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Abstract1— When microprocessor cores are used in safety-

critical applications, in-field test must be performed to reach the 
target reliability figures. In turns, the in-field test must be 
organized so that it achieves a sufficient fault coverage. The fault 
list to be considered for computing the fault coverage should only 
include testable faults, i.e., faults which may cause a failure in the 
operating conditions. Hence, single permanent faults that in the 
operating conditions cannot be excited, or do not propagate to any 
output, or both, should be removed from the list. 
These faults, called on-line functionally untestable faults, require a 
significant effort to be identified. The contribution of this paper is 
twofold. From one side, it reports experiments, showing that in 
typical embedded safety-critical systems their number is often far 
from being negligible, and depends on many parameters, 
including the application code run by the processor. Secondly, it 
provides a semi-automated approach to their identification. 
Experimental results on a representative microprocessor are 
reported. 
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I. INTRODUCTION 

When an electronic system is used in a safety-critical 
application, the probability that a fault may cause a failure must 
be evaluated and compared with the target reliability figures. In 
several domains standard and regulations (e.g., IEC 61508 for 
industrial systems, DO-254 for avionics, ISO 26262 for 
automotive) mandate well-defined procedures for reliability 
assessment and define target reliability figures.  
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Fig. 1. On-line fault categories and their relationship [4].  

                                                           
1 This work has been supported by the European Union 
through the H2020 project no. 637616 (MaMMoTH-Up). 

It is common to adopt some in-field test solutions, which 
can be activated during the operational phase and are able to 
detect possible permanent faults before these may produce any 
failure. These solutions may be based on Design for Testability 
techniques (such as BIST) or on self-test functional approaches 
(such as Software-based Self-test [2]), or on a combination of 
the former ones. The quality of these solutions is measured first 
of all in terms of achieved fault coverage with respect to the 
adopted fault model(s). Clearly, the higher the level of safety 
that the application must achieve, the higher the fault coverage 
which is required. The fault coverage figure is computed with 
respect to a fault list which as a first step includes all possible 
faults. However, permanent faults that cannot produce any 
failure in the operational mode (denoted as untestable faults) 
can be removed from this list.  

This category of single permanent faults includes several 
groups, which are illustrated in Fig. 1: 

1. Structurally untestable faults, i.e., faults for which a test 
does not exist even if the combinational block where the 
fault is located is fully controllable and observable. 
Examples of faults belonging to this category include 
faults that cannot be tested due to some redundancy in 
the combinational logic. If a gate-level description of the 
device is available, an ATPG tool can identify some of 
these faults. 

2. Functionally untestable faults, i.e., faults that do not 
belong to the previous group, but cannot produce any 
failure due to the sequential behavior of the circuit, for 
example, in the case the circuit cannot reach all possible 
states. Several works proposed techniques to 
automatically identify these faults, either in a generic 
circuit [5][6][7] or specifically in a CPU [8]. 

3. On-line functionally untestable faults, i.e., faults that do 
not belong to the previous groups, but cannot produce 
any failure in the operational conditions the target device 
works in. As an example, all faults related to the debug 
circuitry in a processor belong to this group, since debug 
facilities are not used during the normal behavior. In [4] 
we already reported some examples of faults belonging 
to this category, and showed that their number is 
typically not negligible. In this paper, we extend the 
number of faults belonging to this category by also 
considering faults that cannot produce any failure, due to 
the specific application code executed by the CPU. In 
the ISO26262 terminology, these faults are called “safe 
faults application dependent”. 



Identifying untestable faults is crucial, because it allows to 
remove them from the fault list and to focus the test efforts 
towards the testable faults, only. Moreover, knowing the list of 
untestable faults may permit reducing the effects of over-testing 
phenomena, which are known to reduce the yield, and thus the 
profit of semiconductor and system companies. 

In the past, there have been several efforts to develop 
effective solutions to the automatic identification of structurally 
and functionally untestable faults. In general, techniques for 
identifying on-line functionally untestable faults are less 
mature, and most of the work is still done manually, often in the 
frame of the so-called FMEA (Failure Mode Effects Analysis). 
Some preliminary discussion about possible methods for 
functionally untestable fault identification was given in [4] and 
[9], based also on the observation that limitations in the usable 
address space [3] may increase the number of on-line 
functionally untestable faults.  

In this paper, we make some further steps in this direction. 
We focus on the typical scenario characterizing a special 
purpose system, i.e., a system built to perform a single 
application. This means that the processor included in this 
system only executes a single piece of code, written to perform 
the target application, which remains the same during the whole 
operational life. The first contribution of this paper is to show 
that the number of on-line functionally untestable faults existing 
in the embedded processor is increased by the fact that the 
application code is fixed, and cannot cover all possible 
scenarios the processor has been designed for. In other words, 
given a certain application code and all possible input data set, 
it may happen that some internal resources are never accessed: 
hence, all faults associated to these resources belong to the class 
of on-line functionally untestable faults. As a trivial example, if 
the application code never uses multiplication, the faults 
associated to the multiplier becomes untestable, and can thus be 
removed from the list used to compute fault coverage. Faults 
related to other resources (e.g., those supporting test or debug) 
may also belong to the same category. A similar analysis is 
reported in [1], where the goal is to identify gates in the 
processor that do not play any role in such a scenario, and can 
thus be removed from the design. In our case, the processor 
design is not changed, but we adopt a similar approach to 
identify these gates, because they are associated with on-line 
functionally untestable faults.  

The second contribution of the paper is to propose a semi-
automated and scalable method, able to identify a good 
percentage of the on-line functionally untestable faults. The 
availability of such a method can clearly reduce in a significant 
manner the amount of time and effort to perform the reliability 
analysis required by several standards and regulations. 

In order to provide the reader with a test case where the 
method is applied, we selected a representative processor, 
considered a few application codes, and applied our method to 
identify the functionally untestable faults. Results show that the 
number of on-line functionally untestable faults that can be 
identified by the method is generally not negligible, accounting 
for up to 30% of the total number of faults. Our method, 
although not able to identify all of them, appears to be able to 
significantly reduce the effort for their identification. 

The rest of the paper is organized as follows: Section II 
introduces some basic definitions: first, the controllability is 

introduced, then, the cone definition is explained with some 
motivations. Section III better details how the proposed method 
works with emphasis on the cone extraction algorithm and the 
logic gate activity extraction. Section IV shows the results 
obtained by running different applications code on a widely 
used low-power microprocessor.   

II. BACKGROUND AND MOTIVATIONS 

This section provides the reader with the required 
information about the controllability metric and partitioning of 
the circuit in cones. This knowledge allows to fully understand 
the following sections. 

A. Controllability 

The concept of controllability C has been defined in [10] as 
the probability that a random input vector for a combinational 
block forces a given line l to the value 1 (C1=1) or 0 (C0=1). 
The controllability value depends on the logic function 
implemented by the block and can hold any value inside the 
interval [0:1]. 

Controllability values of the inputs are usually equal to 0.5 
both for logic zero and logic one. However, when some special 
conditions hold, these values may be changed accordingly. 

When the controllability value is 0, it indicates that it is not 
possible to set the line to a specific value. For example, C1(A) = 
0 means that line A cannot assume the value 1. 

Generally speaking, the controllability of a line holds values 
in the range [0:1], and it rarely holds the values 1 or 0. 

The computation of the controllability C for all lines in a 
logic block can be performed by starting from the input block 
and then proceeding towards its outputs level by level. For each 
gate, we can compute the controllability of the output line by 
knowing the type of the gate and the controllability values of its 
inputs. The following equations hold for OR/AND gates: 

For an n input OR gate  

𝐶 (𝑁) = 1 − 𝐶 (𝑁) 

𝐶 (𝑁) = 1 − 𝐶 (𝑥 ) 

For an n input AND gate  

𝐶 (𝑁) = 1 − 𝐶 (𝑥 ) 

𝐶 (𝑁) = 1 − 𝐶 (𝑁) 
For a NOT gate 

𝐶 (𝑁) = 𝐶 (𝑥) 

𝐶 (𝑁) = 𝐶 (𝑥) 
 

where N is the output signal of the gate under exam and xi 
are its inputs. 

Fig. 2 provides an example and the relative expansion 
formulas of controllability are developed in the following. 

𝐶 (𝑋 ) = 𝐶 (𝑋 ) = 𝐶 (𝑋 ) = 0.5 
𝐶 (𝑋 ) = 𝐶 (𝑋 ) = 𝐶 (𝑋 ) = 0.5 
𝐶 (𝑎) = 𝐶 (𝑏) = 1 − (0.5 ∙ 0.5) = 0.75 
𝐶 (𝑎) = 𝐶 (𝑏) = 1 − 𝐶 (𝑎) = 0.25 



𝐶 (𝑐) = 1 − (0.25 ∙ 0.25) = 0.9375 
𝐶 (𝑐) = 1 − 𝐶 (𝑐) = 0.0625  
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Fig. 2. Example of controllability computation.  

B. Cone Partitioning Algorithm 

This sub-section describes the cone definition used in this 
work that has been inspired by [11]. A cone in a combinational 
block is the set of all gates that are directly or indirectly fed by a 
given input signal.  

Fig. 3 illustrates an example of a combinational block and 
the cone associated to an input signal. The CONE starts from 
input pin X and arrives up to output O1 and output O2.  

The cone extraction process is based on the Cone 
Partitioning Algorithm (CPA). The CPA is based on a Breadth-
First-Search over the graph representation of the combinational 
block netlist. Figure 4 depicts the result of the CPA on the 
example proposed in Fig. 3.  
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Fig. 3. Example of a cone.  

4

36

5

2

1
1

2

3
O1

O2

X

 
Fig. 4. CPA example related to the example of Fig.3. 

C. Motivations 

In today safety critical applications, it is important to provide 
an appropriate methodology able to assure the highest system 
reliability; however, most of the techniques available today do 

not differentiate the faults that should be targeted during on-
line testing.  In fact, the research literature is still missing for a 
methodology able to clearly identify faults that are untestable 
during the mission operation.  
In our proposed methodology, given a generic program, we can 
distinguish two main parts: 

 The Application Code: the binary image corresponding the 
compiling of the application code (e.g., written in C or 
assembly) that performs the speficic application. Such a 
binary image is typically fixed after the compiling step. 

 The Data Set: possible data (e.g., variables, values coming 
from the otuput, sensors, files, etc.) used by the application 
code for its operation. Data can be stored inside the main 
memory or inside some internal registers of the processor 
core. Contrarily to the application code, data can be 
modified after the compile step. 

As an example, let us consider a matrix multiplication 
program, as the one depicted in Fig. 5. Such a program makes 
use of two matrices A and B to compute the resulting matrix C. 
In this example, the application code is the algorithm 
performing the matrix multiplication, while the data set is 
composed of the values allocated in the input matrices A and 
B. 

   The purpose of this work is to analyze the effect of any 
variation in the program data that can affect the testability of 
faults. For the first time, our work aims at classifying testable 
faults according to such analysis, and provides figures about 
on-line functionally untestable faults in a processor running a 
well-defined application. 

 

Fig. 5. Example of application code and data set 

III. PROPOSED METHOD 

The approach proposed in this paper examines the effects of 
the program execution on the processor netlist in order to obtain 
the set of on-line functionally untestable faults. This 
classification leads to a reduction in the number of faults that 
must be detected and relaxes the on-line test requirements of a 
safety-critical system. Fig. 6 shows and summarizes the schema 
adopted in the proposed strategy. 

First, a topology analysis is performed aiming at: 

 identifying the netlist elements possibly connected to a fixed 
signal by the synthesis process (a); 

 extracting the cones for each input of each combinational 
block (b).  

Then, a logic simulation (c) of the processor while running 
the application is performed. The logic simulation records the 



circuit activity, which provides information regarding the toggle 
activity (d) for all signals in the netlist. If feasible, the logic 
simulation can be repeated a number of times with different 
data sets. 

Fixed elements identification
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Fig. 6. Proposed method schema.  

 

After, the circuit Primary Inputs (PIs) are classified (e). PIs 
can assume a constant value or can change during the 
operational life. Consequently, if a PIs has toggled during the 
simulation, then the PIs is marked as NOT-FIXED, else it is 
marked as FIXED.  

In the case of the flip-flops (FFs) the concept is slightly 
different, since they correspond to internal signals. A FF can 
toggle or not depending on the input constraints, on the program 
code and on the data set the program works on. For this reason, 
the FFs are grouped in the following categories: 

 FIXED sequential elements (type F), which include all FFs 
that never toggled during the application execution, and will 
never toggle, no matter the considered data sets; 

 POTENTIALLY NOT-FIXED sequential elements (type 
PNF), which include all FFs that never toggled during the 
application execution, but may toggle in the case a different 
data set is considered; 

 NOT-FIXED sequential elements (type NF), which include 
all FFs that toggled during the application execution.  

The circuit FFs are classified (f) on types F and PNF manually, 
out of those that never toggled during the logic simulation(s), 
based on the analysis of the processor RT-level model. 
Examples of FFs belonging to the PNF type include those inside 
the interrupt management block, which are marked as PNF 
since an external event can cause them to toggle. 

This kind of classification is a conservative approximation and 
it was also applied to other blocks: for example, given a register 
from the register file block, if a toggle activity is recorded for at 
least one bit, while the other bits did not toggle, the whole 
register is marked as type PNF.   

Afterwards, the circuit is characterized (g) considering all 
the information obtained by the previous steps. The 
controllability of the fixed PIs and type F FFs is set to the 
appropriate value (0 or 1). The controllability of the remaining 
PIs, PNF and NF FFs are set to 0.5. At this point, it is thus 
possible to use the previously proposed method and compute 
the controllability values for all the lines belonging to the 
circuit. 

Once the controllability evaluation ends, a log file is 
produced, which reports all gates having a controllability value 
(C0 or C1) equal to 1. For example, if the log file reports that 
C1(A) = 1, it means that the gate A was never set to the value 0 
during the execution of the target application. The log file 
defines all the possible fault locations that cannot be forced to 
the opposite value. hence, the corresponding faults can be 
marked as on-line functionally untestable. 

The last step of the method depurates the identified faults 
from the initial fault list (h). 

IV. EXPERIMENTAL RESULTS 

The proposed methodology has been experimented on the 
open-source low-power processor openMSP430 available 
through OpenCores [12]. The implementation of the method 
resorts to a TCL script for Synopsys Design Compiler. In the 
following, we will first provide some details about the 
experimental setup and then report the results related to the 
execution of some selected application programs. 

A. Experimental setup 

The openMSP430 processor is a synthesizable 16-bit 
microcontroller core written in Verilog. It is compatible with 
the Texas Instruments’ MSP430 microcontroller family and can 
execute the code generated by any MSP430 toolchain in a 
nearly cycle accurate way [13]. The core has some embedded 
peripherals like a 16x16 HW Multiplier, Watchdogs, and 
Timers. We synthesized the openMSP430 resorting to Synopsys 
Design Compiler, using the NanGate 45nm Open Cell Library 
[14]. The size of the resulting gate-level design is 
approximately 15k Equivalent Gates, including 834 sequential 
elements. The uncollapsed stuck-at fault list accounts for 51,744 
faults.  The reader should note that the size and complexity of 
this CPU module is comparable with many similar CPU 
modules used in safety-critical embedded applications, e.g., in 
the automotive domain. Table I reports the distribution of stuck-
at faults over the main CPU sub-modules. Synopsys TetraMax 
has been used for the identification of the structurally untestable 
(UT) faults reported in the table. 

TABLE I STUCK-AT (SA) FAULTS DISTRIBUTION IN THE OPENMSP430 

Sub-module Total SA faults Structurally UT faults 
clock_module 2,180 86 
debug 8,340 206 
execution_unit 18,434 300 
frontend 6,268 190 
mem_backbone 3,512 78 
multiplier 9,936 130 
sfr 602 34 
watchdog 1,568 76 
glue logic 904 0 
(whole CPU) 51,744 1,100 

 



In order to apply the proposed method and to identify the 
on-line functionally untestable faults, 4 benchmarking programs 
have been selected, whose characteristics in terms of memory 
footprint, and execution time are reported in Table II. The 
selected programs are described in the following: 

 Arithmetic: the program makes use of arithmetic operations, 
including multiply instructions. It is written in assembly. 

 Matrix multiplication: it performs the operation C=AB, 
where A and B are 3x3 integer matrices. It is implemented in 
C. 

 Quicksort: it is an efficient sorting algorithm, implemented 
in C. 

 CoreMark: it is a synthetic benchmark that measures the 
performance of central processing units (CPUs) used in 
embedded systems [15]. The code is written in C and 
contains implementations of the following algorithms: list 
processing (find and sort), matrix manipulation (common 
matrix operations), state machine (determine if an input 
stream contains valid numbers), and CRC. 

TABLE II CHARACTERISTICS OF THE SELECTED BENCHMARKS  

Program Size [kB] Duration [#clock cycles] 
Arithmetic 26.9 2,943 
Matrix multiplication 13.6 4,517 
Quicksort 36.4 5,426 
CoreMark 61.0 1,490,023 

 

B. Results 

Logic simulation of the selected benchmarks has been 
performed using Mentor QuestaSim. During each logic 
simulation, a Value Change Dump (VCD) file has been 
generated, which reports the values of each net of the gate-level 
circuit at any time. The toggle activity of the processor has been 
then derived from the VCD file using, a second time, Mentor 
QuestaSim. By running the script implementing the proposed 
method, and the processor faults have been classified according 
to the taxonomy described in the previous section. The results 
on the selected benchmarks are reported in Table III. The 
computational time (column 2 in Table III) refers to the time 
required to run the overall flow on a single core of a Xeon 
processor running at 3.2 GHz. The computational time includes 
the logic simulation, the toggle activity computation, and the 
fault classification. In all cases, the time required by our tool for 
the fault classification is negligible, while the overall 
computational time (which is in the order of few minutes up to 
few hours in the worst-case scenario of the CoreMark 
benchmark) is dominated by the time for logic simulation. 

TABLE III  FLIP-FLOPS CLASSIFICATION 

Program 
Comp. time  

[min] 
#FF  

type F 
#FF  

type PNF 
#FF  

type NF 
Arithmetic 3 38.88% 16.15% 43.66% 
Matrix multiplication 3 28.35% 23.33% 47.01% 
Quicksort 3 38.88% 34.09% 25.60% 
CoreMark 120 28.35% 14.23% 56.10% 

 

The reader can notice that the number of FFs that are 
classified as type F is not negligible and ranges between 28% 
and 39%. Moreover, only one half of the FFs (about 44% in the 

worst case) are classified as type NF, meaning that they toggle 
and that the corresponding faults can be safely marked as 
functionally testable, while a considerable portion of the 
remaining FFs (between 16% and 23%) are classified as type 
PNF. We classified them as potentially testable by using 
different data in the program, as well as a manual analysis of the 
processor model. It is also worth noting that the percentage of 
type F FFs may change significantly when moving from one 
program to another. 

The implementation of the proposed methodology based on 
the CPA algorithm and the FF classification has permitted to 
derive the amount of on-line functionally untestable faults in the 
processor, as reported in Table IV. Clearly, such faults are 
program-dependent, contrarily to structurally untestable faults, 
which are derived by the analysis of the circuit topology. 

TABLE IV STUCK-AT FAULTS CLASSIFICATION 

Program Testable 
On-line 

functionally 
untestable 

 faults % faults % 

Arithmetic 39,258 75.87 12,486 24.13 
Matrix multiplication 39,546 76.25 12,198 23.57 
Quicksort 35,930 69.43 15,814 30.56 
CoreMark 39,600 76.53 12,144 23.47 

 

The results in Table IV show that the number of on-line 
functionally untestable faults is not negligible (more than 20% 
of the total number of faults). This means among the other 
things that:  

 none of these faults is able to produce any failure during the 
execution of the mission application; 

 any functional test method (such as Software-based Self-
test, as an example) can safely remove those faults from the 
fault list used for the test generation; 

 other test methods (such as Logic BIST) which will test 
them are performing overtesting, i.e., they are discarding 
potentially good devices (i.e., not corrupting the behavior of 
the mission application). 

Moreover, it is worth noting that the number of on-line 
functionally untestable faults may vary significantly depending 
on the program executed by the processor. This makes the 
analysis proposed in this paper and the method to identify them 
particularly important from a practical point of view. 

Finally, if we compare the figures of Table IV with those 
provided in [1], we see that our method is able to identify a 
significant percentage of the on-line functionally untestable 
faults, despite its lower complexity and computational 
complexity. 

The distribution of on-line functionally untestable faults on 
each processor sub-module is reported in Table V. 

The figures in this table show that: 

 the different modules can be associated with quite different 
numbers of on-line functionally untestable faults, both in 
terms of absolute value and in percentage; 

 the debug module is clearly a major contributor, since it 
does not play any role during the operational phase; 



 the execution unit is also associated to a significant number 
of on-line functionally untestable faults, and this number 
may change from one program to another depending on the 
kind of operations performed; 

 modules related to the memory access may produce a 
variable number of on-line functionally untestable faults, 
depending on the size and location of the data and code 
memory areas; 

 test structures also contribute to the number of on-line 
functionally untestable faults: since some of them (e.g., the 
scan chains) are not used during the operational phase, some 
of the faults associated to them belong to the class of on-line 
functionally untestable faults. 

TABLE V ON-LINE FUNCTIONALLY UNTESTABLE FAULTS ON 

OPENMSP430 SUB-MODULES 

 Arithmetic 
Matrix 

multiplic. 
Quicksort CoreMark 

clock_module 37.11% 37.11% 37.11% 37.11% 
debug 65.56% 65.56% 65.56% 65.56% 
execution_unit 21.79% 18.91% 17.40% 18.61% 
frontend 14.13% 14.25% 19.16% 14.25% 
mem_backbone 7.03% 13.72% 7.06% 13.72% 
multiplier 5.12% 5.12% 43.41% 5.12% 
sfr 14.78% 14.78% 14.78% 14.78% 
watchdog 21.11% 21.11% 22.07% 21.30% 
glue logic 14.38% 14.38% 14.38% 14.38% 
(whole CPU) 24.13% 23.57% 30.56% 23.47% 

 

V. CONCLUSIONS 

This paper focuses on the group of single permanent faults 
inside a processor that can be shown not to be able to cause any 
failure during the operational phase of a microprocessor-based 
embedded system. The size of this group depends on the 
system configuration (e.g., the amount of memory and the 
memory map) but also on the application program executed by 
the embedded system. 
Identifying the largest possible number of these faults allow 
better tuning the test process, while still guaranteeing the same 
reliability level, which is often measured resorting to the 
Testable Fault Coverage metric. Unfortunately, this task is 
currently performed in a manual manner within the FMEA 
process, with clear limitations in terms of required effort and 
achieved results. 
This paper is a first effort towards the development of an 
automatic method for identifying the on-line functionally 
untestable faults. The proposed technique still requires some 

manual steps, but it is shown to be able to identify a significant 
number of the on-line functionally untestable faults with a 
limited computational effort.  
The reported results have been gathered on a freely available 
processor core considering only stuck-at faults, but can easily 
be extended to other processors and fault models.  
We are currently working at the development of an improved 
version of our technique, characterized by full automation and 
increased performance.  
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