RoHs), both in
the near-wall and outer layer. However, only near-wall nodes
are characterized by teleconnections. In particular, pairs of
teleconnected regions (not only pairs of nodes) are found,
which correspond to regions of fluid moving with similar
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