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Summary

In gas and steam turbine engines, blade root attachments are considered as critical
components which require special attention for design. The traditional method of root
design required high experienced engineers yet the strength of the material was not fully
exploited in most cases. In the current thesis, different methodologies for automatic
design and optimization of the blade root has been evaluated. Moreover, some methods
for reducing the computational time have been proposed.

First, a simplified analytical model of the fir-tree was developed in order to evaluate
mean stress in different sections of the blade root and disc groove. Then, a more detailed
two-dimensional shape of the attachment capable to be analyzed in finite element (FE)
analysis was developed for dovetail and fir-tree. The model was developed to be gen-
eral in a way to include all possible shapes of the attachment. Then the projection of
the analytical model over the 2D model was performed to compare the results obtained
from analytical and FE methods. This comparison is essential in the later use of analyti-
cal evaluation of the fir-tree as a reduction technique of searching domain optimization.
Moreover, the possibility of predicting the contact normal stress of the blade and disc at-
tachment by the use of a punch test was evaluated. A puncher composed of a flat surface
and rounded edge was simulated equivalent to a sample case of a dovetail. The stress
profile of the contact in analytical, 2d and 3d for puncher and dovetail was compared.

As an optimizer Genetic Algorithm (GA) was described and different rules affecting
this algorithm was introduced. In order to reduce the number of callbacks to high fidelity
finite element (FE) method, the surrogate functions were evaluated and among them,
the Kriging function was selected to be constructed for use in the current study. Its
efficiency was evaluated within a numerical optimization of a single lob. In this study,
the surrogate model is not used solely in finding the optimum of the attachment shape
as it may provide low accuracy but in order to benefit its fast evaluation and diminish
its low accuracy drawback, the Kriging function (KRG) was used within GA as a pre-
evaluation of the candidate before performing FE analysis. Moreover, the feasible and
non-feasible space in a multi-dimensional complex searching domain of the attachment
geometry is explained and also the challenge of a multi-district domain is tackled with
a new mutation operation. In order to rectify the non-continuous domain, an adaptive
penalty method based on Latin Hypercube Sampling (LHS) was proposed which could
successfully improve the optimization convergence. Furthermore, different topologies
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of the contact in a dovetail were assessed. Four different types of contact were modeled
and optimized under the same loading and boundary conditions. The punch test was also
assessed with different contact shapes. In addition, the state of stress for the dovetail in
different rotational speed with different types of contact was assessed.

In the results and discussion, an optimization of a dovetail with the analytical ap-
proach was performed and the optimum was compared with the one obtained by FE
analysis. It was found that the analytical approach has the advantage of fast evaluation
and if constraints are well defined the results are comparable to the FE solution. Then, a
Kriging function was embedded within the GA optimization and the approach was eval-
uated in an optimization of a dovetail. The results revealed that the low computational
cost of the surrogate model is an advantage and the low accuracy would be diminished
in a collaboration of FE and surrogate models. Later, the capability of employing the
analytical approach in a fir-tree optimization is assessed. As the fir-tree geometry has
a higher complexity working domain in comparison to the dovetail, the results would
be consistent for the dovetail also. Different methods are assessed and compared. In
the first attempt, the analytical approach was adopted as a filter to select out the least
probable fit candidates. This method could provide a 7% improvement in convergence.
In another attempt, the proposed adaptive penalty method was added to the optimization
which successfully found the reasonable optimum with 47% reduction in computational
cost. Later, a combination of analytical and FE models was joined in a multi-objective
multi-level optimization which provided 32% improvement with less error comparing
to the previous method. In the last evaluation of this type, the analytical approach was
solely used in a multi-objective optimization in which the results were selected accord-
ing to an FE evaluation of most fit candidates. This approach although provided 86%
improvement in computational time reduction but it depends highly on the case under
investigation and provides low accuracy in the final solution. Furthermore, a robust op-
timum was found for both dovetail and fir-tree in a multi-objective optimization. In this
trial, the proposed adaptive penalty method in addition to the surrogate model was also
involved.
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Chapter 1

Introduction

1.1 Background
In gas and steam turbine industries, in order to obtain a high reliability and efficiency,

the turbine blade attachments are considered as critical components which require special
attention in their design [38]. In such engines, discs and blades are usually exposed to
high temperature and high rotational speed. High rotational velocity develops huge cen-
trifugal forces besides high temperature deteriorates the strength of the material [108].
Therefore the contact interaction between the blade and disc in the attachment generate
high-stress profiles in normal operation of an engine [38]. This high contact stress in ad-
dition to a rather small relative displacement between mating surfaces in the contact may
develop fretting fatigue and subsequently lead to premature failure of the components
[91]. Fretting fatigue is not the only failure mode of the gas turbine disc attachment,
there are some other modes of degradation and failure for the critical components such
as low cycle and high cycle fatigue, creep, static yielding, corrosion and erosion in ad-
dition to wear, etc. [108]. The airworthiness of the aero gas turbines mandates the
investigation of any possible failure of the blade. Any failure in one blade often provide
a subsequent failures of downstream stages and finally lead to loss of engine. Failed
blades in an aero engine have been mechanically analyzed by Hou et al. [41] in addition
to metallurgical examination to identify the cases of failure. They found the low cycle
fatigue in the top fir-tree root as the main initiation cause of failure proceeding with high
cycle fatigue. Through a nonlinear finite element model of the blade and a sector of the
disc in a pre-stressed modal analysis found maximum stress area coincide with the point
of crack initiation.

The most frequent shape used in the blade and disc attachments are of two types of
fir-tree and dovetail [78]. Meguid et al. [61] performed a comprehensive stress analysis
of a fir-tree for an aero engine in 2D and 3D finite element method. They also validated
their study by an automated photoelastic stress freezing technique along the interface of
fir-tree components. In their study, some different features of the fir-tree affecting the
state of stress have been evaluated such as number of lobs, contact slop and length. They
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1 – Introduction

suggested applying the 2D analysis for the design of the attachment with caution as it
underestimates the maximum stress in the contact region. Similar results were reported
by Papanikos et al. [74] for a dovetail attachment. In both studies, the crack initiation has
been reported in the lower part of the contact where maximum stress concentration oc-
curs. Rajasekaran et al [78] simulated the profile of contact stress in a dovetail blade root
with a punch having a flat surface with rounded edges. They applied a short crack arrest
method to predict the fatigue from the stress profile obtained with their simulation which
had a good agreement comparing to the experimental results. In a study performed by
[67], they found that the stress distribution plays a dominant role in fretting fatigue at the
contact edge. They applied a proposed generalized tangential stress range – compressive
stress range (TSR-CSR) diagram as a fretting fatigue failure criterion on a dovetail joint.
Moreover, on the importance of relative displacement on fretting fatigue in the contact
Nowell et al [71] performed a series of fretting fatigue experiments to evaluate the effect
of contact relative displacement. They approved the Ruiz fretting fatigue parameter [83]
is able to predict the initiation of the fretting crack. The peak stress has an important
role in the life of the component under contact. Wei et al [106] by introducing a plastic
model, described the high gradient stress at the edges of the contact in a dovetail. They
performed the live evaluation with an energy-based critical plane equation for initiation
prediction and a Paris formulation combining modified stress intensity factor to evaluate
the propagation life. They found that the high gradient stresses at the edge of contact are
always higher than the yield stress. Although the plastic zone around the high gradient
stress is very small, the relaxation also does not reduce the peak significantly.

Over the last several decades, the computational mechanics has empowered design-
ing for the industry. The energy market is not an exception, moreover, the increased de-
mand of optimum design to benefit higher performance and efficiency with even lighter
components (which is a critical issue for aviation) is demanded in the industry of gas
turbine. Furthermore, the multidisciplinary analysis in this field makes the design pro-
cess more complex and a large computational load is needed to reach the final product
[1]. Moreover, automatic design optimization in mechanical engineering has been re-
cently gained lots of attention due to the complexity of the modern designs. The market
demand for increased efficiency and performance of the components in addition to the
reduction of costs of design has always motivated engineers to apply improved methods
with less computational cost in design [75]. Although commercial software including
modern CAD systems in addition to various FE analysis packages provide a significant
control over generation and alteration of the component geometry under design [20],
an improvement in reducing computational burden by considering the characteristics of
every problem differently. Such achievement can be obtained by incorporating differ-
ent methods which best matches the problem under consideration. On the other hand,
such optimization needs a high intervention of human in preparing the geometry of the
component, preparing the meshed model for FE analysis, performing the analysis and
interpreting the results and provide decisions in making the next amendment to the de-
sign for obtaining a target in the performance. Admitting the high demand for rapid
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improvement of the design from idea to the product requires diminishing the interfer-
ence of human decision in the design process and performing the automatic optimization
[19]. The optimization may be applied to the preliminary stages of the design where the
designer tries to find the best arrangement of parameters of the system to satisfy the con-
straints and improve the performance. Furthermore, the optimization can be applied to
an already designed component in order to improve its efficiency and performance [98].

There are different approaches to tackle the optimization problems. Hahn et al. [38]
studied a number of optimization methods with different response functions in searching
for a more efficient approach in designing the blades. They employed a combination of
Abaqus and Isight to minimize the contact pressure and stress in a dovetail of a turbine
blade. The parametric model with a nine variable parameters as input was developed and
assessed by the optimizer. Some different optimizer were used in their study including,
evolutionary optimization, direct, gradient and exploratory method. They used two sur-
rogate models of Response Surface Method (RSM) and Elliptical Basis Function (EBF)
although did not mention how they handled the problem of making the inverse of the cor-
relation matrix in a highly correlated variables problem for obtaining the Mahalanobis
distance. In the first level of optimization, they used optimal Latin Hypercube approx-
imation for predicting the optimum values and also the sensitivity of the design to the
selected design variables. In the second level of optimization, a limited number of param-
eters were selected, then, different optimization methods were applied. They found the
evolutionary method and genetic algorithm as the most promising method in this prob-
lem. A gradient-based and modern stochastic method was applied to optimize a blade
and disk fir-tree attachment by W. Song, et al. [99]. They found that the combination of
gradient-based method with Genetic Algorithm (GA) provides a better optimum in com-
parison with the direct gradient-based search. In another work, Song et al. [98] defined
constraints including all mechanical, geometrical and material limits to accommodate
only one objective for a multi-level optimization of a fir-tree attachment which helped
in a faster convergence. Later, Song and Keane [97] proposed an original optimization
framework in which combining a surrogate function and genetic algorithm, minimized
the number of callbacks to the high fidelity expensive code. Recently, D. Botto and F.
Alinejad [18] tried to optimize a two dimensional dovetail attachment parametric ge-
ometry. They merged a surrogate function into the genetic algorithm optimization to
successfully reduce the number of call backs to the high fidelity model. In every itera-
tion, the surrogate model matured by being fed with a number of new training samples
evaluated by the high fidelity model and provided more proper predictions, consequently,
reduced the need for the high fidelity callbacks in the optimization process.

1.2 Motivation
The main purpose of the structural optimization is to find the best set of parameters

(control parameters) defining the geometry of the structure that the structure behaves
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more effectively in a predefined interested property (output) of the structure under ques-
tion. The efficiency and performance of engineered components are connected to their
geometrical features. Therefore, in a design of any component, the optimal shape design
has always been an interesting subject for many engineers. There are three types of shape
optimization [40]:

1. Optimization of size: in this type, the aim is to find the best value (or vector of
values) for a parameter (or set of parameters) related to the size of the component
geometry (e.g. the thickness distribution of a cantilever beam or a plate under
normal force);

2. Optimization of geometry shape: when the topology of the component is agreed
during the design, a set of parameters to define the geometry is found then the
structure optima is found without changing the topology. The different size prop-
erties of the geometry are tuned in this type also but the difference from the previ-
ous category is that the size changing makes the shape of the geometry is different
from the original (initial) shape.

3. Optimization of topology: In this type of optimization not only different param-
eters defining an agreed shape is gone under assessment to find the optima but
also the topology itself undergo changes to evaluate the possibility of finding an
optimal topology for the problem under investigation.

Often due to the expensive process of designing geometry for the blade root, some
complex profiles and different dimensions are prevented. Recently, the needs for an
integrated device capable of responding to “what ifs” in an accurate and also fast way
have been increased. “What if” is an important question raised during a design process
for many engineers. In fact, the design is not satisfactory if this question has not been
answered properly. Especially in the case of a complex coupled system, it is hard to
understand the output consequents of any change to different input parameters of the
system [94]. Fretting and low cycle fatigue has been reported mostly as the main cause
of failure in gas turbine attachment failures ([10], [109], [103], [41], [106], [86], [91],
[56]). Hence, the designers try to lessen the state of stress in the attachment as the main
concern during the design to increase the service life of the components. The reduction
in the stress may be provided by a more proper shape having more uniform stress and
less peak stress or sometimes less weight of the components (related to frontal area in
gas turbine terminology) which is again a shape modification problem ([37], [19], [24],
[108], [61], [74], [73], [83], [98], [97] and [38]).

Figure 1.1 illustrates a typical fir-tree shape of the blade root attached to the disc.
As seen, the centrifugal loads of blade in addition to other loads are transmitted through
these attachments to the disc. Hence, the capability of the attachment to tolerate the
extreme stress generated during the working conditions has a prior importance for the
designer. It appears from the aforementioned investigations that there are some studies
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(a) (b)

(c)

(d)

Figure 1.1: Blade and disc typical fir-tree attachment. a) Full disc and blades, b) Blade
and its corresponding disc section, c) Close view of the fir-tree attachment, d) Fir-tree
groove on the disc.

conducted to find the optimum blade root shape. However, limited studies provided a
practical methodology in finding the optimum shape of the attachment with less com-
putational effort. Moreover, very few works have investigated the effect of non-feasible
space in a complex multi-dimensional domain of optimization process. The optimiza-
tion has a close contiguity with the robustness, thus in this study, the robustness is also
considered in the final optimum solution.

In the current study parametric models have been developed to define different attach-
ments for blade and disc joint. Then, using different approaches in response function,
penalty function and optimization algorithm, it was tried to reduce the computational
cost in finding the optimum root shape. Different criteria were studied in multi-objective
optimization.

1.3 Structure
In order to obtain a multi-objective robust optimum solution in a design, it is required

to incorporate a parametric model of the geometry, response function (such as finite
element analysis or surrogate functions) and optimization algorithm [58]. In the current
thesis, it was tried to minimize the details and devote most part of the context to the
principal flow of the study and results. The appendixes are to provide the reader more
details if needed.
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Chapter two initiates with the parametric model of the attachment. Two most popular
types of dovetail and fir-tree have been modeled in parametric geometry in analytical
and Finite Element (FE) analysis. The analytical approach is referred to a 1D model
as the stress evaluations are performed just in one dimensional and the FE approach is
referred to the 2D model as the analysis has been done in plane strain mode. The main
purpose of this chapter is to provide the input variable parameters governing the shape
of the attachment. The optimizer tries to find the optimum solution by manipulating
these parameters which are named ‘input vector’. After detail inspection of the dovetail
shape, a parametric model has been proposed for the fir-tree. In this chapter, the reader
is introduced with the simple topology of the attachment. In chapter five, this parametric
model is more improved to involve more types of topology for the attachment. Finally,
the analytical simplified fir-tree model is projected on a 2D practical model of fir-tree
and the results obtained from analytical and FE methods are compared. This comparison
is essential in a later use of analytical evaluation of the fir-tree as a reduction technique
to the searching domain in optimization in section 6.3.

Chapter three examines the possibility of predicting the contact normal stress of the
attachment by the help of its equivalent punch test for which the analytical solution is
available.

Chapter four tries to introduce the optimization algorithm used in the current thesis
in addition to surrogate function developed to reduce the computational burden of the
problem. To take more advantage out of surrogate model while avoiding its drawback
of low accuracy in prediction, the Kriging model has been embedded within a Genetic
Algorithm (GA) optimization as a filter before high fidelity FE model. Moreover, in this
chapter, the feasibility of the input vector is explained. To provide a continuous domain
out of feasible and non-feasible space an innovative adaptive penalty method using Latin
Hypercube Sampling (LHS) has been proposed which unburden the computational load
effectively. A standard benchmark for assessment of optimization algorithms named
Rastrigin function, in addition to a dovetail and fir-tree parametric models were opti-
mized by the proposed method in order to highlight its capabilities.

Chapter five introduces some different topologies of the contact in the attachment.
Four different types of contact have been modeled and optimized under the same load-
ing and boundary conditions. The punch test was also simulated with different contact
shapes. Also the state of stress for the dovetail in different rotational speed with different
types of contact was assessed.

Chapter six begins with an optimization of a dovetail with analytical approach and
compared the optimum with the one obtained by FE analysis. Then the combination
of GA and surrogate model is evaluated in an optimization of a dovetail. Later, the
capability of employing the analytical approach in a fir-tree optimization is assessed.
Different methods are evaluated and compared. Finally, the proposed adaptive penalty
is applied to optimization of a dovetail and also a fir-tree. Also, robustness analysis is
considered in this chapter.

Chapter seven sums up the finding and results.
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Chapter 2

Parametric Models

A parametric model development has a significant influence on the performance of
the shape optimization. Some ideal properties for a parametric model are listed by Pierret
[75] as,

• The number of parameters required to define a large variety of physical rational
shape must be as low as possible.

• As much as possible, by random selection of parameters in their range of variation,
the parametric model should still generate a realistic shape.

• Be able to adopt the existing geometry with as less effort as possible.

• Be generic meaning that it provides a large variety of shapes.

• The parameters lower and upper bounds should be clearly definable by the de-
signer.

Parametric model defining is highly subjected to the response function one may use
during the optimization. There are two major methods utilized in the current study,
analytical and FE method. Although the surrogate model is also used to replicate the
response of the FE model, the parametric model is not affected by its usage. Hence, two
major types of parametric model are developed, namely, analytical approach and FEM
approach parametric models. The parametric model for the FE approach has been pre-
pared for two types of the most popular attachments, dovetail, and fir-tree. A detailed
description of the parametric models is in Appendix A and some details about the geom-
etry calculations are in Appendix B. Moreover, the APDL batch Flow Chart developed
to analyze a dovetail parametric model prepared with MATLAB in the current study is
described in Appendix C. In this chapter, firstly, a brief introduction is given, then, the
two approaches have been compared in an evaluation on a 4-lob fir-tree.
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2.1 Analytical approach – Simplified fir-tree
The blade fir-tree root has been simplified to a model composed of straight lines with

no curve and fairings (a detailed description may be found in Appendix A.1). In this
model, the main purpose is to have a rough estimation of the mean stress distribution
in different sections of the blade root and the disc groove. The shape of the lobs is
reproduced by triangles of the same size and fairly the same shape. To evaluate the
loading and subsequent stress in different parts of the components, it was assumed that
the contact loading hold by every lob is the same.

2.2 FEM Approach

2.2.1 Dovetail 2D parametric model
It was tried to prepare the most generic parametric model for the dovetail yet simple

enough to minimize the computational effort in its assessment. Figure 2.1 illustrated the
schematic of the disc and its grooves adapting the dovetail. The dotted blue circle in Fig.
2.1-a illustrates the limit of the disc attachment penetration into the disc. Figure 2.1-b
illustrates the half section of the blade and disc attachment and 2.1-c shows the close
view of the blade dovetail in red and its groove on the disc in black.

The main feature of this parametric model is that the length of the lob for the dovetail
is conducted by two guiding lines, a and b which have the same origin on the symmetry
line. There are 16 parameters altogether to define a complete 2D dovetail shape. Nev-
ertheless, not all these parameters are contributed to the optimization search. Some of
these parameters are derived from other in order to provide a predefined tolerance and
some are considered constant but at least 6 variable parameters are required to perform
the optimization. A detailed description of the dovetail 2D parametric model employed
in the current study is in the Appendix A.2.

2.2.2 Fir-tree 2D parametric model
Similar to the 2D dovetail parametric model, a fir-tree parametric model of 2D has

been prepared. Figure 2.2 illustrates the disc and groove embedding the fir-tree attach-
ment in different views. The detailed description of the 2D parametric model is in Ap-
pendix A.3 and the geometry parameter details are in Table A.1. With no doubt, the
number of parameters for defining this model is more than that of a dovetail. There are
18 parameters to define the shape of a simple 2D fir-tree shape but the least number of
variable parameters contributing in an optimization run is 8.

In order to obtain at least 75% of accuracy in stress profile obtained from a contact,
Sinclair et al. [93] recommended setting the element size of the order of 1% of the radius
at the contact edge. In an optimization, as there is a comparison among different shapes,
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(a) (b) (c)

b

a

Figure 2.1: Dovetail attachment: a) disc, b) half section of the dovetail and corresponding
disc c) close view of the dovetail.

(a) (b) (c)

b

a

Figure 2.2: Fir-tree attachment: a) disc, b) half section of the Fir-tree and corresponding
disc c) close view of the Fir-tree.

the accuracy of the peak contact stress is not the priority. In the current study, the coarse
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(a) (b)

Figure 2.3: Sketch of two random fir-tree shapes

(a) (b)

Figure 2.4: Mesh density for two random fir-tree shapes

(a) (b)

Figure 2.5: Similar mesh density on contact area for two random fir-tree shapes.
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2.3 – FE and Analytical Methods Comparison on Fir-tree

mesh sizing (as defined by Sinclair et al. [93]) was applied but also the density of the
element size in the contact surfaces has been forced to maintain the same for all samples
during optimization. Such objective has been accomplished by defining a constant sizing
in the FE model for contact edges and the same density of mesh for the rest of the
components for all samples. Figure 2.3 compares two random sketches of the fir-tree (a
and b) and Fig. 2.4 illustrates the uniformity of the mesh density in the two samples.
Figure 2.5 shows the similarity of automatically generated mesh density in contacting
surfaces between the two random samples.

2.3 FE and Analytical Methods Comparison on Fir-tree
In order to evaluate the stress in different sections of the fir-tree attachment, without

using the Finite Element Method (FEM), a simplified model is evolved from the original
one. Figure 2.6-a illustrates the simplified fir-tree model. In this model, an individual
lob is modeled with two straight lines (red lines) originating from the intersection of
the curves to guiding lines. As there is not an accurate analytical method available for
determining the load sharing among the lobs of a fir-tree, the contact force is assumed
to be the same on every individual lob as a rough estimation. Hence, the loads on every
section of the blade root and also the disc area is evaluated by knowing the elementary
input parameters. In a simplified lob (2.6-b), the Wt is the contact length, αt is the
angle of contact line relative to the wedge angle, γ , which has the same value as of the
parameter αa (see Fig. A.6).

Approximated 
Teeth

Bnotch/2

Lsegout/2

Lsegin/2

Bradout

Bradin

ht

Wt

A Blade 
Notch Section

A Disc Notch 
Section

Disc Area

Blade
Area

𝜶𝒕

𝜸

(a) (b)

Figure 2.6: a) Projection of Analytical Simplified model of a fir-tree b) Sketch details of
the derived model.
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From a simplified model, nine values are calculated; four are the average stress on
the blade notch section (Fig. 2.7), another four are the average stress on the disc notch
section, plus one value which is the average contact normal stress. The stress values are
normalized to their corresponding material ultimate stress value in order to provide the
possibility of comparing.

Section - 1

Section - 2

Section - 3

Section - 4

Section - 4

Section - 3

Section - 2

Section - 1

Figure 2.7: Different neck sections on blade and disc attachment.

For every notch of the blade and disc, there is one mean tensile stress calculated.
Hence, for the case sample in this section, there are four values for blades and four values
for the disc sector. From every four values, the max value is selected out. Also, as it is
assumed to have the same contact force for every lob, there is just one value obtained for
the contact pressure. Consequently, at the end of the analytical evaluation, there are just
three values obtained from the blade and disc fir-tree attachment. One is the max mean
tensile stress on blade and another is the same value for the disc and the last value is the
contact mean normal stress. All values are normalized to their corresponding material
ultimate stress (the contact pressure is normalized to the blade ultimate stress).

As seen in Fig. 2.8, every lob is simplified with two lines (red dotted lines), which
connects the intersection of the curves with the guiding lines. For obtaining the mean
contact pressure, the normal force on every lob is divided to the length of contact and the
axial thickness of the component. But in this study, it was found that using the length of
line-2 (see Fig. 2.8) underestimates the results in comparison to the results obtained from
the FE method. Hence, the actual contact length (line-1) was used for the calculation of
mean contact stress.

Figure 2.9 illustrates the boundary conditions and the loading on the simplified model
of the fir-tree. The centrifugal load of the blade Fblade is applied on the lower part of
the shank and the reaction force Freaction exerted to the disc is the sum of Fblade plus

12



2.3 – FE and Analytical Methods Comparison on Fir-tree

Line-1
Line-2

αFL

αSL

Figure 2.8: Simplified lob in a fir-tree.

Disc Area

Blade
Area

FContact

FContact

FContact

FContact

Fblade

Freaction

Figure 2.9: Boundary conditions and loadings for simplified analytical fir-tree parametric
model.
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Table 2.1: Specification of the sample trail in the analytical and FE analysis (Parameters
definitions are found in Table A.1).

Specification Value Specification Value
Number of Lobs 4 Pa 334 (mm)

Number of Blades 68 Pb 349 (mm)

Hub radius 404 (mm) RC1 1 (mm)

Axial Length 48.4 (mm) RC2 1 (mm)

Rim Radius 216.5 (mm) RCA 10 (mm)

Centrifugal Force (0.436142)ω2(N) αFL 35 (deg)

Rotational speed, ω 382 (rad/s) αSL 10 (deg)

Ultimate Stress
Blade

500E6 (Pa) Wedge angle (γ , αa) 17 degree

Ultimate Stress Disc 1136E6 (Pa) Disc Density 8219.8 (kg/m^3)

Blade Density 3910 (kg/m^3) Coefficient of Fric-
tion

0

the centrifugal load due to the mass of the upper part of the disc section. Assuming a
friction-less contact for mating surfaces, the contact force is normal to the contacting
surfaces.

The applied loads and shape specifications for a trail case plus material properties are
tabulated in Table 2.1. The mean tensile stress was calculated analytically by assuming
the same contact normal load for every lobe. The four sections, for blade and disk, in
which the tensile stress has been calculated are illustrated in Fig. 2.7. The analytical
results are compared to the ones obtained from FE analysis in Tables 2.2 and 2.3 for
blade and disc sections, respectively. Moreover, one may find a comparison between
mean normal contact stress obtained analytically and numerically in Table 2.4. As seen
the error values especially for the contact pressure is substantial but later in section 6.3,
we will see that high error values have not a dramatic effect on the efficiency of analytical
method in finding the optimum.
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Table 2.2: The blade sections tensile stress normalized to the ultimate stress.

Section FEM Analytical Error (%)
Section 1 0.1415 0.1480 4.6

Section 2 0.1460 0.1414 -3.1

Section 3 0.1199 0.1290 7.6

Section 4 0.0972 0.1012 4.1

Table 2.3: The disc sections tensile stress normalized to the ultimate stress.

Section FEM Analytical Error (%)
Section 1 0.0296 0.0270 -8.8

Section 2 0.0472 0.0443 -6.1

Section 3 0.0615 0.0561 -8.8

Section 4 0.0660 0.0649 -1.7

Table 2.4: The normal mean contact stress in different lobs.

FEM (MPa) Analytical (MPa) Error (%)
Lob 1 62.010 86.49 40

Lob 2 78.179 86.49 11

Lob 3 67.844 86.49 27

Lob 4 58.870 86.49 47
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2.4 Conclusion
Some parametric models of the blade and disc attachment were developed both for

FE analysis and simplified fast calculation analytical method. The FE parametric models
were designed such that they have as low number of variable parameters as possible yet
cover a wide range of shapes of their types. Two main types of blade root have been
considered in the current study namely dovetail and fir-tree.

An automatic mesh generation was applied to the parametric model to maintain the
same mesh density over contacting surfaces. Similar mesh density provides similar error
on the resultant contact peak stress hence enabling comparison among different shapes
in an optimization.

The analytical model developed had a similar order of error for the blade and disc
notch sections average tensile stress but the mean contact pressure over lobs obtained
by the simplified analytical method was far from the FE results (later we will see in
section 6.3 that the exact value has the least importance as the trend of the results during
optimization follows that of high fidelity model).
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Chapter 3

Contact in Punch and Blade
Attachment

In this section, the profile of contact normal stress is studied for the blade and disc
attachment. Punch test is examined to evaluate its capability to emulate the profile of
the normal stress on the contact of blade and disc attachment. Moreover, due to the high
computational load of three dimensional FE analysis of the parametric model especially
in the heavy process of optimization, it is demanded to know whether it is possible to use
two-dimensional analysis to provide reasonable results. Due to simplicity, the dovetail
has been selected as the blade and disc attachment type.

3.1 Punch test
Ciavarella et al. [24] studied the contact problem to calculate the stress state due to

compression of an elastic flat punch having rounded edges over a compliant half-plane.
Figure 3.1 illustrates the punch and the half-plane which are both elastic but their material
properties may be dissimilar. The pressure distribution is obtained from,

bp(φ)
P

=− 2/π

π −2φ0 − sin(2φ0)
∗
{
(π −2φ0)cosφ + ln

[
|sin(φ +φ0)

sin(φ −φ0)
|sinφ×

|tan(
φ +φ0

2
) tan(

φ −φ0

2
)|sinφ0

]}
(3.1)

where, −π/2 ≤ φ ≤ π/2, then, φ0 is calculated by solving,

2PR
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=
π −2φ0

4sin2
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− cotφ0

2
(3.2)

Now, b can be obtained having b = a/sinφ0. Moreover, E⋆ is the equivalent stiffness of
the two bodies,
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2
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3 – Contact in Punch and Blade Attachment

A detailed description of the governing equations is found in [24]. More details about
the punch test analytical solution can be found in [42].

R

P

x

y a
bb

-a

L

Figure 3.1: A schematic of a Punch test as a benchmark for analyzing the state of stress
of contact in the dovetail. (a) is the end of the straight line, (b) is the end of closed contact
status after applying the pressure P, L is the half of puncher span, R is the radius of the
puncher edge.

3.2 Dovetail and equivalent Punch Model
The parametric model introduced in section A.2 was evaluated in this analysis. One

sample model is considered for the rest of the analysis as an example. The contact slope
is 44 degree and its length is 2.05 mm, RC1 for the disc is 0.39 mm and RC1b is 2.2
mm. For the disc Inconel 718 and for the blade TiAl material has been selected. Total
centrifugal load to the blade is 20 kN and as the thickness of the component is 20 mm
the equivalent load on the punch is 721 [N/mm]. Furthermore, the equivalent radius of
the puncher is,

1
Req

=
1

RC1
− 1

RC1b
→ Req = 0.474(mm)
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3.3 – Contact Normal Pressure Profile

3.3 Contact Normal Pressure Profile
The 3D and 2D model of the dovetail has been analyzed using the FE method. The

normal pressure profile in the contact area is under question in this analysis. Figure 3.2
illustrates the path from which the normal pressure is picked in the middle section of
the component. The same data is extracted from the face of the component to have a
comparison between the middle section and the face of the component. Moreover, the
same dovetail model under the same condition with a different coefficient of friction has
been analyzed to evaluate the effect of friction on the contact in a dovetail. To make
the comparison, the equivalent punch has been modeled in 3D and analyzed by the FE
model. The same path in the middle section of the model has been applied to obtain
the normal pressure profile of the contact. Figure 3.3 illustrates the location of the path.
Moreover, to provide high accuracy finer meshing has been applied to the contact area as
illustrated in fig. 3.4.

Figure 3.2: Dovetail FE model: location and direction of the path on which the contact
normal stress is obtained.

Moreover, the punch test has been analytically solved and the profile of normal con-
tact stress has been used as a reference for comparison. Figure 3.5 compares the contact
normal pressure in the dovetail and its equivalent punch as a reference. As seen, the
dovetail model having zero friction is more comparable to the punch result.

Figure 3.6 compares the results of the punch test in 2d and 3d FE analysis with the
dovetail results and also with the reference. As seen the 2d and 3d analysis results of
the punch test (in the face of the component) have no significant difference and both are
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3 – Contact in Punch and Blade Attachment

Figure 3.3: Punch test FE model: location and direction of the path for obtaining the
contact normal stress.

Figure 3.4: Punch 3D FE model mesh density in contact surfaces.

similar to that of dovetail in 3d no frictional analysis. The analytical profile of stress
(reference) although predicted higher stress peak but follow the same profile of stress as
for the dovetail.
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3.3 – Contact Normal Pressure Profile
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Figure 3.5: Comparison of normal stress in the contact area. The reference is the an-
alytical solution of the punch test which is compared to the dovetail with and without
friction.
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3 – Contact in Punch and Blade Attachment

3.4 Conclusion
A punch test has been set up as a benchmark to emulate the profile of normal stress

in the contact surfaces of a dovetail. 2D and 3D FE analysis were performed on both
dovetail and its equivalent punch test in addition to normal stress analytical solution of
the punch test.

The samples were evaluated with and without friction. It was found that the existence
of friction provides less contact normal pressure for the dovetail as the load to be tolerated
is shared between normal and tangential stress over contacting mates.

In the study of the 3D model of the punch test, it was found that the middle section
of the puncher endures higher peak normal stress in comparison to the face of the com-
ponent. Also, the 2D FE analysis results of the punch test had higher conformity to that
of the middle section of the puncher, enabling the use of 2D FE analysis as an estimation
of higher cost 3D analysis.
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Chapter 4

Optimization and surrogate

Although there are a number of traditional searching methods for finding the opti-
mum in a searching domain, they are not advisable for solving an optimization problem
in a multi-dimensional complex noncontinuous system. By significant progress in the
computational capability of computers in addition to the introduction of machine learn-
ing methods, there are advanced methods available as optimizers.

4.1 Genetic Algorithm
Among different methods of optimizations, Genetic Algorithm (GA) has shown to

be effective to find the optima in a complex multi-dimensional searching domain [38],
[77], [99], [65]). Therefore, for the current study GA has been applied. GA is a type
of evolutionary computation which simulates a biological process. There are three main
rules governs the GA which are Selection, Crossover and Mutation. There are a number
of different methods developed for every rule which are explained in Appendix D. Fur-
thermore, two sample problems are solved in this appendix to illustrate its capabilities in
finding the optimal solution.

4.2 Surrogate Modeling
The surrogate modeling plays an important role in analysis and optimization of com-

putationally expensive simulations. By processing the input parameters affecting the
output, the surrogate model provides a numerical approximation of the output. The sur-
rogates are constructed by processing some sample points determined by the high fidelity
models using Design of Experiment (DOE) methods. Such a process is called Training.
The Surrogate model provides a fast approximation of the outputs at new design points.
Surrogate models (also known as response surface models or meta-models MMs) are
used in place of the expensive simulation model during the optimization. One of the
applications of this method is to create a simplified model of a system with unknown
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4 – Optimization and surrogate

behavior (Expensive Black-Box Optimization Problems) and also surrogate models are
used instead of computationally demanding models to speed up analyzing processes.
The main drawback is that since a surrogate model is an approximation of the original
model, the estimation errors are introduced to the problem. But the advantages overcome
its drawback especially if a model simulation is computationally expensive. There are
two major methods for construction of a surrogate function:

• Interpolation models: e.g. Radial Basis Function (RBF) and Kriging Function.

• Regression models: e.g. Linear Regression model and Support Vector Regression
model.

A detailed description of these methods is found in Appendix E. Since, the accuracy
of the surrogate functions are dependent to the training samples, the method for sam-
pling the searching domain plays an important role in the final results obtained using
surrogate-based optimization methods. There are two methods of sampling described in
Appendix E from which the Latin Hypercube Sampling (LHS) has been selected for the
current study for the cause of providing more uniform distribution in a working domain.

In the current study, the Kriging model has been used as a surrogate function. Some
disadvantages of Kriging function are,

1. Kriging is very sensitive to noisy problems. Its prediction capability reduces by an
increase of noise ([44]).

2. Due to the fact that a k-dimensional optimization is required in Kriging model to
find the maximum likelihood estimate of the parameters in fitting the model, the
kriging method needs higher computational burden comparing to other methods.

3. It is rather sophisticated in theory.

On the other hand, some advantages of Kriging function are,

1. It has a better accuracy comparing to other surrogate models ([77],[32]).

2. It has a statistical base which makes error estimation for new sample points possi-
ble.

3. Accept more training samples after construction which makes its accuracy higher
during the adaptive mode.

4. In addition to estimating the response, the Kriging is able to provide an estimate
of the posterior variance of the input vector under question. This capability makes
possible the use of Kriging method embedded in GA optimization before applying
the FE method as a response function ([18],[97]).

The advantages of Kriging function overweigh the drawbacks in the current study as the
problem is not noisy (especially near the optimum) and the time to construct the Kriging
model is negligible comparing to high fidelity calculation.
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4.3 – Evaluating and Validating Kriging Function

4.3 Evaluating and Validating Kriging Function
In order to evaluate the capability of Kriging function in reproducing the results of

an FE analysis, the deflection of a single lob has been considered as a case study. In fact,
it was favorable to know how much Kriging function is able to predict the deflection
of a single lob under contact pressure and also the optimization using FE and Kriging
models provide to what extent similar results. Hence, a simple lob was modeled with a
parametric geometry similar to models described in section 2 but this model was quite
simplified and had just two variable parameters which were L, length of the lob and
H, the thickness of the lob root. Then, FE analysis was performed on this parametric
model to obtain the bending displacement of the midpoint of the lob under a concentrated
loading. The concentration loading was applied as the aim was to provide an alternative
fast calculation function which provides an estimate of every lob bending stiffness and
to be used embedded in simplified analytical model (which later we will see there is
no need to provide such estimation as the assumption of similar load sharing for every
lob provides enough efficiency in optimization of a fir-tree in section 6.3). Fig. 4.1-
a illustrates the FE analysis of the single lob. Genetic Algorithm was applied on both
FE and Kriging model with the objective of minimizing the bending deflection, i.e. the
objective was minimum relative displacement of the midpoint of the lob, point S, to the
root of the tooth, point D (Fig. 4.1 - b).

The comparison of the optimization done by FE and also the surrogate model is listed
in Table 4.1). The number of initial populations prepared by DOE was 40 samples and
the input variable parameters were arbitrarily limited to the range of [5, 30] mm. The
error was calculated as,

Error =
δKriging −δFEM

δFEM
(4.1)

where, δ is the deflection of the lob and subscripts FEM refer to the value obtained
by FE analysis or the equivalent Kriging value of the FEM optimum depending on cor-
responding row or column selected. Likewise, subscript Kriging refers to the value cal-
culated by Kriging function or the FE analysis value obtained from the BBF optimum
input vector. By looking at the first column of the table, it is seen that the error of the
surrogate model (Kriging function) was approximately 0.01 which is negligible in com-
parison to the benefits of low computational time in case of there is a need to provide a
rough estimation of the result with a fast evaluation. It is worth to know that the result of
the Kriging model (Table 4.1) for other sets of parameters are also comparable to the FE
solution.
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P
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Figure 4.1: Lateral Deformation of a single tooth a) FE result, b) Position of S and D
points.

Table 4.1: Optimum Values obtained via GA and Black Box Function

Fitness extraction
method

Corresponding FEM Value Corresponding Kriging Value Error

FEM Optimum 2.35e-05 2.349e-05 -0.0005
B.B.F Optimum 2.37e-05 2.17e-05 -0.084
Error 0.010556 -0.07432

4.4 Embedding Surrogate function in GA
In the previous section, it was found that the surrogate model has the advantage of

fast calculation hence unloading the computational effort. On the other hand, accuracy
in finding the optimum is questionable. The error of the optima found although is trivial,
it is not negligible, especially for the optimization purposes, where small changes to the
objective do matter. It means that although the Kriging model provides a fast estimation
of the results but applying such model as a sole model for optimization may not provide
a satisfied accuracy (which is the main goal of optimization because in an optimization
every small amount of improvement does matter).

In order to benefit the fast calculation advantage of the surrogate model in addition
to high accuracy of the FE model, the two models are used together in the optimization
algorithm. Figure 4.2-a demonstrate FE analysis as a response function to the input
vector. The objective value can be a stress value. In fig. 4.2-b a pre-evaluation of the
input vectors by the surrogate model has been added before the FE analysis. By this pre-
evaluation, most of the input points having a low probability of fitness in the searching
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4.4 – Embedding Surrogate function in GA

domain will be filtered out. Therefore less call backs to the high fidelity FE model are
needed. consequently, this approach lessen the computational burden.

Optimum Design Of Attachment For Turbine Blade Rotating At High Speed 3

FE ANALYSISInput Vector
(set of Parameters)

Objective Value
(e.g. Equivalent Stress)

Pre-Evaluation by 
Surrogate function

Input Vector
(set of Parameters)

FE 
ANALYSIS

Objective Value
(e.g. Equivalent Stress)

a)

b)

Reducing high computational cost of FE callings

Figure 4.2: Response to input vector with a) FE analysis b)pre-evaluation added FE
analysis.
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Figure 4.3: Population pre-evaluation by Kriging Function.

In fact, in every iteration the population is gone into evaluation process of surrogate
function (in this case the Kriging function), then the highest probable fit samples are
permitted to proceed to the rest of process. Figure 4.3 shows a schematic illustration of
a population of nine sample points evaluated by Kriging then FE model. If one assumes
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Figure 4.4: Embedding Kriging function into GA optimization.

a k dimensional input vector of every individual in a population as {p1, ..., pk}, for the
sake of mating between parents this input vector should be divided into at least two vec-
tors of {p1, ..., pm} and {pm+1, ..., pk} which are named vectors O and X, respectively.
Moreover, F represents the objective value/s obtained by the FE model and K represents
the response/s of the Kriging function.

The flowchart in Fig. 4.4 illustrates the idea of embedding the pre-evaluation of the
surrogate model in GA. In every iteration, the results of the solutions done by FE model
are collected and stored in a pool of training samples. The pool is sorted and a number
of high fit samples are then fed to the Kriging model in every loop in order to improve
its accuracy.
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4.5 – Feasibility
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Figure 4.5: Maturation of Kriging Model in every loop.

Figure 4.5 illustrates the schematic maturation of the Kriging function during an op-
timization process loop. In this schematic, Y is the objective value obtained by the sur-
rogate response. While genetic algorithm converges, the differences between individuals
in the populations are decreased. It means that the difference among objective values
(outputs) and also the Euclidean distance among individuals in the parameters domain
(inputs) reduces, hence, the accuracy of the surrogate function improves. This is because
of the fact that the number of training samples is the same but the searching domain is
smaller in every iteration, therefore, the surrogate model cover a smaller searching space
with a higher accuracy.

4.5 Feasibility
The parameters of a problem in an optimization process are restrained to variate be-

tween a limited range of values which are defined by various constraints of the problem.
These limits are known as nominal boundaries of the problem and are defined according
to physical or manufacturing restrictions of the design. Hence, the input vector X′ is
limited as,

Xi
Lower ≤ Xi ≤ Xi

U pper (4.2)

However, every combination of input vector selected in this predefined limit does not
necessarily provide a real physical geometry. Therefore, this limitation defined by the
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designer does not reflect the real existing boundary of the working domain. This is due to
the fact that every parameter value selection would affect others in a way that the relation
in Eq. 4.2 becomes

Xi
L(X

j)≤ Xi ≤ Xi
U(X

j) (4.3)

Indeed, the equation 4.3 determines the feasible space of the searching domain. In other
words, while working with a parametric model encountering some cases for which the
input vector X does not provide a physical meaningful geometry is inevitable. In these
cases, the geometry is located in a non-feasible space. For an optimizer, the non-feasible
space may cause difficulty for the seeker in finding the optimum (this problem is ad-
dressed in the following section). The non-feasibility can raise in two circumstances,
non-consistency and design constraints. Figure 4.6 illustrates two examples of such non-
feasibility. Half of the blade and disc section has been illustrated due to symmetry. The
red line is the blade root and the black line is the disc groove. Figure 4.6-a shows a non-
feasible sample in which the geometry has no physical meaning and Fig. 4.6-b shows a
non-feasible sample where the geometry is now consistent, but a design limit has been
surpassed. The design constraint which has been exceeded in this case is the maximum
allowable penetration of the dovetail groove into the disk.

(a) (b)

Penetration 
Limitation of 
the dovetail 
Groove

Figure 4.6: Non-Feasible geometry, red line: Blade dovetail, Black line: Disc groove, a)
No physical meaning b) Violation of constraints.
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4.6 Penalty Allocation
In real applications of optimization, especially in mechanical problems, the function

we are dealing with is not always a continuous function and also the function is not a
mathematical function. In fact, usually, the response of mechanical analysis is a black
box function (B.B.F) in which there are many numerical calculations combined to reach
the solution. In these cases, the problem is not only the high computational time needed
to reach the optimum but also due to the non-feasibility of some large parts of the domain,
the optimizer may not be able to reach the global optimum. There are two techniques
proposed by the author described in Appendix F by which the non-continuity of the
searching domain is rectified and also by a modification in the mutation process of GA,
its capability to find the global optima has been increased in a multi-district domain.
As the current problem of the blade and disc attachment lie in one district of feasible
space and one non-feasible space, the proposed penalty method has been detailed in this
section.

There are different objectives favorable in the case of blade and disc attachment
such as minimizing the Equivalent stress, Contact Normal Pressure, Maximum Prin-
cipal Stress (MPS) over notches, frontal area, Mass or Maximizing the Fatigue life of the
components. In order to reduce the computational burden during the optimization it is
common to consider some objectives as constraints. For example limiting the input vec-
tors having equivalent stress less than some predefined value or avoiding the life cycle
of the components exceeding a predefined value. For considering the fatigue life of the
contacting area in the attachment please refer to Appendix G.

While searching through input vectors in a working domain of a parametric model,
confronting non-feasibility cannot be avoided. The designers always try to trim the
boundaries of parameters to make the working domain as small as possible and con-
sequently decrease the undesirable non-feasible spaces. Although, such trimming may
help in convergence, even in the most careful selection of boundaries, there is no guar-
antee that there would be always a real physical geometry definable for the input vector
selected during the search process. In other words, the non-feasible space exists inside
the allowable range of parameters which may occur due to mutual interaction of parame-
ters or violating a design constraint. The same issue happens in the case of blade and disc
parametric attachment. Because of severe interconnection among different parameters of
the design, the working domain is occupied by non-feasible space with a high ratio.

Figure 4.7 embodies the feasible space for a blade root of type fir-tree having three
lobs. The cloud of points is used to illustrate the feasible space for four sets of combi-
nation of three parameters. It is obvious in this figure that even by adhering to nominal
boundaries for every parameter there is a high proportion of non-feasible space in the
working domain. Such an issue may raise a problem for the optimizer as there is no value
to be allocated to the points selected in these spaces as an objective value. There are some
solutions to rectify this problem in the literature [80]. The simplest method among them
is to neglect the inputs inside non-feasible space and allocate them an objective value
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Figure 4.7: Cloud of Feasible space inside the working domain. As the working domain
is in a higher dimension than 3D, different illustrations with a different selection of input
variable parameters have been shown here (Please refer to Table A.1 for parameters
description).

which is considered as the least fit to the optimizer, hence, making the optimizer to filter
these points out of its current population. This method is known as the death penalty.
However, this method will waste the valuable information of the non-feasible space by
just ignoring it. For instance, the death penalty method makes no difference between two
input points the optimizer has picked in a non-feasible space even if one is really close to
the feasible space and give them the same objective value so that making sure they both
will be dropped out in the proceeding of the optimization process.
Such an issue is much bolder while working with higher dimensions of working domain.
It means that if the number of variable input parameters is high, a larger working do-
main would exist, while, due to the interconnection of more parameters (which now their
agreement is more conflicting) the feasible space is much smaller, hence, providing a real
challenge for the optimizer to fall inside this space. Therefore, when the optimizer with
a death penalty method crosses the proximity of the feasible space very closely but does
not observe its closure. Subsequently, in a high dimension searching domain, there is
always the risk of not finding a feasible solution by the optimizer and the whole process
fails.
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4.6 – Penalty Allocation

Figure 4.8: The LHS adaptive penalty method.

Alternatively, the method of adaptive penalty provides a more improved fix to this
problem by taking the advantage of input vectors even in non-feasible space. In this
method, the interested input point is given an objective value of inversely proportional to
its Euclidean distance to the feasible boundary. In fact, the objective value is considered
more fit by the optimizer as the input point gets more close to the feasible space. Con-
sequently, such an approach forces the seeker to fall into the feasible space (fig. 4.8).
However, application of this method requires the careful determination of the feasible
boundary even if it does not necessarily have a regular shape.

Applying the death penalty to the response function bring out the chance of trapping
the GA into a local optimum. On the other hand, in order to apply the adaptive penalty,
there is not a known boundary segregating the feasible and non-feasible spaces. It means
that for applying the adaptive penalty which benefits from the Euclidean distance to the
nearest boundary firstly the feasible boundary should be known.

Therefore a novel method has been proposed in this study to determine the boundary
of the feasible space of the blade and disc attachment parametric model working domain.

In this method, using the LHS method, some uniformly distributed samples are gen-
erated inside the nominal boundary, then, using a simple low-cost geometric evaluation,
the feasibility of them are examined. This evaluation is quite fast in comparison to the
whole process because there is no requirement to perform heavy numerical methods.
Hence, the real physical boundary of the feasible space is found by a cloud of points.

Then, by applying the following penalty function which replaces the objective func-
tion, an integrated space is provided,
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φp(X) =
{ φ(X) ,X feasible.

C f

(
∑

n
i=1

(
(

Xi−X ′
i

Ubi−Lbi
)2 +1

))
,X not feasible,

(4.4)

where X′ is a sample point inside the feasible space and is the nearest point to the ques-
tioning point X (Fig. 4.9) and n is the number of parameters. Coefficient C f should be
high enough to be effective as a penalty value. As a rule of thumb, C f should be in an
order of magnitude higher than the maximum expected value of the objective function.

x

X
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P1Lb1 Ub1

Lb2

Ub2
Non-Feasible 
Domain

Figure 4.9: Non-feasibility handling by proximity to the boundary of feasible space

The same routine is also applied inside the primary found feasible space to the sam-
ples which after FE analysis are found to violate some constraints. Hence, these points
are also considered non-feasible points are the same penalty function of (4.4) but with a
lower C f is applied to them.

To examine the effectiveness of the proposed method, a dovetail is optimized ap-
plying the proposed adaptive penalty and compared with the results obtained using the
death penalty. Figure 4.10 reports the results of the comparison of the death and adaptive
penalty method. The objective function values are shown against the number of high
fidelity function runs. It is clear from Fig. 4.10 that the GA using the adaptive penalty
converged faster and found a better objective value than the one using the death penalty.
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The computational time spend to find the feasible space using LHS is compensated with
the time saved during the optimization process so there is a gain in the overall procedure.
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Figure 4.10: Optimization of a dovetail applying death and adaptive penalty functions
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Figure 4.11: Optimization of a 3lob fir-tree applying death and adaptive penalty functions

In another attempt, it has been tried to minimize the von-Mises stress in a 3-lob fir-
tree. Both death penalty and adaptive penalty were applied and the results are compared
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in Fig. 4.11. The fir-tree shape is defined with more parameters that make the intercon-
nection among them more complicated because more parameters should agree to make
a physical meaning geometry. This is why the feasible space is smaller and the void
spaces grow bigger in this case. Figure 4.11 shows that the adaptive penalty provided
better performance even in such more complex domains.

4.7 Conclusion
In this chapter, the optimizer was introduced in addition to the surrogate function

used for emulating the response of the FE model (high fidelity model). To evaluate the
conformity of the results obtained from the surrogate function with that of high fidelity
model, a simple model of a single lob were employed. The model went through an
optimization (minimizing the bending deflection) once with the FE model and once with
the Kriging model. The results obtained by the Kriging model showed high conformity
with that of the FE model, hence making this Meta model able to provide an estimation
of the results in a fast calculation effort.

With the aim to benefit from the low-cost response of the Kriging function in addition
to the high accuracy of the high fidelity model, an adaptive surrogate model were devel-
oped embedded in a GA optimization. Such surrogate function gets mature while the
optimization proceeds due to the fact that more training samples are available on every
generation. The effectiveness of this method will be discussed in chapter 6.

Later, the feasibility in a searching domain was discussed. Two main sources of non-
feasibility were introduced. One is not to have a physical meaning geometry and the
other is to violate some predefined constraints.

It was found that the parametric models under current study hold a single district
feasible space inside their searching domain, although a modified mutation procedure in
the genetic algorithm was introduced and evaluated to rectify the problem of finding a
global optimum in case of facing isolated multi-district feasible spaces.

In order to take advantage of the data inside non-feasible space during optimization,
an adaptive penalty was applied. As the border of the feasible space was unknown, a
Latin Hypercube Sampling method was applied to the searching domain to determine
the feasible and non-feasible spaces. The proposed method rectify also the problem of
difficulty in finding the feasible space and possible termination of the solution process.

The proposed method was applied to two blade and disc attachment parametric mod-
els of dovetail and fir-tree in order to evaluate its effectiveness. It was found that this
method is even more effective in a higher dimension complex searching domain.
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Chapter 5

Contact Topology Assessment

The contact pressure profile is very sensitive to the topology of the contact. In this
chapter different topologies of the contact for a dovetail under similar conditions is ex-
amined and different contact criteria are compared. Four different topologies for the
dovetail contact is assessed. The punch test is also applied to provide a benchmark to
study different parameters of the contact although the main purpose is to have a mini-
mum contact peak stress in the attachment. Hence, after applying every contact type, an
optimization was conducted under a very limited range of parameters variation to find
the best shape of its kind in terms of contact pressure peak.

5.1 Single-Curve (Type-I)
A dovetail of which the contact is composed of a straight line between two single

curves is named type-I in the current study. An already optimized shape of the dovetail
in terms of contact pressure and notch maximum principal stress has been selected as the
sample to this study. Beforehand, a punch against a flat was set up as a benchmark ([24],
[93], [78] and [18]). To be consistent with the dovetail geometry, an equivalent radius
for the punch was determined using the fillet radius of the blade Rb and of the disk Rd .
The equivalent radius Req was ([45]),

1
Req

=
1

Rd
− 1

Rb
(5.1)

Figure 5.1 sketches the dovetail and its equivalent punch test. Figure 5.2 compares
the contact stress distributions of the dovetail with the benchmark. As seen, there is a
high conformity in the peak normal contact pressure between the dovetail and the punch
but the median part of the contact showed different stress profile due to the fact that in
the dovetail the component does not just undergo normal contact but also bending exists.
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RdRb
Half 
Contact 
Length

Req

Figure 5.1: The Equivalent Punch Test for the dovetail with Type-I curve
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Figure 5.2: Dovetail contact (Type-I) and its equivalent punch test
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5.2 – Multi-Curve (Type-II)

5.2 Multi-Curve (Type-II)
The second contact shape benefits from more curvatures instead of a single radius

curve for notches. The curve near the contact has the highest radius and as getting far
from the contact the radius decreases. This method helps to save the space while main-
taining a smooth transition from line to curve in a contact edge (Fig. 5.3). In the current
study, two curvatures of different radius were used. The radius and angles of the first and
second curves are R1, α1 and R2, α2 respectively.

(a) Symmetrical sketch of a dovetail.

R1 R2

α2

α1

(b) Close view of the lower contact edge.

Figure 5.3: Sketch of a Dovetail having Type-II contact shape.

5.3 Polynomial-Curve (Type-III)
In the contact profiles Type-I and Type-II, the transition of the straight line to the arc

with a constant radius occurs instantly. In fact, at the two sides of the contact, the straight
line connects to an arc with an already defined radius (Type-I) and then continues with
another arc with another smaller radius in Type-II. In the current study, a new profile
was introduced, Type-III, in which the arc with a constant radius was substituted with a
third order polynomial. This polynomial was designed in such a way that its curvature is
continuously changing from zero (the same curvature of the straight line) to a predefined
value. This profile, denoted as polynomial-curve, provides a better transition from the
straight line of the contact comparing to two previous topologies. The polynomial-curve
(Type-III) and the circular curve (Type-I) are compared in Fig. 5.4.

In order to evaluate the effect of the polynomial curve on the state of stress, a punch
test was used as a benchmark. At first, a polynomial curve with the same ending point
(full height) of Type-I was tested. In this condition, Type-III shows a reduction of the
peak stress of 40%, see Fig. 5.6. Further, two other ending points were evaluated, one
with half of the full height and the other with 20% of the full height. These profiles
showed a higher reduction of the peak stress about 48 % which compared to the first
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5 – Contact Topology Assessment

Figure 5.4: Circular (red dashed)(Type-I) vs Polynomial (green shined black)(Type-III)
curve
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5.3 – Polynomial-Curve (Type-III)

Type-III: 1

Type-III: 0.5

Type-III: 0.2

Peq

Type-I

Figure 5.5: Punch test comparing a single curve (Type-I) with a polynomial curve (Type-
III) of different ending points.
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5.3 – Polynomial-Curve (Type-III)

ending point is negligible. The polynomial curve with different ending points in compar-
ison with the circular curve is shown in Fig. 5.5. Correspondingly, the normal pressure
for them is graphed in fig. 5.6. As seen the peak normal contact stress is not affected by
the ending point of the contact edge curve.

The polynomial curve (Type-III) was applied on the attachment in the blade dovetail
in a way that all other parameters were kept constant and the only variable parameter
was the angle in which the polynomial curve joins the constant curve of the dovetail
fillet (Fig. 5.7). The angle in which the polynomial curve is joining the constant curve of
the contact edge is illustrated in Fig. 5.8. In fact, lower α leads to a less frontal area of
the dovetail and save in total weight of the attachment.

It was found that by applying different ending point to the Type-III profile using a
different angle of curve ending did not provide a significant reduction on the contact peak
pressure (Fig. 5.9). It means that the contact pressure profile is insensitive to the joining
position of the polynomial curve.

Figure 5.7: Dovetail with polynomial curvature (Type-III).
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α

Horizontal Line

Figure 5.8: The position of the polynomial curve joins the simple curve, α .
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Figure 5.9: contact pressure of polynomial curve (Type-III) joint with different α
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5.4 – Crown type (Type-IV)

5.4 Crown type (Type-IV)
The last topology (Type-IV) applied was the one introduced by [92]. In this topology,

instead of a straight line for the contact, a high radius curvature is applied. Figure 5.10
compares three different topologies of the contact for a dovetail.

(a) (b) (c)

Figure 5.10: Three different types of dovetail topology; (a): Type I, (b): Type II and (c):
Type IV

5.5 Contact Criteria Assessment
Applying the four different contact shapes on the optimum geometry leads to dif-

ferent profile of contact pressure on the mating surfaces. The results are compared in
Fig. 5.11. The contact stresses were normalized to the stress peak in Type-I. As seen,
the crown type (Type-IV) attachment provides the lowest contact normal pressure peak.
Due to the fact that some parameters of the dovetail model had to be changed to adopt
the corresponding contact type, the resultant normal force would not be the same for all
four Types of the dovetail although comparison can still be made as all types undergo
optimization again but with a reduced searching domain.

Also, some other critical measures in the dovetail evaluation were obtained by the
FEM and compared in Fig. 5.12. The first maximum principal stress (MPS) for both
blade and disc notches was obtained for all four types of topology. Also, von-Mises
stress all over the blade and disc was compared. Moreover, the relative displacement
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Figure 5.11: Normalized contact normal stress for dovetail with different contact shapes

of the attachment as an important element in fretting fatigue was compared for all four
types of topology. The crown type demonstrated the least relative displacement among
others. The polynomial type showed just an improvement in the blade notch MPS and all
other indexes remained the same as for the original single curve type. The Multi-curve
type of the attachment (Type-II) provided lower MPS in the disc and the von-Mises stress
compared to other types. The cause is due to the fact that in this type of attachment the
designer can use a very large radius in the curvature close to the attachment while ending
to a very sharp curve to save the space in areas which contact is less effective but other
parameters like MPS and von-Mises are dominant. On the other hand, due to the relative
shift of contact mating surfaces, the effective equivalent force of the contact pressure has
moved a little farther from the root of the blade and introduces more bending stress on
the upper notch (blade) comparing to that of other types of topology.

Also, the multi-curve attachment (Type-II) had less maximum relative displacement
in the contact area comparing to Type-III and Type-I curve due to the fact that the contact
area has been reduced and the attachment is more compressed permitting less relative
displacement.

The crown type topology (Type-IV) showed the minimum blade MPS and the mini-
mum relative displacement among the compared geometries. Nevertheless, this topology
shows the maximum MPS and Equivalent stress in the disc notch.

As the shape of the dovetail is designed according to the working condition thus the
optimum may be very sensitive to working condition changes. A variation to the RPM
has been carried out and the effect of rotational speed to the design criteria of the four
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Figure 5.12: Comparing different criteria for different contact shapes of the dovetail

type attachments has been evaluated. The evaluation has been carried out in three speeds
of 191, 300 and 382 radians per second.
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Figure 5.13: Normalized max Contact Pressure for different attachments in different
rotational speed

As seen in Fig. 5.13, the crown type attachment (Type-IV) tends to deviate from
its privilege manner in higher rotational speed due to the fact that the curvature for the
contact is not concave enough and the contact will extend beyond the length it is designed
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Figure 5.14: Normalized Contact slide for different attachments in different rotational
speed
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Figure 5.15: Normalized Maximum first Principal Stress in blade root for different at-
tachments in different rotational speed

48



5.5 – Contact Criteria Assessment

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Omega-191 Omega-300 Omega-382

N
o
rm

a
liz

e
d
 M

P
S
 f
o
r 

D
is

c

Type-I Type-II Type-III Type-IV

Figure 5.16: Normalized Maximum first Principal Stress in Disc for different attach-
ments in different rotational speed
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Figure 5.17: Normalized von-Mises Stress for different attachments in different rota-
tional speed
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for. Hence, the contact normal stress follows the same profile of the other three types of
attachment in which a peak in the corner of contact shows up. On the other hand, this
type of attachment although engage less contact area at lower RPM but the peak is still
quite less compared to the other three types. Therefore, this benefit makes the designer
possible to consider an over speed loading and design the curvature radius for that load
and the contact will still provide a smooth profile for contact normal stress without any
high sharp peak.

5.6 Conclusion
The contact normal pressure is highly sensitive to the topology of the contact in the

attachment. In order to evaluate such feature, four different topologies named Type-I to
IV were studied. Also, the punch test was applied as a benchmark for this study. It was
found that by introducing a gradient change in the curvature of the contact edges, less
peak stress will arise, although this trend has a limitation as by highly smoother gradient
no improvement happens (i.e. in its extreme case, which was Type-III, no significant
improvement was found compared to Type-II).

Moreover, maximum principal stress in the blade component as well as disc compo-
nent, von-Mises stress of the attachment and maximum relative displacement of contact-
ing mates were compared among the four types of topology in different rotational speed.
Generally, the type-II was found to show better performance in comparison to other types
of topology.
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Chapter 6

Results and Discussion

6.1 Analytical Approach - Dovetail
In the current section, the aim is to compare the optimization using the FEM analysis

with the one with the analytical approach on the basis of the minimum peak contact
pressure. Using the formulation by Ciavarella et al. [24] described in subsection (3.1)
the peak normal contact pressure can be estimated analytically. Therefore, to evaluate the
possibility of this approach in finding the optimum dovetail shape which has a minimum
normal stress in contact, an optimization using genetic algorithm was performed with
analytical and FEM approach. In other words, two different runs with different objective
functions were performed.

To eliminate other factors affecting the comparison and as the analytical approach
is not able to calculate the stress profile on the components, the maximum stress on
the notches are controlled by limiting the components neck length. In this case, the
neck for the blade is limited to 3 mm and for the disc, it is 5 mm. Also, there was no
requirement of having higher stress on the blade relative to the disc. In the analytical
approach, the centrifugal force is considered due to the blade mass. For the FE approach
in addition to applying a uniform pressure representing the centrifugal force of the blade
to its neck, the density of the blade root was also defined. It means that the blade root
mass is also accounted for in this approach. In both approaches, the symmetry is applied.
The parametric model of the dovetail with a simple contact profile (i.e. one straight line
embedded between two single curves) and having a curved groove shape was used for
this assessment. In this case, the input vector for the dovetail parametric model is,

Input VectorT = [αA,αB,RC1,RC2,αFL,RCA,RC1b,RC2b]

In order to have less peak stress in the contact area, it is recommended to set the
curvature of the blade very close to the curvature of the disc groove (see Eq. 5.1) but
practically it is not possible due to installation and manufacturing reasons. Also, if one
may not consider enough gap between the lower curve of the blade root and the disc
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groove, the deflection of the lob may affect the stress state in the groove (as lower sur-
faces may contact after applying the load). Hence, the following constraints were applied
to maintain a minimum tolerance (which is arbitrarily selected for the current study, al-
though, one may apply another rule for the minimum tolerance according to the respected
manufacturing practices),

1.1×RC1 −RC1b ≤0
−1×RC2 +1.1×RC2b ≤0

which in matrix notation is,

[
0 0 1.1 0 0 0 −1 0
0 0 −1 0 0 0 0 1.1

]
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αA
αB
RC1
RC2
αFL
RCA
RC1b
RC2b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0

This constraint is to guarantee enough separation in the notches (i.e. the inner curve in
a notch should be less in radius comparing the outer curve). Also, the lower and upper
bounds were assigned as,

Lower Bound = [10,20,5,5,10,4,5,5]
Upper Bound = [90,100,40,30,60,60,40,40]

The bounds were decided according to the extreme possible range for every parameter.
As the optimization is performed on the basis of integer variation of parameters and due
to having higher accuracy the parameters αA,αB,RC1,RC2,RC1b and RC2b were consid-
ered 10 times the original values which were divided by 10 after the optimizer selects
the current vector of inputs (before generating the geometry), so, these variables had the
increments of 0.1 of unit. On the other hand, as the curvature of the groove, RCA, was
less sensitive (its value was already large), its increment was considered 10 times of unit.
Moreover, the variable parameter αFL had an increment of the unit. The objective for
both optimization runs was the contact Pressure peak value. The optimum geometries
found by the two methods are illustrated in Figure 6.1. The table of results comparison
for the optimization by the two methods is in Table 6.1.

Figure 6.2 compares the contact pressure profile of the two optima found. As seen
the maximum contact pressure for the analytical optimum is much higher in compari-
son with the FEM optimum. On the other hand, the profile of contact pressure for the
analytical case is more like the Herzian contact shape but the contact pressure profile
for the FEM optimum has a peak in the lower edge of the contact. In case of having a
singularity in the contact edges, the peak stress is dependent on the mesh sizing. In the
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Analytical

FEM

Figure 6.1: the analytical optimum vs. FEM optimum geometry.

Table 6.1: The comparison of the FEM results for analytical optimum vs FEM optimum
geometry

Analytical FEM
Max First Principal Stress [Pa] 0.857e9 0.8e9

Max Equivalent stress [Pa] 0.761e9 0.726e9

Max Contact Pressure [Pa] 0.119e9 0.098e9

Max Contact Relative displacement [m] 0.493e-4 0.593e-4

optimization process it is not recommended to apply very fine mesh due to high compu-
tational costs. Therefore, as a post process to the optimization, it is suggested to evaluate
the geometry obtained with finer mesh. After applying a finer mesh to both geometries,
the peak for the FEM optima showed higher value while the increase for the Analytical
optimum geometry was negligible. Figure 6.3 compares the contact pressure profile of
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(a) (b)

Figure 6.2: The Contact pressure profile for a) FEM Optima, b) Analytical Optima.

the two optimum found. Table 6.2 compares the results after applying a finer mesh to
both geometries.

(a) (b)

Figure 6.3: Applying a finer mesh for a) FEM Optima, b) Analytical Optima.

54



6.2 – FEM Approach - Dovetail Optimization Using Co-Kriging GA

Table 6.2: The comparison of the FEM results after applying a finer mesh for analytical
optimum vs FEM optimum geometry

Analytical FEM
Max First Principal Stress [Pa] 0.85e9 0.813e9

Max Equivalent stress [Pa] 0.755e9 0.722e9

Max Contact Pressure [Pa] 0.118e9 0.162e9

Max Contact Relative displacement [m] 0.471e-4 0.593e-4

6.2 FEM Approach - Dovetail Optimization Using Co-
Kriging GA

In this section, a simple 2D dovetail is modeled in parametric terms then optimized
for von-Mises equivalent stress with the two Objective functions of the FE method and
Co-Kriging surrogate model.

6.2.1 Attachment Description
The dovetail geometry tackled is a modified and parameterized version of an exist-

ing dovetail blade root consisting of single curves and straight lines. As the blade and
disc have common contacting surfaces some parts of the geometry is the same for both,
while the rest are derived according to the variable parameters in addition to meet the
constraints. The parametric geometry can be derived by 11 variable parameters and 4
constants described in the Table (6.3). The variable parameters are those values which
are manipulated in order to obtain the optimum shape. The constants are the values al-
ready defined by the limitation of manufacturing and also the constraints of the nature
of the problem such as the constraints extracted from the fluid dynamic analysis. A slice
section of the disc and blade is selected and due to the symmetry nature of the problem,
half of this section is modeled for analysis. The boundary condition for the model is the
symmetry boundary condition for the section lines which prevent displacement in the
angular direction (Fig. 6.4). The centrifugal body loading is applied to the whole model
by introducing rotational speed ω and defining the density of the material used. Also,
having the weight of the blade, its center of mass radial distance and rotational speed
provide us the centrifugal load applied to the blade root. As is illustrated in figure 6.4,
this force is applied by a uniform pressure proportional to the force and the section area
in which blade will attach to the root.
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6 – Results and Discussion

The parametric model uses 11 values to be constructed. There are two guiding lines
a and b which determine the share of the tooth on the blade and disc attachment (see
Fig.6.4). The curvatures C1 and C2 are two main curvatures on the disc and are tangent to
the guiding lines. By changing the radial location of point Pa and Pb and also by changing
the corresponding angles, the location of the curvatures changes. The curvature C2b for
the blade is considered as one millimeter less in radius comparing to C2 of the disc so it
is not an independent variable. The parameterization of the design means that different
sets of parameters provide different shapes for the blade and disc joint. Every parameter
has a range of variations and certainly, the space of variables contains a feasible and a
non-feasible domain as some sets of parameters may result in unacceptable shape. After
generating the parametric model an in-house code evaluates the feasibility of the model
according to mathematical and logical relationships because every shape generated may
not have a physical existence or may violate some predefined constraints (see Sec. 4.5
for more about feasibility).

Pa

Pb αb

αa

b
a

αFL

αSL

RC2
RC2b

RC1b RC1

Figure 6.4: Boundary conditions and detailed schematics of the parameters of a dovetail.

6.2.2 Finite element model
Although the loading may not be uniform along disc thickness in a disc and blade

attachment, still it is possible to consider the attachment as a 2D problem due to the fact
that the geometry is the same in the axial direction (along the skew line) but with different
loading [98]. Hence, for simplicity, the FE analysis was performed in 2D plane strain.
A high order, 2D, 8-node element having large deflection capability was used. As total
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Table 6.3: The parameters and variables of the blade and disc attachment

Parameter Description Type Lower : Upper Bound

yA

Radial distance of the origin
of the first guidance line to
center of the disc

Variable Parameter -20:+80 [mm]

αA
Angle of the first guidance
line

Variable Parameter 60:88 [degree]

yB

Radial distance of the origin
of the second guidance line to
center of the disc.

Variable Parameter -20:+80 [mm]

αB
Angle of the second guidance
line

Variable Parameter 60:88 [degree]

RC1
Radius of the upper fillet on
disc

Variable Parameter 1:10 [mm]

RC2
Radius of the bottom fillet on
disc and blade

Variable Parameter 1:10 [mm]

αFL Contact tilt angle (positive) Variable Parameter 5:70 [degree]

αSL
Bottom line on disc angle
(positive) Variable Parameter 15:70 [degree]

RCTWR Radius of the upper fillet Variable Parameter 1:10 [mm]

TwrLength Length of the upper part of
the disc

Variable Parameter 1:5 [mm]

RC1b Radius of the blade neck fillet Variable Parameter 1.1:20 [mm]

nblades Total number of blades Constants 68

RDO External radius of the disc Constants 404 [mm]

RDI Internal Radius of the disc Constants 216 [mm]

ω Angular Velocity Constants 3646 [RPM]

M Mass of the blade Constants 0.7 [kg]

C f Coefficient of Friction Constants 0.3

E Module of Elasticity Constants 2.020e11 [N/m^2]

ν Poisson Ratio Constants 0.3

ρ Density Constants 8220 [kg/m^3]

Fc Centrifugal Load Constants 14113 [N]57
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process is automatic, the element size should be defined before the process startup. It is
known that the mesh convergence in an FE analysis containing contact is very difficult.
It is common to simplify the contact with a punch test. So, the mesh convergence has
been done on a simplified equivalent punch test. The contact length and loads from the
non-optimum case were applied to the equivalent punch test. Having the radius for blade
and disc, the equivalent radius for the punch test was calculated as,

1
Req

=
1

Rd
− 1

Rb

where Req is the equivalent radius and Rd is the radius of the top fillet on the disc and
Rb is the radius of the fillet of the blade neck area. Figure 6.5 illustrates the schematics of
the equivalent punch test. Figure 6.6 compares the normal contact stress with analytical
analysis and also FE analysis with four different elements sizes of 0.5, 0.4, 0.1 and 0.05
[mm]. Figure 6.7 compares different element sizes for arresting the peak stress in the
contact area. Figure 6.8 plots the variation in peak normal stress in the contact area with
different element sizing. The mesh size of 0.1 [mm] was taken for all the optimization
process (figure 6.9).

Although in the current study a mesh convergence test has been applied for mesh
size selection, it is not an obligation. Because, in the optimization, the aim is to do the
comparison among different shapes of attachment and the exact values are not required.
It means that if the error of the non converged mesh size is the same for every shape
under evaluation, it is possible to do the comparison. Moreover, the same mesh size
in the contact area may provide the same error rate, especially when the shapes under
evaluation are near convergence in the optimization and the variation in input parameters
are not significant.

6.2.3 Optimization method, Boundary conditions and Constraints
For optimizing the dovetail shape for the case under study in this section a genetic

algorithm embedded by a Kriging function described in section 4.4 was used. The objec-
tive to this optimization was the equivalent von-Mises stress of the whole components.
The symmetric boundary conditions were applied to the parametric model of the dovetail
and the corresponding disc section as illustrated in fig. 6.4.

6.2.4 Results and discussion
For comparison reasons, a non-optimum geometry was selected and stress analyzed

with the same boundaries and loadings conditions. Figure 6.10 compares a non-optimum
shape and the GA optimum shape. As seen, the optimum shape digs more radial distance
into the disc but it cannot progress extensively due to the fact that centrifugal force burden
stress on the disc and having a large cavity of the blade root in the disc makes the disc
powerless in tolerating the load.
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Figure 6.5: Schematics of the equivalent punch test.
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Figure 6.6: Normal contact stress profile for different element sizes.
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Figure 6.7: Detailed view of normal stress in contact with different element sizes.
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Figure 6.8: Mesh convergence for normal contact stress.

Figure 6.11-b illustrate Von-Misses stress distribution in the non-optimum geometry
which is comparable with that of GA optimum geometry in figures 6.12-b. The equiva-
lent stress for the optimum geometry is 39% less in comparison to that of non-optimum
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Figure 6.9: Automatic generated mesh of a dovetail parametric model.

geometry. By further surveying Figs. 6.11-b and 6.12-b, it is found that the optimizer
tries to employ entire geometry to withstand the loadings thus one may find more uni-
form stress among the geometry. On the opposite, for the non-optimum geometry, stress
changes more intensely point to point, providing high concentrated stress. Although the
mean equivalent stress is higher in the neck area of the blade part for the optimum shape
(which is an adverse effect in terms of creep failure) but the value is still far from the
critical stress of the material. Nevertheless, for an advanced design, it is recommended
to put extra constraints for the mean stress in critical areas.

Figure 6.11-a and 6.12-a compares pressure in contact for the non-optimum and the
optimum geometry, respectively. It is found that this value is 37% less for the optimum
one. Note that although the peak of the equivalent stress happens at the top part of
the contact, the peak of the contact pressure for the optimum geometry has moved to
the bottom part of the contact which is the opposite to the non-optimum geometry. The
contact pressure graphs corresponding peaks on the equivalent stress contours are defined
by letters A and B in corresponding figures. The contact line is longer for the optimum
geometry which provides more mating surfaces for transferring the centrifugal loads.

By including the KRG model in the genetic algorithm optimization procedure the
time to converge will reduce as some part of the fitness value evaluation performs by
KRG model. As this optimization is done by the help of KRG model in addition to the
FE model and the KRG model is not the only model providing the objective response
for the optimizer, it is also called Co-KRG method. Figure 6.13 illustrates the optimum
geometry obtained by Co-KRG method and compares with the GA-optimum geometry.
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OPTIMUM

NON 
OPTIMUM

Figure 6.10: Optimum (continues line) vs. non-optimum (dashed line) geometry
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Figure 6.11: Non-optimum a) Contact Pressure b)von-Mises stress contour (Max
σEQV =339 MPa).

The convergence comparison between two methods can be found in Fig. 6.14. Figure
6.15-b contours the Von-Misses stress distribution in the Co-KRG optimum geometry.
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Figure 6.12: GA optimum geometry a) Contact Pressure b) von-Mises stress contour
(Max σEQV =207 MPa).

GA OPTIMUM
(DASHED)

KRG-GA OPTIM
(CONTINUES)

Figure 6.13: Co-KRG optimum (continues line) vs. GA-optimum (dashed line) geome-
try.

The equivalent stress for the optimum geometry is 36% less in comparison to that of non-
optimum geometry. The number of FE analysis for the GA method was 14102 and for the
Co-KRG was 3475 which is 75% less. Although the Co-KRG method could not provide
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the same reduction in the fitness value, the time to convergence overcome this small
difference between the two methods. Figure 6.15-a illustrates pressure in contact for the
Co-KRG optimum geometry. This geometry suffers 40% less peak stress comparing to
that of non-optimum one. Figure 6.16 compares equivalent stress along the curve C2
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Figure 6.14: Genetic algorithm (dashed line) vs. Co-KRG convergence.
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Figure 6.15: Co-KRG optimum geometry a) Contact Pressure b) von-Mises stress con-
tour (Max σEQV =216 MPa).

(neck area of the disc ) for the three geometries. The direction of plotting is from the
lower part of the curve to the point B. Table 6.4 compares the contact length and the
normal mean stress of non-optimum, GA optimum and Co-KRG optimum shapes. It is
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Figure 6.16: Equivalent stress along disc fillet edge.

found that the normal mean stress is less for the optimum shapes which has an advantage
considering especially fretting fatigue. Figure 6.17 compares the contact normal stress

Table 6.4: Comparison of contact for non optimum and optimum shapes.

Parameter Non-Optimum GA Optimum Co-KRG Optimum
Contact Length [mm] 9.334 14.548 16.779

Normal Mean stress
[MPa]

88.4 58.6 55.4

for the three dovetail shapes. The length of contact is normalized to the non-optimum
shape.

The local sensitivity analysis has been performed by altering one parameter at a time
while keeping all other parameters at their baseline value. The difference between ob-
tained equivalent stress to the optimum one normalized to the optimum equivalent stress
is the sensitivity measure.

Normalized sensitivity =
δσ

σopt
(6.1)

The results are graphed in Figs. 6.18 and 6.18. As predicted the share of material devoted
to the blade has the highest priority over other parameters.
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Figure 6.18: The local sensitivity arrangement in different input variable parameters in
terms of equivalent stress.

In order to evaluate the effect of coefficient of friction different FE analysis performed
and the results are graphed in fig. 6.20. By increasing the coefficient of friction the
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maximum equivalent von-Mises stress transfer from the disc notch to the contact area.
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Figure 6.20: Contact Pressure and Eqv Stress for different coefficients of friction in
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In another optimization run with the objective of minimizing normal contact pressure
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the dovetail having less peak contact normal stress was demanded. Figure 6.21 compares
the contact normal stress in the non-optimum and the optimum found for the dovetail.
The profile of the contact stress is more Herzian in shape for the optimum dovetail. This
attachment lacks the peak singular stress which is evident in the non optimum dovetail.

(a) (b)

Figure 6.21: Contact Normal Stress on a) Non-Optimum b) Optimum dovetail.

6.3 Analytical Assisted FEM Approach - Fir-tree opti-
mization

In this section, a fir-tree of four lobs is selected as a case study to evaluate the possi-
bility of applying fast evaluation analytical method in combination of the FE method in
a multi-objective optimization run. The main effort in this section is to present different
strategies in embedding the analytical method into the optimization to lighten the heavy
computational loads (i.e. less callbacks to the high fidelity model which in here is FE
analysis) while maintaining the accuracy of the process.

6.3.1 Parametric model
A simplified parametric model as described in Fig. 2.3 along with an FE ready fir-tree

parametric model described in Sec. A.3 having four lobs was used in this study.

6.3.2 Optimization Method and Constraints
A single objective Genetic Algorithm (GA) is used to find the optimum fir-tree shape

having minimum von Mises stress. To do so, the different parameters of the parametric
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6.3 – Analytical Assisted FEM Approach - Fir-tree optimization

model is changed by the optimizer, then, their corresponding objective values are com-
pared. The set of parameters are called input vectors and the objective value is a specific
mechanical property of the geometry (which in the current study is the von Mises stress)
evaluated by the finite elements method. Due to the fact that the number of callbacks to
the FEM analysis is an index of the convergence time in such optimization process, the
authors tried to decrease this number by incorporating the simplified model into the GA
process before applying the FE (Fig. 6.22).

Initial Population 
(sets of input vectors)

New Population

Optimum 
Found

Parametric Model Generation

Feasibility Assessment

Optimum 
Criteria 
Reached Yes

NO

FEM Analysis

NO

Yes

Simplified  Analytical Model Assessment

Does this criteria meet?

Figure 6.22: Optimization with GA embedding simplified model in addition to FEM
callbacks.

The criteria for the simplified model is that the maximum average stress in the blade
notch sections (Fig. 2.7) should not be less than the maximum average stress in the disc
notch section both normalized to their corresponding material ultimate stress value. In
fact, it is favorable to have the blade failure before disc failure for the practical reasons.
Hence,

Max(σ i
Blade) ∈ {1,4}

σBladeUltimate
=

Max(σ i
Disc) ∈ {1,4}

σDiscUltimate
(6.2)

Although the analytical approach provides approximate results, at this level of filtration
the stress obtained by the analytical approach is not compared to an absolute stress (for
example the ultimate stress value of the material) but is compared with a stress obtained
with the same method (analytical) on the other parts of the model. In other words, the
comparison is made with the same tool, in the same conditions and with the same ac-
curacy. Hence, the probability of facing a situation in which a candidate fails in the
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analytical approach but satisfy the same criteria with FEM is very rare (for the current
trail it did not happen).

Using the LHS method, a brutal-force search were performed over the working do-
main of the current case study for which more than 8000 samples were evaluated by FE
analysis in addition to simplified analytical model. The criteria of Eq.6.2 were evaluated
with both models and it was found that only 6.5% of the searching domain fail in the
analytical criteria but pass the same criteria by the FEM model.

Although, in the case of facing such conditions, the candidate may not be close to the
optimum and would be filtered out in the proceeding generations. Moreover, if there is a
candidate which does not satisfy the analytical approach but satisfy the same criteria with
FEM and is still an optimum one, its robustness is questionable and is not recommended
for considering as an optimum robust solution.

6.3.3 Analytical Assisted FEM Results
By applying the analytical approach in advance to the FE analysis in the optimization

process, it was found a 7% improvement in time reduction for the total process. In fact,
7% of the callbacks for the objective values is done by the analytical part instead of high
fidelity FE method. It is worth noting that the candidates filtered out are recorded and
went under later evaluation to reassure the competency of the simplified analytical model
filtration. It was found that all the filtered out candidates were incapable of satisfying the
same criteria with FEM, hence in case of having no simplified model, all the filtered
out candidates should have been evaluated by time-consuming FEM. Although, one may
consider the fact that the improvement value obtained by the authors in the current trial is
not a definite number due to the probability nature of the population selection of the GA
method. It means that the GA initial population is selected from the searching domain
by random selection, hence, by every different run, the optimization process will obtain
the optimum searching through different population selections. Therefore one may not
find the same ratio of the improvement by using the analytical evaluation.

In order to evaluate the behavior of the analytical results in comparison with the high
fidelity ones (FEM results) during the optimization, the results of the analytical calcu-
lations were recorded for every individual shape of the fir-tree attachment during the
optimization. Then, the results of the total populations were sorted for different criteria.
Figure 6.23 compares the sorted mean contact pressure obtained by FEM and the analyt-
ical approach normalized to the blade ultimate stress. Also, Figs. 6.24 and 6.25 compare
the maximum normalized mean tensile stress of the populations in the blade and disc sec-
tions, respectively. It was found that the analytical approach, although does not provide
an accurate estimation of the stress (due to extreme simplification), but its general trend
agrees with the FEM results. In another word, by minimizing the mean contact stress
with the analytical approach, the same results with the FEM analysis would be mini-
mized. The same behavior is evident for sections mean tensile stress. This phenomenon
is utilized for another optimization approach which will be described next.
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Figure 6.23: Contact pressure comparison in FE and analytical methods.
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Figure 6.24: Normalized mean tensile stress in blade notch sections, the comparison in
FE and analytical methods.

In addition, for having an understanding of the consistency of the two analysis approach,
the error for the values obtained for every individual had been recorded during the opti-
mization. This value was obtained by calculating the difference between FE value and
the analytical value divided by the FE value again,

Err =
FEM−Analytical

FEM

Total sample errors in the mean contact pressure, mean tensile stress in the blade and
in the disk are shown as histograms in Figs. 6.26, 6.27 and 6.28 respectively.
It was found that the analytical calculations provided the best competency to the FEM
results in blade section average stress. The mean contact normal stress had the highest
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Figure 6.25: Normalized mean tensile stress in disc notch sections, the comparison in FE
and analytical methods.
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Figure 6.26: Histogram of the error for mean contact pressure (Standard deviation =
0.17).

standard deviation, hence, least competency to the FEM results among the three values.
In the previous optimization, it was found that the analytical approach, although did

not provide good predictions for the objective values, its behavior in the optimization was
in the same manner as the FE method. Hence, in another attempt, the authors tried to ap-
ply multi-objective optimization of the fir-tree attachment on just the analytical solver for
the two objectives of a minimum of the maximum normalized sections tensile stress in
addition to the minimum of the normalized mean contact stress. Due to the fact that the
analytical method is not able to have any prediction of the maximum stress in the notch
area, hence, the parameter of notches radius (RC1 and RC2) will not be addressed in an
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Figure 6.27: Histogram of the error for mean tensile stress on the blade (standard devia-
tion = 0.046).
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Figure 6.28: Histogram of the error for mean tensile stress on the disc (standard deviation
=0.067).

optimization based on just analytical approach. To rectify this problem, these parame-
ters must be kept constant during the optimization. It means that for all combinations of
RC1 and RC2 the multi-objective optimization shall be carried out. Due to the fact that
the analytical approach is not a complex calculation, so this process is comparatively a
fast practice. The results in this level would be a number of Pareto fronts. Then, all
the points obtained in the Pareto fronts went through FE analysis. The final results were
collected and sorted. The sample having the minimum von Mises stress yet meeting the
constraints would be considered as the optimum fir-tree attachment shape (Fig. 6.30).
This method is referred to Analytical Multi-Objective FEM validated Optimization in
the current study.
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…
Multi Objective Optimization for minimizing the blade and 
disc section mean tensile stress and mean contact stress

Figure 6.29: General idea for the analytical multi-objective FEM validation optimization
method.

As the objective for the optimization of the blade fir-tree in the current study was min-
imizing the von Mises stress, the results from the previous step were again fed into
another single objective GA optimization, but, with a reduced searching domain. To do
so, the optimum set of parameters found in the previous optimization were used as the
median of the new range of parameters variations and were subjected to a variation of
+/-10%. This reduced range of parameters made this level of optimization much faster
to converge because there was a smaller domain to search. This method is referred to as
Analytical-FEM Multi-Objective Multi-Level Optimization in the current study.

To sum up, in order to reduce the convergence time in minimizing the von-Mises
stress in a fir-tree attachment, four different methods were applied to a parametric model;
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The Optimum parameters
are perturbed by +/-10%

New Bounds for 
Parameters

New Optimization
(Single objective: Von-Mises)

Figure 6.30: Reducing the searching domain using a simplified analytical model.
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Figure 6.31: The comparison of optimization convergence for different methods.

Analytical-FEM Single Objective Optimization, Analytical Multi-Objective FEM vali-
dated Optimization, Analytical-FEM Multi-Objective Multi-Level Optimization and Adap-
tive Penalty Analytical-FEM Single Objective Optimization. Figure 6.31 compares the
optimization convergence for different methods described so far. For the case of Analytical-
FEM Multi-Objective Multi-Level Optimization, just the second level of optimization
convergence is shown in this figure due to the fact that the first level includes a high
number of optimizations. Also, it is worth to note that in this case a faster convergence is
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Table 6.5: Improvement comparison of different methods of optimization.

Method of Optimization
Improvement
in Optimiza-
tion Time

Normalized
Min von-
Mises found

Analytical-FEM Single Objective Optimiza-
tion

7%
1

Adaptive Penalty Analytical-FEM Single
Objective Optimization 47%

1.014

Analytical-FEM Multi objective Multi level
Optimization 32%

1.005

Analytical Multi objective FEM validated
Optimization 86%

1.104

evident as the search domain has been decreased in the first level of optimization. More-
over, as seen, the proposed adaptive penalty has successfully improved the ability of the
optimizer in finding the optimum.

Table 6.5 compares the improvement in the optimization time according to the num-
ber of callbacks to FEM analysis for different methods. Also, the optimum objective
value normalized to the best value found is compared in this table. It is found that the
adaptive penalty based on LHS method decreased the time for convergence significantly.
Furthermore, the analytical approach could successfully reduce the searching domain
for the FEM optimization. Although the optimization using just an analytical approach
may provide the fastest convergence (about 86% less FEM callbacks), the result is not
satisfied (more than 10% error). Whereas, using the results of this method for reducing
the searching domain in the second level optimization provided 32% improvement in the
convergence time plus a satisfactory optimum value (less than 1% error).

6.4 Co-Kriging GA Optimization applying Adaptive Penalty
In this section, a dovetail in addition to a four lob fir-tree parametric model are under

optimization investigation using co-Kriging surrogate function embedded in the genetic
algorithm as described in section 4.4. Moreover, the penalty method proposed in section
4.6 is applied for examining its capability to provide fast convergence.

6.4.1 Parametric Model
The parametric models described in A.2 and A.3 were used for dovetail and fir-tree

optimization, respectively.
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6.4.2 Optimization Constraints and Objectives
In the current case, a multi-Objective optimization was performed to satisfy two ob-

jectives simultaneously. To optimize the geometry of the attachment, the parametric
model is delivered to a finite element code to evaluate the state of stress. This analysis is
denoted as “high fidelity” computation. In the current study, two objective functions f1
an f2 were obtained from the high fidelity analysis,

f 1 = Max[
σ1blade

σUT Sblade

,S× σ1Disc

σUT SDisc

] (6.3a)

f 2 = PCNT (6.3b)

where, σ1 and PCNT are the highest first principal stress in the blade or disc notches
and the mean pressure in the contact, respectively. The first principal stress σ1 was
normalized by the ultimate tensile stress σUT S of the corresponding material. S is the
safety factor of the disc part as it is desirable to have the failure in the blade component
rather than in the disc. In the current study, it is assumed that S = 1. A brief description
of the general optimization is that the optimizer automatically changes the set of input
variable parameters (which is also called ‘input vector’) of the model and calls for the
evaluation of its corresponding objective/s (which in here are states of stress defined in
6.3a and 6.3b). This loop is repeated until the objective value/s reach a minimum, hence,
the best combination of the input parameters (best input vector) is found. In case of
multi-objective optimization, the optimizer provided a Pareto Optimal Front in which a
set of optimal solutions are given.

6.4.3 Robustness
Although the tolerance in manufacturing due to high technology tools and control

devices has been reduced significantly, the component on the sketch is still far from the
real fabricated one [1]. In order to reduce the expected quality loss, both variance and
the difference between the mean and the nominal response should be minimized. In fact,
assuming a bell-shaped response distribution (normal distribution), in robust design the
main concern is to align the peak of the bell to the nominal response and make the bell
curves thinner (reducing the variance) [22]. To achieve a multi-objective and robust de-
sign, the integration of parametric geometry, high fidelity (e.g. finite element) and/or a
surrogate model in collaboration with an optimization algorithm is required [58]. Design
optimization using computational mechanics has been recently combined with robust de-
sign and provided the term optimal robust design. Nevertheless, due to the high compu-
tational cost of high fidelity models, extensive efforts have been done to find the optimal
robust solution using metamodel interpolations, although the inherent uncertainty in the
metamodel interpolation may cause the solution not robust as it should be [3]. Taguchi
has used Signal-Noise (S/N) ratio as the quality characteristic of the product. S/N ra-
tio is used as measurable value instead of standard deviation due to the fact that, as the
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mean decreases, the standard deviation also decreases and vice versa [50]. In quality
engineering, many types of signal-to-noise (S/N) ratios are usually calculated to measure
the robustness for the functions of products, processes, or technologies. There are some
types such as Smaller-the-better, Nominal-the-best, Larger-the-better, Signed target and
Fraction defective [101]. In nominal – is – the best type approach, the quality loss occurs
when the objective value does not coincide with the response value. In general, most
component properties in a design process is of this type for which there is a fixed signal
value (nominal value). Having the variance of the output, σ , around the nominal value,
µ , the S/N ration is obtained by,

S/N = 10× log10(
µ2

σ2 ) (6.4)

This ration is considered as the robustness scale in the current study.

6.4.4 Robust Multi-Objective Optimization
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Figure 6.32: Pareto Optimal front for max first principal stress (Obj1) and mean contact
pressure (Obj2)
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In the current study, a multi-objective optimization was performed with two objec-
tives, the first principal stress σ1 and the contact mean pressure pc,m, denoted as objective
1 and objective 2 respectively. The disk and the blade are made from different materi-
als, then the first principal stress is normalized by the ultimate tensile stress UTS of the
corresponding component material. The first principal stress can not exceed the ultimate
tensile stress, then, a limit to the objective 1 must be defined. In the current analysis
this limit has been set to 0.6, hence values passing this threshold were rejected in the
results. Regarding the fact that the contact pressure is the same for mating surfaces this
normalization can be avoided for objective 2. Figure 6.32 visualizes the results of the
multi-objective optimization as a Pareto Optimal front. In a multi-objective optimization
‘a point is called Pareto optimal if there is no other point that reduces at least one objec-
tive function without increasing another one’ as reported in [63]. In other words, there
is not a unique optimum point but a family of them. Here, an optimum point having
maximum robustness was chosen among the Pareto optimal.

Maximum robustness means that by having some perturbation in the set of the pa-
rameters the objective value does not change significantly. Hence, all the points in the
Pareto Optimal front were evaluated for sensitivity to find the best individual in terms of
robustness.

A very simple method to evaluate sensitivity is to make small variations in one pa-
rameter at a time, keeping all other parameters unchanged and checking the deviation
of the objective from its nominal value. The nominal value of the objective is given by
the Pareto Optimal front. This method is called local sensitivity analysis and does not
always provide a realistic indicator of sensitivity as the uncertainty may not occur only in
one parameter at a time. Whereas, in a global sensitivity analysis uncertainty is applied
simultaneously to every parameter of a set. Considering a model having n parameters,
if sensitivity analysis requires to apply h different levels for every parameter the total
number of combinations are as large as hn. Hence, it is not suggested that the global sen-
sitivity analysis to be performed by the high fidelity model as the process cost is terribly
high in terms of time. Therefore, applying surrogate model (also called Meta model) is
highly recommended in such evaluations. Moreover, the accuracy of the Meta model is
expected to be especially high as the range of variations in the parameters is very narrow
(at most, only 3 percent of the original value is the border of the domain).

In the current study, a maximum deviation of 3% of the parameter was applied to the
input vector. This deviation was split into seven levels [-3,-2,-1,0,+1,+2,+3]% assuming
a uniform discrete distribution. Hence, the total number of deviated points for a 6 param-
eters model was ne = 76 for each point on the Pareto Optimal front. This huge number
of evaluations makes the use of the high fidelity model quite difficult. Then, the same
Meta model described in Sec. (E.1.4), was used to calculate the objective function pc,m
per each deviated point. The corresponding standard deviation is

S =

√
1
ne

ne

∑
i=1

[(pc,m)i −µ]2 (6.5)
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where µ is the mean of pc,m.

6.4.5 Dovetail Robust Optima
Figure 6.33 graphs the Pareto Optimal Front obtained from the multi-objective op-

timization in the previous section. For every sample point in this graph two values are
illustrated; the mean contact pressure and the S/N ratio (Eq. 6.4). Also, there is a dashed
line in this graph which segregates samples having MPS higher than a predefined value
from those having lower MPS values (from zero to the dashed line). The most robust
point in terms of mean contact pressure for which the MPS has not exceeded the limit of
0.6 is selected as a candidate for the optimum robust shape. Then the robustness in terms
of MPS was also evaluated to make sure that the selected optimum provides robustness
in both objectives.
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Figure 6.33: The dovetail robustness analysis of the Pareto Optimal front sets of param-
eter (the dashed line is the limit for MPS=0.6)

In order to obtain the optimum robust input vector, the candidate having the lowest
mean contact pressure yet highest S/N value which at the same time does not exceed
the threshold of MPS (dashed line) was selected (Fig. 6.33). The mean contact pressure
for the selected input vector is 60 MPa and its corresponding normalized MPS is less
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Figure 6.34: Histogram on Meta model evaluation for a 3% perturbation in Optimum
Input vector (Unit is the optimum value)

than 0.59. Table 6.6 provides the results of the robustness analysis in which a robust
design input vector in both objectives is provided. The histogram results of the surrogate
function over the optimum geometry is shown in Fig. 6.34. The ratio of the standard
deviation to the optimum is 0.029 which is quite satisfying.

Table 6.6: The robustness analysis result for the final robust optimum geometry vector

MPS (normalized) Contact Mean Pressure (MPa)
Standard Deviation 0.026 1.7
Mean 0.583 60.46
S/N 27 31

6.4.6 Fir-tree Robust Optima
A fir-tree of 3 lobs was also applied to the same procedure of robust optimization done

for the dovetail in the previous section. In the case of fir-tree the number of parameters
are higher hence to perform the robustness analysis a higher number of population should
be generated and evaluated for every single input value in the Pareto Optima Front (78)
which makes its calculation rather challenging even for a Surrogate model, therefor,
1000 points were selected using a uniform distribution selection through the perturbed
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population of every single sample from which the S/N was calculated. The graph of
the S/N calculated for both objectives for the Pareto Optima Front candidates has been
illustrated in Fig. 6.35.
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Figure 6.35: The robustness analysis of a set of Pareto Optima Front for a fir-tree

6.5 Conclusion
A dovetail parametric model was optimized for the minimum contact peak normal

stress using two different approaches of FE analysis and Analytical calculations. The
aim was to evaluate the possibility of the simplified analytical model in the optimization
of the attachment. The results were found promising. The contact peak stress in the
optimum found by the use of the analytical model was comparable to that of the FE
model.

Then, the adaptive surrogate model embedded in GA (Co-Kriging method) described
in section 4.4 was applied to a dovetail. The Co-Kriging method could successfully reach
the optimum by 75% less computational burden. Moreover, the sensitivity of different
parameters of the parametric model of the dovetail to von-Mises stress in the attachment
was demonstrated. The effect of coefficient of friction on equivalent stress was also
studied. It was found that decreasing the friction may transfer the peak stress zone from
the contacting surfaces to the notches which is not always desired as it is more favorable
to have the failure in the blade rather than in the disc component.

In another attempt to reduce the computational burden of the optimization, the sim-
plified analytical model of a fir-tree was employed but not as a standalone response
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function. This model was used as a filtration before performing the FE model in the
optimization cycle. In fact, the simplified analytical model was responsible in control-
ling the criteria of having failure in the blade component before having the rupture in the
disc component. Hence, the least proper candidates were filtered out not to be passed to
the high-cost FE analysis. This approach could reduce the computational time by 7%.
Moreover, a multi-objective optimization was performed solely on the simplified analyt-
ical model. Although this method could reduce the computational burden by 86%, the
optimum von-Mises stress was 10% far from the optimum found by the previous method
(reference one). In another attempt, the results of the analytical optimization method
were used to reduce the searching domain for another single objective (minimum von-
Mises stress) optimization of the attachment using the FE model. This method could
reduce the computational burden by 32% by a negligible error of 0.5%. Furthermore,
applying the proposed adaptive penalty to the combined simplified analytical and FE
model optimization could reduce the computational burden by 47% which again proved
its efficiency.

Finally, the Co-Kriging method was applied to an optimization of a dovetail and also
a fir-tree with the objective of minimum mean contact pressure and minimum peak prin-
cipal stress. In this study, the surrogate function was also used to predict the robustness
of the samples. The final results provided the designer with a set of candidates with dif-
ferent (weighted optimum) values of objectives in addition to their robustness in terms of
both objectives. It was found that finding a robust optimum is impossible without using
a surrogate function to emulate the response values.
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Chapter 7

Closure

In finding the optimum shape of the dovetail and fir-tree different methods and cri-
teria were evaluated. Two approaches of analytical and FE approach were considered
in developing two types of parametric method for blade and disc attachment. Genetic
algorithm was used as the optimizer. An adaptive penalty method based on LHS was
proposed and evaluated in the optimization of a standard Rastrigin function manipulated
to include non-feasible spaces, then, blade root dovetail was subjected to the optimization
using this penalty method. In both evaluations, the proposed penalty method showed to
be promising in reducing the computational time for convergence. Moreover, by target-
ing the optimization of a fir-tree with 3lobs it was found that in facing a more complex
and higher dimension searching domain, this method is more efficient in guiding the
optimizer to the feasible space and subsequently faster convergence.

In addition, employing the analytical approach as a filter before performing the high-
cost FE method revealed that filtering out some part of candidates by the analytical eval-
uation makes an improvement in total time for convergence. Moreover, applying the
Kriging function as a surrogate alone is not an efficient method in finding the feasible
optimum solution, although, embedding this function as a pre-evaluation method before
performing the FE analysis in the optimization loop is promising in terms of both accu-
racy and time savings.

Comparing different topologies of the contact surfaces in a dovetail as a sample to
blade attachment was performed with four different topologies. It was found that the
crown type topology proposed by [92] provided less contact peak normal stress although
the designer should consider the over speeding conditions in selecting this type of topol-
ogy with caution as it may lose its normal behavior in loadings higher than design point.
Also, a great agreement in normal stress profile in contact surface was found between
analytical punch results and the contact in the blade root attachment. Accordingly, an
optimization run done by analytical estimation of the contact normal stress peak pro-
vided a promising solution.

In a multi-objective optimization of a fir-tree and dovetail, it was tried to find the
optimum robust solution using S/N nominal-the-best ratio. The Kriging function used in
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optimization was also utilized in evaluating the global sensitivity and robustness of the
candidates obtained in Optimal Pareto Front.

The findings in the current study are summarized in the followings,

1. Some parametric models of both fir-tree and dovetail for the FE analysis in addition
to the analytical model were developed. The models were able to generate simi-
lar mesh density over contacting surfaces which made the peak contact pressure
comparison possible among different samples.

2. It was confirmed that the equivalent punch test in 2D could estimate the peak stress
in the dovetail. Also, the coefficient of friction could reduce the peak normal stress
in the contact.

3. It was found that the searching domain of the blade and disc attachment, either
dovetail and fir-tree, having any of Type-I to IV contact topologies, defined and
parametrized in the current study, is a single district (island) space.

4. It was found that applying a high radius curve at the edge of the contact will pro-
vide less peak normal contact stress.

5. It was confirmed that the adaptive penalty method based on Euclidean distance is
quite effective in reducing the time to find the optimum.

6. An adaptive penalty method based on Latin Hypercube Sampling was proposed to
make the adaptive penalty application possible. With this method, the ratio of the
feasible space to the whole searching domain could also be estimated.

7. The proposed method was found to be more efficient in a higher dimension com-
plex searching domain.

8. It was confirmed that the Kriging function is successful in emulating the high fi-
delity function with much less computational cost.

9. To take advantage of the fast calculation of surrogate function in addition to main-
tain the accuracy of results in an optimization, the Kriging method was embedded
into the GA. The results were satisfying.

10. It was found that in order to obtain a robust optimum, the use of the surrogate
function is unavoidable.

11. A modified mutation procedure was established to rectify the problem of finding
global optimum in a multi-district feasible domain. Nonetheless, the current prob-
lem in this study was of type single district feasible domain.

12. It was showed that the simplified analytical model is useful in reducing the time to
find the optimum either as a standalone response function or in combination with
the FE model.
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Appendix A

Parametric models of the blade and
disc attachment

An optimization process is generally a high cost process in terms of time due to
high number of numerical analysis call back by the algorithm. Increasing the number of
parameters needed to define the geometry, dramatically, increases the time for accom-
plishing of the entire optimization process and makes it harder to converge. On one hand
a designer should select those parameters to which the objective function is less sensitive
and consider proper constant values for them. Moreover, there are some parameters in
the parametric model which should be constant mandated by other phases of a design
process. On the other hand, the parameters to which the objective function is expected
to be dependent on or to be more sensitive should be left as variable parameters. The
number of the variable parameters defines the dimension of an optimization problem.
High number of variable parameters means a high dimension domain in which the op-
timizer should find the optimum in it. In addition to enlarging the domain by additive
dimensions, this makes the ratio of feasible space to non-feasible space much smaller.
Consequently, the problem becomes two fold, i.e. the domain is larger and the feasi-
ble space is smaller, hence, there should be much effort for optimizer to converge. As
a result, the selection of variable parameters play an important role in an optimization
process.

A.1 Analytical Approach - Simplified Fir-tree
Figure A.1 illustrates a schematic sketch of a blade with a fir-tree in meridional (left)

and annulus (right) view. The blade is simplified into three main parts of vane, shank and
root. The mass values for the vane and shank are inputs to the analysis.

The fir-tree root height is a function of number of lobs, nlobs as seen in fig. A.2.
Hence,

H f itree = nlobs ×hlob × cos(γ)
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Figure A.1: Schematic sketch of a blade in analytical approach.
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Figure A.2: Schematic sketch of a fir-tree in analytical approach.
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Moreover, the length of the segments in outer and inner rim can be calculated as,

LSo =
2×π × (Hub Radius−Shank Height)

Number of Blades

LSo =
2×π × (Hub Radius−Shank Height−H f irtree)

Number of Blades

The outer width of the blade root section is,

Bro = Bri +H f irtree × tan(γ)

where, Bri is given as input to the analysis. The total centrifugal force exerting the hub
section of the vane is sum of the centrifugal force of the blade and the shroud mass,

FV = MV ×ρblade ×RMV ×ω
2

where, RMV is the radial location of the center of gravity for the vane. The centrifugal
forces due to the shank, Fshank is also calculated correspondingly. Considering a trape-
zoidal geometry for the blade root, the central gravity of the blade root is estimated as,

CG f irtree = Hub Radius−Shank Height−H f irtree ×
( Bri

(Bro +Bri)+
(Bro−Bri)

3×(Bro+Bri)

)
Consequently, the centrifugal force of the blade root FCFBladeroot is calculated. Figure
A.3 illustrates the schematics of center of gravity for a section of the fir-tree between
two notches. Assuming the same load carrying for every lob, the total centrifugal force
that every contact surface on the fir-tree lob should resist is,

FbladeTotal = FV +Fshank +FCFBladeroot

Fr = FbladeTotal/(2×nlobs)

FN =
Fr

sin(αT − γ)
+µ × cos(αT − γ)

where, FN is the normal contact load and Fr is its projection in radial direction. The notch
width for the kth notch of the blade is,

Bn = 2× (Bro − k×hT × sin(γ))

The volume of the space between every notch is the enclosed trapezoidal area plus two
lobs,

V k
lob =

[(Bk
n +Bk−1

n )

2
×hT × cos(γ)+2×Alob

]
×Rim Axial Length

Hence the centrifugal force due to this mass is,

Fk
c f =V k

lob ×ρblade ×
[
Hub Radius−ShankHeight −

(
k−1+

1
2

)
×hT × cos(γ)

]
×ω

2
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Subsequently, the tensile stress on every section are found,

σShank =
FV +FShank

Shankwidth ×Hub Axial Length

σ
k
bladenotch =

F i
lob

Bk
n ×Hub Axial Length

Specific Contact Pressure =
FN

wT ×Hub Axial Length

Bn(k)

2*Bro

2*Bri

Flobk

Flob(k-1)

Fcfk

Fr Fr

Bn(k-1)

Figure A.3: Schematic sketch of a fir-tree loading in analytical approach.

A.2 FEM Approach - Dovetail Parametric Model
The 2D geometry of the dovetail was parameterized as illustrated in Fig. A.4 and

A.5. This model is the most general but thorough geometry of a dovetail. The main
feature of this geometry is the two conduct lines a and b which roughly identify the
contribution of the blade root, the intermediate space and the disc. The notches on the
disk are tangent to these two conduct lines. Point Pab is the origin of the two conduct
lines. For dovetail model, this point is fixed so it is considered as a constant parameter.
In fact, if Pab is kept far enough from the root section, all the possible geometries could
be produced by changing the slope of the two conduct lines parameters αa and αb that
are variable parameters.

The attachment geometry shape in the blade side can be different from the disc side
but there are some relations which interconnect their parameters. For example the curve
RC1b can not have a radius less than RC1. Moreover, the curvature of the blade root RC1b
can follow the same curvature of the disc to provide a smoother contact profile of stress
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Figure A.4: Parameters definitions Boundary conditions, loadings and conduct lines
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Figure A.5: Detailed Parameters of a dovetail.
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in addition to eliminate more variable parameters and consequently, decreasing the com-
putational time for optimization. For assembly reasons although, the blade parameters
are defined as a function of the disc parameter as:

RC1b = 1.05 ·RC1 (A.1a)
RC2b = 0.85 ·RC2 (A.1b)

Moreover, in order to provide enough tolerance for manufacturing reasons and avoid-
ing the interference with the disc groove, the curvature of the blade root lower part is
related to the corresponding groove of the disc as below,

RCAb = 1.05 ·RCA (A.2)

All the constant and variable parameters are tabulated in Table A.1. As previously
explained some parameters can be derived as a function of other parameters or left as
variable parameters to be optimized. It is a matter of time, accuracy and designer decision
for selecting one of these options. It is the variable parameters which govern the shape
of the blade and disc attachment and by manipulating these variables the optimizer will
find the best attachment in terms of objectives.

A.3 FEM Approach - Fir-tree Parametric Model
The same parametric model can be used for generating a fir-tree blade root. Figure

A.6 illustrated a parametric model of a fir-tree having four lobs. For the case of a fir-
tree, the origin of the two conduct lines a and b are located separately with a reasonable
distance from each other. Also, the slope of the two conduct lines are kept equal in order
to provide similar contact lines for all lobes. Moreover, for a fir-tree the slope of the
non-contact lines, αSL, is an additive variable parameter. Therefore, for a fir-tree, at least
eight variable parameters are defined.

Due to the symmetry, just half of the blade and disc section has been illustrated. In
this model, the same parameters can be used for generating the shape of the blade as used
for the disc but with a tolerance which is inevitable. If there is not any space between
upper lob on the blade and the lower lob on the disc, the bending of the lower lobs may
affect the upper one. It means that the non-contact line in this case is also a contact line
and some normal pressure is endured by this line.

Similar to the dovetail model, the area devoted for the fir-tree attachment is divided
into three parts; blade area, lobs or intermediate area and disc area. The role of two
major guide lines a and b is more highlighted to segregate these areas as described for the
dovetail in previous section. Hence, the slope (αa and αb) along with the position of the
base of these two guide lines (Pa and Pb) play significant role on the shape determination
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Figure A.6: Parametric model of a fir-tree.

of the fir-tree. Besides, every individual lob shape is defined by four parameters of which
two are the slopes of the contact line, αFL (which endure the normal contact pressure)
and non-contact line of the lob, αSL and the other two parameters are the radius of the
curves (RC1 and RC2). The lower part of the fir-tree attachment makes a groove in the
disc with the radius of RCA. The maximum radial length of the fir-tree attachment is
limited by the parameter Penetration. It is common to keep the two parameters αa and
αb equal in order to have the same contact length for all lobs.
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Table A.1: The parameters and variables of the blade and disc attachment

Parameter Description Type of variable Type of Geom

Pab
Radial distance of the origin of con-
duct lines from the center of the disc

Constant Dovetail

Pa
Radial distance of the origin of con-
duct line a to Pb

Variable Fir-tree

Pb
Radial distance of the origin of con-
duct line b to center of the disc

Variable Fir-tree

αA * Slope of conduct line a Variable Dovetail/Fir-tree

αB * Slope of conduct line b Variable Dovetail/Fir-tree

RCTWR Radius of the upper fillet on disc Variable/Constant Dovetail/Fir-tree

LTwr Length of the upper part of the disc Variable/constant Dovetail/Fir-tree

RC1
Radius of the upper contact curve
on disc

Variable Dovetail/Fir-tree

RC2
Radius of the lower contact curve
on disc

Variable Dovetail/Fir-tree

αFL Contact line slope (positive) Variable Dovetail/Fir-tree

αSL Non-Contact line slope (positive) Variable Fir-tree

RCA Radius of the cavity for Disc Variable Dovetail/Fir-tree

RCAb
Radius of the lower most curve of
the Blade

Variable/Derived Dovetail/Fir-tree

RC1b
Radius of the blade upper contact
curve

Variable/Derived Dovetail/Fir-tree

RC2b
Radius of the blade lower contact
curve

Variable/Derived Dovetail/Fir-tree

NB Total number of the blades Constant Dovetail/Fir-tree

RDO External radius of the disc Constant Dovetail/Fir-tree

RDI Internal Radius of the disc Constant Dovetail/Fir-tree

Penetration
The radial permitted space used for
embedding the blade root in the disc Constant/variable Dovetail/Fir-tree

* In case of same lob size in fir-tree: αA =αB=αAB

94



Appendix B

Parametric Model Development Details

B.1 Geometric Calculations
The parametric model of the dovetail or fir-tree is developed in this appendix in de-

tails. The topology of the contact described here is the simple one composed of a straight
line embedded within two curvature. Figure B.1 illustrates a schematic drawing of a
dovetail. Every fillet and notch is created by a circle.

Parametric Model generation
In order to obtain the coordinate the contact line, knowing the positions of points B

and C1, in addition to have αE , αB, R1 and R2, the position of points E, F and C2 can be
obtained (Fig. B.2). Point E is easily found by,

xE = xC1 −R1 sin(αE)

yE = yC1 −R1 cos(αE)

To Find C2, firstly, a line parallel to line EF is drawn downward with a distance R2 from
line EF which we name it E′, hence,

line E : (y− yE) =− tan(αE)× (x− xE)

line E ′ : (y− yE) =− tan(αE)× (x+
R2

sin(αE)
− xE)

Then, another line parallel to the guide line B with a distance R2 to the left is drawn.
Therefore,

line B : (y− yB) =− tan(αB)× (x− xB)

line B′ : (y− yB) =− tan(αB)× (x+
R2

sin(αB)
− xB)

The point C2 is the cross point of lines E′ and B′ as,

(y− yE) =− tan(αE)× (x+
R2

sin(αE)
− xE)

(y− yB) =− tan(αB)× (x+
R2

sin(αB)
− xB)
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CT

Rc1

Rc2

A

B α B

α A

αG dsi

dso

T

Figure B.1: Dovetail Parametric Model generation.

By solving the previous system of equations point C2 is determined,

xC2 =
yE − yB +R2 × (− tan(αE)

sin(αE)
− tan(αB)

sin(αB)
)+ tan(αB)xB + tan(αE)xE

tan(αB)+ tan(αE)

yC2 =
− tan(αB) tan(αE)

tan(αB)+ tan(αE)

[
R2(

1
sin(αE)

− 1
sin(αB)

)+ xB − xE − yE

tan(αE)
− yB

tan(αB)

]
The point F is found knowing that this point is the perpendicular intersection of radius
with line EF,
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B.1 – Geometric Calculations

α BB

α E

E

E’

F

C1

C2

B’

Figure B.2: Contact line coordinate calculation.

α AA

K

C2

C3

α G
G

Figure B.3: Non-Contact line coordinate calculation.

(y−YC2) =
1

tan(αE)
× (x− xC2)

(y−YE) =− tan(αE)× (x− xE)
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Rc2

B

D0
θ

αB

d

θDi

Figure B.4: Disc neck length calculation.
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B.2 – Stiffness Calculation

Hence, the point F is obtained,

xF =
− tanαExE − xC2

tanαE
+ yC2 − yE

− tanαE − 1
tanαE

yF =
xC2 −

yE
TanαE

− tanαEyC2 − xE

− tanαE − 1
tanαE

To determine the location of non-contact line (Fig. B.3), knowing the points A and C2
and the values of R2, R3, αG and αA, the points G, K and C3 are found (Fig. B.3). Point
G is simply found as,

xG = xC2 −R2 sin(αG)

yG = yC2 −R2 cos(αG)

The system of equations below should be solved to find the point C3,

(y− yG) = tan(αG)× (x+
R3

sin(αG)
− xG)

(y− yA) = tan(αA)× (x+
R3

sin(αA)
− xA)

The location of point K is found knowing the location of point C3,

xK = xC3 −R3 sin(αG)

yK = yC3 −R3 cos(αG)

The rest of points are calculated similarly. Moreover, to obtain the average tensile
stress on every notch in the disc the length of neck on every notch should be find. As
seen in Fig. B.4 the length d is demanded. This length is a part of curve determined as
below,

d = l −RC

l = 2πR
θ −θDi

360

θ = arctan
(yC − yD0

xC

)
R =

√
x2

C +(yC − yD0)
2

B.2 Stiffness Calculation
The fir-tree attachment is simplified as shown in Fig. B.5. As seen, the attachment

can be simplified with a system of springs.
Now the bending stiffness of every lob of the fir-tree should be calculated. First,

considering a single lob of the fir-tree illustrated in Fig. B.6 it is shown that the base of
the lob has the height of H and its longitude is L.
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B – Parametric Model Development Details

Figure B.5: Simplified fir-tree attachment.

Figure B.6: Single lob of a fir-tree under uniform contact load.
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B.2 – Stiffness Calculation

Assuming the same contact load on every lob,

p =
FCL

3

Figure B.7: Free body diagram of a single lob.

In order to calculate the bending deflection of the lob according to Euler-Bernoulli
beam theory a free body diagram of the lob is illustrated in Fig. B.7. Hence,
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h = H
(

1− x
L

)
F =

p(L− x)
cos(α)

Fx = p
h
2
= p

H
2
(1− x

L
)

Fy = p(L− x)

M = Fy
(L− x)

2
−Fx

h
4

Ix =
1

12
bH3

(
1− x

L

)3

y′′ =
M
EIx

Considering fully constrained boundary condition for the base of the lob we have y′= 0
and y = 0 at x = 0. Solving above equations together results the deflection of the lob in
terms of P,H,E,b and x which is the longitudinal location of interested point. Finally, the
equivalent bending stiffness would be,

K =
PL
y

=− 2bEH3

3(H2 −4L2)((L− x) log(1− x
L)+ x)

In addition to the lob the body of the attachment (the rectangular shape in Fig. B.8)
is also simulated with a spring. Every section of the attachment body is divided into two
parts separated by mid-line as illustrated in Fig. B.8.

The tensile stiffness of the body is obtained as,

KBi =
EBAi

hi

Subsequently, the system of springs illustrated in Fig. B.9 should be solved in order
to predict the load sharing on contacts. Hence, to obtain the lateral displacement of
every point in Fig. B.9 and subsequently obtaining the load sharing over every lob of the
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B.2 – Stiffness Calculation

Figure B.8: Free body diagram of a single lob in Fig. B.5.

fir-tree, the matrix equation below should be solved,⎧⎪⎪⎪⎨⎪⎪⎪⎩
KB1 −KB1 0 0 0 0 0 0
−KB1 KB1+KT 1+KB2 −KB2 0 −KT 1 0 0 0

0 −KB2 KB2+KT 2+KB3 −KB3 0 −KT 2 0 0
0 0 −KB3 KB3+KT 3 0 0 −KT 3 0
0 −KT 1 0 0 KT 1+KD1 −KD1 0 0
0 0 −KT 2 0 −KD1 KD1+KT 2+KD2 −KD2 0
0 0 0 −KT 3 0 −KD2 KD2+KT 3+KD3 −KD3
0 0 0 0 0 0 KD3 −KD3

⎫⎪⎪⎪⎬⎪⎪⎪⎭

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δb0
δb1
δb2
δb3
δd1
δd2
δd3
δd0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FC
0
0
0
0
0
0

FC

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Figure B.9: Fir-tree equivalent system of springs.
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Appendix C

APDL and MATLAB Flow Charts for
Dovetail parametric model

In this appendix the Flow charts developed with APDL and MATLAB to construct
and analysis the FE 2D dovetail parametric model is given.

C.1 MATLAB Function - Geometry development
Figure C.1 illustrates the flow chart of construction of 2d geometry. The output would

be an index determining if the input vector define a geometric feasible shape or not.

C.2 MATLAB Function - Decision Maker
Figure C.2 illustrates the flow chart of the main core of the decision making.

C.3 APDL Flow Chart
Figure C.3 illustrates the flow chart of APDL model preparation, meshing and anal-

ysis.
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Input Vector

Geometry Calculations

Geometric 
Feasibility 
Assessment

Yes

NO

APDL Input Data 
Preparation

APDLINPUT file

Output Index

Index = Non-feasible

Index = Feasible

Figure C.1: Geometry Developer Flow Chart.
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C.3 – APDL Flow Chart

Input Vector

Input Vector Translation

Exists in
Geometry 
Data Pool?

Geometry Developer Call

Output 
Index 

Feasible?

APDL Batch Call Solvable?

APDL results:
• MPS 
• VMS 
• Contact Press. (peak/mean)
• SWT Parameter

Constraint 
Satisfied?

Objective Inserted Output Vector

Geometry Data Pool

Non-feasible

NO

Yes

NO

Yes

Yes

NO

NO

Yes

Figure C.2: Decision Maker Flow Chart.
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C – APDL and MATLAB Flow Charts for Dovetail parametric model

APDLINPUT 
file

Translation of the inputs and loading calculations

Geometry Construction and Area sectioning according 
to the corresponding axial thickness

Element Selection and Material Properties Definition 
According to the Corresponding Area Section.

Sizing Lines and Area Mesh Density Determination and 
Mesh Generation

Boundary Condition, Loading and Temperature 
Insertion then SOLUTION run

Converged?

Providing the result file:
• VMS
• MPS
• Contact Pressure (Mean/Peak)
• SWT Parameter

Non-Solvable Geometry

Finish

YesNO

Figure C.3: APDL Batch FE Analysis Flow Chart.
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Appendix D

Optimization by Genetic Algorithm

In general, optimization is a systematic search through input values within an allow-
able set (searching domain) to find the minimum or maximum of a response function.
Three main conventional search methods are [36],

1. Calculus based

2. Enumerative

3. Random search

Calculus based is divided into indirect and direct types. The indirect method utilizes the
gradient of the objective function in order to find the local extrema. In this method the
search seeks the points in which the slips are zero in all directions. The direct type as in
the "hill climbing" method the algorithm climbs the function in the steepest permissible
direction to find the local optimum. The enumerative methods is the most likely kind
similar to human way of searching just like finding an extrema in a short list. Its idea
is to find the best objective value by searching all possible values one by one. In the
random search which is divided into two classes of "Las Vegas algorithm" and "Monte
Carlo Algorithm", the algorithm tries to find the optimum through randomly selected
points in the searching domain. In a long run this method has no advantage over the
enumerative one. The problem raises with all the conventional methods of optimization
is that they all rely on a continuous ideal constrained and derivable objective functions
but the real world of optimization problems are fraught with non-feasibility, discontinuity
and multi dimensionality.

D.1 Genetic Algorithm
Years after the first introduction of a primitive “learning machine” by English com-

puter scientist, mathematician, logician, cryptanalyst, philosopher, and theoretical biolo-
gist Alan Turing, various types of genius algorithms has been developed to solve different

109



D – Optimization by Genetic Algorithm

problems. John Holland firstly developed the genetic algorithm which was an important
discovery in the field of artificial intelligence science. The genetic algorithm is a method
for solving optimization problems that is inspired by Charles Darwin’s theory of nat-
ural selection, the process that provides biological evolution [64]. In this method the
algorithm deals with the code transform of the parameters not the parameters directly.
It means that the parameters are coded into some genes forming a chromosome. Also,
the GA apply random selection a population of points hence is categorized as a random-
ized algorithm. This method repeatedly modifies a population of individual solutions.
At each step, the genetic algorithm selects individuals at random from the current pop-
ulation to be parents and uses them produce the children for the next generation. Over
successive generations, the population “evolves” toward an optimal solution. Genetic
algorithm uses three main types of rules at each step to create the next generation from
the current population:

• Selection rules select the individuals, called parents that contribute to the popula-
tion at the next generation.

• Crossover combine two parents to form children for the next generation.

• Mutation apply random changes to individual parents to form children.

D.1.1 Selection
In this phase of the process, the individuals are selected in the population to be mated

for generation of offspring for next generation. The main idea is that the fittest indi-
viduals are hoped to provide offspring with higher fitness. Hence, the probability for
selection of the fittest individuals as parents are higher. There are some different meth-
ods for selection of parents,

• Roulette Wheel

• Stochastic Universal Sampling

• Sigma Scaling

• Elitism

• Boltzmann selection

• Rank selection

• Tournament selection

• Steady state selection

Here, a brief description of each method is explained.
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D.1 – Genetic Algorithm

Roulette Wheel

The selection of individual is based on the probability of the individual fitness value
divided by the average fitness of the population. In this method every individual is as-
signed a slice of a circular roulette wheel proportional to its fitness value. To obtain
a population of N individual the wheel is rotated N times. When the wheel stops the
individual under the wheel pointer is selected as a parent for the next generation.

Stochastic Universal Sampling

In the method of roulette wheel there is a chance that the all offspring are generated
from the worst individual by rotating the wheel. The stochastic universal sampling in-
troduced by James Baker (1987) [8], rectified such problem by proposing a modification
in that instead of rotating the wheel N times rotate once and select through N number of
pointers which are equally spaced.

Sigma Scaling

In the two methods of roulette wheel and stochastic universal sampling the prema-
ture convergence may happen. Because when the generation converge to some fitter
individuals the individuals are very similar and the variance is very low. This makes the
halt of the evolution. In the sigma scaling introduced by Forrest 1985, the individual’s
expected fitness value is a function of its fitness, population mean and the standard devia-
tion. Therefore, in the beginning of an optimization when the standard deviation is high,
the fitness of the fitter individuals are also high comparing to the mean fitness hence the
function provides a lower probability for the fitter individuals preventing the premature
convergence. On the other hand, when run proceeds, the population is more converged
and the standard deviation is lower but the difference of the fitter individual to the mean
is also low, hence, the function generates a fitness value in a way that allows evolution to
continue.

Elitism

In this method which was introduced by Kenneth De Jong (1975) [47], during the
transfer to next generation a number of fittest individuals are retained in hope that the
next generation would provide fitter offspring (Fig. D.1).

Boltzmann selection

The previous method provided a constant balancing of the fitness value allocation but
in Boltzmann selection a continuous varying temperature controls the rate of balancing
of the fitness value allocation [59]. The effect is such that in the initial of the run every
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Genetic Algorithm – Cross Over

Figure D.1: The schematic of elitism in genetic algorithm.

individual has some acceptable probability of reproduction but when run proceeds the
fitter individuals are more focused while appropriate degree of diversity is maintained.

Rank selection

In this method the individuals are allocated the selection probability according to
their ranking of their fitness rather than their absolute fitness value. This selection type
prevents high number of offspring from small group of highly fit individuals yet main-
tains the selection priority over more converged run.

Tournament selection

In this method two individuals are selected at a time from the population in a random
selection then one is selected randomly to be parent for next generation.
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D.1 – Genetic Algorithm

Steady state selection

Opposite the other selection methods in which all or at least a major part of the
population is renewed in every generation, in this method, a small fraction of population
is replaced by new individuals in each generation.
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gene
chromosome

In the cross-over process every chromosome is divided into two or more parts that
combined together form another chromosome. The new chromosomes are offspring
which compose a new generation.

Figure D.2: The schematic of Crossover in genetic algorithm.

D.1.2 Crossover
The crossover is the most identical feature of the genetic algorithm. This is a process

of developing offspring from parents. As exists in the nature the genetic components
of a pair of parents mix to generate offspring. In a single crossover (D.2), a position is
chosen in the input vector (chromosome) of parents and the input vectors are divided into
parts in that selected position then the parts are swapped to form two new input vectors
(offspring). There are a number of types of crossover such as one point crossover, N-
Point crossover, segmented crossover, Uniform crossover and shuffle crossover.

D.1.3 Mutation
The last operation in the genetic algorithm applied to the new population in an itera-

tion is the mutation which maintain the diversity of the samples and protect the algorithm
in stocking in a local optima. It is a random deformation of the smallest element of an
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individual chromosome. The resultant solution may be different entirely from the orig-
inal one (Fig. D.3). In this phase of the algorithm every gen has assigned a predefined
probability to be changed with a new gen.
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The mutation let the optimizer move the location of interest. Hence, helps to get rid
of local optimum and find the global optimum.

80% of the population is created by mutation

Figure D.3: The schematic of Mutation in genetic algorithm.

D.2 The Traveling Salesman Problem (TSP)
TSP is the most famous and practical problem to be used as a benchmark to optimiza-

tion algorithms such as genetic algorithms, simulated annealing, Tabu search, ant colony
optimization, river formation dynamics and the cross entropy method. Moreover, one
may find an analogy between this problem and the case in the current study in the fact
that the high number of trails for brute-force solution is not affordable for a computer
to solve. The travelling salesman problem (TSP) asks the following question: Given a
list of cities and the geographical location of cities, what would be the shortest possible
distance that visits each city just once and returns to the origin city?

Although, the crossover method used for this problem due to permutation is rather
different from the current case under investigation but the principals of the algorithm is
the same. Hence, the evaluation of this problem can be a validation for the algorithm.

D.2.1 TSP evaluation results:
For evaluation the location of a number of cities are given to both genetic algorithm

and brutal-force method. In the direct search (brutal-force) method all possible solutions
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D.2 – The Traveling Salesman Problem (TSP)

Figure D.4: The Optimum path for 8 cities.

Figure D.5: The Optimum path for 25 cities.

were found one be one hence the optimum is the definite optimum of the problem. As
the first trail, eight cities were given to the algorithm by defining a vector of two for each
city representing its location in x-y Cartesian coordinate. The time to perform the Brutal-
force solution was 10.89 seconds and the optimum distance distance found was 18.8088,
while the GA code found exactly the same value just in 0.121544 seconds. Figure D.4
shows the graphical illustration of the solution found for eight cities
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Figure D.6: The Convergence to find Optimum path for 25 cities.

For 9 cities the direct solution took 280.23 seconds to find the optimum distance value
of 19.2521, comparing to 0.145042 seconds for GA to find the same optimum value. If
one increase the number of cities the time for direct solution would roughly be calculated
as,

Computational Time =
(number of cities)!

9!
×280.23 (seconds) (D.1)

For example, for 25 cities it will take 11978357557436734464000 seconds for direct so-
lution, while the GA found the optimum solution just in 1.003382 seconds. The graphical
illustration of the cities is in fig. D.5 and the convergence of the solution is illustrated in
Figure D.6.

D.3 Punch Test Problem
Stepping toward the problem in the current study, a punch test has been taken under

investigation for optimization. A puncher comprises of a flat surface in the contact area
in addition to curved edges with fixed radius.

The optimization problem is to find the best R to have the least peak stress provided
the lateral width of the puncher is maintained with the same value. This is a simulation
of the contact for the blade root as the main goal is to avoid high peak stress while
maintaining the same contact span in the blade root. So, in this problem there is just one
variable parameter. In this case, the total lateral width of the puncher (L) is constant and
equal to 3 mm, a=L-R, the total load is P = 721 [N/mm] and R is examined limited to
the bound of [0.2,1.0] mm.
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D.3 – Punch Test Problem

Figure D.7: Punch test normal pressure spectrum for different edge radius.

The direct brutal-force solution results with the increment of 0.1 mm are illustrated
in fig. D.7. The contour of the normal pressure on the contact is the left graph, while the
variation of the peak stress versus R is found in the right graph.

This diagram shows that the minimum (optimum) peak normal stress occur if we
have R = 0.8. In order to optimize this problem with the help of GA, an encoding of
the input R should be performed. To do this, a series of chromosome should be defined
which are all unique and also their genes represents theirs characteristics i.e. by changing
the genes, another number (R) should be developed which stands in the predefined range.
A binary encoding has been used to provide the input vector of the optimization. The GA
algorithm could find the optimum in R=0.7763 (mm) less than 0.2 seconds. The results
were perfectly conform to the brute-force method.
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Appendix E

Surrogate Models and Sampling
Methods

E.1 Surrogate Models
Surrogates have been interesting models to many scientists in various disciplines be-

cause of their capability to predict the black box functions in addition to their low calcu-
lative costs. There are three types of applications for surrogates. The first class which is
the major application of surrogates is to model the target function and predict the outputs.
The second type is to predict the objective functions for which no derivatives are avail-
able in an optimization process. This type is generally called derivative free optimization
(DFO) [81]. The third type is to analyze the feasibility of the design. The surrogate
models are developed by two major approaches; the models providing unbiased predic-
tions at the sampled data are known as interpolation models. Some examples for this
category are Radial Basis Function (RBF) and Kriging function. The models generated
by minimizing the error of prediction are referred to as regression models such as linear
regression and support vector regression models.

E.1.1 Linear regression
In a linear regression the prediction function is proposed as below [87],

f (X) = β0 +
p

∑
i=1

xpβp (E.1)

where β is the vector of model parameters and is obtained by minimizing the sum of
squared error between prediction and the target function output of the samples (the Eu-
clidean norm),

min∥Xβ −y∥2
2 (E.2)
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Where, X is the matrix of vectors of inputs x plus a column of unit vector (to handle β0).
An analytical form of solution for the foregoing equation is,

β =
XT y
XT X

(E.3)

In case of having higher number of variable parameters for the target function respect to
the number of sample points, the denominator term of the foregoing equation is singular.
Such problem occurs for high dimensional problems. There are two method to address
this problem; screening and regularization. Screening or subset selection methods filter
out some certain variable parameters which have the least impact on the output. The
regularization method adds a penalty term to the error measure of the regression which
leads to continuous reduction of the model parameters.

E.1.2 Support vector regression
The Support Vector Regression (SVR) surrogates take the form of weighted sum of

basis functions in addition to a constant term [26]. A general form of SVR surrogate is
given as,

f (X) = µ +
n

∑
i=1

ω
i
ψ(X,X i) (E.4)

Assuming ψ(.) = X, the surrogate can be rewritten as,

f (X) = µ +ω
T X (E.5)

Although the form of the surrogate is similar to that of RBF and Kriging but the unknown
parameters are obtain in a different way. The unknown parameters µ and ω in the model
are obtained by minimizing a mathematical statement given by,

1
2
∥ω∥2 +C

n

∑
i=1

ζi +ζ
⋆
i (E.6)

Subject to,

yi −ωxi −µ ≤ ε +ζi

ωxi − yi +µ ≤ ε +ζ
⋆
i

ζi,ζ
⋆
i ≥ 0

Where, C > 0 is the penalized coefficient to tailor the trade off between function flatness
and the fitness. This coefficient provides a measure by which the resultant function can
tolerate ±ε deviation from the output at sample points while keeping the shape of the
function flat. The slack variables ζi,ζ

⋆
i ensure handling non-feasibility of the problem.

Although, the SVR prediction is fast and accurate, the time required to find the unknown
parameters is relatively high.
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E.1.3 Radial basis functions
The Radial Basis Functions was first developed by [39]. The general form of Radial

basis functions (RBF) is

f (x) =
n

∑
i=1

λiφ(∥x− xi∥2) (E.7)

Where, λ is the vector of unknown parameters which can be obtained simply by replac-
ing the left term with the vector of sample point outputs, φ is the basis function for which
there are a verity of options for selection. Bjoerkman and Holmström [17] have found
cubic basis function, φ(r) = r3, with a linear additive term, a successful one,

f (x) =
n

∑
i=1

λiφ(∥x− xi∥2)+aT x+b

E.1.4 Kriging
This function was firstly proposed by Krige [53] for the field of geostatistics but

gained its popularity after being used for design and analysis in computer experiments
by Sacks et al. [84]. As a successful example of Kriging application, Rahimidehgolan et
al. [77] applied this model in a combination of experimental, numerical simulation and
optimization to determine the constants of a model to describe the plastic deformation
and damage behavior of ductile material (following by a previous study done using GA
by Rahimidehgolan et al. [76]). As they also examined the Polynomial Regression
method for their application, they found that the Kriging method provides more accurate
results while fewer initial samples are needed for this model. One may find a detailed
explanation of Kriging model in [46]. Statistic is the main approach of the Kriging
function for interpolating the response over some sample point which are also known as
training sample points.

Assuming to have n samples in a searching space of a response function and for the
point i, the input vector is Xi. Since the objective function requires k number of input
parameters, the input vector is defined as Xi=(xi

1, ...,x
i
k) and the function output is a

scalar, y(i) = y(xi). A simple form of interpolation over the sample points is to apply a
linear regression as,

y(Xi) = XiT
β + ε

i (E.8)

where, β is the vector of regression coefficients and ε is the error of approximation which
has a zero mean and also the variance of σ2. In stochastically techniques, it is assumed
that the error is a function of euclidean distance of training samples to the point we are
interested in. Therefore, the error terms are function of X so ε(i) = ε(X (i)). By applying
weighting coefficients to the distance term the correlation between errors is determined
as

Corr[ε(Xi),ε(X j)] = exp(−
k

∑
h=1

θh|xi
h − x j

h|
ph) (E.9)
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Coefficient θh reflects the importance for the variable parameter h. In fact higher θ for
an input parameter means that this parameter variation provides higher changes to the
output value of the function y(X). Exponent ph which can take value 1 or 2, determines
the smoothness of the response function in dimension h . The value of 2 is considered for
the exponent pk is 2 for all distance terms. As the correlation modeling of the error is so
convincing, there is a possibility to unburden the load of prediction for regression terms
and delegate it to the error terms. Therefore the the response function is more simplified
by replacing the regression terms with a constant β0,

y(X) = β0 + ε(X) (E.10)

The variance of y(X) is,

σ
2(β0,θ,c) =

(1
n
(ys −β01)T R(−1)(yS −β01)

)
(E.11)

where, 1 is the unit n-vector and R is the Correlation Matrix

R =

⎡⎢⎢⎢⎣
Corr(ε(1),ε(1)) Corr(ε(1),ε(2)) ... Corr(ε(1),ε(n))
Corr(ε(2),ε(1)) Corr(ε(2),ε(2)) Corr(ε(2),ε(n))

...
... . . . ...

Corr(ε(n),ε(1)) Corr(ε(n),ε(2)) ... Corr(ε(n),ε(n))

⎤⎥⎥⎥⎦ (E.12)

for which the terms are defined by Eq. E.9. To obtain the constant term β0, the variance
in Eq. E.11 should be minimized. Hence,

∂σ2

∂β0
= 0

∂ ((ys −β01)T R(−1)(yS −β01))
∂β0

= 0
(E.13)

Therefore, we have,

β0 =
1T R−1yS
1T R−11

(E.14)

The parameters θh of the correlation should be selected in a way that the likelihood of the
interpolating function is maximized. From statistics, it is known that the joint probability
density p of a normal distribution N(µ,σ2) for a set of n correlated variables y having a
covariance matrix cov is,

p(y | µ,σ2) =
1√

(2π)n ×det(cov)
exp(−1

2
(y−µ)cov−1(y−µ)T ) (E.15)
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Therefor, for the function in E.10 assuming a normal distribution for the error function
ε(X), consequently, the likelihood function for y is

L(β0,σ
2,θ,P) =

1√
2πn(σ2)n | R |

exp{−1
2
(ys −β01)T R−1(yS −β01)

σ2 } (E.16)

The parameters θh are found after maximizing the likelihood function E.16 . To do so, a
GA algorithm was used in the current study. Assuming r is the correlations between the
error term at the interested point X′ and training samples Xi for i = 1, ...,n,

r =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Corr(X (1),X ′)

Corr(X (2),X ′)
...

Corr(X (n),X ′)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (E.17)

the best linear unbiased predictor of y(X′) is [84],

y(X′) = β0 + rT (X)R−1(yS −β01) (E.18)

There are different correlation models to be used for kriging development known as
Exponential, Squared Exponential, Linear, Spherical and Matern [21]. The Kriging de-
scribed above is called ordinary Kriging (OK) [52]. The universal Kriging (UK) replaces
β0 in equation (E.18) by f (X)T β , where f (X) is a P-dimensional vector of known func-
tions of X and β . Most Kriging models uses the ordinary type as for the universal type
it is required to find extra (P-1) unknown parameters. For the current study an ordinary
Kriging with Squared Exponential correlation model was used.

E.2 Sampling Methods
As the surrogate model is fitted to the samples, the accuracy of the estimation is

highly dependent to the sample placements in the problem landscape unfolding the phe-
nomena design of experiments (DOEs). In other words, building a surrogate model re-
quires generation of a set of initial sample points. In order to have a better understanding
of the system by the surrogate model, the initial population should cover whole parame-
ter space at a certain discrete resolution. There are many ways to sample the parameter
domain. Two most popular methods are Monte Carlo Simulation and Latin Hypercube
Sampling (LHS).

E.2.1 Monte Carlo Simulation
The Monte Carlo sampling was the first formal method of the modern DoE as this

method tries to fill the domain uniformly by randomly placing the samples in the do-
main [35]. In fact, Monte Carlo simulation (MCS) or pseudo-random sampling firstly
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proposed by Metropolis and Ulam [62] is a traditional method for sampling that ran-
domly examines the cumulative distributions to obtain a set of samples hoping to result
in space-filling of the domain. Considering a surrogate model having N variable param-
eters, the MCS generate N×L number of samples in a random selection from [0,1] and
maps to the cumulative distribution functions for every N variable. The MCS was later
improved by the method of Stratified Monte Carlo Sampling (SMCS) to provide more
uniform distribution by dividing the domain into non-random strata then applying the
MCS over every territory.

E.2.2 Latin Hypercube Sampling
Latin Hypercube Sampling (LHS) was firstly introduced by McKay et al [60]. The

LHS method benefit from the advantage of stratifying each univariate mean simulta-
neously which causes uniform sampling of the univariate distribution. Moreover, the
sampling is done by LHS on a basis of random selection which provides unbiased series
of samples. Considering N variable parameters for the surrogate model, LHS stratify the
cumulative distribution function of every parameter variable to L levels which leads to
LN hypercubes. Then select a number in every hypercube by uniform random process.
Doing this, the drawback of non-uniformity of random distribution is rectified, while, the
unbiased nature of the selection is maintained.

Orthogonal Sampling is a type of LHS which induce even distribution of samples
over the entire searching domain. The maximinLHS as a post process after LHS run tries
to maximize the distance between samples in the searching domain [45]. In this method
an initial point is selected randomly in the design parameters domain then the next point
is selected from the available locations (which are already discretized by stratifying pro-
cess of LHS) in a way that the new point has the most minimum distance to the already
selected points. This process leads to a multi-dimensional uniform distribution of sam-
ples over the parameters domain. One may find other types of LHS in the literature, such
as orthogonal-array-based LHS designs [55], orthogonal-maximinLHS designs [48] and
orthogonal and nearly orthogonal designs [16].
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Appendix F

Multi-district non-continuous domain

In real applications of optimization, especially in mechanical problems, the function
we are dealing with is not always a continuous function and also the function is not a
mathematical function. In fact, usually the response of mechanical analysis is a black box
function in which there are many numerical calculations combined to reach the solution.
In these cases, the problem is not only the high computational time needed to reach the
optimum but also due to the non-feasibility of some large parts of domain, the Genetic
Algorithm may not be able to reach the global optimum.

In this section two ideas were utilized in order to cope this problem. Firstly, the
different feasible districts of a search domain is detected. Then, using the information of
districts, the mutation operation in the GA is replaced by a random pattern to force the
algorithm search some districts other than the one in which the optimizer is trapped in.
Second, the non-feasibility was rectified introducing a penalty function to the black box
function in order to make it a continuous function through its search domain.

F.1 Finding Districts
In order to find different districts in a domain a Latin Hypercube Sampling was used

to distribute a number of samples on the domain, then the samples feasibility were ex-
amined. It is worth noting that the feasibility check of a set of parameters in mechani-
cal problems is usually a fast calculation. Then, the Euclidean distance among sample
points are calculated. If the distance between two sample points are small enough they
are tagged the same district number. By performing this process the input points in the
working domain which are close together are tagged with the same district number means
that they are in the same district. Doing this, different districts in a searching domain is
determined.

Then, the standard mutation procedure in the GA is replaced with a selection method
based on a roulette wheel method in a way that the smallest district has the highest
probability for being selected. Such procedure provides a change for the optimizer to
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F – Multi-district non-continuous domain

periodically check the small outland districts to check if an optimum may be found in
them.

For evaluating the performance of this method an artificial black box function having
two distinct districts was provided by Rastrigins function (which is a bench mark to
examine the optimization efficiency). The feasible domains lay in the range of [1-5] and
[7-9] in a two dimensional of total [0-10] working domain (Fig. F.1). As seen, there are
two districts in which the feasibility exists and in between is the non-feasible domain.
Moreover, the global optimum is set in the smaller district (at point [8,8]).

(a) (b)

Figure F.1: Manipulated Rastrigins Function as a benchmark a) 3D view b) Top View.

F.2 Rectifying non-continuity
In order to make the function continuous, the response function was replaced by a

penalty function for the non feasible space as below,

YPenalty = max(YSamples)× (1+LP(Yi,YSamples)), if, Xi ∈ {Non-feasible Space} (F.1)

Where, LP(Yi,YSamples) is the euclidean distance of input vector, Xi to the nearest sample
point. The resultant function is shown in fig. F.2.

The genetic algorithm code has been modified to take into account the arrangements
required for comparing the function with death and adaptive penalty. Also the new
method of mutation has been applied to the new GA code. In order to make the opti-
mization possible for the case in which the response function is not continuous (to which
adaptive penalty has not been applied) the non-feasible points are given a zero fitness
value to make the optimizer to filter out these points from the population. Such method
is called death penalty method.

The optimization was performed for 100 generations and the number of population
was 30. For adding more complexity to the case study, the dimension of the problem
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(a) (b)

Figure F.2: Adaptive Penalty on Rastrigins Function a) 3D view b) Top View.
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Figure F.3: Optimization Convergence by GA applying adaptive and death penalty on
Rastrigins function.

was set to 6. The comparison of the results for both methods are graphed in fig. F.3.
Moreover, in a high number of trails, GA could not find a feasible space, hence, failed
to converge. To have an estimation of GA convergence failure using death penalty and
standard mutation, 150 trails were performed. The results revealed that the rate of success
in the case of applying death penalty and standard mutation is 46% (70 out of 150) while
by applying adaptive penalty and district finder mutation, a hundred percent of trails
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were successful and converged to the optimum. More details about the proposed adaptive
penalty method for the case of blade and disc attachment are found in next section.

F.3 Corresponding Codes
In this section the code developed with MATLAB to assess two methods proposed to

address the non-feasibility in the searching domain has been prepared.

Test functions
Penalty added

function y=fitvalucomplex(x)
global X_Dist Y_Dist % the values for feasible districts
index=1;
for i=1:length(x)

if (x(i)<1||x(i)>5),index=0;end;
end;
if index==1,y=rastriginsfcn(x-2)+0.01;else y=inf;end
index=1;
for i=1:length(x)

if (x(i)<7||x(i)>9),index=0;end;
end;
if index==1,y=rastriginsfcn(x-8);end
if y==inf

Lp=inf;
for i=1:length(X_Dist)
L=0;
for j=1:length(x)

L=L+(x(j)-X_Dist(i,j))^2;
end
L=L^0.5;
if L<Lp, Lp=L;end
end
y=max(Y_Dist)+max(Y_Dist)*Lp^1;

end
end
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Original

function y=fitvalu(x)
index=1;
for i=1:length(x)

if (x(i)<1||x(i)>5),index=0;end;
end;
if index==1,y=rastriginsfcn(x-2)+0.01;else y=inf;end
index=1;
for i=1:length(x)

if (x(i)<7||x(i)>9),index=0;end;
end;
if index==1,y=rastriginsfcn(x-8);end

end

District Finder
function ProximityCheck(proximity,samplenumbers)

global OPTIONS
Parametersnumber=OPTIONS.numVar;
% lb=[10 ,20 ,5 ,5 ,10 ,4];
% ub=[90 ,100 ,40 ,30 ,60 ,60];
lb=ones(1,Parametersnumber)*0;
ub=ones(1,Parametersnumber)*10;
samples(samplenumbers,Parametersnumber,lb,ub);
global X_Original Y_Original district X_Dist Y_Dist
X_Dist=X_Original; % X=X(:,1:Parametersnumber);
Y_Dist=Y_Original;
a=zeros(length(Y_Dist),1);
X_Dist=[X_Dist,a];
counter=1;
for i=1:length(X_Dist)

if Y_Original(i) =inf
Y_Dist(counter)=Y_Original(i);
X_Dist(counter,1:Parametersnumber)=X_Original(i,:);
counter=counter+1;

end
end
Y_Dist=Y_Dist(1:counter-1);
X_Dist=X_Dist(1:(counter-1),:);
district=1;
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% proximity=0.04;
for i=1:(length(X_Dist(:,1))-1)

% display(i)
if Y_Dist(i) =inf

for j=(i+1):length(X_Dist(:,1))
if (Y_Dist(j) =inf)
index=1;

for k=1:Parametersnumber
if ((X_Dist(j,k)+proximity*(ub(k)-lb(k)))<X_Dist(i,k))||((X_Dist(j,k)-proximity*(ub(k)-

lb(k)))>X_Dist(i,k))
index=0;
end

end
if index==1

if X_Dist(i,Parametersnumber+1)==0
if X_Dist(j,Parametersnumber+1)>0

X_Dist(i,Parametersnumber+1)=X_Dist(j,Parametersnumber+1);
else

X_Dist(i,Parametersnumber+1)=district;
X_Dist(j,Parametersnumber+1)=district;
district=district+1

end
else
if X_Dist(j,Parametersnumber+1)>0

if X_Dist(j,Parametersnumber+1) =X_Dist(i,Parametersnumber+1)
for p=1:length(X_Dist(:,1))

if X_Dist(p,Parametersnumber+1)==max(X_Dist(j,Parametersnumber+1),X_Dist(i,Parametersnumber+1))
X_Dist(p,Parametersnumber+1)=min(X_Dist(j,Parametersnumber+1),X_Dist(i,Parametersnumber+1));

end
end

end;
else

X_Dist(j,Parametersnumber+1)=X_Dist(i,Parametersnumber+1);
end
end
end
end
end
if X_Dist(i,Parametersnumber+1)==0
X_Dist(i,Parametersnumber+1)=district;
district=district+1
end
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end
end
display(’District fist step done’);
% if X(length(X),Parametersnumber+1)==0
% X(length(X),Parametersnumber+1)=district;
% end
district =[];
for i =1:length(X_Dist(:,1))
index=0;
for j=1:length(district)
if X_Dist(i,Parametersnumber+1)==district(j),index=1;end
end
if index==0,district=[district,X_Dist(i,Parametersnumber+1)];end
end
district=[district(2:length(district));zeros(1,length(district)-1)];
for i=1:length(X_Dist(:,1))
for k=1:length(district(1,:))
if X_Dist(i,Parametersnumber+1)==district(1,k)
district(2,k)=district(2,k)+1;
end
end
end
X=[];
for i=1:length(X_Dist(:,1))
if X_Dist(i,Parametersnumber+1) =0,X=[X;X_Dist(i,:)];end
end
X_Dist=X;
% display(X)
display(strcat(’Number of districts: ’,num2str(length(district))))
% display(district)
district=[district;district(2,:)+mean(district(2,:))];
district=[district;1-(district(3,:)/sum(district(3,:)))];

end

Sampling with LHS
function samples(samplenumbers,Parametersnumber,lb,ub)

% global X Y
global X_Original Y_Original
X=lhsdesign(samplenumbers,Parametersnumber);% ,’criterion’,’maximin’,’iterations’,2);
display(’LHS finished’);
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for i=1:length(X)
for j=1:Parametersnumber
X(i,j)=(ub(j)-lb(j))*X(i,j)+lb(j);
end
end
Y=zeros(length(X),1);
for i=1:length(Y)
Y(i)=fitvalu(X(i,:)); % min(fitvalu(X(i,:)),1000);
end
X_Original=X;
Y_Original=Y;
end

Modified GA by District Random method
function [MinCost] = GADist(ProblemFunction, DisplayFlag)
global district X_Dist
% Genetic algorithm for optimizing a general function.
% INPUTS: ProblemFunction is the handle of the function that returns
% the handles of the initialization, cost, and feasibility functions.
% DisplayFlag says whether or not to display information during iterations and plot re-
sults.
if exist(’DisplayFlag’, ’var’)
DisplayFlag = false ; % true;
end
[OPTIONS, MinCost, AvgCost, InitFunction, CostFunction, FeasibleFunction, ... Popu-
lation] = InitDist(DisplayFlag, ProblemFunction);
pin=zeros(OPTIONS.popsize,2);
Xover_Type = 1; % crossover type: 1 = single point, 2 = two point, 3 = uniform
OPTIONS.pcross = 1; % crossover probability
OPTIONS.pmutate = 0.01; % initial mutation probability
Keep = 2; % elitism parameter: how many of the best individuals to keep from one gen-
eration to the next
% Begin the evolution loop
for GenIndex = 1 : OPTIONS.Maxgen
% Compute the inverse of the cost. Fitness increases with inverse cost.
InverseCost = [];
for i = 1 : OPTIONS.popsize
InverseCost = [InverseCost, 1 / Population(i).cost];
end
for k = Keep+1 : 2 : OPTIONS.popsize % begin selection/crossover loop
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% Select two parents to mate and create two children - roulette wheel selection
mate = [];
for selParents = 1 : 2
Random_Cost = rand * sum(InverseCost);
Select_Cost = InverseCost(1);
Select_index = 1;
while Select_Cost < Random_Cost
Select_index = Select_index + 1;
if Select_index > OPTIONS.popsize
disp(’error:Select_index > OPTIONS.popsize’);
break; %disp(InverseCost);Select_index,Select_Cost,
end
Select_Cost = Select_Cost + InverseCost(Select_index);
end
mate = [mate Select_index];
end
Parent(1, :) = Population(mate(1)).chrom;
Parent(2, :) = Population(mate(2)).chrom;
% Crossover
switch Xover_Type
case 1
% single point crossover
if OPTIONS.pcross > rand
% crossover the parents
Xover_Pt = ceil(rand * OPTIONS.numVar);
% x = genes in parent 1 that are not in parent 2 (after crossover point)
x = setdiff(Parent(1, Xover_Pt:OPTIONS.numVar), Parent(2, Xover_Pt:OPTIONS.numVar));
% y = genes in parent 2 that are not in parent 1 (after crossover point)
y = setdiff(Parent(2, Xover_Pt:OPTIONS.numVar), Parent(1, Xover_Pt:OPTIONS.numVar));
child(k-Keep, :) = [Parent(1, 1:OPTIONS.numVar-length(y)), y];
child(k-Keep+1, :) = [Parent(2, 1:OPTIONS.numVar-length(x)), x];
else
% clone the parents
child(k-Keep, :) = Parent(1, :);
child(k-Keep+1, :) = Parent(2, :);
end
case 2
% multipoint crossover
if OPTIONS.pcross > rand
Xover_Pt1 = ceil(rand * OPTIONS.numVar);
Xover_Pt2 = ceil(rand * OPTIONS.numVar);
if Xover_Pt1 > Xover_Pt2
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temp = Xover_Pt2;
Xover_Pt2 = Xover_Pt1;
Xover_Pt1 = temp;
end
child(k-Keep, :) = [Parent(1, 1:Xover_Pt1) Parent(2, Xover_Pt1+1:Xover_Pt2) Parent(1,
Xover_Pt2+1:OPTIONS.numVar)];
child(k-Keep+1, :) = [Parent(2, 1:Xover_Pt1) Parent(1, Xover_Pt1+1:Xover_Pt2) Par-
ent(2, Xover_Pt2+1:OPTIONS.numVar)];
else
child(k-Keep, :) = Parent(1, :);
child(k-Keep+1, :) = Parent(2, :);
end
case 3
% uniform crossover
for i = 1 : OPTIONS.numVar
if OPTIONS.pcross > rand
child(k-Keep, i) = Parent(1, i);
child(k-Keep+1, i) = Parent(2, i);
else
child(k-Keep, i) = Parent(2, i);
child(k-Keep+1, i) = Parent(1, i);
end
end
end
end % end selection/crossover loop
% Replace the non-elite population members with the new children
for k = Keep+1 : 2 : OPTIONS.popsize
Population(k).chrom = child(k-Keep, :);
Population(k+1).chrom = child(k-Keep+1, :);
end
% Mutation
distp=district(4,:);

dist p,andis

=sort(distp,’ascend’);
for individual = Keep + 1 : OPTIONS.popsize % Don’t allow the elites to be mutated
if OPTIONS.pmutate > rand
Randn = rand*sum(distp);
Selectp = distp(1);
Select_index = 1;
while Selectp < Randn
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Select_index = Select_index + 1;
if Select_index > OPTIONS.popsize,disp(’error:Select_index in mutation > districts’);
break;end
Selectp = Selectp + distp(Select_index);
end
kk=1;ll=2;
limitkk=floor(rand*length(X_Dist));
while kk<limitkk
if ll>length(X_Dist), ll=1;end
if X_Dist(ll,OPTIONS.numVar+1)==district(1,andis(Select_index)), kk=kk+1;end
ll=ll+1;
end
%district(1,andis(Select_index))
Population(individual).chrom=X_Dist(ll-1,1:OPTIONS.numVar);
end
end
% Make sure the population does not have duplicates.
Population = ClearDupsDist(Population,OPTIONS);
% Make sure each individual is legal.
Population = FeasibleFunction(OPTIONS, Population);
% Calculate cost
Population = CostFunction(OPTIONS, Population);
% Sort from best to worst
Population = PopSortDist(Population,pin);
% Compute the average cost of the valid individuals
[AverageCost, nLegal] = ComputeAveCostDist(Population);
% Display info to screen
MinCost = [MinCost Population(1).cost];
AvgCost = [AvgCost AverageCost];
if DisplayFlag
disp([’GA: The best and mean of Generation # ’, num2str(GenIndex), ’ are ’,... num2str(MinCost(end)),
’ and ’, num2str(AvgCost(end))]);
end
end
Conclude(DisplayFlag, OPTIONS, Population, nLegal, MinCost);
return;
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Appendix G

Fatigue Life Assessment

In gas or steam turbine engines the blades and disc are exposed to high temperature in
addition to high centrifugal forces. The high centrifugal forces provide high stress pro-
file over the components and high temperature deteriorates the material strength which
makes the situation even worse. In addition the high vibration of the engine during its
normal operation examines the endurance of the components. In fact, the service life of
the critical aerospace components are highly affected by different types of degradation
such as high cycle fatigue, low cycle fatigue, static yielding, corrosion, erosion, wear and
also creep. Among different components of the engines the blade, the disc and also the
attachments which holds them together are the most critical components which need es-
pecial attention for design as they suffer high thermal and mechanical loads during their
service life. These intense conditions are even more detrimental in case of especial heavy
operational conditions of the engines such as short take off of an aero-engine in special
occasions which cause over-speeding of the disc. The failure in handling the exhausting
conditions by the components lead to engine puncture due to a blade off or disc burst.
Therefore, the life assessment of the turbine components has a priority importance in
design to increase the reliability and safety of the engines. In means that by knowing the
service life of the components, the chance of unexpected failure of the engine is reduced
and the safety level increases. Although fatigue has been the cause of many failures in
different components of the industry yet the mechanism of fatigue has not been fully
understood. One may find different studies and valuable books ([85], [79]) devoted to
high cycle fatigue ([66], [89], [88], [90], [82]), low cycle fatigue ([29], [41], [86]) and
also the fracture mechanics applications in evaluating the crack propagations in different
industries in addition to fretting fatigue ([34], [106], [37], [107], [83], [57], [5], [6], [4],
[7], [11], [12], [13], [14], [15], [43], [27], [23], [25], [105], [28], [78], [102]). There are
lots of parameters affecting the fatigue behavior of components such as the loading con-
dition ([2], [61], [104], [91], [72]), residual stress ([70]), surface morphology ([51]), the
material properties ([5]), temperature ([54], [96]), etc. Among all, for the blade attach-
ments, the fretting fatigue is a prominent issue when service life exceeds 4000h ([107],
[73]).
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G.1 Fretting fatigue
Fretting can happen when two mating surfaces under contact are under high pressure

with a relative displacement (local slip) which may cause surface damage and crack nu-
cleation. Small vibratory movement of the contacting surfaces in the attachment during
normal operational conditions is the main cause of fretting [79]. The fretting fatigue may
introduce significant reduction of life to the components and the crack generated by the
fretting fatigue may propagate due to subsequent high cycle fatigue. Hence, to estimate
the fretting fatigue life, two phases are considered, which are the crack initiation and the
crack propagation. Although several models consider both phases to predict the total life,
it is common to consider only the crack initiation for the component attachment lifing
[57] especially in the case of blade attachment. There is not a general model for the
criteria and the selection of the most proper criteria depends on the component material,
geometry, type of contacts and loading conditions.

G.1.1 Critical Plane Approach
1. Kandil et al. [49] presented a shear and normal strain based model, based on the

critical plane approach, which postulates that cracks initiate and grow on certain
planes and that the normal strains to those planes assist in the fatigue crack growth
process. γmax is the max shear strain on the critical plane and εn is the normal
strain on the same plane and S is a constant, N is the cycles to initiation.

γmax+S× εn = f (N) (G.1)

2. Socie et al. [95] included mean tensile stress to this theory as

∆γ

2
+

∆εn

2
+

σno

E
= f (N) (G.2)

Where, ∆γ is the maximum shear strain amplitude,∆ε is the normal strain ampli-
tude and σno is the maximum shear strain amplitude.

3. Bannantine and Socie [9] modified the uniaxial parameter proposed by Smith, Wat-
son and Topper (SWT) to account for mean-stress effects for multiaxial loading.
Here the maximum principal strain amplitude is modified by σn,max which is the
maximum stress in the direction of maximum principal strain amplitude that occurs
over one cycle

σn,max(
∆ε1

2
) = f (N) (G.3)

This Equation has been used for prediction of crack initiation in fretting fatigue,
for aluminum, and titanium polycrystalline alloys.
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4. Fatemi and Socie [30] suggested a parameter combining the shear strain amplitude
and maximum normal stress on the critical plane. The life equation is

γt + k
σn,max

Sy
=

τ ′ f

G
(2N f )

b′ + γ
′
f (2N f )

c′ (G.4)

Where, γt is the shear strain amplitude, and σn,max is the maximum normal stress
on the critical plane.

G.1.2 Fretting fatigue specific parameters:
1. Slip amplitude δ . δ is the relative tangential displacement of contacting particles

during the cycle, which is similar to the strain amplitude in conventional fatigue.
The parameter was only used in some early studies [71].

2. Frictional energy dissipation parameter Q. The Parameter Q, which is also
called F1 or fretting wear parameter [23], is given as

Q = τδ = µσNδ (G.5)

3. SWT Parameter. Under some conditions, fretting fatigue can be considered as
fatigue with local stress concentrations. Smith et al. added a mean stress correction
to the relation proposed by Coffin and Manson and developed SWT relationship
as,

SWT = σ1(
∆ε

2
) =

σ ′
f
2

E
(2N f )

2b +σ
′
f ε

′
f (2N f )

b+c (G.6)

This parameter can be applied as a criteria for the crack initiation under fretting.

4. Ruiz’s parameter. Ruiz et al. [83] studied a dovetail joint fretting problem
in a typical gas turbine attachment. Three common material types were stud-
ied by them: a titanium alloy, Ti-IM1829; a nickel-based alloy, IHCO901; and
a chromium-rich steel alloy, FV535. Their study was both experimental investiga-
tion of crack observation and FE analysis of the stress over the contacting surfaces
in addition to the relative displacement. To provide an interpretation over the loca-
tion of the crack nucleation, they proposed the parameter K carrying the effects of
localized tensile and shear stresses and the relative displacement,

K = (σT )max(τδ )max (G.7)

Where, (σT )max, is the maximum tangential stress (tensile stress parallel to the
surface) and, (τδ )max is the maximum frictional work, which is the product of the
shear stress and slip amplitude, at the surface. Although this parameter could not
predict the initiation location, the tendency of cracks to nucleate under a tensile
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stress and remaining dormant under a compressive stress was considered in this
parameter. Ruiz et al, proposed a second model that combined the frictional work
parameter τδ and the effect of the tangential stress, σT in the form of,

κ = σT τδ (G.8)

This second parameter, κ , successfully predicted the nucleation location at the
edge of contact comparing to the experimental results. This parameter, which is
also called F2 or fretting fatigue (FF) parameter, empirically takes into account the
evidence that cracks are more likely to develop in regions of tension rather than
compression [23]. It can also be described as

FF = QσT = τδσT = µσNδσT (G.9)

Where Q is the fretting wear parameter.

Arakere and Swanson [5] studied Crystallographic initiation and crack growth along oc-
tahedral planes Single crystal nickel base super-alloy turbine blades. They performed
a three dimensional FE analysis over a single crystal turbine blade under centrifugal,
thermal and aerodynamic loadings. They provided the stress in the attachment as well
as the tip area of the blade as a function of primary and secondary crystal orientation.
They found that the maximum shear stress amplitude, ∆τmax, is the most effective fa-
tigue failure criterion. However, for the fretting fatigue inside the attachment area no
correlation could be found to ∆τmax. For the secondary orientation the damage param-
eter σmax∆ε/2 has better correlation with the fretting fatigue crack initiation. Several
findings were obtained by Szolwinski et al. [100]. Firstly, the effect of increased fric-
tion tends to accelerate the formation of a crack. Also, the effect of material properties
in addition to the friction were evaluated. Attention was turned to the field of multi-
axial fatigue, which offered models to predict life from cyclic stresses and strains. The
Smith-Watson-Topper model for cracks which formed under the influence of localized
shear and then turned quickly to grow further on a plane of principal stress seemed to
capture the fretting crack nucleation mechanism reported by several researchers. They
used an incremental Westergaard function approach to estimate the elastic cyclic stresses
and strains for applying the SWT fatigue criteria. The verification showed that the SWT
model predicted not only the observed crack origin but also crack orientation. From these
estimates, it is concluded that the formation of a fretting fatigue crack consumed most
of the total life in the tests considered. Lykins et al. [57] evaluated numerous fatigue
parameters in determination of the crack nucleation in a component subjected to plain
fatigue under constant amplitude loading. The evaluation was based on the parameter’s
ability to predict the number of cycles to initiation and location for crack nucleation.
They found no significant difference in the results obtained by the critical plane SWT
parameter comparing to that of SWT parameter. They resulted almost the same cycles
to crack initiation and nucleation location from both parameters. Moreover, by applying
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the F-S parameter, some difference was found between the plain fatigue and fretting fa-
tigue crack nucleation comparing to other strain and critical plane parameters. The F-S
parameter also predicted the location of crack initiation successfully. In addition, after
applying the K and FF parameters developed by Ruize, they found that the K parameter
is unable to predict the location of the crack initiation due to the fact that the maximum
tangential stress does not occur where the maximum frictional work happens. On the
other hand, although the FF parameter was ineffective to provide correlation with cycles
to crack nucleation it predicted the location of the crack in agree with the experimental
data.

G.1.3 Methods based on fracture mechanics
Similar to S-N curve, Naboulsi [68] obtained the crack analogy fatigue (CAF) pa-

rameter life curve to predict the fretting life. Later they introduced a geometry correction
to develop a modified crack analogy method (MCAM). Due to the analogy, the fretting
fatigue life can be approximated using the propagation life. The fretting fatigue crack
growth process can be divided into two stages, stage I is the crack initiation from the
surface and the stage II is the crack propagation. Alternatively, small crack propaga-
tion is considered as an approximation of the fretting fatigue life. Pre-cracks can be
located as an initial assumption at the position of peak stress to represent a defect on
the contact surface [69], and then the small crack propagation law is used to calculate
the propagation life. Findley [31] using the critical plane theory, for ductile metals, pro-
posed that the cracks first nucleate due to shear stress along slip bands in the crystal of
the material. It was experimentally observed that the slip bands coincide with the plane
of maximum shear strain amplitude. The initial nucleation stage is referred as “stage I”
by Forsyth [33]. The crack developed by the initial stage is later propagate alone the
plane of maximum principal stress. This process of propagation is known as stage II as
labeled by Forsyth [33]. Wei et al. [107] used Sinclair criterion for mesh convergence.
They applied local meshing method in the edges of the contacts for more reduction of
element size and obtaining more accurate results. For considering the plasticity of the
material, a multi-linear constitutive equation combining isotropic strengthen law is used
in calculation. Moreover, the coulomb friction model was used to simulate the friction
with friction factor of 0.3. They used pre-crack modeling with different angle of crack
initiation and propagation then calculating the stress intensity factor they fixed the crack
initiation angle according to the mode II. They applied a combination of plastic stress
and strain in a multiaxial fatigue critical plane theory to predict the crack nucleation life.
Then they used Paris formula to predict the crack propagation. Golden and Naboulsi [37]
used a computational hybrid technique (CHT) to obtain the necessary stress distributions
required in order to apply damage tolerance analysis of the blade and disc attachment in
terms of fretting fatigue. They divided the 3D problem into multiple 2D problems which
significantly decreased the computational burden while maintaining the accuracy of the
results. In order to predict the life a probabilistic damage tolerance framework were used
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in which initial crack size were assumed as a random variable.

G.1.4 Prediction of fretting Crack Location in a dovetail
The state of stress in the attachment of the blade and disc is of type multiaxial in

nature. Hence, the use of critical plane theories in understanding the fatigue behavior of
the contact region is advantageous. In the current study, two type of approaches of critical
plane theory and fretting fatigue specific parameter are evaluated in prediction of crack
nucleation of the fretting surfaces in a dovetail. The experimental result obtained by [54]
is used to make the comparison between the two methods. Firstly, in order to evaluate the
state of stress and the relative displacement of the contacting surfaces the dovetail and
the disc were modeled and analyzed using FE method. To obtain high accuracy, a high
mesh density were applied over and near the contacting surfaces. The SWT parameter in
the critical plane were used as the critical plane approach. For applying this method to
locate the crack initiation, the state of stress and strain must be determined in all nodal
points along the contact surfaces. Then the stress and strain values must be calculated in
different angles in order to find the maximum SWT parameter in addition to the critical
plane direction. Considering θ as the angle relative to the normal line of the contacting
surfaces (see Fig. G.1, the following formula were used to calculate the stress and strain
in an arbitrary angle of θ ,

σθ =
σx +σy

2
+

σx −σy

2
cos(2θ)+ τxy sin(2θ) (G.10)

εθ =
εx + εy

2
+

σx −σy

2
cos(2θ)+ γxy sin(2θ) (G.11)

y

x

-θ

+θ

Figure G.1: The angle of critical plane over contacting surfaces in a dovetail attachment.
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Figure G.2: SWT and Ruize Parameters normalized fretting results over a dovetail.

The SWT parameter in the critical plane and the Ruize parameter were calculated on
every node of the contacting surfaces. The graph of the results obtained by both methods
are plotted in Fig. G.2. As there are different values obtained for the two methods in
order to make the comparison all values are normalized to the maximum value obtained
for both methods. The nominal length (the length of the straight line of the contact
geometry) of the contact for the dovetail in the current study is 2mm. Both methods
predicted the location of the crack initiation near the leading edge of the contact surface
and both confirm with the experimental results but as the difference between the results
was small it is hard to judge on which method has a higher conformity.
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