
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Accurate evaluation of failure indices of composite layered structures via various FE models / de Miguel, A. G.; Kaleel, I.;
Nagaraj, M. H.; Pagani, A.; Petrolo, M.; Carrera, E.. - In: COMPOSITES SCIENCE AND TECHNOLOGY. - ISSN 0266-
3538. - STAMPA. - 167:(2018), pp. 174-189. [10.1016/j.compscitech.2018.07.031]

Original

Accurate evaluation of failure indices of composite layered structures via various FE models

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.compscitech.2018.07.031

Terms of use:

Publisher copyright

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.compscitech.2018.07.031

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2711731 since: 2020-04-24T15:27:00Z

Elsevier



Accurate evaluation of failure indices of composite layered

structures via various FE models

A.G. de Miguel∗, I. Kaleel†, M.H. Nagaraj‡, A. Pagani§, M. Petrolo¶, E. Carrera‖

MUL2 Group, Department of Mechanical and Aerospace Engineering,

Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Revised version of CSTE 2018 923

Author for correspondence:

E. Carrera, Professor of Aerospace Structures and Aeroelasticity,

MUL2 Group, Department of Mechanical and Aerospace Engineering,

Politecnico di Torino,

Corso Duca degli Abruzzi 24,

10129 Torino, Italy,

tel: +39 011 090 6836,

fax: +39 011 090 6899,

e-mail: erasmo.carrera@polito.it

∗Ph.D. Student, e-mail: alberto.garcia@polito.it
†Ph.D. Student, e-mail: ibrahim.kaleel@polito.it
‡Ph.D. Student, e-mail: manish.nagaraj@polito.it
§Assistant Professor, e-mail: alfonso.pagani@polito.it
¶Assistant Professor, e-mail: marco.petrolo@polito.it
‖Professor of Aerospace Structures and Aeroelasticity, e-mail: erasmo.carrera@polito.it

1



Abstract

The objective of the current work is to perform a failure evaluation of fiber composite structures based on failure

indices computed using the Hashin 3D failure criterion. The analysis employs 1D and 3D finite elements. 1D

elements use higher-order structural theories from the Carrera Unified Formulation based on Lagrange expan-

sions of the displacement field. The 3D model analysis exploits ABAQUS. Attention is paid to the free-edge

effects, the mode of failure initiation - matrix or fiber tension, delamination -, and the loads at which first ply

failure occurs. The results underline the paramount importance of out-of-plane stress components for accurate

prediction and the computational efficiency of refined 1D models. In fact, 1D models lead from one to twofold

reductions of the CPU time if compared to 3D models.

Keywords: Failure Indices, Hashin 3D, delamination, stress analysis, composites, higher-order models, CUF,

free-edge
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1 Introduction

Composite materials are increasingly becoming popular for use in engineering structures due to their excellent

properties, such as high strength-to-weight and stiffness-to-weight ratios. However, the knowledge regarding

failure mechanisms is still incomplete, leading to uncertainties in predicting the probability of failure at a given

stress state; this leads to a conservative design via the use of larger safety factors, adding on the weight and

reducing the advantages of composite materials.

Failure mechanisms in composite structures are complex phenomena and dependent not only on the con-

stituent material properties, but also geometric features, such as the ply stacking sequence and fiber orientation.

The experimental investigation of composite structures for failure analysis is necessary, lengthy and expensive.

An attractive alternative is the use of numerical simulations via non-linear finite element analysis (FEA) which,

while faster than experimental approaches, still involves significantly high computational costs. For this reason,

it can be beneficial to consider linear analyses to estimate the onset of failure [1]. The linear approach makes

use of failure criteria to determine the probability of failure point-wise, based on strain and stress states. The

magnitude and type of failure predicted by the various failure criteria are generally quantified using failure

indices, where a value greater than or equal to unity indicates that failure onset. Early works on the subject

involved the use of failure indices to determine the first ply failure load of composite laminates using various

polynomial-based failure theories [2, 3]. Other works combined failure indices with genetic algorithms to op-

timise the stacking sequence [4] and fibre orientation [5] to maximise the load carrying capacity of composite

laminates. Failure indices were also used as a design parameter in the failure analysis of adhesively bonded

single lap joints in composite laminates [6], failure of pin-loaded composites [7], and the analysis of low velocity

impact on thin composite laminates [8]. More recently, failure envelopes have been developed for unidirec-

tional composites using a micromechanical approach based on the High Fidelity Generalised method of Cells

(HFGMC) [9].

One of the factors influencing the accuracy of failure indices is the quality of the strain or stress field used in

the analysis. For instance, in [2–5], failure indices stemmed from plate models based on the First-Order Shear

Deformation Theory (FSDT), whose kinematic assumptions result into a 2D stress state. The use of such 2D

stress fields in conjunction with 2D failure theories may not result in accurate values of the failure indices, based

on the structure and types of loading considered. A 3D stress analysis may be required to accurately predict

the behavior of composite laminates [10]. Such a requirement may severely limit the applicability of reduced

dimensional finite element (FE) models such as beams and shells, while a full 3D FEA may be prohibitively

expensive due to the sheer number of DOF involved. For this reason, much attention has been paid to the

development of refined beam theories to obtain more accurate solutions, without a corresponding increase

in the computational size of the problem. For instance, the Generalised Beam Theory makes use of cross-

section deformation modes to compute the deformed configuration [11, 12]. On the other hand, the Variational

Asymptotic Beam Sectional analysis (VABS) involves the use of asymptotic methods based on a characteristic
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parameter to build the series expansion, and hence to refine the beam theory [13]. Other approaches employ

warping functions [14], Saint-Venant’s solutions [15], and shear correction factors [16].

The current work makes use of refined beam theories based on the Carrera Unified Formulation (CUF) [17].

In this approach, higher-order beam and shell elements are used to develop a high fidelity 1D and 2D model of

the structure, resulting into solutions which approach that of 3D FEA in a computationally efficient manner.

CUF can accurately predict the 3D stress state of the structural model. Previous works involving CUF were

based on the evaluation of failure indices using 2D failure theories where only the in-plane stress components

were considered [18], and the evaluation of integral failure indices where a volume instead of a discrete point

was considered for the failure index evaluation [19]. The objective of the current work is to perform a failure

evaluation of the structure by computing failure indices based on the Hashin 3D failure criteria, using 3D stress

fields determined by CUF.

The remainder of the paper is organized in the following manner: Section 2 briefly describes the concept

of the CUF. The Hashin 3D Failure Criteria, used to evaluate the failure indices, is summarized in Section

3. Some numerical examples based on standard benchmarks have been presented in Section 4 to demonstrate

the capabilities of CUF in predicting failure. Finally, Section 5 presents some conclusions based on the results

developed in the current work.

2 The Carrera Unified Formulation

The CUF is a framework to develop higher-order structural theories. In this paper, the 1D CUF was used. The

displacement field of a 1D, beam, element in CUF can be denoted as

u = Fτ (x, z)uτ (y), τ = 1, 2, . . .M (1)

where u = {ux, uy, uz}T is the displacement field, Fτ (x, z) is the expansion function across the cross-section,

uτ is the generalized displacement vector, and M is the number of terms in the expansion function. The choice

of Fτ and M is arbitrary, i.e., is an input of the analysis. The current work makes use of Lagrange polynomials

as Fτ , which is implemented in the form of bi-quadratic 9-node Lagrange cross-sectional elements (L9). The

choice of such functions results into theories with purely translational degrees of freedom (DOF), and, thus, the

primary unknown variables have a physical meaning, representing translations of structural points in the 3D
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space. For instance, in an L9, the displacement field is

ux =

9∑
τ=1

Fτ (x, z)uxτ (y)

uy =

9∑
τ=1

Fτ (x, z)uyτ (y)

uz =

9∑
τ=1

Fτ (x, z)uzτ (y)

(2)

The use of Lagrange elements to discretize the cross-section leads to a 1D FE model in which the physical

surfaces can be explicitly modeled without the need for fictitious mathematical entities such as a reference axis

[17]. As an example, the 1D CUF model of a 3-ply laminate is shown in Fig. 1, where each ply was modeled

with an L9 providing a Layer-Wise description (LW). Furthermore, local refinement of the cross-section, for

instance at the interface between two plies, can be easily achieved by the addition of more Lagrange elements

[20]. Similarly, more complex configurations can be tackled in which components with varying geometrical and

Figure 1: A 3-ply laminate modeled using one L9 element per ply

physical characteristics are modeled via 1D elements leading to a Component-Wise approach (CW) [21].

The stress and strain tensors are defined as

σ = {σxx, σyy, σzz, σxy, σxz, σyz}T

ε = {εxx, εyy, εzz, εxy, εxz, εyz}T
(3)

The linear strain-displacement relation is

ε = Du (4)

where D is the linear differentiation operator expressed as:

D =
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The stress-strain relations are described by the elastic constitutive law, and are given by

σ = Cε (5)

where C is the linear elastic material coefficient matrix defined in the global system [22].

The structure is discretized along the axial direction with standard beam elements, interpolated using the

nodal shape functions Ni. In this paper, three and four node beam elements were used and referred to as B3

and B4, respectively. The use of beam elements along the axis, along with L9 across the cross-section, results

in the following 3D displacement field:

u(x, y, z) = Fτ (x, z)Ni(y)uτi (6)

where uτi is the nodal displacement field. According to the principle of virtual displacements,

δLint = δLext (7)

where δLint is the virtual variation of the internal strain energy,

δLint =

∫
V

δεTσ (8)

Lext is the work due to external loading,

Lext = FsNjδu
T
sjP (9)

where P is the external force vector. The virtual variation of the internal strain energy can be formulated using

Eqs. (5), (6) and (8), which results in the following equation for the stiffness matrix:

δLint = δuTsjkijτsuτi (10)

with

kijτs =

∫
l

∫
Ω

DT (Ni(y)Fτ (x, z))CD(Nj(y)Fs(x, z)) dΩ dl (11)

where Ω denotes the cross-sectional domain, and l is the length of the structure in the axial direction. kijτs

is the 3x3 Fundamental Nucleus (FN) and remains invariant with respect to the order of beam element and

choice of expansion function across the section. Assembling the FNs calculated by looping through the indices

{i, j, τ, s} results in the element stiffness matrix. A more detailed explanation of the concept of the fundamental

nucleus and its role in CUF can be found in [17].
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3 Evaluation of failure indices

Failure indices are evaluated using the Hashin 3D failure criteria for the prediction of ply failure, and the mixed

mode quadratic criteria to determine the onset of delamination. The failure indices are defined using the stress

state in the material coordinate system, as shown in Fig. 2.

1

2

3

Figure 2: The material coordinate system oriented in the direction of the fibre

The Hashin 3D failure criteria [23] are used to determine first ply failure based on the stress state and to

determine the dominating failure mode at the ply level. The failure indices for the state of matrix and fiber

tension or compression are computed according to the following equations:

1. Fibre Tension: (
σ2

11

XT

)2

+
σ2

12 + σ2
13

S2
12

≥ 1 (12)

2. Fibre Compression: (
σ2

11

XC

)2

≥ 1 (13)

3. Matrix Tension:

(σ22 + σ33)2

Y 2
T

+
σ2

23 − σ22σ33

S2
23

+
σ2

12 + σ2
13

S2
12

≥ 1 (14)

4. Matrix Compression:

[(
YC

2S23

)2

− 1

](
σ22 + σ33

YC

)
+

(σ22 + σ33)2

4S2
23

+
σ2

23 − σ22σ33

S2
23

+
σ2

12 + σ2
13

S2
12

≥ 1 (15)

where σij represents the components of the stress tensor in the material coordinate system. X represents the

material strength in the fiber direction, and Y represents that of the transverse direction, with the subscripts

T and C denoting tensile and compressive loading, respectively. Sij denotes the material shear strengths.
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The delamination index is determined based on the mixed mode quadratic criterion [24], and is given by:

(
< σ33 >

ZT

)2

+

(
σ23

S23

)2

+

(
σ13

S13

)2

≥ 1 (16)

where < σ33 > denotes max(0, σ33), σ33 being the transverse normal stress in the material coordinate system.

σ13 and σ23 are the transverse shear stresses, ZT is the interlaminar normal strength while S13 and S23 are the

transverse shear strengths.

4 Numerical Examples

4.1 Tensile tests

A failure index evaluation of a tensile specimen was carried out as an initial assessment of the proposed for-

mulation. First, a balanced and symmetric cross-ply was considered based on the recommendations of ASTM

3039 [25] and the solutions obtained from CUF were compared with those of 3D FEA generated in the com-

mercial software ABAQUS. Then, the delamination onset was studied on [θ/ − θ]s specimens and compared

with semi-analytical and experimental results available in the literature. Two material systems were considered:

IM7/8552 and G947/M18 fiber composites, whose material properties are listed in Table 1.

Material E1 [GPa] E2 [GPa] E3 [GPa] G12 [GPa] G13 [GPa] G23 [GPa] ν12 ν13 ν23

IM7/8552 165.0 9.0 9.0 5.6 5.6 2.8 0.34 0.34 0.5
G947/M18 97.6 8.0 8.0 3.1 3.1 2.7 0.37 0.37 0.5

Table 1: Mechanical properties of the IM7/8552 and G947/M18 material systems

4.1.1 3D assessment of a [45/-45/90/0]s specimen

For the first numerical assessment, a uni-axial tension test on a symmetric cross-ply specimen was considered.

The material selected was IM7/8552, with a stacking sequence of [45, -45, 90, 0]s. The recommended dimensions

[25] were employed; L = 200 mm, b = 25 mm and h = 2.54 mm, with the thickness of each lamina being equal

to h0 = 0.3175 mm. A schematic representation of the specimen and the boundary conditions are given in

Fig. 3. On one end [y = 0.0], the displacements in the y and z directions were constrained, while in the other

[y = L] simply-supported conditions were applied on the z direction. Symmetry on the x axis is imposed. A

longitudinal force of magnitude F = 6, 350 N was applied at y = L.

The accuracy of the various models in computing the full set of stress components, and subsequently the

failure indices, was evaluated. The three predominant failure modes which can arise in a tensile test were

addressed: delamination onset, matrix failure, and fiber failure. The former mode was calculated making use

of the mixed mode quadratic criteria, whereas the latter two were based on the Hashin 3D criteria.

The main aim of the present study is to demonstrate the efficiency and fidelity of the stress solutions
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F

Figure 3: Dimensions and loading conditions of the tensile specimen

obtained with the CUF-LW models in comparison with solid models. The stress solutions of the proposed model

were evaluated at relevant points through the thickness within the structure, along with a mesh convergence

study; center of the beam [x = 0.0, y = L/2], and free-edge at the mid-span [x = 12.5, y = L/2] ). In the

analysis, attention was paid to the out-of-plane stress components, which directly influence the onset of failure

in composite materials. The model data and computational times for both CUF and ABAQUS models are

tabulated in Table 2. The main differences between the modeling procedure followed in a CUF-LW model and

a 3D model are illustrated in Fig. 4. In the former, the discretization of the cross-section domain remains

independent of the longitudinal mesh, therefore, allowing refinements of the cross-section with a reduced impact

in the total size of the computational problem. This is in strong contrast with standard 3D solid models, where

the necessity of maintaining a suitable aspect ratio of the FE along all 3 directions may result in a very fine

discretisation along the model axis, thus increasing computational costs.

Table 2: Model information for the tensile specimen

Model Discretization∗ DOF CPU Time [s]

CUF-LW 320 L9 over the cross-section, with 6 B4 along y. 77,805 82

ABQ3D-Coarse Linear brick elements (C3D8) with a mesh of 30 x 8 x 200
elements. One element per layer.

168,237 27

ABQ3D-Medium Linear brick elements (C3D8) with a mesh of 30 x 24 x 200
elements. Three elements per layer.

467,325 261

ABQ3D-Refined Linear brick elements (C3D8) with a mesh of 70 x 40 x 400
elements. Five elements per layer.

3,501,933 3526

∗All discretizations are graded towards the free-edges

Figure 5 shows the in-plane stresses through the thickness at [x = 0.0, y = L/2], i.e., at the center of the

midspan, while Fig. 6 shows the out-of-plane stresses through the thickness at [x = 12.5, y = L/2], i.e., at the

free-edge of the midspan.

The following procedure was chosen to compare the accuracy of the various numerical models for the failure

evaluation: first, the CUF-LW model was run and, for each failure mode - delamination, matrix tension and

fiber tension - the axial load of failure onset was computed. Subsequently, the computed loads were applied

to the 3D models, and the failure indices obtained were presented for comparison. The material strengths are

shown in Table 3. The results are shown in Table 4. Subsequently, the tensile loads at which the different failure
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(a) CUF-LW (b) ABAQUS 3D

z

x

(c) CUF cross-section mesh

Figure 4: Comparison between the beam and solid discretization. The CUF cross-section mesh is schematically
represented in (c), where due to symmetry, only the right half is shown.
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Figure 5: In-plane stress components at the centre of the section.
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Figure 6: Out-of-plane stress components at the free-edge
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indexes reach the unit value are shown in Table 5. It is worth mentioning that the present study is based on

linear analyses. Therefore, the failure modes remain independent of each other, i.e., the onset of a given mode

does not influence the others.

Table 3: Material strength values of the IM7/8552 composite

Failure criteria Zt [MPa] S13 [MPa] S23 [MPa] Xt [MPa] Yt [MPa] S12 [MPa]
Mixed mode delamination 60.0 90.0 90.0
Hashin 3D 73.0 90.0 57.0 2,560.0 73.0 90.0

Table 4: Comparison of the failure indices computed by the different models considered under the same loading value

Mode Delamination Matrix Tension Fibre Tension Fiber Tension∗

Load [N] 14,287.5 11,938.0 27,178.0 34,417.0
Model DOF Failure index value
ABQ3D coarse 168,237 0.28 0.4 0.7 1.07
ABQ3D medium 467,325 0.31 0.45 0.71 0.94
ABQ3D refined 3,501,933 0.6 0.73 0.82 1.05
CUF-LW 77,805 1 1 1 1
∗Modified Hashin 3D criteria with only in-plane components

Table 5: Values of the tensile load corresponding to the onset of failure of each mode considered

Mode DOF Delamination Matrix Tension Fibre Tension Fiber Tension∗

ABQ3D coarse 168,237 27,178.0 18,796.0 32,385.0 33,401.0
ABQ3D medium 467,325 25,717.5 17,843.5 32,258.0 35,433.0
ABQ3D refined 3,501,933 18,478.5 14,033.5 30,226.0 33,655.0
CUF-LW 77,805 14,287.5 11,938.0 27,178.0 34,417.0
∗Modified Hashin 3D criteria with only in-plane components

Figures 7-9 show the 3D plots of the failure indices for the CUF-LW and the finest solid model. In the case

of the fiber failure based on the Hashin 3D criteria, Fig. 9, the free-edge effects cause the fibers to fail at the

interfaces in the free-edge due to the high interlaminar stresses, see Fig. 6. To avoid this non-physical response

and evaluate the effect of shear, a modified Hashin criterion was proposed which neglects the transverse shear

stresses, σyz. The corresponding results of fiber failure are included in Table 4, as well as in Fig. 10.
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Figure 7: Failure index for matrix tension

The following observations can be made based on the obtained results:
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(a) CUF-LW (b) ABQ3D - refined

Figure 8: Failure index for delamination

(a) CUF-LW (b) ABQ3D - refined

Figure 9: Failure index for fiber tension
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Figure 10: Failure index for fiber tension using the modified criterion
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1. All models provide the same solutions for in-plane stresses but differences arise in the evaluation of the

out-of-plane stress components at the free-edge.

2. The correct computation of the 3D failure indices is strongly related to the accuracy of the out-of-plane

stresses. If the 3D stress fields are not computed to a sufficient level of accuracy in the critical zones of

the structure, e.g., free-edges, the values of the failure indices may vary to a great extent. This effect is

more noticeable for the matrix and interface failures, see Tables 4 and 5.

3. In the 3D models, the mesh refinement has a strong influence on the failure index evaluation. In particular,

refined meshes are necessary for the out-of-plane components of stresses.

4. The refinement of the CUF models is required at the cross-section level only. i.e., the refinement of the

structural theory, instead of the 3D mesh, leads to very accurate 3D stress fields and some twenty times

as less DOF as for the 3D model.

5. The detection of σzz peak values at the free-edges is particularly challenging and, usually, such peaks are

due to the presence of inner 90-layers as mentioned in [26, 27].

4.1.2 [θ,−θ]s specimens under tensile load

The second assessment deals with the delamination onset of [θn,−θn]s specimens made of G947/M18 under an

axial extension, ε0. The assessment aims to verify and validate the present formulation against other numerical

results and experimental texts, respectively. Since only [θn,−θn]s cases were considered and no further analyses

were carried out, the results of this section are considered are complementary of those of Section 4.1.1.

The problem features were taken from the work of Lagunegrand et al. [28], who performed experimental

tests on this class of specimens to evaluate the delamination initiation via acoustic measurements and semi-

analytical models. The geometry and loading conditions are equivalent to those of Fig. 3 with the following

dimensions: L = 400 mm and b = 20 mm. The thickness of the G947/M18 ply is equal to h0 = 0.19 mm, and

the effect of the total thickness of the laminate, h, on the onset of delamination was studied.

Figure 11 shows the interlaminar shear stress in the vicinity of the free-edge [y = L/2, z = h0] for the [+10,-

10]s specimen. Two section refinements were considered: 10 × 20 L9 with a total of 49,077 DOF (CUF-LW1)

and 14 × 24 L9 with 80,997 DOF (CUF-LW2). The results of the CUF analysis were compared with semi-

analytical solutions of the software CLEOPS from Lagunegrand et al. [28], which is based on the boundary layer

method, and a 2D plane strain model and 3D model from the work of Martin et al. [29]. The 2D model of the

latter reference was generated using linear triangular elements (20,000 nodes) and a minimum element length of

1 µm in the free edge, whereas the 3D model was generated using tetrahedral elements and a minimum element

size of 10 µm. In Fig. 12, it can be observed the concentration of transverse stresses in the interfaces between

the [+10] and [-10] plies. Based on the premises of [28], delamination by pure mode III was considered in this

example, i.e., the effects of σzz were considered negligible in the failure criteria. Accordingly, the curves of the
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applied load causing the delamination initiation for the laminates [+10n,-10n]s, [+20n,-20n]s and [+30n,-30n]s

with an increasing thickness (n = 1, 2, 3, 4) are shown in Fig. 13 and compared against the experimental results.
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Figure 11: Normalized interlaminar shear stress of the G947/M18 [+10,-10]s specimen under axial extension
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Figure 12: Plot of the transverse shear stresses [MPa] in the vicinity of the free-edge of the G947/M18 [+10,-10]s
specimen for a uniform extension of ε0 = 0.001

The results suggest that:

1. The present formulation can provide accurate free-edge transverse shear stresses. In fact, results match

very well with those from other models in literature and experiments.

2. Localized failure can be captured, and the delamination onset was determined accurately.

3. As well-known, the free-edge effects are very localized and tend to disappear as soon as a distance roughly

equal to the total thickness of the laminate is considered.
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4.2 Plate with a hole

In the current example, a rectangular plate with a central hole was considered. The plate dimensions are the

following: L = 138.0 mm, w = 38.1 mm, and hole diameter d = 6.34 mm. The plate is clamped on one end, and

displacement is prescribed on the opposite end. The geometry and boundary conditions of the notched specimen

are shown in Fig. 14. Three lamination sequences were considered, namely [0], [90] and [0/90]s. As illustrated

in Fig. 15, CUF-LW notched specimens were modeled as a three-component beam assembly. The components

can be easily connected to the interfaces because of the use of CUF-LW results in only displacement DOF.

In particular, at the interface, the continuity of displacement field is enforced via the shared nodes, as shown

in Fig. 15. Further details on the approach to combine 1-, 2- and 3-dimensional refined models in the CUF

framework can be found in [21]. The far-notch beam configuration was modeled with a combination of B4 beam

elements along with L9 cross-section elements, where the beam is oriented in the y-direction. Each far-notch

zone spans 49 mm in length. A combination of B3 beam elements along with L9 elements was employed to

model the near-notch region. Various 3D FEM models with varying degrees of mesh refinement were built in

ABAQUS for comparison purposes. Table 6 lists the mesh data for various models in CUF and ABAQUS.

The load required for the first ply failure was determined for the models described in Table 6, where the

load corresponds to the value at which one of the failure indices attains the value of unity. In all the analyses,

displacement boundary conditions were prescribed, and the corresponding load is computed in order to obtain

the load at first ply failure. Table 7 tabulates the first ply failure load along with the mode of failure, for various
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Table 6: Model information for failure index evaluation of notched composite specimens

Model Discretization DOF CPU Time (s)

Laminate 1 : [0]

CUF-LW C2: 7L9-10B4 and C1:136L9-1B3 (One element per layer) 9,414 4

ABQ3D-Coarse Linear brick elements (C3D8) with an average element size
of 0.275 around the notch. Two elements per layer.

25,632 6

ABQ3D-Refined Linear brick elements (C3D8) with an average element size
of 0.2 around the notch. Two elements per layer.

39,348 12

Laminate 2 : [90]

CUF-LW C2: 7L9-10B4 and C1:136L9-1B3 (One element per layer) 9,414 4

ABQ3D-Coarse Linear brick elements (C3D8) with an average element size
of 0.275 around the notch. Two elements per layer.

25,632 6

ABQ3D-Medium Linear brick elements (C3D8) with an average element size
of 0.2 around the notch. Two elements per layer.

39,348 7

ABQ3D-Refined Linear brick elements (C3D8) with an average element size
of 0.1 around the notch. Two elements per layer.

93,960 15

Laminate 3 : [0/90]s

CUF-LW1 C2: 28L9-10B4 and C1:136L9-4B3 (One element per layer) 28,242 19

CUF-LW2 C2: 56L9-10B4 and C1:136L9-8B3 (Two elements per layer) 53,346 42

ABQ3D-1L Linear brick elements (C3D8) with an average element size
of 0.1 around the notch. One element per layer.

187,320 42

ABQ3D-2LQ Quadratic brick elements (C3D20) with an average element
size of 0.2 around the notch. Two element per layer.

265,782 68

ABQ3D-4LR Linear brick elements (C3D8) with an average element size
of 0.05 around the notch. Four elements per layer.

1,306,977 602

16



models of notched composite specimens. The normal in-plane stress distributions at the top of the layer and

along the width of the notched composite laminate for the [0] and [90] specimens were plotted in Fig. 16a and

Fig. 16b, respectively. The contour plot of the Hashin-3D matrix tension failure index for the [0] laminate has

been given in Fig. 17, for an applied displacement of 0.2 mm which corresponds to first ply failure. Similarly,

first ply failure occurs for a displacement of 0.45 mm in the case of the [90] laminate, and the contour plot of the

Hashin-3D matrix tension failure index has been given in Fig. 18. The axial stress σyy through the thickness

of the [0/90]s notched laminate was plotted in Fig. 19. Similarly, the transverse shear stresses σxy and σyz

were plotted in Fig. 20 and Fig. 21, respectively. The contour plots of the Hashin-3D matrix tension and the

delamination failure indices, for the [0/90]s laminate under an applied displacement of 0.125 mm, were plotted

in Fig. 22 and Fig. 23, respectively.

Table 7: Numerical results for load at first ply failure for different models of notched composite specimens

Model DOF Load at first ply failure [N] First ply failure mode

Laminate 1 : [0]

CUF-LW 9,414 1,120

ABQ3D-Coarse 25,632 1,142 Matrix Tension

ABQ3D-Refined 39,348 1,120

Laminate 2 : [90]

CUF-LW 9,414 141

Matrix Tension
ABQ3D-Coarse 25,632 147

ABQ3D-Medium 39,348 146

ABQ3D-Refined 93,960 141

Laminate 3 : [0/90]s

CUF-LW1 28,242 1,531

Matrix Tension

CUF-LW2 53,346 1,500

ABQ3D-1L 187,320 2,097

ABQ3D-2LQ 265,782 1,737

ABQ3D-4LR 1,306,977 1,797

Based on the above results, the following observations can be made regarding the analysis of notched

composites:

1. The CUF results for the in-plane stress components agree well with those of the ABAQUS 3D solutions,

as can be seen in Fig. 16a and Fig. 16b for the [0] and [90] ply laminates, respectively.

2. It can be seen in Fig. 17 and Fig. 18 that the failure indices obtained from the CUF analysis are slightly

higher than that obtained from ABAQUS. This is significant since it infers that initial failure occurs earlier

i.e. at a lower magnitude of the applied load, than is predicted by ABAQUS.

3. In the case of the [0/90]s laminate, it can be seen from Fig. 20 and Fig. 21 that the in-plane shear stresses
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Figure 16: Normal stress distribution along the width of notched composite specimen,
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Figure 17: Hashin3D matrix tension (MT) failure index for [0] laminate under an applied displacement of 0.2 mm
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Figure 19: Normal stress distribution σyy through the thickness of [0/90]s notched laminate under an applied displace-
ment of 0.125 mm, x = 16.875, y = 69

Figure 20: In-plane shear stress distribution σxy through the thickness of [0/90]s notched laminate under an applied
displacement of 0.125 mm, x = 16.875, y = 69
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Figure 21: Transverse shear stress distribution σyz through the thickness of [0/90]s notched laminate under an applied
displacement of 0.125 mm, x = 17.04, y = 68
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Figure 22: Hashin3D matrix tension (MT) failure index for [0/90]s laminate under an applied displacement of 0.125
mm
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Figure 23: Delamination failure index for [0/90]s laminate under an applied displacement of 0.125 mm
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σxy and the out-of-plane shear stresses σyz, respectively, are underestimated in ABAQUS when compared

with the CUF results. This is reflected in the failure index for matrix tension, as shown in Fig. 22, and

that of delamination, shown in Fig. 23, where the values reported by ABAQUS are significantly lower

than those reported by CUF. As well-known, the use of quadratic brick elements leads to improvement in

the stress field with such improvements more evident in the case of the out-of-plane stress components.

4. The refinement of the CUF discretization along the thickness leads to the fulfillment of the top and bottom

out-of-plane stress boundary conditions and higher peak values.

4.3 Stringer stiffened panel

The current example evaluates the failure indices for a composite panel stiffened using a composite stringer. The

geometry of the structure was taken from [30], and a schematic representation of the cross-section along with the

applied boundary conditions is shown in Fig. 24. The length of the specimen is 240 mm. The material system

used is IM7/8552, and the properties are listed in Table 1. The skin is composed of an 8-ply quasi-isotropic

laminate with a stacking sequence of [45/90/ − 45/0]s and a total thickness of 1.0 mm, while the stiffener is

composed of a 7-ply laminate whose stacking sequence is given as [−45/0/45/0/45/0/− 45] with a thickness of

0.875 mm. The computed failure indices are based on the Hashin 3D failure criteria.
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Figure 24: Cross-section of the stringer stiffened panel (dimensions in mm)

A uni-axial tension test was performed on the specimen using CUF-LW, where the model axis was discretized

with 10 B4 (cubic) elements. Two cross-section meshes were considered for the analysis: (a) CUF-LW1 - 355 L9

(bi-quadratic) Lagrange elements with one element per ply, and (b) CUF-LW2 - 710 L9 (bi-quadratic) Lagrange

elements with two elements per ply, to investigate the effect of cross-section mesh refinement on the analysis. A

schematic representation of the cross-section mesh with 1 L9 per ply has been shown in Fig. 25. The stringer

was constrained along the y-direction, i.e., uy = 0.0, on one end of the stringer [y = 0.0], and a constraint of

ux = 0.0 was applied at the plane [x = -75.0]. Similarly, a constraint of uz = 0.0 was applied on the base

i.e. [z = -1.0]. A displacement uy = 0.97 mm was applied on the opposite end [y = 240.0] of the stringer,

which corresponds to the load for first ply failure, i.e, one of the failure indices attains the value of unity. The
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results obtained from CUF were compared with those of ABAQUS 3D. Two ABAQUS models were considered,

where each ply was discretized using one and two linear hexahedral elements, respectively. The results of these

analyses were plotted through the thickness, at some salient points of the structure, i.e., point A [x = 36.5, y

= 120.0] which is the free-edge of the stringer, and point B [x = 75.0, y = 120.0], which is the free-edge of the

skin, see Fig. 26. Model data on the type of mesh, DOF required, and analysis time were listed in Table 8.

z

x

9-node quadratic

 element (L9)

Figure 25: Cross-section mesh used for the CUF-LW1 (one L9 element per ply) analysis. Due to the symmetric nature
of the mesh, only the right half has been shown.

Point A Point B

Figure 26: Points of interest in the cross-section of the structure

Table 8: Model information for the stringer analysis

Model Discretization DOF CPU Time [s]

CUF-LW1 355 L9 over the cross-section, with 1 L9 per ply. 10 B4 along y. 142,476 161

CUF-LW2 710 L9 over the cross-section, with 2 L9 per ply. 10 B4 along y. 277,326 478

ABQ-3D1 705,600 linear brick elements (C3D8). One element per ply. 2,422,749 760

ABQ-3D2 1,411,200 linear brick elements (C3D8). Two elements per ply. 4,560,150 3,764

Table 9 shows failure indices for various locations and failure modes. The axial stress σyy at point A

was plotted in Fig. 27, while the out-of-plane stress components in Fig. 28. The Hashin 3D matrix tension

failure index and the delamination index were plotted in Fig. 29a and Fig. 29b, respectively. Similarly, the

corresponding results were plotted at the free-edge of the skin, i.e., at point B. The axial stress σyy is shown in

Fig. 30, while the out-of-plane stress components are shown in Fig. 31. The failure indices related to matrix

tension failure and delamination are shown in Fig. 32. The contour plot of the matrix tension failure index

at point B has been shown in Fig. 33, while that of the delamination index is shown in Fig. 34. Similarly,
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the contour plots for the matrix tension failure index and delamination index in the region near point A were

plotted in Fig. 35 and Fig. 36, respectively.

Table 9: Failure indices via various FE models for the stringer stiffened panel at first ply failure (failure mode: matrix
tension)

Mode Delamination Matrix Tension Fibre Tension
Model Failure index value

Free edge of stringer [x = 36.5, y = 120.0, z = 0.0125]

ABQ - 3D1 0.1349 0.3817 0.1395
ABQ - 3D2 0.2110 0.4358 0.1837
CUF - LW1 0.5109 0.8681 0.1735
CUF - LW2 0.5405 0.9307 0.1902

Free edge of skin [x = 75.0, y = 120.0, z = -0.13]

ABQ - 3D1 0.1723 0.6715 0.1808
ABQ - 3D2 0.1876 0.6832 0.2074
CUF - LW1 0.2483 1.0035 0.7143
CUF - LW2 0.2380 1.0095 0.7574
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Figure 27: Axial stress σyy through the thickness at the free-edge (point A)

The following comments can be made based on the results of the above analyses:

1. Free-edge effects are significant, and first ply failure occurs due to matrix failure (in tension) at this region.

2. The discretisation of the plies through the thickness is of importance, significantly influencing the stress

fields in the transverse direction. This can be seen in the above results, e.g., in Fig. 31, where increasing

the number of elements per ply in the ABAQUS models leads to the results approaching that of CUF

modelled using 2 quadratic L9 elements per ply.
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Figure 28: Out-of-plane stress components through the thickness at the free-edge (point A)
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Figure 29: Failure Indices through the thickness at the free-edge (point A)
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Figure 30: Axial stress σyy through the thickness at the free-edge of the skin (point B)
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Figure 31: Out-of-plane stress components through the thickness at the free-edge of the skin (point B)
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Figure 32: Failure Indices through the thickness at the free-edge of the skin (point B)
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Figure 33: Contour plot of Matrix tension failure index through the thickness at the free-edge of the skin (point B)
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Figure 34: Contour plot of the delamination index through the thickness at the free-edge of the skin (point B)
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Figure 35: Contour plot of Matrix tension failure index (point A)
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Figure 36: Contour plot of the delamination index (point A)
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3. The cross-section mesh used in the CUF analysis can influence the out-of-plane stress fields as can be seen

in Fig. 31b, where the lack of refinement in the CUF-LW1 model results in a smeared or spread-out peak

σzz, as opposed to the CUF-LW2 case. This directly affects indices which are a function of σzz, such as

the delamination index as can be seen in Fig. 32b, where the CUF-LW1 model predicts a spread-out peak

index which is smaller in magnitude when compared to the CUF-LW2 case.

4. A full 3D FEA using traditional FE can lead to prohibitively high computational costs, whereas CUF leads

to more accurate results in a more computationally efficient manner. The use of higher-order theories to

expand the cross-section kinematics is of great importance to enhancing efficiency.

5. A peak of σzz was found at the corner between the stringer and the skin. In particular, such a peak appears

at the intersection between the interior of the skin, where no peaks are observed, and the free-edge of the

stiffener, where the stress concentrations arise due to the sudden change of the stress fields in the bonded

area.

5 Conclusions

A failure evaluation of composite laminated structures has been performed via 1D and 3D FE and failure

indices computed using the Hashin 3D failure criterion. 1D elements have been built via CUF, where the beam

cross-section kinematics is enhanced using Lagrange polynomials, resulting in an LW modeling of the composite

laminates. 3D FE models have been built in ABAQUS. The failure indices have been used as a parameter to

determine the onset of failure via first ply failure. In particular, the onset of delamination has been predicted

using a delamination index computed using the quadratic mixed mode criterion. The following observations

can be made based on the results of the numerical analysis:

1. An accurate evaluation of the 3D stress field, especially the out-of-plane terms around free-edges, is of

great importance to computing failure indices.

2. In a 3D FE model, the requirement for the accurate evaluation of the out-of-plane stress may lead to

prohibitive computational costs, especially for large composite structures with fairly complicated geometry.

3. The use of higher-order 1D models in CUF results in a 3D-like accuracy of the stress solutions, at a

significantly reduced computation cost if compared to 3D elements. CUF requires some 10 to 20 times

less DOF than 3D elements.

4. The CUF capability of improving the modeling accuracy via refinement of the displacement field along

the thickness is decisive as far as the out-of-plane stress distributions are considered.

Future works should include physically non-linear analyses and the extension to global-local approaches.
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