
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

About on-line functionally untestable fault identification in microprocessor cores for safety-critical applications / Cantoro,
R.; Firrincieli, Andrea; Piumatti, D.; Restifo, M.; Sanchez, E.; Reorda, M. Sonza. - STAMPA. - 2018-:(2018), pp. 1-6.
(Intervento presentato al convegno 19th IEEE Latin-American Test Symposium, LATS 2018 tenutosi a bra nel 2018)
[10.1109/LATW.2018.8349679].

Original

About on-line functionally untestable fault identification in microprocessor cores for safety-critical
applications

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/LATW.2018.8349679

Terms of use:

Publisher copyright

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2712036 since: 2019-02-21T11:54:58Z

Institute of Electrical and Electronics Engineers Inc.

About on-line functionally untestable fault
identification in microprocessor cores for safety-

critical applications

R. Cantoro, A. Firrincieli, D. Piumatti, M. Restifo, E. Sanchez, M. Sonza Reorda
Politecnico di Torino, Dip. Automatica e Informatica

Torino, Italy

Abstract1— When microprocessor cores are used in safety-

critical applications, in-field test must be performed to reach the
target reliability figures. In turns, the in-field test must be
organized so that it achieves a sufficient fault coverage. The fault
list to be considered for computing the fault coverage should only
include testable faults, i.e., faults which may cause a failure in the
operating conditions. Hence, single permanent faults that in the
operating conditions cannot be excited, or do not propagate to any
output, or both, should be removed from the list.
These faults, called on-line functionally untestable faults, require a
significant effort to be identified. The contribution of this paper is
twofold. From one side, it reports experiments, showing that in
typical embedded safety-critical systems their number is often far
from being negligible, and depends on many parameters,
including the application code run by the processor. Secondly, it
provides a semi-automated approach to their identification.
Experimental results on a representative microprocessor are
reported.

Keywords—component; formatting; style; styling;

I. INTRODUCTION

When an electronic system is used in a safety-critical
application, the probability that a fault may cause a failure must
be evaluated and compared with the target reliability figures. In
several domains standard and regulations (e.g., IEC 61508 for
industrial systems, DO-254 for avionics, ISO 26262 for
automotive) mandate well-defined procedures for reliability
assessment and define target reliability figures.

FAULT UNIVERSE

ON-LINE DETECTABLE

ON-LINE FUNCTIONALLY
UNTESTABLE

FUNCTIONALLY
UNTESTABLE

STRUCTURALLY
UNTESTABLE

Fig. 1. On-line fault categories and their relationship [4].

1 This work has been supported by the European Union
through the H2020 project no. 637616 (MaMMoTH-Up).

It is common to adopt some in-field test solutions, which
can be activated during the operational phase and are able to
detect possible permanent faults before these may produce any
failure. These solutions may be based on Design for Testability
techniques (such as BIST) or on self-test functional approaches
(such as Software-based Self-test [2]), or on a combination of
the former ones. The quality of these solutions is measured first
of all in terms of achieved fault coverage with respect to the
adopted fault model(s). Clearly, the higher the level of safety
that the application must achieve, the higher the fault coverage
which is required. The fault coverage figure is computed with
respect to a fault list which as a first step includes all possible
faults. However, permanent faults that cannot produce any
failure in the operational mode (denoted as untestable faults)
can be removed from this list.

This category of single permanent faults includes several
groups, which are illustrated in Fig. 1:

1. Structurally untestable faults, i.e., faults for which a test
does not exist even if the combinational block where the
fault is located is fully controllable and observable.
Examples of faults belonging to this category include
faults that cannot be tested due to some redundancy in
the combinational logic. If a gate-level description of the
device is available, an ATPG tool can identify some of
these faults.

2. Functionally untestable faults, i.e., faults that do not
belong to the previous group, but cannot produce any
failure due to the sequential behavior of the circuit, for
example, in the case the circuit cannot reach all possible
states. Several works proposed techniques to
automatically identify these faults, either in a generic
circuit [5][6][7] or specifically in a CPU [8].

3. On-line functionally untestable faults, i.e., faults that do
not belong to the previous groups, but cannot produce
any failure in the operational conditions the target device
works in. As an example, all faults related to the debug
circuitry in a processor belong to this group, since debug
facilities are not used during the normal behavior. In [4]
we already reported some examples of faults belonging
to this category, and showed that their number is
typically not negligible. In this paper, we extend the
number of faults belonging to this category by also
considering faults that cannot produce any failure, due to
the specific application code executed by the CPU. In
the ISO26262 terminology, these faults are called “safe
faults application dependent”.

Identifying untestable faults is crucial, because it allows to
remove them from the fault list and to focus the test efforts
towards the testable faults, only. Moreover, knowing the list of
untestable faults may permit reducing the effects of over-testing
phenomena, which are known to reduce the yield, and thus the
profit of semiconductor and system companies.

In the past, there have been several efforts to develop
effective solutions to the automatic identification of structurally
and functionally untestable faults. In general, techniques for
identifying on-line functionally untestable faults are less
mature, and most of the work is still done manually, often in the
frame of the so-called FMEA (Failure Mode Effects Analysis).
Some preliminary discussion about possible methods for
functionally untestable fault identification was given in [4] and
[9], based also on the observation that limitations in the usable
address space [3] may increase the number of on-line
functionally untestable faults.

In this paper, we make some further steps in this direction.
We focus on the typical scenario characterizing a special
purpose system, i.e., a system built to perform a single
application. This means that the processor included in this
system only executes a single piece of code, written to perform
the target application, which remains the same during the whole
operational life. The first contribution of this paper is to show
that the number of on-line functionally untestable faults existing
in the embedded processor is increased by the fact that the
application code is fixed, and cannot cover all possible
scenarios the processor has been designed for. In other words,
given a certain application code and all possible input data set,
it may happen that some internal resources are never accessed:
hence, all faults associated to these resources belong to the class
of on-line functionally untestable faults. As a trivial example, if
the application code never uses multiplication, the faults
associated to the multiplier becomes untestable, and can thus be
removed from the list used to compute fault coverage. Faults
related to other resources (e.g., those supporting test or debug)
may also belong to the same category. A similar analysis is
reported in [1], where the goal is to identify gates in the
processor that do not play any role in such a scenario, and can
thus be removed from the design. In our case, the processor
design is not changed, but we adopt a similar approach to
identify these gates, because they are associated with on-line
functionally untestable faults.

The second contribution of the paper is to propose a semi-
automated and scalable method, able to identify a good
percentage of the on-line functionally untestable faults. The
availability of such a method can clearly reduce in a significant
manner the amount of time and effort to perform the reliability
analysis required by several standards and regulations.

In order to provide the reader with a test case where the
method is applied, we selected a representative processor,
considered a few application codes, and applied our method to
identify the functionally untestable faults. Results show that the
number of on-line functionally untestable faults that can be
identified by the method is generally not negligible, accounting
for up to 30% of the total number of faults. Our method,
although not able to identify all of them, appears to be able to
significantly reduce the effort for their identification.

The rest of the paper is organized as follows: Section II
introduces some basic definitions: first, the controllability is

introduced, then, the cone definition is explained with some
motivations. Section III better details how the proposed method
works with emphasis on the cone extraction algorithm and the
logic gate activity extraction. Section IV shows the results
obtained by running different applications code on a widely
used low-power microprocessor.

II. BACKGROUND AND MOTIVATIONS

This section provides the reader with the required
information about the controllability metric and partitioning of
the circuit in cones. This knowledge allows to fully understand
the following sections.

A. Controllability

The concept of controllability C has been defined in [10] as
the probability that a random input vector for a combinational
block forces a given line l to the value 1 (C1=1) or 0 (C0=1).
The controllability value depends on the logic function
implemented by the block and can hold any value inside the
interval [0:1].

Controllability values of the inputs are usually equal to 0.5
both for logic zero and logic one. However, when some special
conditions hold, these values may be changed accordingly.

When the controllability value is 0, it indicates that it is not
possible to set the line to a specific value. For example, C1(A) =
0 means that line A cannot assume the value 1.

Generally speaking, the controllability of a line holds values
in the range [0:1], and it rarely holds the values 1 or 0.

The computation of the controllability C for all lines in a
logic block can be performed by starting from the input block
and then proceeding towards its outputs level by level. For each
gate, we can compute the controllability of the output line by
knowing the type of the gate and the controllability values of its
inputs. The following equations hold for OR/AND gates:

For an n input OR gate

𝐶 (𝑁) = 1 − 𝐶 (𝑁)

𝐶 (𝑁) = 1 − 𝐶 (𝑥)

For an n input AND gate

𝐶 (𝑁) = 1 − 𝐶 (𝑥)

𝐶 (𝑁) = 1 − 𝐶 (𝑁)
For a NOT gate

𝐶 (𝑁) = 𝐶 (𝑥)

𝐶 (𝑁) = 𝐶 (𝑥)

where N is the output signal of the gate under exam and xi
are its inputs.

Fig. 2 provides an example and the relative expansion
formulas of controllability are developed in the following.

𝐶 (𝑋) = 𝐶 (𝑋) = 𝐶 (𝑋) = 0.5
𝐶 (𝑋) = 𝐶 (𝑋) = 𝐶 (𝑋) = 0.5
𝐶 (𝑎) = 𝐶 (𝑏) = 1 − (0.5 ∙ 0.5) = 0.75
𝐶 (𝑎) = 𝐶 (𝑏) = 1 − 𝐶 (𝑎) = 0.25

𝐶 (𝑐) = 1 − (0.25 ∙ 0.25) = 0.9375
𝐶 (𝑐) = 1 − 𝐶 (𝑐) = 0.0625

𝑋

𝑋

𝑋 𝑎

𝑏

𝑐

Fig. 2. Example of controllability computation.

B. Cone Partitioning Algorithm

This sub-section describes the cone definition used in this
work that has been inspired by [11]. A cone in a combinational
block is the set of all gates that are directly or indirectly fed by a
given input signal.

Fig. 3 illustrates an example of a combinational block and
the cone associated to an input signal. The CONE starts from
input pin X and arrives up to output O1 and output O2.

The cone extraction process is based on the Cone
Partitioning Algorithm (CPA). The CPA is based on a Breadth-
First-Search over the graph representation of the combinational
block netlist. Figure 4 depicts the result of the CPA on the
example proposed in Fig. 3.

1

4

3

6

5

2

CONE

X

O1

O2

Fig. 3. Example of a cone.

4

36

5

2

1
1

2

3
O1

O2

X

Fig. 4. CPA example related to the example of Fig.3.

C. Motivations

In today safety critical applications, it is important to provide
an appropriate methodology able to assure the highest system
reliability; however, most of the techniques available today do

not differentiate the faults that should be targeted during on-
line testing. In fact, the research literature is still missing for a
methodology able to clearly identify faults that are untestable
during the mission operation.
In our proposed methodology, given a generic program, we can
distinguish two main parts:

 The Application Code: the binary image corresponding the
compiling of the application code (e.g., written in C or
assembly) that performs the speficic application. Such a
binary image is typically fixed after the compiling step.

 The Data Set: possible data (e.g., variables, values coming
from the otuput, sensors, files, etc.) used by the application
code for its operation. Data can be stored inside the main
memory or inside some internal registers of the processor
core. Contrarily to the application code, data can be
modified after the compile step.

As an example, let us consider a matrix multiplication
program, as the one depicted in Fig. 5. Such a program makes
use of two matrices A and B to compute the resulting matrix C.
In this example, the application code is the algorithm
performing the matrix multiplication, while the data set is
composed of the values allocated in the input matrices A and
B.

 The purpose of this work is to analyze the effect of any
variation in the program data that can affect the testability of
faults. For the first time, our work aims at classifying testable
faults according to such analysis, and provides figures about
on-line functionally untestable faults in a processor running a
well-defined application.

Fig. 5. Example of application code and data set

III. PROPOSED METHOD

The approach proposed in this paper examines the effects of
the program execution on the processor netlist in order to obtain
the set of on-line functionally untestable faults. This
classification leads to a reduction in the number of faults that
must be detected and relaxes the on-line test requirements of a
safety-critical system. Fig. 6 shows and summarizes the schema
adopted in the proposed strategy.

First, a topology analysis is performed aiming at:

 identifying the netlist elements possibly connected to a fixed
signal by the synthesis process (a);

 extracting the cones for each input of each combinational
block (b).

Then, a logic simulation (c) of the processor while running
the application is performed. The logic simulation records the

circuit activity, which provides information regarding the toggle
activity (d) for all signals in the netlist. If feasible, the logic
simulation can be repeated a number of times with different
data sets.

Fixed elements identification

Logic simulation

Cones Partitioning Algorithm (CPA)

Circuit Characterization

Toggle Activity

Classification of Primary Inputs

Classification of Sequential Elements

Faults Elimination

a

b

c

d

e

f

g

h

Fig. 6. Proposed method schema.

After, the circuit Primary Inputs (PIs) are classified (e). PIs
can assume a constant value or can change during the
operational life. Consequently, if a PIs has toggled during the
simulation, then the PIs is marked as NOT-FIXED, else it is
marked as FIXED.

In the case of the flip-flops (FFs) the concept is slightly
different, since they correspond to internal signals. A FF can
toggle or not depending on the input constraints, on the program
code and on the data set the program works on. For this reason,
the FFs are grouped in the following categories:

 FIXED sequential elements (type F), which include all FFs
that never toggled during the application execution, and will
never toggle, no matter the considered data sets;

 POTENTIALLY NOT-FIXED sequential elements (type
PNF), which include all FFs that never toggled during the
application execution, but may toggle in the case a different
data set is considered;

 NOT-FIXED sequential elements (type NF), which include
all FFs that toggled during the application execution.

The circuit FFs are classified (f) on types F and PNF manually,
out of those that never toggled during the logic simulation(s),
based on the analysis of the processor RT-level model.
Examples of FFs belonging to the PNF type include those inside
the interrupt management block, which are marked as PNF
since an external event can cause them to toggle.

This kind of classification is a conservative approximation and
it was also applied to other blocks: for example, given a register
from the register file block, if a toggle activity is recorded for at
least one bit, while the other bits did not toggle, the whole
register is marked as type PNF.

Afterwards, the circuit is characterized (g) considering all
the information obtained by the previous steps. The
controllability of the fixed PIs and type F FFs is set to the
appropriate value (0 or 1). The controllability of the remaining
PIs, PNF and NF FFs are set to 0.5. At this point, it is thus
possible to use the previously proposed method and compute
the controllability values for all the lines belonging to the
circuit.

Once the controllability evaluation ends, a log file is
produced, which reports all gates having a controllability value
(C0 or C1) equal to 1. For example, if the log file reports that
C1(A) = 1, it means that the gate A was never set to the value 0
during the execution of the target application. The log file
defines all the possible fault locations that cannot be forced to
the opposite value. hence, the corresponding faults can be
marked as on-line functionally untestable.

The last step of the method depurates the identified faults
from the initial fault list (h).

IV. EXPERIMENTAL RESULTS

The proposed methodology has been experimented on the
open-source low-power processor openMSP430 available
through OpenCores [12]. The implementation of the method
resorts to a TCL script for Synopsys Design Compiler. In the
following, we will first provide some details about the
experimental setup and then report the results related to the
execution of some selected application programs.

A. Experimental setup

The openMSP430 processor is a synthesizable 16-bit
microcontroller core written in Verilog. It is compatible with
the Texas Instruments’ MSP430 microcontroller family and can
execute the code generated by any MSP430 toolchain in a
nearly cycle accurate way [13]. The core has some embedded
peripherals like a 16x16 HW Multiplier, Watchdogs, and
Timers. We synthesized the openMSP430 resorting to Synopsys
Design Compiler, using the NanGate 45nm Open Cell Library
[14]. The size of the resulting gate-level design is
approximately 15k Equivalent Gates, including 834 sequential
elements. The uncollapsed stuck-at fault list accounts for 51,744
faults. The reader should note that the size and complexity of
this CPU module is comparable with many similar CPU
modules used in safety-critical embedded applications, e.g., in
the automotive domain. Table I reports the distribution of stuck-
at faults over the main CPU sub-modules. Synopsys TetraMax
has been used for the identification of the structurally untestable
(UT) faults reported in the table.

TABLE I STUCK-AT (SA) FAULTS DISTRIBUTION IN THE OPENMSP430

Sub-module Total SA faults Structurally UT faults
clock_module 2,180 86
debug 8,340 206
execution_unit 18,434 300
frontend 6,268 190
mem_backbone 3,512 78
multiplier 9,936 130
sfr 602 34
watchdog 1,568 76
glue logic 904 0
(whole CPU) 51,744 1,100

In order to apply the proposed method and to identify the
on-line functionally untestable faults, 4 benchmarking programs
have been selected, whose characteristics in terms of memory
footprint, and execution time are reported in Table II. The
selected programs are described in the following:

 Arithmetic: the program makes use of arithmetic operations,
including multiply instructions. It is written in assembly.

 Matrix multiplication: it performs the operation C=AB,
where A and B are 3x3 integer matrices. It is implemented in
C.

 Quicksort: it is an efficient sorting algorithm, implemented
in C.

 CoreMark: it is a synthetic benchmark that measures the
performance of central processing units (CPUs) used in
embedded systems [15]. The code is written in C and
contains implementations of the following algorithms: list
processing (find and sort), matrix manipulation (common
matrix operations), state machine (determine if an input
stream contains valid numbers), and CRC.

TABLE II CHARACTERISTICS OF THE SELECTED BENCHMARKS

Program Size [kB] Duration [#clock cycles]
Arithmetic 26.9 2,943
Matrix multiplication 13.6 4,517
Quicksort 36.4 5,426
CoreMark 61.0 1,490,023

B. Results

Logic simulation of the selected benchmarks has been
performed using Mentor QuestaSim. During each logic
simulation, a Value Change Dump (VCD) file has been
generated, which reports the values of each net of the gate-level
circuit at any time. The toggle activity of the processor has been
then derived from the VCD file using, a second time, Mentor
QuestaSim. By running the script implementing the proposed
method, and the processor faults have been classified according
to the taxonomy described in the previous section. The results
on the selected benchmarks are reported in Table III. The
computational time (column 2 in Table III) refers to the time
required to run the overall flow on a single core of a Xeon
processor running at 3.2 GHz. The computational time includes
the logic simulation, the toggle activity computation, and the
fault classification. In all cases, the time required by our tool for
the fault classification is negligible, while the overall
computational time (which is in the order of few minutes up to
few hours in the worst-case scenario of the CoreMark
benchmark) is dominated by the time for logic simulation.

TABLE III FLIP-FLOPS CLASSIFICATION

Program
Comp. time

[min]
#FF

type F
#FF

type PNF
#FF

type NF
Arithmetic 3 38.88% 16.15% 43.66%
Matrix multiplication 3 28.35% 23.33% 47.01%
Quicksort 3 38.88% 34.09% 25.60%
CoreMark 120 28.35% 14.23% 56.10%

The reader can notice that the number of FFs that are
classified as type F is not negligible and ranges between 28%
and 39%. Moreover, only one half of the FFs (about 44% in the

worst case) are classified as type NF, meaning that they toggle
and that the corresponding faults can be safely marked as
functionally testable, while a considerable portion of the
remaining FFs (between 16% and 23%) are classified as type
PNF. We classified them as potentially testable by using
different data in the program, as well as a manual analysis of the
processor model. It is also worth noting that the percentage of
type F FFs may change significantly when moving from one
program to another.

The implementation of the proposed methodology based on
the CPA algorithm and the FF classification has permitted to
derive the amount of on-line functionally untestable faults in the
processor, as reported in Table IV. Clearly, such faults are
program-dependent, contrarily to structurally untestable faults,
which are derived by the analysis of the circuit topology.

TABLE IV STUCK-AT FAULTS CLASSIFICATION

Program Testable
On-line

functionally
untestable

 faults % faults %

Arithmetic 39,258 75.87 12,486 24.13
Matrix multiplication 39,546 76.25 12,198 23.57
Quicksort 35,930 69.43 15,814 30.56
CoreMark 39,600 76.53 12,144 23.47

The results in Table IV show that the number of on-line
functionally untestable faults is not negligible (more than 20%
of the total number of faults). This means among the other
things that:

 none of these faults is able to produce any failure during the
execution of the mission application;

 any functional test method (such as Software-based Self-
test, as an example) can safely remove those faults from the
fault list used for the test generation;

 other test methods (such as Logic BIST) which will test
them are performing overtesting, i.e., they are discarding
potentially good devices (i.e., not corrupting the behavior of
the mission application).

Moreover, it is worth noting that the number of on-line
functionally untestable faults may vary significantly depending
on the program executed by the processor. This makes the
analysis proposed in this paper and the method to identify them
particularly important from a practical point of view.

Finally, if we compare the figures of Table IV with those
provided in [1], we see that our method is able to identify a
significant percentage of the on-line functionally untestable
faults, despite its lower complexity and computational
complexity.

The distribution of on-line functionally untestable faults on
each processor sub-module is reported in Table V.

The figures in this table show that:

 the different modules can be associated with quite different
numbers of on-line functionally untestable faults, both in
terms of absolute value and in percentage;

 the debug module is clearly a major contributor, since it
does not play any role during the operational phase;

 the execution unit is also associated to a significant number
of on-line functionally untestable faults, and this number
may change from one program to another depending on the
kind of operations performed;

 modules related to the memory access may produce a
variable number of on-line functionally untestable faults,
depending on the size and location of the data and code
memory areas;

 test structures also contribute to the number of on-line
functionally untestable faults: since some of them (e.g., the
scan chains) are not used during the operational phase, some
of the faults associated to them belong to the class of on-line
functionally untestable faults.

TABLE V ON-LINE FUNCTIONALLY UNTESTABLE FAULTS ON

OPENMSP430 SUB-MODULES

 Arithmetic
Matrix

multiplic.
Quicksort CoreMark

clock_module 37.11% 37.11% 37.11% 37.11%
debug 65.56% 65.56% 65.56% 65.56%
execution_unit 21.79% 18.91% 17.40% 18.61%
frontend 14.13% 14.25% 19.16% 14.25%
mem_backbone 7.03% 13.72% 7.06% 13.72%
multiplier 5.12% 5.12% 43.41% 5.12%
sfr 14.78% 14.78% 14.78% 14.78%
watchdog 21.11% 21.11% 22.07% 21.30%
glue logic 14.38% 14.38% 14.38% 14.38%
(whole CPU) 24.13% 23.57% 30.56% 23.47%

V. CONCLUSIONS

This paper focuses on the group of single permanent faults
inside a processor that can be shown not to be able to cause any
failure during the operational phase of a microprocessor-based
embedded system. The size of this group depends on the
system configuration (e.g., the amount of memory and the
memory map) but also on the application program executed by
the embedded system.
Identifying the largest possible number of these faults allow
better tuning the test process, while still guaranteeing the same
reliability level, which is often measured resorting to the
Testable Fault Coverage metric. Unfortunately, this task is
currently performed in a manual manner within the FMEA
process, with clear limitations in terms of required effort and
achieved results.
This paper is a first effort towards the development of an
automatic method for identifying the on-line functionally
untestable faults. The proposed technique still requires some

manual steps, but it is shown to be able to identify a significant
number of the on-line functionally untestable faults with a
limited computational effort.
The reported results have been gathered on a freely available
processor core considering only stuck-at faults, but can easily
be extended to other processors and fault models.
We are currently working at the development of an improved
version of our technique, characterized by full automation and
increased performance.

REFERENCES
[1] Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh Kumar, John Sartori,

“Bespoke Processors for Applications with Ultra-low Area and Power
Constraints”, ISCA ’17

[2] M. Psarakis et al., “Microprocessor Software-Based Self-Testing”, IEEE
Design & Test of Computers, vol. 27, no. 3. May-June 2010, pp. 4-19

[3] P. Bernardi, L. Ciganda, M. de Carvalho, M. Grosso, J. Lagos-Benites, E.
Sanchez, M. Sonza Reorda, O. Ballan, “On-line software-based self-test
of the address calculation unit in RISC processors”, Proc. 17th IEEE Eur.
Test Symp. (ETS), May 2012, pp. 1–6

[4] P. Bernardi, M. Bonazza, E. Sanchez, M. Sonza Reorda, and O. Ballan,
“On-line functionally untestable fault identification in embedded
processor cores”, Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE),
Mar. 2013, pp. 1462–1467

[5] J. Raik, H. Fujiwara, R. Ubar, A. Krivenko, “Untestable Fault
Identification in Sequential Circuits Using Model-Checking”, Proc.
IEEE Asian Test Symposium, 2008, pp. 21-26

[6] Syal, M.; Hsiao, M.S., “New techniques for untestable fault identification
in sequential circuits”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 5, no. 6, 2006, pp. 1117 – 1131

[7] H.-C. Liang; C. L. Lee; Chen, J.E., “Identifying Untestable Faults in
Sequential Circuits”, IEEE Design & Test of Computers, Vol. 12 , No.
3, 1995, pp. 14-23

[8] W.-C. Lai; Krstic, A.; Kwang-Ting Cheng, “Functionally testable path
delay faults on a microprocessor”, IEEE Design & Test of Computers,
vol. 17, no. 4, 2000, pp. 6-14

[9] A. Riefert; R. Cantoro; M. Sauer; M. Sonza Reorda; B. Becker, “A
Flexible Framework for the Automatic Generation of SBST Programs”,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
2016, Volume: 24, Issue: 10, pp. 3055 – 3066

[10] F. Brglez, “On testability analysis of combinational networks,” IEEE
International Symposium on Circuits and Systems, May 1980, pp. 221-
225

[11] D. R. Brasen and G. Saucier, "Using cone structures for circuit
partitioning into FPGA packages," in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 17, no. 7, pp. 592-
600, Jul 1998

[12] https://opencores.org

[13] www.ti.com

[14] www.nangate.com

[15] www.eembc.org/coremark/index.php

