
07 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Test of Reconfigurable Modules in Scan Networks / Cantoro, Riccardo; Ghani Zadegan, Farrokh; Palena, Marco; Pasini,
Paolo; Larsson, Erik; Sonza Reorda, Matteo. - In: IEEE TRANSACTIONS ON COMPUTERS. - ISSN 0018-9340. -
STAMPA. - (2018), pp. 1-1. [10.1109/TC.2018.2834915]

Original

Test of Reconfigurable Modules in Scan Networks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TC.2018.2834915

Terms of use:

Publisher copyright

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2712034 since: 2018-08-28T16:20:45Z

IEEE Computer Society

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2834915, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 1

Test of Reconfigurable Modules in
Scan Networks

Riccardo Cantoro, Member, IEEE, Farrokh Ghani Zadegan, Member, IEEE, Marco Palena, Member, IEEE,
Paolo Pasini, Member, IEEE, Erik Larsson, Senior Member, IEEE,

and Matteo Sonza Reorda, Fellow, IEEE

Abstract—Modern devices often include several embedded instruments, such as BIST interfaces, sensors, calibration facilities. New
standards, such as IEEE Std 1687, provide vehicles to access these instruments. In approaches based on reconfigurable scan
networks (RSNs), instruments are coupled with scan registers, connected into chains and interleaved with reconfigurable modules.
Such modules embed reconfigurable multiplexers that permit a selective access to different parts of the chain. A similar scenario is
also supported by IEEE Std 1149.1-2013. The test of permanent faults affecting an RSN requires to shift test vectors throughout a
certain number of network configurations. This paper presents some methodologies to select the list of configurations that perform the
complete test of the reconfigurable modules of the RSN. In particular, one method is presented that, by construction, can be proved to
be able to apply the test in the minimum amount of clock cycles. Other methods are sub-optimal in terms of test application time (TAT),
but scale well on large circuits. In order to provide a comparison between the proposed methods, experimental results on some
benchmark RSNs are provided.

Index Terms—Test, Reconfigurable Scan Networks, IEEE Std 1687, A∗ Algorithm.

F

1 INTRODUCTION

Due to the complexity of new electronic devices, several
features are embedded in such systems beside the core
functional logic. Examples of such features are Built-In Self-
Test (BIST), included for test and diagnostic sake, interfaces
to core testing (e.g., based on the IEEE Std 1500), analog
components (e.g., temperature sensors used to monitor the
device behavior, oscillators) accessed during the chip cali-
bration, or debug related components (e.g., trace buffers).
These features are hereinafter called instruments. Creating a
mechanism to access instruments has led to many different
legacy solutions, facing the complex task of integrating all
of them in the system, especially when they come from
different designers. In order to mitigate these issues, new
standards have been created.

IEEE Std 1149.1-2013 and IEEE Std 1687 have stan-
dardized the concept of reconfigurable scan chains, which
were proposed for various purposes in several previous
papers, such as [1]. This kind of chains are segmented in
several parts, hereinafter referred to as segments, which are
interleaved with special elements, hereinafter referred to
as reconfigurable modules. Each segment can include one or
more instruments. The interface with an instrument is the
test data register (TDR), which can include capture logic (in
case of reading capability) and update logic (in the case
when writing is allowed). According to the configuration
of reconfigurable modules, certain segments are connected

• R. Cantoro, M. Palena, P. Pasini, and M. Sonza Reorda are with the
Department of Control and Computer Engineering, Politecnico di Torino,
Turin, Italy.
E-mail: riccardo.cantoro@polito.it, marco.palena@polito.it,
paolo.pasini@polito.it, matteo.sonzareorda@polito.it

• F. Ghani Zadegan and E. Larsson are with the Department of Electrical
and Information Technology, Lund University, Lund, Sweden.
E-mail: farrokh.ghani zadegan@eit.lth.se, erik.larsson@eit.lth.se

together in the so called active path, i.e., the path connected
between the scan input and scan output pins of the recon-
figurable scan chain at a given time. Since the complexity
of these reconfigurable scan chains can be high (i.e., many
possible active paths may exist), the standards refer to them
as networks.

A reconfigurable scan network (RSN) can be configured
to access a certain instrument. A proper test must check
whether the RSN can be moved in all legal configurations
and whether it works as expected in any of them (i.e., when
a certain set of segments is made part of the active path). The
test of reconfigurable modules must be complemented with
the test of the remaining components of the RSN, which can
resort to both traditional scan test methodologies (e.g., [2],
[3], [4]) and new techniques targeting specific defective
behaviors (e.g., bridging faults may introduce interaction
between instruments, TDRs, and reconfigurable modules).

This paper deals with the test of permanent faults affect-
ing reconfigurable modules, which are not considered dur-
ing the test of standard scan chains. Other parts of the RSN
are not considered in this article, such as the interface with
instruments (i.e., the capture and update logic of TDRs), and
TDR flip-flops. We assume that faults affecting those parts
can be detected by applying suitable functional stimuli to
the instruments at the end of the proposed test flow. The
main focus of this article is not to improve state-of-the-art
scan cell testing techniques but to support minimum-length
test of reconfigurable modules. More specifically, the paper
focuses first on proposing algorithms to automatically gen-
erate a test sequence able to detect possible faults affecting
the reconfigurable modules. Since the cost for the test heav-
ily depends on its duration, the paper analyses the length
of the solutions generated by the proposed algorithms.
Not surprisingly, generating the minimum-length solution

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2834915, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 2

requires very computationally expensive algorithms. Hence,
we propose solutions trading-off the length of the generated
test sequence with the computation cost for generating it.
The basic idea presented by the authors in [5] and [6] is
extended in this article with a detailed description of the
proposed algorithms and more extensively supported by
experimental results.

Since it is common in the industrial practice to start the
test generation activities early in the design process, when
high-level descriptions are available only, we decided to
develop solutions targeting a high-level fault model for the
reconfigurable modules. Moreover, in this way we can sim-
plify the test generation process and make the algorithms
more general and independent on the specific implemen-
tation, while we demonstrate that by using the proposed
high-level fault model we can detect the majority of faults
detectable by lower-level fault models. To summarize, given
an RSN to test, the application of the proposed method
results in a list of configurations that cover all targeted faults
while minimizing the test application time (TAT).

The proposed methodology has been applied to a sub-
set of the ITC’16 benchmark networks [7] and evaluated
with respect to the duration of the test. Moreover, the
proposed approaches are compared also on a set of synthetic
networks, showing that the minimum TAT can be reached
on small networks, while test sets for large networks can
be generated with sub-optimal algorithms that are very
efficient in terms of CPU time and memory requirements.

The rest of the paper is organized as follows. Section 2
presents the background of the research work on RSNs.
The basic notions about network testability, fault model,
and test vectors are presented in Section 3. In the proposed
work, the problem is represented using graphs, as shown in
Section 4. Test approaches using these graphs are presented
in Section 5. Some experimental results are reported in
Section 6. Finally, Section 7 draws some conclusions.

2 BACKGROUND

This section introduces the main elements composing RSNs,
such as TDRs and standardized reconfigurable elements.

TDRs have been introduced by IEEE Std 1149.1 and are
composed of a number of bits, each bit containing a cap-
ture/scan cell (C) and an optional update cell (U). By acting
on the test access port (TAP) controller, TDRs can be selected.
In the latest revision of the standard (i.e., IEEE Std 1149-
2013 [8]), each TDR can be constructed as a chain of multiple
segments, some of which are always scanned while others,
called excludable segments (see Fig. 1) and selectable segments
(see Fig. 2), are scanned only in particular situations. Each
of those segments is controlled by a configuration module
composed of one or more bits (i.e., a C cell and a U cell),
which act on a selection circuit (e.g., a multiplexer).

The new IEEE Std 1687 [9] tackles the same problem of
accessing instruments in different ways, including RSNs.
The stardard defines the so called Segment Insertion Bit
(SIB), which is similar in concept to an excludable segment.
Selectable segments can be implemented by means of scan
multiplexer (ScanMux) modules. When a SIB is said to be
asserted, the segment it controls is included in the active
path; otherwise, it is said to be de-asserted. Each segment

Update <TDR>
Shift <TDR>

Capture <TDR>

Excludable SegmentC

U

From TDI

Ready to scan

To TDO
1

0

Configuration
module

SI SO
PI

PO

Fig. 1: Excludable TDR segment (IEEE Std 1149.1-2013).

Selectable segments

3
2
1
0

Decode

C C C C

C C C C C C C C C C C C
U U U

C
U

C
U

C
U

C
U

C
U

C
U

C
U

C
U

C
U

C
U

C
U

C
U

C
U

C
U

C C C C C C C C
U U

C
U

C
U

C
U

C

C C
U. . .

. . .

SI

SO

Configuration
module

Fig. 2: Selectable TDR segments (IEEE Std 1149.1-2013).

controlled by a SIB or a ScanMux can be a complex network
itself.

In order to bring an RSN into a certain configuration,
vectors have to be shifted through the scan input port.
Then, an update operation moves the vector from the shift
flip-flops (C cells) to the update latches (U cells) of the
configuration module. This operation changes the active
path of the network. Since an RSN can have a hierarchical
structure, the operation of making an instrument, placed
deep into the network, part of the active path may require
multiple configuration phases.

As an example, let us consider a simple IEEE Std 1687
RSN reported in Fig. 3. The network is accessed through
an IEEE Std 1149 TAP interface and is composed of two
selectable segments: the first one with a single TDR, and
the other one with two TDRs, each one controlled by a SIB.
In Fig. 3, we also report the bit length of each TDR. The
SIB modules and the multiplexer (ScanMux) are associated
each one with a configuration bit (cb1, cb2, and cb3) and are
highlighted in grey. Depending on the configuration (i.e.,
the value of the configuration bits of SIBs and ScanMux),
the network presents one of five possible active paths, each
one including different subsets of TDRs, as listed in Table 1.
In this table, ’A’ means the SIB is in the asserted position, ’D’
means de-asserted, 0 and 1 correspond to the two possible
positions of the ScanMux, and ’X’ appears when a module
belongs to an inaccessible segment (i.e., don’t care value).
During the system reset, a known configuration is selected.
The status of the reconfigurable modules upon reset de-
termines the network reset configuration. In the example
network, we assume the reset configuration is 0,D,D (using
the same module ordering of Table 1).

Testing a standard (non-reconfigurable) scan chain for
permanent faults has been a widely studied subject for
years. Several techniques exists, e.g., shifting a suitable
sequence of 0s and 1s through the scan chain, such as the
sequence ”00110011” that applies all possible transitions in
two cycles [2]. In order to cover scan cells internal defects

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2834915, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 3

0

1

ScanMux

TAP

TDR0

SIB1 SIB2

TDR1 TDR2

TDOTDI

length = 8 length = 8

length = 2

cb1 cb2

cb3

Fig. 3: Example of IEEE Std 1687 RSN.

TABLE 1: Possible configurations for the network in Fig. 3.

ScanMux SIB1 SIB2 Scan length Active path
0 X X 3 TDI→TDR0→cb3→TDO
1 D D 3 TDI→cb1→cb2→cb3→TDO
1 D A 11 TDI→cb1→TDR2→cb2→cb3→TDO
1 A D 11 TDI→TDR1→cb1→cb2→cb3→TDO
1 A A 19 TDI→TDR1→cb1→ TDR2→cb2→cb3→TDO

(see [10]), the previous sequence is not enough, but has
to be enhanced with additional tests, e.g, for stuck-open
faults [11], [12], or for bridging faults [13]. Diagnosis of
intermittent faults in scan-chains has been discussed in [14].

Due to the recent adoption of the IEEE Std 1687 by com-
mercial tools, several issues have arisen regarding design
(e.g., in [15], [16], [17]), validation (e.g., in [18], [19]), and
test (e.g., in [20], [21]) of RSNs, as well as their usage in the
field. The works in [20], [21] have tested structural faults and
investigated the test quality of different test strategies. The
combination of the evaluated test strategies achieves high
fault coverage even in synthetic difficult to test circuits. The
works in [20], [21] aim at maximizing the structural fault
coverage but do not target the minimization of the TAT,
while our article evaluates the TAT of algorithms aiming for
high fault coverage, according to a high-level fault model.

3 TERMINOLOGY AND FAULT MODEL

In this section, the basic terminology introduced in this
article is presented. Moreover, in order to generalize as
much as possible the problem of testing the reconfigurable
modules in an RSN, a high-level fault model is introduced
and specified for each type of reconfigurable modules.

3.1 Configurations, Vectors, and Test Application Time
A generic reconfigurable module, hereinafter indicated with
Mi, is able to control (or select) parts of the network defined
as segments, according to the values stored in its configu-
ration bits. The segment si,k is defined as the sub-network
attached to the k-th input pin of Mi. In Fig. 3, each SIB
controls a segment that includes a TDR, while ScanMux
controls two segments: one including TDR0, and the other
including the two SIBs and their selectable segments. In this
article, we associate each element of the network to the
most specific segment possible. For example, TDR1 lies in

the segment controlled by SIB1, while cb1 is in the segment
controlled by ScanMux. The depth of a certain element of the
network is defined as the hierarchical level of its segment.
In Fig. 3, ScanMux and cb3 have depth 1 (they are placed on
the top-level segment), TDR0, SIB1, SIB2, cb1 and cb2 have
depth 2, and TDR1 and TDR2 have depth 3. The length of
a segment is equal to the number of bits it includes in the
selected path. Hence, if the segment includes reconfigurable
modules, their configuration affects the length of the enclos-
ing segment.

A generic configuration of the network (i.e., the value
of all configuration bits) is referred to as σi. The term σ0
indicates the reset configuration. Each σi can be associated
to an active path length and a list of possible faults (each
referred to as Fi) affecting the network, that can be detected
by performing test operations while the network is config-
ured with σi.

Such test operations use test vectors to verify whether the
expected path has been inserted between the scan input and
scan output pins, i.e., whether the right instruments can be
accessed during the normal operation. The test operations
associated to a generic test vector tvi correspond to:

1) a suitable sequence (as long as the active path length) is
shifted in, forcing it to travel along the active path and
to appear on its other end;

2) scan output pins (e.g., TDO) are monitored: the se-
quence previously loaded is expected to come out;
based on the fact that the observed sequence matches
the expected one or not, possible faults can be detected.

A network transition is defined as a change in the confi-
guration, by means of one or more configuration vectors. The
operations associated to a generic configuration vector cvi
correspond to:

1) as many shift operations as the active path length, so
that the next configuration is stored in the C flip-flops
of the reconfigurable modules’ configuration bits, while
the other bits are don’t care (’X’ in this article);

2) an update operation, so that the next configuration is
applied to the network and the active path changes.

If transitioning from the configuration σi to σj requires
a single configuration vector, then σj is a neighbor configu-
ration of σi. In this case, the transition cost in terms of clock
cycles is equal to the active path length of σi plus one (the
update operation). We denote by Σi the list of neighbors
of σi. Please note that the neighborhood relation is not
reversible. For example, the RSN in Fig. 3 can be moved
from σ1 = {1, A,A} (see Table 1) to σ2 = {0, D,D} by
shifting a single vector, while two vectors are needed to
reach σ1 from σ2, passing through σ3 = {1, D,D}.

Configuration and test vectors are used by the proposed
test techniques and organized in sessions. A generic session,
referred to as Si, is composed of two phases:

1) a configuration phase (Cfg), corresponding to a network
transition, in which a certain number of configuration
vectors are applied, until the target configuration is
reached;

2) a test phase (Tst), in which test vectors are applied.

The sequence of test vectors to be used in the test phase
depends on the kind of defects to be tested.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2834915, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 4

Considering the generic session Si, we denote by tci
the duration (in clock cycles) of the configuration phase
Cfgi and by tti the duration of the test phase Tsti. Each
configuration vector of the session requires a certain time
to be shifted in, plus a few clock cycles (their exact number
is implementation dependent) to update it into the U cells
of the corresponding path (this time is denoted as JTAG
protocol overhead in [22]). The active path changes after each
update operation, thus each vector may have a different
length. The duration of the test phase (tti) depends on the
active path length l of the target configuration (i.e., after
the last configuration vector). The test application time for
a network that needs N sessions to cover each testable fault
is thus given by:

TAT = Tc + Tt =
N∑
i=1

tci +
N∑
i=1

tti (1)

where Tc is the sum of clock cycles of each Cnf i and Tt
is the sum of the clock cycles of each Tsti. Hereinafter, the
terms Tc, Tt, and TAT are all measured in clock cycles.
Such terms should be clearly distinguished from the CPU
time (expressed in seconds) required to generate the stimuli
to be used in all N sessions.

During test generation, a fault list is used, which is
composed of all possible faults affecting the network, ac-
cording to the proposed fault model. The fault list includes
an indication for each fault, hereinafter indicated with Fi,
about whether Fi is tested, still untested, or untestable in
any possible network configuration.

3.2 Fault Model for Reconfigurable Modules
The fault model used in this article has been derived from
the analysis of possible stuck-at faults affecting the struc-
tural implementation of reconfigurable modules. The effect
of such faults, observed in simulation, is that the scan output
pin of the reconfigurable module produces:

1) a sequence of known values (i.e., all 0s or all 1s), due to
stuck-at faults affecting the input pins of a multiplexer;

2) a sequence of unknown values, due to unconnected
pins;

3) values from a segment not selected by the current
configuration, due to stuck-at faults affecting the shift
flip-flops (C cells) of the configuration bits, the selection
logic of a multiplexer, or the update logic.

We consider the first two cases as easy-to-test, since they
drastically affect the output values, while the last case has
been better analyzed and a high-level fault model has been
derived. We have verified with fault simulation experiments
that the high-level fault model matches well with the stuck-
at fault model on the synthesized design, when suitable
test vectors are used. Faults affecting reset and enable logic
have not been taken into account (the work in [21] provides
solutions to this limitation).

A proper test for high-level faults of a reconfigurable
module is composed of the following operations:

1) The network is configured so that the faulty element be-
comes part of the active path. This operation is needed
to excite the fault, i.e., to create a difference with respect
to the fault-free scenario. In the case of reconfigurable
modules, this difference is the length of the active path.

TABLE 2: Effect of the high-level fault on the ScanMux of
Fig. 3, which always selects the input 1, when selecting
different active paths.

ScanMux SIB1 SIB2
Path length

(faulty/active)
Faulty path

0 D D 3/3 TDI→cb1→cb2→cb3→TDO
0 D A 11/3 TDI→cb1→TDR2→cb2→cb3→TDO
0 A D 11/3 TDI→TDR1→cb1→cb2→cb3→TDO
0 A A 19/3 TDI→TDR1→cb1→ TDR2→cb2→cb3→TDO

2) A proper sequence is shifted into the network, while
the expected path length is compared against the length
of the faulty path. This comparison is performed by
looking at the number of clock cycles required by the
input sequence to appear on the scan output pin.

As an example, the high-level fault on the module Scan-
Mux of Fig. 3, which always selects the segment connected
to the input 1, can be excited by a configuration which
selects the input 0; all such possible configurations are listed
in Table 2, which also reports the length of the selected
faulty paths. In the table, the first configuration is not able to
detect the fault, due to the fact that the faulty path length is
equal to the active path length. Thus, one of the remaining
three configurations can be selected for the test.

Some situations may exist, in which all faulty paths have
the same length of the active path, i.e., no configuration able
to test the fault exists. In this case, the fault is untestable.

In the following subsections, the basic concepts pre-
sented above are applied in a test procedure for SIB modules
and ScanMuxes. Configuration and test vectors are applied
in the test procedure. Since each test vector aims at checking
whether the active path is as long as expected, we include
an initialization vector to the test phase, which forces the scan
paths to a known value. A sequence of 0s can be used for
this purpose, whose length is equal to the longest path in the
network. In this case, each tti contribution in Eq. (1) includes
the length of the longest path. In the example of Fig. 3, an
initialization vector composed of 19 0s can be used before
each test phase.

3.2.1 SIBs
Given a SIB, the test procedure for testing both the SIB stuck-
at asserted (stuck-at-A) and de-asserted (stuck-at-D) faults is
the following:

1) configure the network, so that the target SIB becomes
part of the active path;

2) shift in an initialization vector whose length is equal to
the one of the longest path in the network;

3) shift in a test vector as long as the expected path length;
4) check whether the expected sequence appears on the

output of the path;
5) reconfigure the network, so that the SIB is part of the

active path and at the opposite configuration;
6) shift in an initialization vector whose length is equal to

the one of the longest path in the network;
7) shift in a test vector whose length is equal to the one of

the expected path length;
8) check whether the expected sequence appears on the

output of the path.
As an example, the test of SIB1 in Fig. 3 is presented,

assuming that in the reset configuration the SIBs are de-

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2834915, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 5

asserted and the ScanMux selects the input 0. As test vec-
tors, a sequence of alternated 0s and 1s is used, followed by
two consecutive 1s, which are used as sequence terminator.
The output pin is monitored until the sequence terminator
is shifted out: this permits to calculate the active path length
and to compare it against the expected one. In details:

1) Reset – active path (AP): TDI→TDR0 →cb3→TDO
2) Apply configuration vector 1:

a) Shift in 001 (lenght = 3)
b) Update – AP: TDI→cb1 →cb2 →cb3→TDO

3) Apply initialization vector 1:
a) Shift in 0000000000000000000 (lenght = 19)

4) Apply test vector 1:
a) Shift in 010 (lenght = 3)
b) Shift in 11 (lenght = 2)

5) Check test vector 1, while applying config. vector 2:
a) Shift in 101 (lenght = 3)
b) Update – AP: TDI→TDR1 →cb1 →cb2 →cb3→TDO

6) Apply initialization vector 2:
a) Shift in 0000000000000000000 (lenght = 19)

7) Apply test vector 2:
a) Shift in 01010101010 (lenght = 11)
b) Shift in 11 (lenght = 2)

8) Check test vector 2.

In the last check (step 8), extra bits are shifted in until the
last sequence terminator comes out from the output pin (at
maximum, as long as the longest path plus the length of the
sequence terminator, i.e., 19 + 2 = 21 in the example).

3.2.2 Scan Multiplexers

The same test procedure can be extended to scan mul-
tiplexers. The basic idea is once again to first configure
the network so that the ScanMux is switched to a given
configuration, thus making a given path accessible. The
difference with respect to the SIB is that the faulty path of a
SIB is always longer (or shorter) than the active path. On the
contrary, that is not the case of faulty paths of ScanMuxes
(see Table 2). In that case, the length of the faulty path may
even vary depending on the configuration of other modules
in the active path. Moreover, the faulty paths can be more
than one (e.g., in a 4-to-1 multiplexer, each configuration has
3 faulty paths). In order for the fault to be testable, the length
of each faulty path has to be different than the active path.
In details, the test procedure for a testable scan multiplexer
fault is the following:

1) apply a certain number of configuration vectors, until:
a) the multiplexer is part of the active path and set at a

certain configuration, and
b) the other modules are configured such that the faulty

paths have different length than the active path;
2) shift in an initialization vector as long as the longest

path in the network;
3) shift in a test vector as long as the expected path length;
4) check whether the expected sequence appears on the

output of the path;
5) repeat the previous steps for all the multiplexer’s con-

figurations.

4 NETWORK REPRESENTATION

RSNs can be represented in different formats, such as the
Instrument Connectivity Language (ICL) for IEEE Std 1687
networks. Structural representations are hard to handle and
extracting the main properties of a network requires to pass
through internal representations. In order to abstract the
main functions of an RSN to be tested, we propose two
formal graphs representations.

These representations are traversed by the proposed test
algorithms, as discussed in the following section, in order to
generate a sequence of configuration and test vectors for the
target network.

The first graph, named Topology Graph, is based on the
network topology and consists of all possible scan paths
of the network. This graph is a topological view of the
network. The second graph, named Configuration Graph, is
based on the list of possible network configurations. A path
in this graph represents a sequence of configurations in
which the network can be sequentially placed.

4.1 Topology Graph

The topology graph is a simplified representation of the
RSN providing a topological view of it. The elements of
the RSN (TDRs, SIBs, ScanMuxes, configuration bits) are
associated with vertices, each one annotated with its hier-
archical depth, while the connections between elements are
represented by edges, which are eventually annotated with
a configuration value. The set of vertices also includes those
associated to the input and output pins of the RSN, e.g., TDI
and TDO. In case of a single pair of input/output pins, the
graph has a single source vertex (e.g., TDI) and a single sink
vertex (e.g., TDO).

The topology graph of the RSN of Fig. 3 is shown
in Fig. 4. In such a graph, the reconfigurable modules’
vertices are highlighted in grey and their outgoing edges
are annotated the configuration value. For each vertex, the
depth k is also reported in Fig. 4 using the notation d = k.
In details, the elements ScanMux and cb3 are placed at the
top-level (depth = 1), i.e., they are always part of the active
path. The elements TDR0, SIB1, cb1, SIB2, and cb2 are placed
in the segments controlled by ScanMux, thus their vertices
are annotated with depth = 2. Finally, the vertices TDR1 and
TDR2 are annotated with depth = 3, since they are placed
in the segments controlled by SIB1 and SIB2, respectively.

Every possible path in the RSN is represented by a path
in the topology graph from source to sink vertices. When the
network is in a certain configuration, each reconfigurable
module selects a given segment. Similarly, one active edge
comes out from the related vertex in the topology graph.
Moreover, each source vertex is connected to a sink vertex
by means of an active path.

4.2 Configuration graph

The topology graph offers a view of the interconnections
between modules of the network. Such a representation,
however, does not include information about the time (in
terms of scan clock cycles) required to move the network
from one configuration to another. Thus, an alternative
representation is needed.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2834915, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 6

TDO

TDR2

d = 3

SIB2

d = 2

TDR1

d = 3

SIB1

d = 2

TDR0

d = 2

ScanMux
d = 1

TDI

cb1

d = 2

cb2

d = 2

cb3

d = 1

0

1

A

D

A

D

Fig. 4: Topology graph of the example network in Fig. 3.

The list of configurations and the neighborhood relation
are used to build a directed graph G = (V,E). Each vertex
Vi corresponds to a network configuration σi. The reset state
V0 is used to refer to σ0. Each edge (Vi, Vj) represents a
transition from σi to σj with σj neighbor of σi and it is la-
beled with its transition cost, equal to the active path length
of σi (possibly incremented by one, corresponding to the
extra clock cycle for the update operation). The active path
of a vertex can be obtained by applying the corresponding
configuration to the topology graph.

The configuration graph can be built by applying the
following procedure. As many vertices are created as the
number of possible network configurations. In details, for
each configuration σi, the following steps are performed:

1) a vertex Vi is created, if not existing;
2) the neighborhood Σi is identified;
3) for each configuration σj ∈ Σi, a vertex Vj is created, if

not existing, and an edge (Vi, V j) is created and labeled
with the active path length of σi.

The process can be implemented as a recursive procedure
that starts from the reset configuration and returns when
all neighbor configurations are extracted from the neighbor-
hood set.

As an example, the procedure has been applied on the
network represented in Fig. 3. The adjacency matrix of the
resulting configuration graph is shown in Table 3. Each row
of the matrix reports the transition cost of the outgoing
edges from a vertex to other vertices, or ’–’ when the two
vertices are not connected by an edge. It can be noticed
that the first four configurations have only one outgoing
edge each. In such configurations, in fact, the ScanMux is
configured to the value 0, thus the other configuration bits
are not part of the active path. On the contrary, all the
other configurations can reach all the other vertices of the
graph. Moreover, all outgoing edges from a certain vertex
are labeled with the same transition cost, equal to the active
path of the vertex plus one.

5 NETWORK TEST

The complete test of a reconfigurable network must pass
through a certain number of configurations, each one able
to include in the active path a subset of the registers and
the reconfigurable modules. Once each target configuration
is reached, the active path of the network is tested and the

TABLE 3: Adjacency matrix of the configuration graph built
on network in Fig. 3.

0,D,D 0,D,A 0,A,D 0,A,A 1,D,D 1,D,A 1,A,D 1,A,A
0,D,D – – – – 4 – – –
0,D,A – – – – – 4 – –
0,A,D – – – – – – 4 –
0,A,A – – – – – – – 4
1,D,D 4 4 4 4 – 4 4 4
1,D,A 12 12 12 12 12 – 12 12
1,A,D 12 12 12 12 12 12 – 12
1,A,A 20 20 20 20 20 20 20 –

response is observed by monitoring the scan output values.
In Section 3, the concepts of configuration and test vectors
and sessions have been introduced.

After the system reset, the network is set to its initial
configuration (which is known). The overall test procedure
requires a certain amount of sessions. After each session,
the network target configuration is changed and the target
configuration of the previous session becomes the starting
configuration.

During the test phase, the active path includes a certain
number of reconfigurable modules to be tested. The test
vectors to be applied in this phase depend on the specific
defects under analysis. For simplicity, each Tsti simply con-
sists of an initialization vector composed of as many 0s as
the longest path length, followed by a test vector composed
of an alternate sequence of 0s and 1s. Clearly, more complex
sets of vectors can be used in this phase.

Since the amount of possible configurations of a network
grows exponentially with the number of reconfigurable
modules, the problem of identifying a sequence of sessions
which guarantees the full network test coverage while
minimizing the TAT is not trivial. This article achieves the
intended goal with a tractability limitation of the approach
on large circuits, due to the size of the search space. In
the following, an approach implementing a minimum cost
search on the configuration graph is presented. The pro-
posed optimal approach is also useful for evaluating the
effectiveness, in terms of TAT, of alternative solutions to
the same problem, e.g., based on heuristics or optimization
techniques. Later on in this section, a pair of sub-optimal
approaches based on the topology graph traversal are pre-
sented. The main advantage of these solutions is that they
are easy to implement and successfully applicable even to
very large circuits.

5.1 Optimal Approach
The approach proposed in this section formulates the prob-
lem as a graph search at the minimum cost. The cost to be
minimized is the TAT, as expressed in Eq. (1). The confi-
guration graph, enriched with test information, is traversed
using a modified version of the A∗ algorithm [23]. A∗ is
an informed search algorithm, which operates by searching
among all possible paths to the solutions (goals) for the one
that incurs the smallest cost. In a labeled graph, vertices are
the problem states, while each edge represents the transition
cost to move from a state to another. In the classic A∗, the
goal is typically identified by a certain vertex.

The problem at hand is different from the classic A∗

formulation in which there is not a predetermined goal

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2834915, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 7

state. The goal is to reach the full test coverage of the
network, thus it cannot be associated to a certain state of the
configuration graph. Instead, whether or not a given state is
the goal depends on the path followed to reach it. In other
words, the algorithm is looking for a goal path instead of a
goal state.

The proposed formulation of the A∗ algorithm mini-
mizes the following function:

f(n, p) = g(n,F) + h(p) (2)

where p is a path, n is the last vertex on p, and F is the list of
faults that are detected by p. Moreover, a goal function G(p)
is introduced, that states whether or not p is a goal path (i.e.,
if it covers the whole list of testable faults). This means that
the estimates of the cost from a state to the goal must be a
function of the current path as well. The heuristic function
that computes those estimates is therefore denoted as h(p) in
Eq. (2) as well. Details about the heuristic function are given
later in this section. In classic A∗ we keep a frontier of open
vertices that corresponds to a tree of partial paths rooted
in the initial state. Each of these vertices is labeled with
information that is used to keep track of the current best
path (in terms of actual cost plus estimated cost to the goal)
from the initial state to such a vertex. Every time a path to
a vertex with a lower actual cost is found, such information
(predecessor vertex) is updated. The classic A∗ approach
is sound because the estimated cost for the vertices does
not change. Therefore, a lower actual cost makes the new
path always preferable. In our case, depending on the path
we follow to reach a given vertex, the set of faults that are
covered by the path may vary. Therefore, we need to keep
multiple instances of each vertex open at any given time, in
order to take into account the different paths to reach the
vertex along with their different set of detected faults. The
proposed solution is to keep a frontier of open vertices like
in classic A∗; however each of these vertices maintains a
hash table of paths with keys equal to the set of detected
faults. When a new path to a vertex is found, if it has the
same set of detected faults of a previously found path, its
actual cost is checked and, if lower that the previous path,
the latter is updated. This contribution is indicated with
g(n,F) in Eq. (2).

In other words, each vertex keeps track of a set of paths,
each with a different set of detected faults. A new path
overwrites a previously stored one if it detects the same
set of faults but has a lower actual cost. For each vertex
we also keep track of the current best path to reach it, that
is the currently open path to the vertex that has the lower
combined cost (i.e., actual cost plus estimated cost to the
goal). The estimated cost to the goal is computed by means
of an admissible heuristic function.

The pseudo-code of the algorithm is reported in Fig. 5,
where the f , g, and h functions are referred to Eq. (2),
G is the goal function, key corresponds to F , OpenQueue
is the frontier, and ClosedPaths contains the list of paths
that are proved to be non-optimal (i.e., they either do not
detect all faults or they do so, but with a higher TAT
than the current best path). Briefly, the algorithm iteratively
extracts the current best open path from the frontier, visits
its neighborhood by updating/adding open paths until the
goal is reached or no more open paths remain. When a best

path to a node is extracted from the frontier, so that the goal
function is satisfied, it represents the optimal solution (the
algorithm is exhaustive in its search).

The performance in terms of CPU time needed to reach
the goal highly depends on the heuristic function. The
proposed heuristic uses the length of the segments con-
nected to each configurable element to estimate the cost
of the remaining tests required to fully cover the network
faults. Given a reconfigurable module M with k selectable
segments, a fault F that forces M to select the segment si
can be detected by configuring M so that a segment sj , with
j different than i, is included in the active path, and then
shifting a test vector into the network. Such a test vector is at
least as long as the length of sj . According to this reasoning,
the contribution of F to the heuristic function is comparable
to the length of the shortest segment other than si, plus the
number of configuration bits of the F−related module; if
such a segment includes other reconfigurable modules, such
modules and the segments they control are not counted; this
permits not to take a segment into consideration multiple
times in the heuristic function computation. For example,
the fault that forces the ScanMux module of Fig. 3 to the
value 1 is detected by a configuration in which ScanMux
is set to 0 and selects the segment that includes TDR0. The
contribution to the heuristic function of such a fault is the
TDR0 length plus the configuration bit (i.e., 2 + 1 = 3).
The cost of the opposite ScanMux fault is estimated as the
length of a modified version of the other segment (i.e., the
one which includes the two SIBs), in which the inner SIBs
have been removed; thus, the cost is zero for the segment
plus the configuration bit (i.e., 0 + 1 = 1).

The heuristic function value is computed while consid-
ering each of the remaining untested faults of the fault list.
When no such faults exist anymore, the goal is reached (i.e.,
the path is a test sequence). The application of the algorithm
on the example network in Fig. 3 produces the following test
sequence after reset:

• Session 1
1) Configuration 1,D,D
2) Test: SIB1 stuck-at-A, SIB2 stuck-at-A

• Session 2
1) Configuration 1,A,A
2) Test: SIB1 stuck-at-D, SIB2 stuck-at-D,

ScanMux stuck-at-0
• Session 3

1) Configuration 0,A,A
2) Test: ScanMux stuck-at-1

5.2 Sub-Optimal Approaches

For large networks, the optimal approach based on A∗ is
hardly applicable due to the excessive search space size.
In such situations, a scalable approach is preferred, even
if the TAT obtainable is sub-optimal. In the following, two
alternative approaches are shown, both based on topology
graph traversal: a depth-first approach and a breadth-first
approach.

The proposed strategies apply a sequence of test ses-
sions by traversing the topology graph. At each step, a
vertex associated to a reconfigurable module Mi is found

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2834915, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 8

OpenQueue← ∅;
ClosedPaths← ∅;
insert reset configuration state V0 into OpenQueue;
while OpenQueue 6= ∅ do

extract Vi with the lowest f(Vi) from OpenQueue;
p← best path to Vi;
put p into ClosedPaths;
if G(p) is true then

return p;
end
N ← neighbors of Vi;
foreach Vj ∈ N do

q ← path p connected to Vj ;
if q /∈ ClosedPaths then

key ← faults covered by q;
costp ← actual cost of path p;
costij ← transition cost from Vi to Vj ;
if costp + costij < g(Vj , key) then

update g(Vj , key);
update f(Vj , q) with h(q);

end
put Vj into OpenQueue;

end
end

end

Fig. 5: Pseudo-code of the optimal approach based on the
A∗ algorithm.

in the graph. In order to change the configuration of Mi, a
configuration phase is performed, which consists of one or
more configuration vectors. After the configuration phase,
a different outgoing edge of vertex Mi becomes active (as
defined in Section 4.1), while the previously selected edge
becomes inactive. As a result, the active path of the network
changes. Then, a test phase is performed and the fault list is
updated. By carefully identifying target edges on the graph,
the process alternates these two phases, until the full test
coverage is reached. The two strategies differ in the way
these edges are selected.

5.2.1 Depth-First

The topology graph is traversed by following a depth-first
approach. At each step of the graph traversal, a subset
of reconfigurable modules is selected, that are part of the
current active path. In the set of selected modules, the
configuration is changed only for each module that is able to
excite some of the untested faults and lies at the maximum
depth. The depth of each module is found as an annotation
of the topology graph vertices (see Section 4.1). All new
configurations are applied together by means of a single
configuration vector, in case all the configuration bits are
part of the active path (i.e., reconfigurable modules with
local control), otherwise multiple configuration vectors are
needed. A configuration in which all excited faults become
observable is reached (i.e., in which the selected modules
are part of the active path), then a test vector is applied. The
process is repeated until all faults are covered. The pseudo-
code of the depth-first approach is reported in Fig. 6.

As an example, the application of the depth-first strategy
on the graph in Fig. 4 produces the following test sequence
after reset:

• Session 1
1) Configuration 1,D,D
2) Test: SIB1 stuck-at-A, SIB2 stuck-at-A

• Session 2
1) Configuration 1,A,A
2) Test: SIB1 stuck-at-D, SIB2 stuck-at-D,

SMux stuck-at-0
• Session 3

1) Configuration 0,A,A
2) Test: SMux stuck-at-1
In the case of the example, the algorithm is able to

produce the same test sequence of A∗.

FL← all testable faults;
while FL 6= ∅ do

M ← reconfigurable modules in the active path;
d← maximum depth of m ∈M which is able to

excite a fault in any configuration;
foreach m ∈M do

if depth(m) = d and m is able to excite a fault
then

activate an outgoing edge from m that
excites a fault;

end
end
foreach just configured m ∈M do

reach a configuration in which m is part of the
active path;

end
apply a test vector;
remove tested faults from the fault list;
if all m ∈M are fully tested then

reach a configuration in which untested
modules are part of the active path;

end
end

Fig. 6: Pseudo-code of the sub-optimal approach based on
the depth-first algorithm.

5.2.2 Breadth-First
The topology graph is traversed by following a breadth-first
approach. The algorithm groups reconfigurable modules
into levels, according to their hierarchical depth. Starting
from the top-level, modules are tested level by level. At
each iteration, the network is configured such that one or
more modules of the target level are part of the active
path and new faults can be excited. Then, a test vector is
applied and new faults that are tested are removed from the
fault list. Once all reconfigurable modules of the target level
have been fully tested, the next level is considered, until
the maximum depth of the network has been reached or all
faults have been detected. The pseudo-code of the breadth-
first approach is reported in Fig. 7.

As an example, the application of the breadth-first stra-
tegy on the graph in Fig. 4 produces the following test
sequence after reset:

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2834915, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 9

• Session 1
1) Configuration 1,D,D
2) Configuration 0,A,D
3) Test: SMux1 stuck-at-1

• Session 2
1) Configuration 1,A,D
2) Test: SIB1 stuck-at-D, SIB2 stuck-at-A,

SMux stuck-at-0
• Session 3

1) Configuration 1,D,A
2) Test: SIB1 stuck-at-A, SIB2 stuck-at-D

FL← all testable faults;
d← 1;
while FL 6= ∅ do

M ← reconfigurable modules of level d;
while all m ∈M are not fully tested do

foreach m ∈M do
if m is able to excite a fault then

activate an outgoing edge from m that
excites a fault;

end
end
repeat

reach a configuration in which one or more
m are part of the active path;

apply a test vector;
remove tested faults from the fault list;

until all previously configured m ∈M have been
considered;

end
d← d+ 1;

end

Fig. 7: Pseudo-code of the sub-optimal approach based on
the breadth-first algorithm.

6 EXPERIMENTAL RESULTS

The effectiveness in terms of test duration of the proposed
algorithms has been evaluated with an in-house tool on
a sub-set of RSNs of ITC’16 benchmarks [7]. Moreover,
additional networks have been created, which show the
main differences between the proposed algorithms. The A∗

algorithm has been compared against the depth-first search
and the breadth-first search algorithms.

We wrote a Java tool able first of all to read the network
topology described in different formats. The ICL Tools Soft-
ware library from [24] has been included in the developed
tool. The tool also allows to compute the cost parameters tci
and tti presented in Section 3.1.

The experiments were run on a server equipped with
a dual Intel Xeon CPU E5-2680 v3 and 256 GB of RAM.
Each benchmark network has been tested usingA∗ and both
sub-optimal approaches (depth-first and breadth-first). Each
experiment used a maximum heap size of 64 GB.

To assess the effectiveness of the proposed high-level
fault model, we synthesized some selected benchmark net-
works using the NanGate 45nm Open Cell Library. We
then performed some fault simulation experiments using
Synopsys TetraMAX to compute the stuck-at fault coverage

that can be achieved by running the test sequences gener-
ated by our method. The fault simulation results showed
that in general a high or complete stuck-at fault coverage
is achieved. The few missed faults are related to MUXes
having more than 2 data inputs, especially when they are
located deep in the hierarchy (and thus are less frequently
excited). Finally, the stuck-at faults affecting the update
logic and the flip-flops are either covered or they propagate
long sequences of Xs in the circuit. Since the proposed test
sessions demand for a precise sequence of 0s and 1s to
be observed on scan output ports, faults that propagate
sequences of Xs can be safely marked as covered.

6.1 Experiments with ITC’16 Benchmarks
The key characteristics of the ITC’16 benchmark networks
are detailed in Table 4. For each network, the table reports
first the number of SIBs and ScanMuxes. The fourth column
refers to the number of configuration bits of SIBs and
ScanMuxes. The column Max depth indicates the maximum
hierarchical depth of each network (for SIB-based networks
this value equals to the maximum number of nested SIBs,
according to [7]). Finally, the column Longest path reports
the maximum possible number of scan cells on active path,
while Total scan cells is the sum of the lengths of all scan
registers in each network.

In the experiments, the cost for a configuration vector
has been set to the active path length plus the JTAG protocol
overhead (to move from shift to update, see [22]). The cost
for a test vector has been set to the sum of the following
contributions:

1) the JTAG protocol overhead (to move from update to
shift), which has been set to 5;

2) the longest path length (initialization vector, see Sec-
tion 3.2);

3) the active path length plus two (a sequence of alter-
nated 0s and 1s as long as the active path followed by
two consecutive 1s).

Due to tractability limitations (given the size of the
search space), A∗ resulted in out-of-memory failures for
most of the benchmarks, while the sub-optimal algorithms
were occupying few memory resources even for very large
networks (no out-of-memory has been experienced by re-
ducing the heap size up to 1GB). CPU time required for
A∗ was in the order of minutes, while few seconds were
required to run sub-optimal algorithms. Experimental re-
sults on ITC’16 benchmarks are shown in Table 5. For each
algorithm, the table reports the number of sessions (column
3), each one composed of one or more configuration vectors
and a test vector. The total number of configuration vectors
is also reported (column 4). The table also indicates the
number of clock cycles required by configuration vectors
(column 6) and test vectors (colum 7), as well as their sum
(column 8). Finally, for sub-optimal approaches, the ratio of
the TAT over the A∗ TAT is reported (column 9), when A∗

succeeded, i.e., only for the networks Mingle and N17D3. All
modeled faults have been covered in each experiment (i.e.,
test coverage is 100%).

An analysis of Table 5 shows that the two sub-optimal
approaches produced the same results (i.e., the TAT) for
most of the benchmark networks. In order to understand the

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2834915, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 10

TABLE 4: Characteristics of the ITC’16 benchmark networks

Network SIB ScanMux
Config.

bits
Max

depth
Longest

path
Total

scan cells
Mingle 10 3 13 4 171 270
TreeBalanced 43 3 48 7 5,219 5,581
TreeFlat Ex 57 3 62 5 5,100 5,195
TreeUnbalanc. 28 – 28 11 42,630 42,630
a586710 – 32 32 4 42,381 42,410
p22810 270 – 270 2 30,356 30,356
p34392 – 96 96 4 27,899 27,990
p93791 – 596 596 4 100,709 101,291
q12710 27 – 27 2 26,185 26,185
t512505 159 – 159 2 77,005 77,005
N132D4 39 40 79 5 2,555 2,991
N17D3 7 8 15 4 372 462
N32D6 13 10 23 4 84,039 96,158
N73D14 29 17 46 12 190,526 218,869
NE1200P430 381 430 811 127 88,471 108,148
NE600P150 207 194 401 78 23,423 28,250

reasons, we have analyzed the topology of the benchmarks
and figured out that all networks but TreeBalanced and
TreeFlat Ex contain SIBs and 2-to-1 ScanMuxes (i.e., with one
configuration bit). Moreover, in all such networks that have
only 2-to-1 ScanMuxes, one of the two segments controlled
by a ScanMux does not include any other nested SIB or
ScanMux, with the only exception of the network Mingle.
We will refer to ScanMuxes of this kind as Unbalanced Scan-
Muxes, while ScanMuxes that have nested reconfigurable
modules on both segments (more than one segment, in case
of ScanMuxes larger than 2-to-1) are referred to as Balanced
ScanMuxes. Balanced ScanMuxes are one category of the
modules that determine a different result between depth-
first and bread-first, as for the network Mingle. The other
factor is the presence of ScanMuxes with more than one
configuration bits (i.e., larger than 2-to-1) not placed at the
maximum hierarchical depth (level) of the network. In the
benchmarks, the networks TreeBalanced and TreeFlat Ex
both have one ScanMux with 3 configuration bits. The only
difference between them is that the ScanMux of network
TreeBalanced is placed in the bottom hierarchical level,
while in TreeFlat Ex it is placed in an intermediate level. For
this reason, only the network TreeFlat Ex presents different
results between depth-first and breadth-first.

6.2 Experiments with Synthetic Benchmarks
The effectiveness of the proposed algorithms has been also
evaluated on new synthetic networks. A tool able to gen-
erate random networks (constrained with some parameters
that affect the topology shape) has been purposely devised.
The tool has been used in an evaluation experiment, where
around 20k networks have been generated. Networks in-
clude both unbalanced and balanced ScanMuxes, also wider
than 2-to-1, and are manageable with the A∗ approach. The
characteristics of the generated networks are the following:

• number of ScanMuxes between 2 and 16;
• number of configuration bits between 2 and 19;
• longest path between 22 and 55,428 scan cells;
• cumulative path between 22 and 70,088 scan cells;
• maximum depth between 2 and 9 levels.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.2

0.4

0.6

0.8

1

Ratio over A∗

C
um

ul
at

iv
e

pr
ob

ab
ili

ty Depth-first
Breadth-first

Fig. 8: Normal cumulative distribution function (CDF) of the
ratio between sub-optimal approaches (depth-first in black,
breadth-first in gray) and A∗ on the randomly generated
networks.

The CPU time required by A∗ ranged between few
seconds and half an hour, while it was negligible for sub-
optimal algorithms.

For each network, the TATs of the test sequences devel-
oped by depth-first and breadth-first approaches have been
divided by the TAT of the test sequence generated by A∗ (as
was the case for the column Ratio over A∗ of Table 5). The
normal distribution of the results of the depth-first approach
has a mean of 1.08 and a standard deviation of 0.11, while
the breadth-first has mean equal to 1.15 and standard devi-
ation equal to 0.15. The maximum values are 1.99 for depth-
first and 2.15 for breadth-first. The cumulative distribution
functions (CDFs) of the two algorithms are reported in
Fig. 8. The figure shows that depth-first and breadth-first
approaches have been able to find the optimal solution (ratio
overA∗ equal to 1) in 23% and 17% of the cases, respectively,
while in 90% of the cases the test sequence produced by the
two algorithms is long 1.23 and 1.34 times with respect to
A∗ or shorter. Fig. 8 shows that depth-first performs better
than breadth-first on the synthetic networks. Moreover, both
algorithms produce test sequences that compare well with
the optimal ones in terms of TAT.

The analytic inspection of the results shows that in 0.6%
of the cases, breadth-first performed better than depth-
first (which performs better in 50.9% of the cases). Since
the complexity of the two algorithms is comparable, we
recommend to implement the depth-first strategy for large
networks.

7 CONCLUSIONS

The article presented several methods for the test of recon-
figurable modules of an RSN. The proposed methodology
represents the network topology and the possible configu-
rations as graphs. An optimal test sequence in terms of TAT
can be generated by applying theA∗ search algorithm on the
configuration graph. Sub-optimal approaches traverse the
topology graph and are based on depth-first and breadth-
first algorithms. Such approaches scale well on large net-
works, when the optimal approach is not applicable, while
still producing a test set whose duration compares well with
the optimal one. Experimental results on a large set of syn-
thetic RSNs showed that depth-first approach slightly out-
performs breadth-first. We are working on a systematic way
to improve the generated test sequences, thus achieving a
full detection of the few structural faults which are currently

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2834915, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 11

TABLE 5: Experimental results on the ITC’16 benchmark networks

Network Algorithm Sessions cv tv
Tc

[clock cycles]
Tt

[clock cycles]
TAT

[clock cycles]
Ratio

over A∗

Mingle A∗ 7 7 7 337 1,684 2,021 –
Depth-first 7 6 7 362 1,920 2,282 1.13
Breadth-first 8 8 8 453 2,173 2,626 1.30

TreeBalanced Depth-first 8 7 8 8,580 60,789 69,369 –
Breadth-first 8 7 8 8,580 60,789 69,369 –

TreeFlat Ex Depth-first 6 5 6 15,263 56,078 71,341 –
Breadth-first 7 8 7 30,250 66,177 96,427 –

TreeUnbalanced Depth-first 12 11 12 237,475 834,324 1,071,799 –
Breadth-first 12 11 12 237,475 834,324 1,071,799 –

a586710 Depth-first 5 4 5 1471 298,153 299,624 –
Breadth-first 5 4 5 1,471 298,153 299,624 –

p22810 Depth-first 3 2 3 573 152,364 152,937 –
Breadth-first 3 2 3 573 152,364 152,937 –

p34392 Depth-first 5 4 5 697 196,005 196,702 –
Breadth-first 5 4 5 697 196,005 196,702 –

p93791 Depth-first 5 4 5 1,950 706,928 708,878 –
Breadth-first 5 4 5 1,950 706,928 708,878 –

q12710 Depth-first 3 2 3 43 130,979 131,022 –
Breadth-first 3 2 3 43 130,979 131,022 –

t512505 Depth-first 3 2 3 494 385,530 386,024 –
Breadth-first 3 2 3 494 385,530 386,024 –

N132D4 Depth-first 6 5 6 9,332 29,399 38,731 –
Breadth-first 6 5 6 9,332 29,399 38,731 –

N17D3 A∗ 5 5 5 900 3,007 3,907 –
Depth-first 5 4 5 802 3,341 4,143 1.06
Breadth-first 5 4 5 802 3,341 4,143 1.06

N32D6 Depth-first 5 4 5 183,439 759,031 942,470 –
Breadth-first 5 4 5 183,439 759,031 942,470 –

N73D14 Depth-first 13 12 13 1,577,674 4,400,373 5,978,047 –
Breadth-first 13 12 13 1,577,674 4,400,373 5,978,047 –

NE1200P430 Depth-first 128 127 128 5,014,931 16,500,774 21,515,705 –
Breadth-first 128 127 128 5,014,931 16,500,774 21,515,705 –

NE600P150 Depth-first 79 78 79 916,829 2,809,897 3,726,726 –
Breadth-first 79 78 79 916,829 2,809,897 3,726,726 –

not detected. Moreover, we are working on techniques for
detection of more sophisticated defect categories, as well
as on the extension of the proposed methods to support
diagnosis of RSNs.

ACKNOWLEDGMENTS

We acknowledge Anton Tšertov for the precious support on
the ITC’16 networks and Mehrdad Montazeri for the contri-
bution in previous conference papers, which this article is
based on.

REFERENCES

[1] S. Narayanan and M. A. Breuer, “Reconfigurable scan chains: A
novel approach to reduce test application time,” in Proceedings of
1993 International Conference on Computer Aided Design (ICCAD),
Nov 1993, pp. 710–715.

[2] K. J. Lee and M. A. Breuer, “A universal test sequence for CMOS
scan registers,” in IEEE Custom Integrated Circuits Conference, May
1990, pp. 28.5/1–28.5/4.

[3] S. R. Makar and E. J. McCluskey, “ATPG for scan chain latches and
flip-flops,” in IEEE VLSI Test Symposium, Apr 1997, pp. 364–369.

[4] F. Yang, S. Chakravarty, N. Devta-Prasanna, S. M. Reddy, and
I. Pomeranz, “On the detectability of scan chain internal faults
an industrial case study,” in IEEE VLSI Test Symposium, Apr 2008,
pp. 79–84.

[5] R. Cantoro, M. Montazeri, M. Sonza Reorda, M. Ghani Zadegan,
and E. Larsson, “On the testability of IEEE 1687 networks,” in
IEEE Asian Test Symposium, Nov 2015, pp. 211–216.

[6] R. Cantoro, M. Palena, P. Pasini, and M. Sonza Reorda, “Test time
minimization in reconfigurable scan networks,” in IEEE Asian Test
Symposium, Nov 2016, pp. 119–124.

[7] A. Tsertov, A. Jutman, S. Devadze, M. Sonza Reorda, E. Larsson,
F. Ghani Zadegan, R. Cantoro, M. Montazeri, and R. Krenz-Baath,
“A suite of IEEE 1687 benchmark networks,” in IEEE International
Test Conference, Nov 2016, pp. 1–10.

[8] “IEEE Standard for test access port and boundary-scan architec-
ture,” IEEE Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001), pp.
1–444, May 2013.

[9] “IEEE Standard for access and control of instrumentation embed-
ded within a semiconductor device,” IEEE Std 1687-2014, pp. 1–
283, Dec 2014.

[10] R. Guo, L. Lai, H. Yu, and W. T. Cheng, “Detection and diagnosis of

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2834915, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 12

static scan cell internal defect,” in IEEE International Test Conference,
Oct 2008, pp. 1–10.

[11] M. K. Reddy and S. M. Reddy, “Detecting FET stuck-open faults
in CMOS latches and flip-flops,” IEEE Design & Test of Computers,
vol. 3, no. 5, pp. 17–26, Oct 1986.

[12] F. Yang, S. Chakravarty, N. Devta-Prasanna, S. M. Reddy, and
I. Pomeranz, “Detection of internal stuck-open faults in scan
chains,” in IEEE International Test Conference, Oct 2008, pp. 1–10.

[13] ——, “Detectability of internal bridging faults in scan chains,” in
Asia and South Pacific Design Automation Conference, Jan 2009, pp.
678–683.

[14] D. Adolfsson, J. Siew, E. J. Marinissen, and E. Larsson, “On
scan chain diagnosis for intermittent faults,” in IEEE Asian Test
Symposium, Nov 2009, pp. 47–54.

[15] F. Ghani Zadegan, U. Ingelsson, G. Carlsson, and E. Larsson, “Ac-
cess time analysis for IEEE P1687,” IEEE Transactions on Computers,
vol. 61, no. 10, pp. 1459–1472, Oct 2012.

[16] ——, “Design automation for IEEE P1687,” in Design, Automation
and Test in Europe, Mar 2011, pp. 1–6.

[17] F. Ghani Zadegan, E. Larsson, A. Jutman, S. Devadze, and
R. Krenz-Baath, “Design, verification, and application of IEEE
1687,” in IEEE Asian Test Symposium, Nov 2014, pp. 93–100.

[18] R. Baranowski, M. A. Kochte, and H. J. Wunderlich, “Modeling,
verification and pattern generation for reconfigurable scan net-
works,” in IEEE International Test Conference, Nov 2012, pp. 1–9.

[19] ——, “Reconfigurable scan networks: Modeling, verification, and
optimal pattern generation,” ACM Transactions on Design Automa-
tion of Electronic Systems, vol. 20, no. 2, pp. 30:1–30:27, Mar 2015.

[20] M. A. Kochte, R. Baranowski, M. Schaal, and H. J. Wunderlich,
“Test strategies for reconfigurable scan networks,” in IEEE Asian
Test Symposium, Nov 2016, pp. 113–118.

[21] D. Ull, M. Kochte, and H. J. Wunderlich, “Structure-oriented test
of reconfigurable scan networks,” in 2017 IEEE 26th Asian Test
Symposium (ATS), Nov 2017, pp. 127–132.

[22] F. Ghani Zadegan, U. Ingelsson, G. Asani, G. Carlsson, and E. Lars-
son, “Test scheduling in an IEEE P1687 environment with resource
and power constraints,” in IEEE Asian Test Symposium, Nov 2011,
pp. 525–531.

[23] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, Jul
1968.

[24] (2014) BASTION web-site. [Online]. Available: http://fp7-
bastion.eu/

Riccardo Cantoro received the MS degree
in Computer Engineering from Politecnico di
Torino, Italy, in 2013, and his PhD degree in
Computer and Control Engineering in 2017 from
the same university. He is a currently a post-
doc researcher in the Department of Computer
Engineering, Politecnico di Torino. His research
interests include software-based functional test
of microprocessor based systems, and reconfi-
gurable scan networks.

Farrokh Ghani Zadegan received his BS de-
gree in electrical engineering from Ferdowsi Uni-
versity of Mashhad, Iran, in 2001, his MS de-
gree in electrical engineering from Linköping
University, Sweden, in 2010, and his PhD degree
in electrical engineering from Lund University,
Sweden, in 2017. His research interests include
optimized design and operation of reconfigura-
ble on-chip instrument access networks. He re-
ceived the best paper award at the IEEE Euro-
pean Test Symposium 2016.

Marco Palena received his MS degree in Com-
puter Engineering in 2012 from Politecnico di
Torino. In 2017, he received his PhD degree
in Computer and Control Engineering from the
same university. He currently is a Post-doctoral
Researcher at the Dept. of Control and Com-
puter Engineering of Politecnico di Torino. His re-
search interests include SAT-solving and applied
formal methods.

Paolo Pasini received his MS in Computer En-
gineering (2012) and his PhD in Computer and
Control Engineering (2017), both from Politec-
nico di Torino. He is currently a post-doc re-
searcher at the Dept. of Control and Computer
Engineering of the same University. He is active
in the field of Formal Verification, with a specific
focus on Hardware Model Checking.

Erik Larsson is Associate Professor at the De-
partment of Electrical and Information Technol-
ogy at Lund University (LU). He received his
M.Sc., Tech. Lic and Ph.D from Linkping Uni-
versity in 1994, 1998, 2000, respectively. He did
his Post Doc (2001-2002) at Nara Institute of
Science and Technology (NAIST) and a sabbat-
ical at NXP Semiconductors, The Netherlands
(2008-2010). From 2002 until 2012 he was with
Linköping University, as an Assistant Professor
(2002-2005) and as Associate Professor (2006-

2012). His current research interests include test planning for man-
ufacturing test, test during operation (in-situ), scan-chain diagnosis,
silicon debug and validation, IJTAG/SJTAG, stacked 3D chip test, fault-
tolerance for MPSoCs (Multi-Processor System-on-Chip), and property
checking in distributed systems (MPSOcS with Network-on-Chip (NoC)).
He has more than 150 publications in these areas. He received the
Institution of Engineering and Technology (IET) Premium Award, 2009,
and the best paper award at IEEE Asian Test Symposium (ATS)(2002)
and at IEEE European Test Symposium (ETS)(2016). Erik Larsson is
an Associate Editor of Transactions on VLSI, member of a number of
committees, and is Senior member of IEEE.

Matteo Sonza Reorda received his MS degree
in Electronics (1986) and PhD degree in Com-
puter Engineering (1990), both from Politecnico
di Torino. He currently is a Full Professor at the
Dept. of Control and Computer Engineering of
the same University. He is an IEEE Fellow. His
research interests include test of SoCs and fault
tolerant electronic system design.

