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Article

A novel measure of drug benefit–risk
assessment based on Scale Loss Score

Gaelle Saint-Hilary,1 Veronique Robert,2 Mauro Gasparini,1

Thomas Jaki3 and Pavel Mozgunov3

Abstract

Quantitative methods have been proposed to assess and compare the benefit-risk balance of treatments. Among them,

multicriteria decision analysis (MCDA) is a popular decision tool as it permits to summarise the benefits and the risks of a

drug in a single utility score, accounting for the preferences of the decision-makers. However, the utility score is often

derived using a linear model which might lead to counter-intuitive conclusions; for example, drugs with no benefit or

extreme risk could be recommended. Moreover, it assumes that the relative importance of benefits against risks is

constant for all levels of benefit or risk, which might not hold for all drugs. We propose Scale Loss Score (SLoS) as a new

tool for the benefit–risk assessment, which offers the same advantages as the linear multicriteria decision analysis utility

score but has, in addition, desirable properties permitting to avoid recommendations of non-effective or extremely

unsafe treatments, and to tolerate larger increases in risk for a given increase in benefit when the amount of benefit is

small than when it is high. We present an application to a real case study on telithromycin in Community Acquired

Pneumonia and Acute Bacterial Sinusitis, and we investigated the patterns of behaviour of Scale Loss Score, as compared

to the linear multicriteria decision analysis, in a comprehensive simulation study.

Keywords

Benefit–risk, bounds penalisation, decision-making, loss score, multicriteria decision analysis

1 Introduction

A drug benefit–risk assessment consists of balancing its favourable therapeutic effects versus adverse reactions it
may induce.1 The benefit–risk balance is a strong predictor of the therapy’s long-term viability and a key element
for decision-making during the drug’s development, the regulatory approval process, and the post-marketing
follow-up.2–4 For many years, a qualitative description of evidences had been the main approach to establish a
drug’s profile.5,6 This approach, however, tends to lack transparency since the decision of taking (dropping) a drug
is based on a large amount of data coming from different sources and on criteria which can vary for different
experts. Structured frameworks and quantitative methodologies have been recently proposed to make a benefit–
risk assessment more comprehensive and consistent.7–12

According to the European Medicine Agency Benefit–Risk Methodology Project,6,13–15 one of the most
comprehensive quantitative approaches is multicriteria decision analysis (MCDA).16–19 It has also been
recommended by several highly profiled expert groups, e.g. see IMI PROTECT Work package 5.20 The main
idea of MCDA is to calculate a single utility score using multiple criteria and taking into account
the importance of each criterion. While non-linear forms of the utility score are recognised in various
application areas of MCDA,21,22 a linear aggregation of treatment’s effects on benefits and risks remains the
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most common choice for the drug development.17,23–26 The major advantage of the linear model is its intuitive
interpretation: a poor efficacy can be compensated by a good safety, and vice-versa. However, the linear utility
score can result in the recommendation of highly unsafe or poorly effective drugs27,28 and, consequently, in a
counter-intuitive conclusion. Moreover, the linearity implies that the relative tolerance in the toxicity increase is
constant for all levels of benefit. This leads to implicit assumptions on decision-makers’ preferences which might
not hold for all drugs. Avoiding these pitfalls is possible with, first, adopting good practices to ensure that the
modeling approach makes sense,27 and, second, by using non-additive and non-linear models.12,29 The main
objectives of this work are to explicitly illustrate the issues of the additive linear MCDA model through a
comprehensive simulation study, and to provide an alternative approach, namely, Scale Loss Score, for
aggregation of treatment’s effect overcoming these issues. The proposed approach is based on recent
developments in the theory of estimation in restricted parameter spaces30,31 and is shown to have soundness
in the context of drug evaluation.

The case study of telithromycin (Ketek�) raises questions regarding the suitability of a linear MCDA utility
score for the drug benefit–risk assessment. Telithromycin was approved for the treatment of infections in several
indications in 2001 by the EMA32 and in 2005 by the FDA.33 It was (qualitatively) reassessed in 2006–2007 by both
agencies based on updated safety data. In particular, some serious visual adverse reactions, syncopes and acute
liver failures have been reported. The terms of the marketing authorisations were varied in order to better describe
the drug safety profile, and two indications were removed from the labeling by the FDA, among them Acute
Bacterial Sinusitis (ABS). More recently, the IMI PROTECT Benefit–Risk Group34 applied MCDA to this clinical
example. Even if this assessment was performed solely for the purpose of testing the methodology, the main results
indicated a fairly strong superiority of telithromycin versus the comparators in ABS, which is not consistent with
the concerns expressed by the health authorities. Consequently, alternative methods more accurately reflecting
decision-makers’ preferences are of great interest.

In this work, we extend the assumption of non-linearity of preferences, which is well established in other fields
such as microeconomics or ecology,21,35,36 to the drug development context. We advocate two properties that a
desirable measure of drug benefit–risk assessment should have:

(1) Decreasing level of risk tolerance relative to benefits: an increase in risk could be more tolerated when benefit
improves from ‘very low’ to ‘moderate’, compared to from ‘moderate’ to ‘very high’.

(2) Non-effective or/and extremely unsafe treatments should never be recommended.

Motivated by recent developments in the theory of the weighted information measures37,38 and in the theory of
estimation in restricted parameter spaces,31 we propose Scale Loss Score (SLoS) as a novel measure for the
benefit–risk assessment which shares both of these properties. The first property is achieved through convex
preferences between efficacy and safety and the second one by a strong penalisation of extremely low benefit
and high risk values.

We perform a comprehensive simulation study investigating the performances of SLoS and MCDA in
many different scenarios. Note that this is, to our knowledge, the first time the properties of MCDA
are systematically explored by simulations in the medical context. We also apply the new measure to
the motivating clinical context of telithromycin. The elicitation of criterion weights for linear MCDA utility
scores is widely discussed in the literature.11,12,39–45 Therefore, we provide an algorithm of mapping MCDA
weights to SLoS weights so that the same elicitation process could be followed while preserving the weight
interpretation.

The rest of the paper is organised as follows. The MCDA utility score and the novel measure are detailed in
Section 2. Section 3 describes the application of both measures in the real case study (telithromycin). We present a
simulation study in Section 4 and conclude with discussion in Section 5. Additional information including source
code to reproduce the results may be found in the Supplemental Material.

2 Methods

2.1 MCDA utility score

The original proposal of MCDA16,17 ignores the uncertainty of parameter estimates. As this uncertainty can bare
crucial information, an extension of MCDA taking into account the variability of estimates was proposed by
Waddingham et al.46 This approach is often called Probabilistic MCDA (or Stochastic MCDA) and is described
below.
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2.1.1 Utility score

Consider m treatments (indexed by i) which are assessed on n criteria (indexed by j). We adopt the following
notation:

(i) �ij is the performance of treatment i on criterion j, so that treatment i is characterised by the vector
ni ¼ ð�i1, . . . , �inÞ.

(ii) The monotonically increasing partial value functions 0 � uj ð�Þ � 1 are used to normalise the criterion
performances. Let �0j and �

00
j be the most and the least preferable values, then uj ð�

00
j Þ ¼ 0 and uj ð�

0
j Þ ¼ 1.

The inequality uj ð�ijÞ4 uj ð�hjÞ indicates that the performance of the treatment i is preferred to the
performance of the treatment h on criterion j. In this work, we focus on linear partial value functions, one
of the most common choice in drug benefit–risk assessment.11,16,23,25,46 They can be written as

uj ð�ijÞ ¼
�ij � �

00
j

�0j � �
00
j

ð1Þ

(iii) The weights indicating the relative importance of the criteria are known constants denoted by wj such thatPn
j¼1 wj ¼ 1. The vector of weights used for the analysis is denoted by w ¼ w1, . . . ,wnð Þ.

The MCDA linear utility score is obtained as

uðni,wÞ :¼
Xn
j¼1

wjuj ð�ijÞ ð2Þ

The higher the utility score, the more preferable the benefit–risk ratio. Then, the comparison of treatments i and
h is based on

�uðni, nh,wÞ :¼ uðni,wÞ � uðnh,wÞ

While maximising utility is common in economics,36 the concept of a loss function is usually preferred in
statistical decision theory and Bayesian analysis for parameter estimation.35 The complement of the MCDA
utility score, �uðni,wÞ ¼ 1� uðni,wÞ, could be considered as a linear loss score to be minimised, and it can be
used equivalently as a measure of discrimination.

Although the term ‘MCDA’ outside of the health domain refers to the general methodology to summarise
several characteristics in a single aggregated score, in this work we adopt the notation ‘MCDA’ for the additive
utility score with linear partial values functions corresponding to the conventional model adopted so far in the
drug benefit–risk assessment.12

2.1.2 Estimation

Within a Bayesian approach, the utility score uðni,wÞ is a random variable having a prior distribution. Given
observed outcomes xi ¼ ðxi1, . . . ,xinÞ and xh ¼ ðxh1, . . . , xhnÞ (corresponding to treatment performances ni and nh,
respectively) for i and h, one can obtain the posterior distribution of �uðni, nh,wÞ. The inference is based on the
complete posterior distribution and the conclusion on the benefit–risk balance is supported by the probability of
treatment i to have a greater utility score than treatment h:

Pih
u ¼ Pð�uðni, nh,wÞ4 0jxi, xhÞ ð3Þ

The probability (3) is used to guide a decision on taking/dropping a drug. A possible way to formalise the
decision based on this probability is to compare it to a threshold confidence level 0:5 �  � 1. Then, Pih

u 4 
would mean that one has enough evidence to say that treatment i has a better benefit–risk balance than h with a
level of confidence  . Note that Pih

u ¼ 0:5 corresponds to the case where the benefit–risk profiles of i and h are
equal according to MCDA.

2.1.3 Weight elicitation

Weighting is a structured way to capture the stakeholders’ preferences between the criteria. It is recognised as a
complex problem since it involves both clinical and societal value judgments.41 Methods for quantifying subjective
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preferences have been widely studied in the literature,11,12,39,40,42,43,45 among which Discrete Choice Experiment
and Swing-Weighting appeared to be appropriate in terms of theoretical foundations, cognitive burden, feasibility
and robustness.16,44,47,48 In the MCDA framework, the weight assigned to one criterion is interpreted as a scaling
factor which relates one increment on this criterion to increments on all other criteria.

2.1.4 MCDA illustration: two criteria

Let us consider an example with two criteria (one benefit indexed by 1, one risk indexed by 2) to illustrate an
insight on the linear utility score in equation (2). The utility score for treatment i at fixed parameter values �i1, �i2
takes the form

uð�i1, �i2,wÞ :¼ wu1ð�i1Þ þ ð1� wÞu2ð�i2Þ ð4Þ

As values u1ð�i1Þ, u2ð�i2Þ 2 ð0, 1Þ, one can interpret u1ð�i1Þ as a probability of benefit and 1� u2ð�i2Þ as a
probability of risk. The contours of equal linear loss score �uð�i1, �i2,wÞ ¼ 1� uð�i1, �i2,wÞ for all values of u1ð�i1Þ
and ð1� u2ð�i2ÞÞ using w¼ 0.5 (left panel) and w¼ 0.25 (right panel) are given in Figure 1.

Lower values of �uð�i1, �i2,wÞ correspond to better drug benefit–risk profiles. It is minimised (right bottom
corner) when the maximum possible benefit is reached (u1ð�i1Þ ¼ 1) with no risk (1� u2ð�i2Þ ¼ 0). The contours
of equation (4) are linear, with a constant slope w=ð1� wÞ. It implies that if one treatment has an increased
probability of risk of x% compared to another, its benefit probability should be increased by ð1� wÞ=w� x%
to have the same utility score. This holds for all values of benefit and risk. While the linear form of the utility score
makes the interpretation simple, it might lead to some counter-intuitive conclusions. Below, we illustrate possible
paradoxes for w¼ 0.25, i.e. when the importance of the risk is three times higher than the importance of the
benefit.

(1) The benefit–risk trade-off is the same for all values of the risk/benefit.

Consider two cases where a drug increases the benefit probability from (a) 0.15 to 0.30 and (b) from 0.80 to 0.95
compared to another therapy. In case (a), the increase doubles the benefit probability and a higher increase in
toxicity can usually be tolerated. At the same time, the same increase in case (b) is not as relatively large, therefore
it can be argued that only a smaller increase in the risk probability may be tolerated. However, the linear utility
score implies that the same increase in risk to match the benefit increase can be sacrificed.

(2) Drugs with 0% benefit or 100% risk can be recommended.

Consider the first example in Table 1: drug 1 that cannot treat patients and causes adverse events only would be
preferred. At the same time, drug 2 that adds 11% toxicity, but 30% efficacy would not be chosen. Similarly, in the
second example in Table 1, drug 1 that leads to an adverse event for 100% patients would be preferred.

Figure 1. Left panel: contours of equal linear loss score �u(�i1, �i2, w¼ 0.5). Right panel: contours of equal linear loss score

�u(�i1, �i2, w¼ 0.25).
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Even if none of those drugs are likely to be taken to the market, the goal of MCDA is to rank treatments and
these examples reveal some counter-intuitive conclusions to which MCDA can lead. Note that decreasing values of
w would help to solve the paradox in Example 1, but would worsen it in Example 2.

We advocate two properties of a benefit–risk analysis measure:

(i) for a given increase in benefit, one can tolerate a larger increase in risk if the amount of benefit is small than if
it is high, and

(ii) one is not interested in the level of risk (benefit) if the drug does not treat (harm all) patients.

Formally, these properties correspond to (i) the concavity of equal loss score contours (or, equivalently, the
convexity of equal utility score contours) and to (ii) a strong penalisation of extreme low benefit values and
extreme high risk values. We would like to stress that the convexity of utility (concavity of loss) is widely
advocated in microeconomics and is believed to reflect preferences in a more adequate way than linear ones in
many applications.21,36

One can check that none of these properties are satisfied for MCDA due to its linearity. There are two forms of
linearity in MCDA: in the partial value functions and in the utility score. Note that property (i) of decreasing level
of risk tolerance relative to benefits can be achieved by varying the shape of the partial value functions (for
instance, using concave functions for benefit and linear functions for risk). However, the explicit elicitation of
non-linear forms for the partial value functions may be challenging. As the linear partial function remains a
common choice in drug benefit–risk assessment, we propose a novel measure of aggregation which allows for both
properties to be achieved even under linear partial value functions.

2.2 Scale loss score

2.2.1 Derivation

As an alternative to the linear MCDA utility score (equation (2)), we define SLoS for aggregation of treatment’s
performances as

l ðni, ~wÞ :¼
Xn
j¼1

1

uj ð�ijÞ

� � ~wj

ð5Þ

where ~wj is the weight indicating the average relative importance of criterion j compared to the others and uj ð�Þ is a
linear partial value function (equation (1)). The form of SLoS is motivated by the scale symmetric loss function31,49

and the precautionary loss function.30 These functions allow to stay away from ‘boundary’ values uj ð�Þ ¼ 0. In the
context of the benefit–risk assessment, they correspond to an extremely undesirable performance of a drug: low
benefit or high risk. SLoS can be interpreted as a divergence between drug i characteristics ni and the ‘perfect’
benefit–risk characteristics ð1, . . . , 1Þn�1. As a loss score is used rather than a utility score, lower values of l ðni, ~wÞ
correspond to more desirable performances of the drug.

Clearly, l ðn0, ~wÞ is minimised for n0 such that uj ð�
0
j Þ ¼ 1 for all j ¼ 1, . . . , n, i.e. at the point of the ideal benefit–risk

profile. Additionally, l ðn00ðkÞ, ~wÞ ¼ þ1 for n00ðkÞ a vector of parameters containing �00k such that ukð�
00
kÞ ¼ 0, for at least

one k 2 f1, . . . , ng, so the loss score for a treatment with at least one extreme negative performance is equal to
infinity. The lower bounds are determined by the least preferred values �00k used in the partial value functions, and
correspond to unacceptable levels of benefit or risk. It should be noted that SLoS is intentionally sensitive to these
unacceptable values, therefore their choice could have a non-negligible impact on the results. While unacceptable
values of 0 (for benefit) or 1 (for risk) may be obvious choices for probabilities of a binary outcome, the
unacceptable value for a continuous outcome may be more subjective and requires a careful investigation.

Table 1. Examples of MCDA linear utility scores with two criteria and w¼ 0.25.

Example 1 Example 2

Drug 1 Drug 2 Drug 1 Drug 2

Benefit: u1ð�i1Þ 0.00 0.30 0.96 0.50

Risk: 1� u2ð�i2Þ 0.09 0.20 1.00 0.85

Utility score: uð�i1, �i2,w ¼ 0:25Þ 0.6825 0.6750 0.2400 0.2375

Saint-Hilary et al. 5



SLoS is a measure of the benefit–risk balance permitting to discriminate treatments according to their
performances and according to the weights attributed to the criteria. The lower the SLoS, the more preferable
the benefit–risk ratio, and the comparison of treatments i and h is based on

�l ðni, nh, ~wÞ :¼ l ðni, ~wÞ � l ðnh, ~wÞ

2.2.2 Estimation

Similarly to MCDA, we consider a Bayesian model and assign a prior probability distribution to �ij. Given
the observed outcomes xi ¼ ðxi1, . . . , xinÞ and xh ¼ ðxh1, . . . , xhnÞ for the treatments i and h, one can obtain a
posterior distribution of �l ðni, nh, ~wÞ. Again, the inference is based on the complete posterior distribution and
the conclusion on the benefit–risk balance is supported by the probability of treatment i to have a smaller SLoS
than treatment h:

Pih
l ¼ Pð�l ðni, nh,wÞ5 0jxi, xhÞ

This probability can be compared to a fixed confidence threshold  as in the MCDA approach.

2.2.3 SLoS illustration: two criteria

To illustrate the properties of SLoS, consider the example presented in Section 2.1.4 with one benefit and one risk.
The SLoS for treatment i in the point of fixed parameter values takes the form

l ð�i1, �i2,wÞ :¼
1

u1ð�i1Þ

� � ~w

þ
1

u2ð�i2Þ

� �1� ~w

ð6Þ

Figure 2 presents the contours of SLoS (equation (6)) for all pairs of u1ð�i1Þ and 1� u2ð�i2Þ using ~w ¼ 0:5 (left
panel) and ~w ¼ 0:25 (right panel). The tangents of the contours at the point (0.5,0.5) are presented on the graph for
the purpose of the weight mapping detailed in the next section.

SLoS is minimised when the benefit–risk balance of the drug is maximised, at the point (1,0) (right bottom
corner), where the maximum possible benefit is reached with no risk. The loss score is infinite for extreme low
benefit values and extreme high risk values, thus non-effective or extremely unsafe treatments could never be
recommended. Considering the cases presented in Table 1, the drug 2 had a SLoS equal to 2.53 for the first
example and of 5.34 for the second example, and it is preferred to drug 1 which SLoS is infinite in both cases.

The contour lines of equal loss are concave, which is equivalent to having convex preferences between
additional benefit and avoided risk, and have the form

1� u2ð�i2Þ ¼ 1� ðz� u1ð�i1Þ
� ~w
Þ
� 1

1� ~w, for u1ð�i1Þ4 z�1= ~w

Figure 2. Left panel: contours of l(�i1, �i2, ~w¼ 0.5). Right panel: contours of l(�i1, �i2, ~w¼ 0.25). Red lines correspond to tangents at

the point (0.5,0.5).
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for a fixed value l ð�i1, �i2, ~wÞ ¼ z. The slope of the tangent of the contour at a given u1ð�i1Þ for the loss score value z is

~w

1� ~w
z� u1ð�i1Þ

� ~w
� � ~w�2

1� ~w

: u1ð�i1Þ
�ð ~wþ1Þ

ð7Þ

The slope decreases as benefit increases. It follows that the relative importance of the benefit criterion over the
risk criterion decreases with the amount of benefit itself. In other words, an increase in toxicity is more tolerated if,
in parallel, efficacy improves from ‘very low’ to ‘moderate’, compared to from ‘moderate’ to ‘very high’.

2.2.4 Weight elicitation

Since comprehensive work has been published and is currently being continued on the weight elicitation for
MCDA, we present a way to map MCDA weights wj to SLoS weights ~wj. Note that the slope of MCDA
contour tangents is constant for all values of parameters and defined by the weights wj only, while the slope of
SLoS contour tangents is non-constant and defined by both ~wj and values of the criteria. To map weights, we would
interpret ~wj as an average relative importance of each criterion over the others. With two criteria, the weight ~wj

corresponding to the MCDA weight wj can be found from the equality of the slopes of the tangents of MCDA and
SLoS contours in the middle point u1ð�i1Þ ¼ u2ð�i2Þ ¼ 0:5 of treatment i performances

~wj

1� ~wj
: 22 ~wj�1 ¼

wj

1� wj
ð8Þ

where the slopes of SLoS and MCDA contour tangents in this point are given on the left- and right-hand sides,
respectively.

The weight mapping (equation (8)) does not have an analytical solution, but the approximate value of ~wj can be
obtained by line search. The mapping of the weights is illustrated in Figure 3. The weights are the same when both
criteria are considered equally important (w ¼ ~w ¼ 0:5), while w< 0.5 corresponds to slightly greater values of ~w.
For instance, ~w ¼ 0:30 corresponds to w¼ 0.25.

Considering an arbitrary number of criteria, the mapping (equation (8)) can be applied to each value of the
MCDA weights. For instance, using four criteria with a weight vector w ¼ ð0:30, 0:15, 0:15, 0:15, 0:25Þ,
the vector of SLoS weights is equal to ~w ¼ ð0:35, 0:21, 0:21, 0:21, 0:30Þ. It should be noted that, in this case,
the weights ~wj do not necessarily sum to 1, but this does not prevent from calculating SLoS, for which formula (5)
still applies.

Mapping weights to the middle point of the benefit and risk treatment performance range relies on the
assumption that MCDA weights were elicited across the entire range, or that the trade-off between criteria was

Figure 3. Weight mapping.
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anchored on average at the middle point. However, in practice, MCDA weights could have been elicited at any
other point and extrapolated. In this case, the mapping procedure above could be performed accordingly by
finding the SLoS weight satisfying the equality of the slopes of MCDA and SLoS contour tangents in any
other point of interest.

3 Case study: telithromycin

We illustrate the use of SLoS and MCDA in a real clinical context on the case-study thelithromycin (Ketek�)
reported by the IMI PROTECT Benefit–Risk Group.34

Telithromycin was approved in 2001 for several indications as an alternative when beta-lactam antibiotics are
not appropriate, and we will focus on the indications Community Acquired Pneumonia (CAP) and Acute Bacterial
Sinusitis (ABS) as they well illustrate similarities and differences between the two methods. A Probabilistic MCDA
model was considered in the IMI PROTECT report34 (called Stochastic Multicriteria Acceptability Analysis with
fixed weights), and MCDA utility scores presented here are derived from the original report.

Telithromycin is compared to a single alternative called ‘comparator’, which comprises amoxicillin-clavulanic
acid, cefuroxime and clarithromycin, used as comparators in clinical studies and pooled together. The probabilities
of five binary criteria, one benefit and four adverse events (AE), were transformed using linear partial value
functions (equation (1)) with the following most and least preferred probabilities of occurrence �0j and �

00
j
34

. Benefit: cure rate (CAP: �01 ¼ 1, �001 ¼ 0:4; ABS: �01 ¼ 0:86, �001 ¼ 0:71),

. Risks:
– Hepatic AE (CAP: �02 ¼ 0, �002 ¼ 0:1; ABS: �02 ¼ 0, �002 ¼ 0:02),
– Cardiac AE (CAP: �03 ¼ 0, �003 ¼ 0:1; ABS: �03 ¼ 0, �003 ¼ 0:01),
– Visual AE (CAP: �04 ¼ 0, �004 ¼ 0:1; ABS: �04 ¼ 0, �004 ¼ 0:02),
– Syncope (CAP: �05 ¼ 0, �005 ¼ 0:1; ABS: �05 ¼ 0, �005 ¼ 0:01).

Using uniform priors and given the number of cures and AE (see Supplemental Material, Table S1), Beta
posterior distributions for the event probabilities are approximated using 100,000 simulations in R,50 and are used
to compute the corresponding distributions of the partial value functions. Means and 95% Credibility Interval
(CrI) of the probabilities and of the partial value functions, and the MCDA weights, are summarised in Table 2.

This information was used to approximate the posterior distributions of MCDA linear utility score and SLoS.
The mapped SLoS weights corresponding to the MCDA weights are ~w ¼ ð0:35, 0:21, 0:21, 0:21, 0:30Þ.

For the CAP indication, MCDA and SLoS provide similar results, with probabilities that telithromycin is better
than the comparator equal to 59% and 51%, respectively. These results indicate that telithromycin has a slightly
better benefit–risk profile than the comparator, but with large uncertainty.

For the ABS indication, the probability that the benefit–risk balance of telithromycin is better than the
comparator is equal to 71% using MCDA and 55% using SLoS. While they both indicate results in favour of
telithromycin, this advantage appears to be much more uncertain with SLoS than with MCDA. The difference
between the methods can be mainly explained by a higher rate of Visual AE with telithromycin (1.3% versus
0.5%), which is close to the least preferred value for this criterion in this indication (�004 ¼ 2%). This leads to low
values of the corresponding partial value function (mean (95% CrI) u4ð�14Þ: 0:36 ½0:02; 0:63�), and values at the
lower end of the distribution are strongly penalised by SLoS. At the same time, the mass of the corresponding
partial value function distribution of the comparator (mean (95% CrI) u4ð�24Þ: 0:74 ½0:46; 0:91�) is shifted further
from the bound, which results in lower value of SLoS. A similar argument could be applied to Hepatic AE, and the
combination of these safety issues is more penalised by SLoS than by MCDA, despite the worse cure rate of
the comparator. Even if the benefit–risk assessment by IMI PROTECT34 was performed in order to test the
methodologies and may have been conducted differently in the actual regulatory context, it is worth noting that
the conclusion obtained using SLoS for the ABS indication is more in line with the concerns expressed by the
Committee for Medicinal Products for Human Use (CHMP) regarding the atypical safety profile of the drug51 and
the removal of this indication from the labeling by the FDA.33 This could be an example of SLoS reflecting the
decision-makers’ preferences more accurately than MCDA.

A sensitivity analysis was conducted using MCDA weights to compute SLoS (omitting the weight mapping)
and the conclusions are globally robust, with the probability of telithromycin being better than the comparator
equal to 57% for CAP and 62% for ABS.
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In the next section, we present a simulation study illustrating the properties of SLoS and MCDA in many
different scenarios.

4 Simulation study

4.1 Setting

To investigate the performances of SLoS and MCDA, we simulated randomised controlled clinical trials with two
treatments i¼ 1, 2, named T1 and T2, N¼ 100 patients per group, and two uncorrelated binary criteria (j¼ 1 for
benefit and j¼ 2 for risk). We assume that benefit events are desirable (e.g. treatment response), while risk events
should be avoided (e.g. adverse event), with the performance parameters �ij being their probability of occurrence.
The partial value functions are defined as u1ð�i1Þ ¼ �i1 and u2ð�i2Þ ¼ 1� �i2. Equally important criteria with weights
wj ¼ ~wj ¼ 0:5, j¼ 1, 2, are considered.

The investigated scenarios are summarised in Table 3, where the expected probabilities of event �ij are presented
for T1 (�) and T2 (}). Nine sets of T1 characteristics are fixed. For each set, all possible combinations of T2

Table 2. Mean and 95% CrI of the Beta posterior distributions of benefit and risk parameters and of corresponding partial value

functions, with their MCDA weight, for Telithromycin (Teli.) and Comparator (Comp.).

CAP ABS
MCDA

Teli. Comp. Teli. Comp. weights

Cure rate

�i1
Mean 0.908 0.877 0.828 0.772 30%

95% CrI ½0:896; 0:919� ½0:855; 0:897� ½0:800; 0:855� ½0:715; 0:824�

u1ð�i1Þ
Mean 0.846 0.795 0.787 0.414

95% CrI ½0:827; 0:864� ½0:759; 0:829� ½0:601; 0:964� ½0:036; 0:760�

Hepatic AE

�i2
Mean 0.044 0.042 0.011 0.004 15%

95% CrI ½0:034; 0:056� ½0:031; 0:054� ½0:006; 0:017� ½0:001; 0:009�

u2ð�i2Þ
Mean 0.561 0.582 0.468 0.789

95% CrI ½0:444; 0:664� ½0:457; 0:691� [0.158; 0.707] [0.542; 0.942]

Cardiac AE

�i3
Mean 0.005 0.004 0.002 0.002 15%

95% CrI ½0:002; 0:01� ½0:001; 0:009� ½0:000; 0:004� ½0:000; 0:006�

u3ð�i3Þ
Mean 0.947 0.956 0.849 0.790

95% CrI ½0:902; 0:979� ½0:909; 0:985� ½0:579; 0:982� ½0:414; 0:974�

Visual AE

�i4
Mean 0.011 0.004 0.013 0.005 15%

95% CrI ½0:006; 0:018� ½0:001; 0:009� ½0:008; 0:020� ½0:002; 0:011�

u4ð�i4Þ
Mean 0.887 0.956 0.357 0.736

95% CrI ½0:823; 0:937� ½0:909; 0:986� [0.016; 0.625] [0.461; 0.914]

Syncope

�i5
Mean 0.002 0.004 0.001 0.002 25%

95% CrI ½0:000; 0:005� ½0:001; 0:008� ½0:000; 0:003� ½0:000; 0:006�

u5ð�i5Þ
Mean 0.977 0.964 0.924 0.789

95% CrI ½0:945; 0:995� ½0:922; 0:990� ½0:719; 0:998� ½0:414; 0:974�

Saint-Hilary et al. 9



characteristics with �21, �22 2 f0:1, 0:2, 0:3, 0:4, 0:5, 0:6, 0:7, 0:8, 0:9g are considered. This results in 81 profiles
for T2 and in 729 cases in total: we explored the grid of treatment performances in order to identify under which
conditions MCDA and SLoS lead to different conclusions. For example, the first scenario corresponds to fixed
expected probabilities of benefit and risk for treatment T1 �11 ¼ �12 ¼ 0:5 compared to all considered combinations
of probabilities of event for T2. In this scenario, we expect SLoS to recommend T1 more than MCDA when T2 is
associated with an extreme risk or no benefit. In the other scenario where �11 ¼ �12 ¼ 0:1,T1 has almost no benefit, so
it should not be recommended despite its good safety profile. Indeed, even if T1 does not harm the patients (it is
similar to a placebo), administrating it to the patients implies we make the assumption that it has a positive effect,
while it has not in reality. This interpretation is close to the usual type I error, and is not acceptable from a regulatory
and health economics perspective. Similarly, when �11 ¼ �12 ¼ 0:9, T1 should not be recommended despite its
outstanding efficacy as it is associated with an extreme risk. All intermediate cases are considered.

Let S be the total number of simulated trials and K the number of samples generated to approximate the
distributions of interest. In each trial s ¼ 1, . . . ,S, the number of events for each criterion was simulated using a
Binomial likelihood xsij � BinðN, �ijÞ. Then, values �

sk
ij are sampled from the posterior distribution of the parameters

Bðxsij,N� xsijÞ for k ¼ 1, . . . ,K, assuming implicitly an improper conjugate prior Bð0, 0Þ. The posterior distributions
of the utility score and the loss score are approximated by the samples uðnski ,wÞ and l ðnski ,wÞ.

Assuming the threshold confidence level  ¼ 0:8, MCDA and SLoS are compared using
P½P1,2

u 4 0:8�, P½P
1,2
l 4 0:8� and � ¼ P½P

1,2
l 4 0:8� � P½P1,2

u 4 0:8�. As a difference between probabilities, �
ranges in ð�1, 1Þ. A value �1 � �5 0 indicates that SLoS recommends treatment T1 more often than MCDA
and 05� � 1 that SLoS recommends T1 less often than MCDA. The two approaches are in agreement when
� ¼ 0. A similar analysis for P½P

2,1
l 4 0:8� and P½P2,1

u 4 0:8� is presented in the Supplemental Material (Figure S1).
Simulations with other choices of  led to similar conclusions on the comparison between the two methods and are
not presented here.

The analyses were conducted using R, with S¼ 2500 simulated clinical trials and K¼ 2000 simulations to
estimate the parameter distributions.

4.2 Results

The results are presented in Figure 4. All nine scenarios for treatment T1 are presented in rows and numbered 1 to
9. Each graph corresponds to fixed expected probabilities of event for treatment T1 (�), and each cell corresponds
to a combination of expected probabilities of benefit and risk for T2. The probabilities P½P

1,2
l 4 0:8� are presented

on the left panel, P½P1,2
u 4 0:8� on the middle panel, and � on the right panel, for which positive values are

displayed in blue, negative values in red, and null values in white.
In scenario 1, the two measures are in agreement to recommend T1, which has moderate benefit and risk

(�11 ¼ �12 ¼ 0:5), when T2 has less benefit and more risk. On the diagonal, SLoS favours T1 to more effective
treatments but with very high risk (respectively, to safer treatments but with very low benefit). In contrast, MCDA
recommends more effective but highly unsafe treatments, or safer but no effective treatments, compared to T1.
For example, when �21 ¼ 0:8 and �22 ¼ 0:9 (large benefit but high risk), SLoS favours T1 in 100% of the trials
while MCDA recommends it in 62% only, resulting in � ¼ 0:38. Also, when �21 ¼ 0:6 and �22 ¼ 0:7 (increased

Table 3. Simulation scenarios with two criteria.

Probability of Benefit �i1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Probability

of Risk �i2

0.9 }� } } } } } } } }�

0.8 } } } } } } } } }

0.7 } } }� } } } }� } }

0.6 } } } } } } } } }

0.5 } } } } }� } } } }

0.4 } } } } } } } } }

0.3 } } }� } } } }� } }

0.2 } } } } } } } } }

0.1 }� } } } } } } } }�

�: treatment T1; }: treatment T2.

10 Statistical Methods in Medical Research 0(0)



benefit by 0.1 and risk by 0.2 compared to T1), SLoS favours T1 in 80% and MCDA in 57% of the cases
(� ¼ 0:23). This reflects the property of SLoS that increases in risk are less tolerated when the amount of
benefit is large enough. Similar patterns are observed in scenarios 2 and 3 where treatment T1 has either a low
benefit and a large risk, or a large benefit and a low risk, but not extreme probabilities of event.

Figure 4. Results of MCDA and SLoS performances in all simulation scenarios for two equally important criteria (wj¼ ~wj¼ 0.5 for

j¼ 1,2). �¼T1. Left panel: P[P1,2 l> 0.8]. Middle panel: P[P1,2 u> 0.8]. Right panel: �¼ P[P1,2 l> 0.8]� P[P1,2 u> 0.8], for which blue

cells (resp., red cells) indicate that SLoS recommends T1 more often (resp., less often) than MCDA.
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In scenario 4, T1 has almost no benefit nor risk, with �11 ¼ �12 ¼ 0:1. As expected, it is almost never
recommended by SLoS, but it could be recommended by MCDA in scenarios where the alternative T2 has
some benefit but a higher increase in risk. For example, when �21 ¼ 0:2 and �22 ¼ 0:3 (increased benefit by 0.1
and risk by 0.2 compared to T1), MCDA recommends T1 in 70% of the cases while it is never recommended by
SLoS (� ¼ �0:70). This is consistent with the stated desirable property that we are not interested in the level of risk
if the drug does not treat the patients. On the other hand, when �21 ¼ 0:3 and �22 ¼ 0:2 (increased benefit by 0.2
and risk by 0.1 compared to T1), SLoS discriminates better the treatments and recommends T2 in 100% of the
cases while MCDA recommends it in only 68% (Supplemental Material, Figure S1). Similar conclusions are
obtained in scenario 5, where T1 has both extreme efficacy and risk (�11 ¼ �12 ¼ 0:9): SLoS never recommends
the unsafe treatment T1 if alternative treatments T2 have lower risk and at least some small benefit, while MCDA
recommends T1 as compared to treatments with a larger decrease in benefit than in risk. This is the case for
instance when �21 ¼ 0:6 and �22 ¼ 0:7 (decreased benefit by 0.3 and risk by 0.2 compared to T1), where T1 is
recommended in 65% of the cases by MCDA and never recommended by SLoS (� ¼ �0:65). In contrast, when
�21 ¼ 0:7 and �22 ¼ 0:6 (decreased benefit by 0.2 and risk by 0.3 compared to T1), SLoS favours T2 in 100% and
MCDA in 67% of the cases (Supplemental Material, Figure S1).

Scenarios 6 and 7 correspond to treatment T1 with either both low benefit and risk (�11 ¼ �12 ¼ 0:3) or large
benefit and risk (�11 ¼ �12 ¼ 0:7) but where the probabilities of event are not extreme. The measures are in
agreement to recommend T1 when T2 is indisputably worse. On the diagonal, T1 is more often recommended
by SLoS when T2 has no benefit nor risk (�21 ¼ �22 ¼ 0:1) or very large benefit and risk (�21 ¼ �22 ¼ 0:9). On the
other hand, SLoS favours more treatments with benefit and risk probabilities closer to 50%. For example, in
scenario 6, when �21 ¼ 0:4 and �22 ¼ 0:5 (increased benefit by 0.1 and risk by 0.2 compared to T1), SLoS
recommends T1 in only 17% of the cases, but MCDA in 59% (� ¼ �0:42). Similarly, when �21 ¼ 0:5 and
�22 ¼ 0:4 (increased benefit by 0.2 and risk by 0.1 compared to T1), T1 is not favoured by any of the methods,
but SLoS recommends the alternative T2 in 88% of the cases and MCDA in only 59% (Supplemental Material,
Figure S1). Similar results are observed in scenario 7 for the same examples.

In all scenarios, both methods are in agreement to recommend T1 when it is indisputably better than T2, i.e.
more effective and safer (or to recommend T2 when T1 is indisputably worse, i.e. less effective and more toxic, see
Supplemental Material Figure S1). This is well illustrated in scenarios 8 (�11 ¼ 0:1 and �12 ¼ 0:9) and 9 (�11 ¼ 0:9
and �12 ¼ 0:1). In scenario 8, MCDA discriminates slightly better treatments with no efficacy or high risk between
themselves, while SLoS penalises them equally, as they should not be recommended anyway.

Overall, both MCDA and SLoS have good performances to discriminate the benefit–risk balance of the
treatments. They provide similar conclusions in many situations, and the cases where they differ highlight the
two desirable properties of SLoS. Over all possible scenarios, SLoS recommends safer treatments than MCDA in
half of the scenarios, and less safe treatments in the other half.

4.3 Sensitivity analyses

While the case of equally important and uncorrelated criteria is considered above, we investigated the robustness
of the results in cases of:

. Equally important criteria wj ¼ ~wj ¼ 0:5 for j¼ 1, 2 and strongly correlated criteria: � ¼ 0:8 (positive
correlation) and � ¼ �0:8 (negative correlation).

. More weight on the risk criterion, using MCDA weights (w1, w2)¼ (0.25, 0.75) and mapped SLoS weights
ð ~w1, ~w2Þ ¼ (0.30, 0.70), no correlation between the criteria.

. More weight on the risk criterion, with ðw1,w2Þ ¼ ð ~w1, ~w2Þ ¼ (0.25, 0.75) (no mapping), no correlation between
the criteria. This scenario aims at evaluating the impact of the weight mapping on the results, by comparing its
results to those of the previous case.

The results of the sensitivity analyses are given in the Supplemental Material.
Both measures are robust to positive and negative correlations between the outcomes, with very similar results

(Supplemental Material, Figures S2–S5). When an MCDA weight of 25% is given to the benefit, both measures
penalise more the risk, but analogous differences and similarities as before could be observed between them
(Supplemental Material, Figures S6–S7). Since the mapping is not far from an identity transformation,
omitting it does not have a major impact on the results (Supplemental Material, Figures S8–S9).
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A simulation study was also conducted with four criteria (two benefits j¼ 1, 2 and two risks j¼ 3, 4), for which
the investigated scenarios are summarised in the Supplemental Material, Table S1, under the following
assumptions:

. Equally important criteria with weights wj ¼ ~wj ¼ 0:25 for j ¼ 1, . . . , 4, no correlation between the criteria.

. Equally important criteria with weights wj ¼ ~wj ¼ 0:25 for j ¼ 1, . . . , 4, correlated criteria (see correlation
matrices in the Supplemental Material).

. More weight on the risk criteria, with MCDA weights ðw1,w2,w3,w4Þ ¼ (0.10, 0.10, 0.40, 0.40) and mapped
SLoS weights ð ~w1, ~w2, ~w3, ~w4Þ ¼ (0.15, 0.15, 0.43, 0.43), no correlation between the criteria.

. More weight on the risk criteria, with ðw1,w2,w3,w4Þ ¼ ð ~w1, ~w2, ~w3, ~w4Þ ¼ (0.10, 0.10, 0.40, 0.40) (no mapping),
no correlation between the criteria.

Similar conclusions could be drawn when comparing MCDA and SLoS using four criteria, even if the
interpretation of the simulation scenarios is somewhat less straightforward as the amount of possible situations
(low/moderate/high benefits and risks) increases (Supplemental Material, Figures S10-S19).

Overall, the conclusions are robust to correlations, number of criteria, weighting and weight mapping for both
measures.

5 Discussion

In this paper, we propose SLoS as a new tool for drug benefit–risk assessment. It offers the same advantages as
MCDA to summarise the benefit–risk balance of the treatments in a single measure, but it has additional desirable
properties permitting to avoid recommendations of non-effective or extremely unsafe treatments, and to tolerate
larger increases in risk for a given increase in benefit when the amount of benefit is small than when it is high. In
contrast, we have shown that the linear form of the MCDA utility score involves implicit assumptions of the
decision-makers, such as a constant benefit–risk trade-off for all values of benefit or risk, and might lead to
counter-intuitive conclusions. It is worth noting that these additive and linear properties were shown to be
inadequate in other application areas of MCDA,21,22 and its limitations in the health domain have been
highlighted as well.27,28

The independence of the benefit and risk criteria is usually assumed for the sake of simplicity. Correlations
could be taken into account in the analyses; however, our simulation study shows that both measures are robust to
correlations between outcomes.

Importantly, SLoS penalises drugs with no efficacy, which is sensible for comparisons between active
treatments. Indeed, a ‘no treatment/placebo’ option, in the absence of placebo effect, will most likely be
strongly penalised by SLoS due to its lack of efficacy, although it may be preferable to any active treatment
with a small amount of efficacy but that causes more harm overall. Therefore, MCDA’s recommendations may be
more reliable in such cases and this should be carefully considered before choosing the method and when
interpreting the results. However, the area of application of SLoS remains large, as many drug comparisons
involve a standard of care, or a placebo with expected effects that are non-negligible.52

The MCDA weights of the criteria should be elicited according to the preferences of the decision-makers
(regulators, experts, patients, etc.) and methods have been proposed in the literature for this
purpose.11,12,16,42,44,45,47,48 We propose a simple mapping to obtain SLoS weights from MCDA weights, so
that the same elicitation process could be followed while preserving the weight interpretation. It should be noted
that the mapping is not far from an identity transformation, and omitting it does not strongly affect the results.
We considered in this paper fixed weights, but extended models have been proposed where the weights are treated as
random variables to account for an uncertainty in their assignments.23,26

As an aggregation method involving multiple criteria, SLoS could be included within the family of non-linear
MCDA models. It was shown that SLoS has the desirable properties even under the linear partial value functions
on which this work has focused only. An alternative approach between linear MCDA and SLoS could be to handle
the decreasing level of risk tolerance relative to benefits by varying the shape of the partial value functions. For
instance, one can derive linearly-weighted partial value functions used in the linear utility score which exhibit the
same degree of decreasing risk tolerance as SLoS. This, however, seems to be non-trivial and requires extensive
attention. Furthermore, as stated above, the explicit elicitation of non-linear forms for partial value functions may
be difficult for project teams. The weight elicitation and their interpretation appear also more challenging,
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in particular if the shapes of the partial value functions are different from one criterion to another. Meanwhile, an
exploration of the use of non-linear partial value functions both in the framework of the additive utility score and
SLoS is of great practical interest and is to be investigated.

In many cases, SLoS and MCDA provide similar conclusions, but SLoS shows clear advantages when
treatments have no benefit or extreme risk. In general, this situation may occur in early stage drug
developments, or at least before the time of marketing authorisation application, since treatments with no
evidence of efficacy or high toxicities usually do not reach this point and are stopped before. Until now,
benefit–risk assessments were mainly conducted in late stage by the sponsor and/or regulatory agencies, but it
is recommended to initiate the benefit–risk assessment earlier in order to better support internal decisions and
discussions with health authorities about the development strategy.41 Therefore, SLoS could be used in early
development, and then updated during the following phases and the regulatory process until post-marketing
surveillance, in order to ensure a transparent and consistent benefit–risk assessment throughout the drug life-cycle.
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