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Estimation of Complexity of Sampled
Biomedical Continuous Time Signals
Using Approximate Entropy
Luca Mesin*

Mathematical Biology and Physiology, Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Turin, Italy

Non-linear analysis found many applications in biomedicine. Approximate entropy
(ApEn) is a popular index of complexity often applied to biomedical data, as it
provides quite stable indications when processing short and noisy epochs. However,
ApEn strongly depends on parameters, which were chosen in the literature in wide
ranges. This paper points out that ApEn depends on sampling rate of continuous
time signals, embedding dimension, tolerance (under which a match is identified),
epoch duration and low frequency trends. Moreover, contradicting results can be
obtained changing parameters. This was found both in simulations and in experimental
EEG. These limitations of ApEn suggest the introduction of an alternative index,
here called modified ApEn, which is based on the following principles: oversampling
is compensated, self-recurrences are ignored, a fixed percentage of recurrences is
selected and low frequency trends are removed. The modified index allows to get
more stable measurements of the complexity of the tested simulated data and EEG.
The final conclusions are that, in order to get a reliable estimation of complexity using
ApEn, parameters should be chosen within specific ranges, data must be sampled
close to the Nyquist limit and low frequency trends should be removed. Following these
indications, different studies could be more easily compared, interpreted and replicated.
Moreover, the modified ApEn can be an interesting alternative, which extends the range
of parameters for which stable indications can be achieved.

Keywords: complexity, approximate entropy, EEG, time series embedding, signal prediction

INTRODUCTION

Some biomedical data have non-linear properties and complex behavior, e.g., heart rate variability
(Lake and Moorman, 2011; Liu et al., 2011), electroencephalogram (EEG; Mesin and Costa, 2014;
Li et al., 2016), electromyogram (EMG; Mesin et al., 2016), pupillogram (Mesin et al., 2013; Onorati
et al., 2016), center of mass during quiet standing (Liang et al., 2017). The estimation of their level
of regularity can be useful in many applications (Seely and Christou, 2000; Gao et al., 2015). Signal
complexity is usually estimated assuming that the data were generated by a dynamical system
in stationary conditions (i.e., ruled by constant deterministic laws) which can possibly develop
irregular behavior due to its non-linearity (Kantz and Schreiber, 1997). However, biomedical
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data are often non-stationary. Thus, they are usually split
into short time intervals in which the physiological system
can be assumed in (quasi) stationary conditions. Using such
short epochs, the estimation of data regularity is not easy, as
the dynamics of the system cannot be explored completely.
Moreover, biomedical data are also noisy. For these reasons, the
approximate entropy (ApEn) was introduced (Pincus, 1991) as an
index which could provide a rough, but quite stable indication of
complexity even from short and noisy epochs.

Approximate entropy depends on parameters, which are
usually chosen with large ranges in the literature. The main
parameters to be selected are the threshold r under which a
recurrence is found (also called filtering level, Pincus et al., 1991,
or tolerance, Richman and Moorman, 2000), the length of the
runs of data m (or embedding dimension) and the duration
of the epoch T. A further important parameter when studying
continuous signals is the sampling frequency f s: usually, poor
care is given to it in the literature (it is only important that
Nyquist limit is satisfied), but it has great effect on ApEn
estimation, as discussed in the following. A few examples of
results discussed in the literature on EEG and corresponding
parameters are listed below.

• Lower complexity of scalp EEG were obtained in patients
with schizophrenia than in controls, using f s = 250, r
equal to one fourth of the standard deviation of the
signal (std), m = 10 and T = 20 s (Akar et al., 2016).
Using different techniques, both increased and decreased
complexity was documented on schizophrenic patients with
respect to controls (Fernández et al., 2013; probably these
contradicting results depend on the effect of factors like
medication, symptomatology and age).
• ApEn of EEG was found to be lower in Alzheimer patients

than in controls in the parietal region (Abásolo et al., 2005;
data sampled at 256 Hz after limiting the bandwidth to
40 Hz, r = 0.2std, m = 1, T = 5 s).
• ApEn of EEG from adolescents with attention-

deficit/hyperactivity disorder was significantly lower
than in controls over the right frontal region during a
cognitive task, but not at rest (Sohn et al., 2010; EEG
sampled at 250 Hz after limiting the bandwidth to 50 Hz,
r = 0.2std, m = 3, T = 20 s). ApEn also decreased in case
of lower degree of cognitive activity (Natarajan et al., 2004;
EEG sampled at 500 Hz after limiting the bandwidth to
50 Hz, r = 0.15 std, m = 2, T not specified, only the duration
of the dataset, i.e., 20 min, was indicated).
• ApEn estimated from EEG showed variations among

genders, suggesting differences in coding information
(Jausovec and Jausovec, 2010; EEG sampled at 1 kHz
after limiting the bandwidth to 70 Hz, but different low
frequency rhythms were then studied, so that data could be
sampled also at more than 100 times the bandwidth; r = 0.15
std, m = 2, T = 4 s).
• ApEn was found to decrease when estimated from EEG pre

and post the application of stressors, i.e., Stroop test and
sleep deprivation (Alonso et al., 2015; bandwidth limited
to 35 Hz and signal re-sampled at 100 Hz, m = 3, T not

indicated and r chosen in order to get the maximum value
of ApEn, as suggested by Lu et al., 2008).
• ApEn allowed to identify six different stages of

consciousness during sleep (Burioka et al., 2005; EEG
sampled at 200 Hz after limiting the bandwidth to
about 33 Hz, r = 0.2 std, m = 2, T = 10 s). An adaptive
approach was applied in (Maen and Tadanori, 2013),
where large ranges of parameters were explored and the
discrimination of wakefulness states among drowsiness
and fully awakening was optimal studying alpha waves of
EEG sampled at 200 Hz (thus, sampling at about 16 times
the bandwidth), with r equal to either 0.5 std or 0.95 std, m
equal to either 8 or 9, T of either 0.25 or 0.5 s. On the other
hand, ApEn of EEG recorded from subjects driving while
sleep deprived showed no significant changes preceding
driving errors (Papadelis et al., 2007; EEG sampled at
200 Hz, T = 1 s; m and r were not indicated for ApEn, but
for cross-ApEn they were 1 and 0.2 std, respectively, so that
these values were probably used also for estimating ApEn).
• ApEn of EEG was lower in patients in persistent vegetative

state, than in case of minimally conscious state, than in
controls (Wu et al., 2011; EEG sampled at 500 Hz after
limiting the bandwidth to 100 Hz, r = 0.2 std, m = 2, T = 8 s).
• Monotonic variation of ApEn of EEG was found in relation

with anesthetic induction (Koskinen et al., 2006; EEG
sampled at 200 Hz after limiting the bandwidth to 40 Hz,
r chosen in the range 0.05–0.5 std or fixed, m = 2, T
chosen in the range 5–15 s). On the other hand, ApEn did
not correlate with the depth of anesthesia (Jordan et al.,
2006; EEG sampled at 1 kHz, duration of epochs 10 s,
parameters for ApEn estimation not indicated). The ApEn
of EEG during various depths of sedation showed opposite
behaviors in (Ferenets et al., 2006), when different filters
or parameters were tested (EEG sampled at 400 Hz after
limiting the bandwidth to 19, 37, or 47 Hz, r chosen as
either 0.1 or 0.2 std, m = 2,. . .,6, T chosen in the range 5–
60 s): specifically, the value of ApEn was usually decreasing
with the depth of sedation, but it was reversed, especially
in the region of lighter sedation, if high frequencies were
cut off and the delta frequency band was fully incorporated;
moreover, in the case of short epochs, higher ApEn was
found during deeper sedation if the embedding dimension
was high.
• ApEn allowed to localize epileptic foci from EEG sampled

at 200 Hz, using r = 0.5 std, m = 2, T = 10 s (Zhen et al.,
2013). Using intracranial EEG at the focal locations, during
seizures ApEn was found to increase (Abásolo et al., 2007;
sampling rate 256 Hz after limiting the bandwidth to 40 Hz,
r = 0.25std, m = 1, T = 10 s), but also to drop (Srinivasan
et al., 2007; sampling rate 173.61 Hz after limiting the
bandwidth to 40 Hz, r chosen in the range 0.1–0.9 std, m
chosen in the range 1–3, T in the range 1–11.8 s).
• ApEn allowed to predict the onset of focal epileptic seizures

with a mean prediction time of about 25 min processing
EEG using r = 0.2 std, m = 2, T = 5 s (Zhen et al., 2014;
sampling frequency not specified; the method was tested
by the author with available data from both adults and
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children, without obtaining statistically different values of
ApEn during pre-ictal and inter-ictal epochs).
• Good classification performances were obtained in a BCI

application (Gupta et al., 2014) applying ApEn to EEG
sampled at 128 Hz, with m selected in the range 1 to 3 and r
in the range 0.1–0.6 std (T was not specified).

Even if considerable results were obtained in the literature
on the application of ApEn on EEG, the large range of
adopted parameters impedes the comparison of different works.
Moreover, the author found some problems in replicating these
successful results when using his own data. There is the suspect
that (even when it is not clearly stated) parameters have been
chosen adapting to the data in order to get specific outcomes,
e.g., a good differentiation of different groups. However, this
could lead to possible over-fitting of the available signals, which
could reflect into problems in replicating the results using other
data1. Moreover, by this method, discrimination is achieved,
but there is no guarantee that the group with larger ApEn is
also characterized by higher complexity. This could be source
of possible contradicting results in the literature (as the above-
mentioned references Abásolo et al., 2007; Srinivasan et al., 2007,
obtaining an increase and a decrease of ApEn during epileptic
seizures, respectively; moreover, Koskinen et al., 2006 supports
that ApEn of EEG is related to the level of sedation, whereas
Jordan et al., 2006 indicates that it is not). Furthermore, when
investigating a new problem, it is not simple to predict the effect
of changing a specific parameter (and the interaction with the
other parameters), so that the optimal selection could be based
on either a trial-and-error approach or an exhaustive search.
However, by selecting the parameters after many tests, there
is the risk that they are finally chosen to force the data to
show what expected or that only positive outcomes (significant
and in line with the literature) are shared with the scientific
community. Thus, there is the need of defining some criteria
for parameter selection in order to compare different studies,
increase their repeatability and help to progress in the study
of complexity by the use of ApEn. Consider also that the
mathematical meaning of ApEn as an index of complexity
could even fail when parameters are out of specific ranges.
Furthermore, notice that, in the literature, the significance of
the estimations of ApEn is usually not tested with surrogates
(Schreiber and Schmitz, 1996; Mesin, 2017), so that it is not
clear if the shown results reflect the assumed non-linearity of the
data.

In this paper, an interpretation of ApEn is provided and the
effect of changing parameters is explored. This investigation leads
to the proposal of some rules to choose properly the parameters
for the estimation of ApEn and to the introduction of a new
index, which is a modification of ApEn.

1Notice that, by making many tests, it is possible to obtain statistically significant
results even from random numbers. For example, using a level of significance of
5%, in the average there is 1 trial out of 20 which comes to be significant by chance.
Thus, by making many tests with different combinations of m, r, and T, significant
results could come out by chance, because of over-fitting of the data. This could
justify the difficulty in replicating some results or the contradicting outcomes of
some studies.

MATERIALS AND METHODS

Introduction
ApEn quantifies the complexity/unpredictability of fluctuations
in a time series. Intuitively, the presence of repetitive patterns of
fluctuation in a time series renders it more predictable (and hence
less complex) than another in which such patterns are absent.
Indeed, the future dynamics of the data could be forecasted based
on that of previous patterns similar to the considered one (Farmer
and Sidorowich, 1987).

ApEn expresses the logarithmic likelihood that the signal
repeats itself within the tolerance of r both for m and for m+1
points. In this way, it approximates the estimation of entropy,
which is the rate of information production (Eckmann and
Ruelle, 1985). Its definition requires the steps detailed below,
which can be interpreted within the framework of time series
embedding and prediction (Kantz and Schreiber, 1997). Notice
that the proposed interpretations hold for a sampled continuous
time signal. Thus, discrete datasets (with heterogeneous sampling
rate), which could be interpreted as Poincaré maps of continuous
processes (Kantz and Schreiber, 1997), are not considered here.
However, ApEn found many important biomedical applications
to such data, like in the fields of neuronal spiking activity (Yang
et al., 2002) and heart rate variability (Balasubramanian et al.,
2017, even if some sensitivity on parameters was also found in
Karmakar et al., 2017).

Definition and Interpretation of ApEn
The scalar time series is embedded into a phase space of vectors
(also called runs or templates) of delayed coordinates (or phases)

X(i) = [x(i) x(i− 1) ... x(i−m+ 1)] (1)

where x(i) is the ith sample of the investigated time series x(·)
and m is the embedding dimension (Kantz and Schreiber, 1997;
Mesin, 2017). The correlation integral indicates the probability
that the embedded vector X(i) is similar to other vectors within a
tolerance r

Cm
i (r) =

Nr
i

N −m+ 1
, i = 1, ...,N −m+ 1 (2)

where N is the number of samples of the data and Nr
i is

the number of vectors with distance from X(i) smaller than r.
As definition of distance, the L∞ norm was chosen (i.e., the
maximum distance between pairs of elements of the two vectors).
The vectors X(n), where n indicates the arbitrary sample running
on time, describe a trajectory in the phase space. Thus, the
definition of correlation integral Cm

i (r) requires to count the
number of recurrences Nr

i of the trajectory to points close to X(i)
and to divide by the number of possible pairs (thus, estimating
the percentage of neighboring points of X(i) or the probability
that the trajectory has recurrences close to it). The study of
recurrences (also called neighboring points or matches) is very
important in the non-linear analysis of time series and lead to
the definition of many indexes of complexity and non-linearity
(Webber and Zbilut, 1985; Kantz and Schreiber, 1997).
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Finally, ApEn is defined based on the correlation integral,
computed for two embedding dimensions

ApEn(m, r,N) = φm(r)− φm+1(r)

where

φm(r) =
1

N −m+ 1

N−m+1∑
i= 1

ln Cm
i (r) (3)

The number of recurrences is higher in the lower dimension.
Indeed, by increasing the dimension from m to m+1, one
element is added to the vectors. This means that recurrences
in dimension m+1 are also recurrences in dimension m, but it
could happen that two vectors which are close in dimension m
are not neighbors in dimension m+1, which means that the last
added elements of the two vectors are more distant than the
tolerance r. Thus, the reduction of the number of recurrences
is related to the divergence of trajectories (that were close in
dimension m, but not when adding an additional sample). Such
a divergence is a marker of complexity and an indication of
low predictability of the time series (measured also by other
non-linear indexes, like Lyapunov exponent, Kantz, 1994, or
determinism in recurrence quantification analysis, Webber and
Zbilut, 1985). This observation justifies the fact that ApEn is
larger when the probability that the trajectories diverge is greater:
indeed, the logarithm in the definition of φm(r) is monotonic, so
that ApEn increases if the number of recurrences decreases when
the embedding dimension is increased (from m to m+1).

Expected Problems in Using ApEn
Notice that the study of the divergence of the trajectory in
the phase space is feasible only if the embedding dimension is
large enough to rule out the false near neighbors (Kantz and
Schreiber, 1997). Indeed, when m is small, the trajectory may
show intersections or recurrences due to its projection in a low
dimensional space. The dynamics of the system around false
neighbors (i.e., the possible divergence of trajectories passing
through them) is obviously not related to the complexity of the
system. Thus, the inclusion of false recurrences can bias the
estimation of ApEn.

S. M. Pincus, the inventor of ApEn, suggested to use a small
value of embedding dimension m (usually m = 2 or 3), an epoch
duration of at least 10m–20m samples and a tolerance r equal
to the 20% of the standard deviation of the signal (Pincus and
Goldberger, 1994). However, as mentioned in the “Introduction”,
wide ranges of parameter values were considered in applications.
The following considerations suggest that parameters should be
chosen carefully in order that the information extracted by ApEn
is reliable and that possible problems (tested in the following) are
avoided.

(1) ApEn is sensitive to the sampling frequency. As the delay
between phases is fixed to be 1, over-sampling a signal
corresponds to a linearization, which is expected to reduce
ApEn. Indeed, it is simpler to predict the subsequent sample
of a time series if data are over-sampled, as the new
sample is close to the previous ones. Thus, the number of
recurrences remains about constant in different embedding

dimensions (the trajectory has not enough time to diverge)
and the time series appears to be more predictable and
hence less complex. Notice also that the maximum value
of ApEn is ln(N −m) which is enlarging as the sampling
frequency increases (as N becomes larger if the epoch
duration is fixed); thus, the estimation of ApEn relative
to its maximum possible value is further decreased by
over-sampling the data.
In the applicative papers quoted in the Introduction, a
filter usually selected a specific bandwidth of EEG. On the
other hand, if only an anti-aliasing filter is used, the over-
sampled data include high frequency noise. In such a case,
the divergence of a recurrent point is related to the noise,
more than to the deterministic dynamics of the trajectory
in the phase space. Thus, in such a condition, ApEn is
expected to provide an estimation of the complexity of the
noise, failing to decode the determinism of the system.
To remove this problem, the data should be sampled close
to the Nyquist limit or the delay between samples of
embedded vectors should be larger than 1, equal to f s/f N,
where f N is a frequency close to the Nyquist limit (e.g., f N
could be chosen as three times the bandwidth of the time
series).

(2) Fixing the tolerance r, the probability of finding recurrences
decreases if the embedding dimension m is increased
(notice that m was as large as 10 in some papers in the
literature, even if, as mentioned above, it was suggested
that samples in an epoch should be at least 10m–20m for a
reliable estimation of ApEn, Pincus and Goldberger, 1994).
Some considerations can be given to justify the relation
between the embedding dimension and the number of
samples needed to study reliably the time series. For
simplicity, assume that the data is a set of independent,
uniformly distributed samples, so that their range is
2
√

3 ≈ 3.5 times the std. If r is 0.2 std (as suggested
in Pincus and Goldberger, 1994), there are about 17.5
segments of length r with equal probability of finding
recurrent points within them. If the time series is embedded
in a space of dimension m, the number of boxes in which
to find recurrences is about 17.5m. As each recurrent point
should have many neighbors, e.g., M = 10 neighbors,
to get reliable statistical conclusions (and hence a stable
estimation of ApEn), the duration of the epoch (in terms
of number of samples) needed to find sufficient recurrences
to compute reasonably ApEn is M·17.5m (which becomes
rapidly huge as the embedding dimension increases). The
previous example should be considered as a worst case, as
deterministic trajectories are usually attracted on a portion
of the phase space with dimension that is less than m (Kantz
and Schreiber, 1997). However, empirical trials indicate
that, considering short epochs (with an order of 100–1000
samples) and r = 0.2 std, it is easy to get only few recurrences
when m is about 3 or 4 (unless the data are quasi-
periodic, linear, or over-sampled), in line with Pincus and
Goldberger, 1994. In such a case, the measure of complexity
or predictability (related to the percentage of neighbors that
remain close to each other when extending the dimension)
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is not statistically feasible. When the number of recurrences
is very low, there is even the possibility that, due to the
different denominators in the definitions of φm(r) and
φm+1(r), negative values of ApEn are obtained.

(3) The logarithm in the definition of entropy gives a larger
weight to rare events (i.e., with a few recurrences), as they
are more informative. Using short epochs, the estimation
of ApEn could become quite unstable, as it depends on the
behavior of rare events that are poorly represented.

(4) Recurrences are affected by the possible presence of low
frequency trends (as also noticed in Pincus and Goldberger,
1994). Indeed, similar patterns of activity are not identified
as recurrences if they are biased by a trend that translates
them around different mean values (with difference larger
than r). Thus, the use of a high-pass filter with cutoff related
to the duration of the epoch is suggested to remove low
frequency trends. Specifically, if the duration of the epoch
is T seconds, the minimum frequency of a sinusoid that
could be represented is 1/T Hz. However, more recurrences
should be studied to assess statistically the predictability of
low frequency oscillations. Thus, the minimum frequency
of oscillations that could be reliably explored considering
the available epoch (related to the cutoff frequency of
the high-pass filter to be used to remove the trend) is
f cutoff = R/T, where R is the minimum number of times that
a recurrent behavior should be investigated (e.g., R = 5–10).
However, notice that the removal of trends could be
admissible only under some assumptions on the data.
For example, it is reasonable if the signal is self-similar
(Mandelbrot, 1982, so that the same behavior can be found
at different scales, as in the case of fractal dynamics) or
if different frequency components are independent (e.g.,
low frequency movement artifacts in bioelectric signals or
different EEG rhythms). On the other hand, there could
be conditions in which low frequency trends affect the
behavior of other components; indeed, they could be related
to a slow change in the state of the system generating the
time series, which could affect the patterns of interest. In
such cases, low frequency trends cannot be removed and
could be studied only if the investigated epoch is extended.
This could be admissible only if the data are stationary
within it, so that a trade-off arises between the needs of
studying reliably low frequency trends (requiring a long
epoch) and considering stationary the data (imposing a
short epoch).

(5) The values that are close in time are also considered
neighbors in the phase space by the algorithm for the
estimation of ApEn. This allows to remove possible
singularities, i.e., computing the logarithm of zero in
equation (3). However, this introduces a bias toward low
values of ApEn, as N-m-1 self-recurrences are always found
in both embedding spaces (Pincus and Goldberger, 1994).
To remove this problem, Sample Entropy (SampEn) was
introduced (Richman and Moorman, 2000): it requires
commuting the sum and the logarithm operators in (3) (in
addition to avoiding singularities, SampEn is a measure of
complexity that is very different from ApEn, as indicated

in the “Discussion” section). As an alternative, a simpler
way to overcome the problem could be the introduction
of a Theiler window (Kantz and Schreiber, 1997), i.e., a
time window defining a delay under which points cannot
be considered recurrent; then, the points which have no
recurrences should be removed from the computation of
φm(r) (in order to avoid singularities).

Modified ApEn
Based on the previous observations, the modified ApEn is
proposed. The following variations are included.

(1) The time delay τ between coordinates can be different from
1 (it should be taken in linear relation with the sampling
frequency, as mentioned above).

(2) The tolerance r is chosen in order that a specific percentage
(selectable by the user) of recurrence points are found
in dimension m (in this way, the possibility that too few
recurrences are found is avoided). This idea was also
considered in the minimum numerator count method
(Lake and Moorman, 2011). This allowed to get stable
estimations of quadratic sample entropy (SampEn modified
to make it stable to a variation of r) with very short
RR series. The literature proposed also other alternatives,
as that of choosing the value of r corresponding to a
maximal ApEn (or an approximation of it, in order to
reduce the computational burden, Lu et al., 2008). This
method showed good results in the literature (Lu et al.,
2008), even if it didn’t discriminate heart failure and healthy
controls from heart rate variability data (Liu et al., 2011).
Further advanced techniques have been proposed to select
an optimal value of the tolerance based on the asymptotic
theory of bandwidth selection for kernel density estimators
(Lake, 2010; Darmon, 2016) or building efficiently an ApEn
profile using different values of tolerances (Udhayakumar
et al., 2017).

(3) The total number of embedded vectors is the same, equal
to N−(m+1)τ, in the two embedding dimensions (m and
m+1), as the last vectors in the lowest dimension are
discarded. In this way, the index is always non-negative.

(4) Low frequency trends, which cannot be properly studied
due to the finite duration of the epoch, are removed by a
high-pass filter with cuttoff proportional to the inverse of
the epoch duration.

(5) A Theiler window is introduced (so that points closer
in time than a delay, which can be selected by the user,
are not considered neighbors; for example, in the datasets
considered below, only self-recurrences, corresponding to
a delay of 0, were removed). Points in dimension m
which have no recurrences are not considered; those which
have recurrences in dimension m and no recurrence in
dimension m+1 are modified by adding one recurrence
to the correlation integrals (it’s like assuming to add a
further recurrence which does not lead to divergence of
the trajectory, or considering self-recurrences only for these
problematic points).
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RESULTS

ApEn and the modified index were tested on simulations
(Figures 1–5) and experiments (Figure 6). Representative
examples are considered for which the reliability of ApEn is
pushed to the limit. Referring to the section “Materials and
Methods”, in the following the embedding dimension is indicated
with m and the threshold with r.

Effect of Data Over-Sampling
Figure 1 shows the effect of over-sampling the signals on ApEn
estimation. The system of Rössler (1976) was used to simulate
two time series (corresponding to different sets of parameters,
as indicated in Figure 1A): a quasi-periodic signal and a chaotic
one. These two time series are simple prototypes of a predictable
and a complex signal, respectively, and are considered also for
the following Figures 2–4. The frequency range including both
signals was explored, computing the bandwidth allowing to
preserve 99% of the energy (which is about 0.9 Hz). Then, the data

were resampled at different frequencies: the minimum frequency
was three times the bandwidth, the others were multiple of such
a sampling rate.

As mentioned in the section “Materials and Methods”, by
increasing the sampling frequency, the time series become more
predictable, as the dynamics is linearized. Indeed, Figures 1B,C
show that ApEn decreases for large values of the sampling
frequency. Notice that 30 times the bandwidth is the maximal
sampling frequency considered here, but, as mentioned in the
section “Introduction”, in the literature there are even examples
of papers in which the sampling frequency was around 100 times
the bandwidth. By changing the delay of the phases according to
the variation of the sampling frequency as in Figures 1D,E, the
effect of linearization is compensated, so that the estimates are
more stable. The modified index (including also self-recurrence
removal and a fixed percentage of neighbors) is considered in
Figures 1F,G. Signal discrimination is very good with m = 3
(Figure 1G), i.e., considering an embedding dimension equal to
the number of state variables of the Rössler system. In this way,

FIGURE 1 | Estimation of complexity indexes of signals with different sampling frequencies. (A) Definition of the Rössler system used to simulate a pseudo-periodic
and a chaotic signal (signals 1 and 2, respectively, are the components x(t) of the system for the two indicated sets of parameters). (B) Estimates of ApEn of 25
epochs of signals (median, quartiles, range and outliers shown individually) with embedding dimension m = 2 (r = 0.2 std). (C) Estimates of ApEn with m = 3.
(D) Estimates of the entropy considering the same algorithm used for ApEn, but using a delay τ proportional to the sampling frequency and m = 2. (E) Same as (D),
but with m = 3. (F) Modified index: self-recurrences removed, delay τ proportional to the sampling frequency, percentage of recurrence points for the lowest
dimension imposed to be the 20% of the number of samples of the time series, m = 2. (G) Same as (F), but with m = 3.
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FIGURE 2 | Estimation of complexity indexes considering different embedding dimensions m. The same signals as in Figure 1 are considered, sampled at three
times the bandwidth of the signals. (A) ApEn (median, quartiles, range and outliers shown individually) estimated for 25 epochs of 100 s (r = 0.2 std). (B) Same data
as in (A), processed by the modified index: self-recurrences removed, τ = 1, percentage of recurrence points for the lowest dimension imposed to be the 20% of the
number of samples of the time series.

false recurrences (or false near neighbors) due to projection to
a low dimensional space are removed and the trajectory of the
system can be correctly explored (Kantz and Schreiber, 1997;
Mesin, 2017).

Notice that, in this specific application, the discrimination
capability of ApEn is increasing by over-sampling the data,
which could be considered as a positive effect. However, in the
considered case, the bandwidths of the two signals were similar.
Consider instead the case of comparing a regular signal of high
frequency and a complex one of low frequency: it could be
explored in Figure 1 by comparing an over-sampled signal that is
complex (signal 2) and a quasi-periodic signal sampled at a lower
rate (signal 1). In such a case, the discrimination of the two signals
would be hampered2. Moreover, over-sampling could be prone to
high frequency noise, as mentioned in the section “Materials and
Methods.”

Effect of Embedding Dimension
Figure 2 shows the effect of increasing the embedding dimension.
The same signals studied in Figure 1 are considered with a

2Notice that, by changing the sampling rate as suggested, also the number of
samples would vary. Some tests were performed to check that indeed the estimation
of complexity would be hampered even keeping constant the duration of the epoch.
Epochs of 1000 samples of the two signals were considered. Signal 1 was scaled to
get a bandwidth 50% larger. In this conditions, ApEn estimated a larger complexity
for signal 1 (quasi-periodic) than for signal 2 (chaotic) both for m = 2 and m = 3,
considering a sampling frequency of 8 times the bandwidth of signal 2.

sampling frequency of three times the bandwidth. The value of
ApEn shown in Figure 2A decreases as the embedding dimension
increases, as the number of recurrences drops and the bias due
to self-recurrences leads to low values of ApEn for both signals.
On the other hand, by imposing a fixed percentage of recurrences
in dimension m, some discrimination capability is preserved, as
shown in Figure 2B (self-recurrences were also removed; as a
result, the index is not biased toward 0).

Effect of Epoch Duration
Figure 3 shows the stability of complexity estimation when the
epoch duration is reduced. With short epochs, the number of
recurrences decreases when keeping constant the tolerance r. The
value of ApEn is then affected by the bias introduced by self-
recurrences (reflected in a lower value of estimated complexity)
and by the predictability of rare events. Rare recurrences are
poorly represented, but have a large weight due to the logarithm
function present in the definition of ApEn, so that they induce
large variability. The modified ApEn does not consider self-
recurrences and imposes to use always a large number of
recurrences for the lowest dimension (in this case, the 20% of the
number of samples). The estimates are more stable than those
of ApEn. Moreover, for a large enough embedding dimension
(i.e., m = 3 for this system which has three state variables), the
modified index allows to discriminate the two signals with short
epochs. For example, considering that a perfect discrimination
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FIGURE 3 | Estimation of complexity indexes from epochs of different durations. The same signals as in Figure 1 are considered, sampled at three times their
bandwidth. (A) ApEn (median, quartiles, range, and outliers shown individually, for 25 different epochs) estimated for epochs of different durations with m = 2 (r = 0.2
std). (B) Same as in (A), but with m = 3. (C) Same data as in (A), processed by the modified index (with m = 2): self-recurrences removed, τ = 1, percentage of
recurrence points for the lowest dimension imposed to be the 20% of the number of samples of the time series. (D) Same as (C), but with m = 3.

is achieved when the ranges of the estimates obtained from the
two signals are separated, ApEn shows this condition only for
epochs of at least 400 samples with m = 2 (or 500 samples with
m = 3), whereas the modified index discriminates perfectly the
two signals with m = 3 using epochs of 200 samples (or longer).

Impact of Self-Matches
Figure 4 allows to deepen the effect of the choice of the
embedding dimension (already considered in Figure 2) and
of the duration of the epoch (Figure 3), showing the number
of templates without recurrences, in order to give insight on
the impact of self-matches. The same simulated signals as in
Figure 1 are considered. ApEn has a large percentage of points
without any match, apart from the self-recurrence (Figure 4A):
these points bias the estimation toward low values. There is
an increasing trend of templates without matches when the
embedding dimension is increased and the epoch shortens. The
effect is larger for the chaotic than for the regular signal (maximal
values of self-recurrences are about 82 and 54%, respectively).
For this reason, the order of complexity estimated using ApEn
is even inverted (with a larger ApEn for the regular signal than
the chaotic one), when the embedding dimension is large and
the epochs are short, as shown in Figure 4C. This problem does
not affect the modified index (in Figure 4D, the difference of
complexity of the chaotic and regular signals is always positive).
This reflects the lower bias due to points with no matches,

which are only a few when considering the modified ApEn.
Indeed, the number of points in dimension m without any match
are 0 and lower than about 3%, for the regular and chaotic
signal, respectively (Figures 4A,B; these points are removed
from the computation of modified ApEn, as indicated in the
section “Materials and Methods”); the points which show always
divergence of the trajectory (so that there are recurrences at
embedding dimension m, but not for m+1) are 0 and lower
than about 5%, for the regular and chaotic signal, respectively
(Figures 4A,B; these are the points which are compensated,
adding a self-recurrence, as indicated in the section “Materials
and Methods”).

Effect of Low Frequency Trends
Figure 5 shows the effect of trends and their removal
using a high-pass filter (Chebyshev Type II, with 20 dB
of minimum attenuation in the stop-band). Realizations of
fractional Brownian motion (fBm) were considered, as they show
important trends with high values of the Hurst exponent H
(Figure 5A). The trend affects the identification of recurrences:
if it is not removed, the number of recurrences is low and ApEn
is largely affected by the bias induced by self-recurrences. Thus,
with high values of H, the level of complexity estimated using
ApEn is close to zero (as shown in Figure 5B for H > 0.5).
By removing the trend, the signals can be better discriminated
(Figure 5C). The modified ApEn (considered in Figures 5D,E)
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FIGURE 4 | Points without matches and their impact on complexity estimation. (A) The same regular signal considered in Figure 1 (called signal 1) and sampled at
3 times the bandwidth is processed, considering different embedding dimensions ED and numbers of samples N (a single epoch was considered for each test). The
following indications are provided (percentages of the total number of processed samples): points with only self-recurrence in ApEn estimation (r = 0.2 std), points
without recurrences for modified ApEn for ED = m (total number of recurrence imposed to be 20% of N), points in which trajectories are always divergent (i.e., never
recurrent for ED = m+1, considering the threshold chosen for the estimation of the modified ApEn). (B) Same as (A), but for the chaotic signal considered in Figure 1
(signal 2). (C) Percentage difference of the ApEn of the chaotic and regular signals (positive number expected). (D) Same as (C), but considering the modified ApEn.

is less affected by the trend (as self-recurrences are removed and
many matches are always found); however, it also benefits of the
removal of the low frequency trend (as shown in Figure 5E).
Notice that the fractal dimension D of the fBm is linearly related
to H (D = 2-H): it is interesting that the mean values (across
different processed epochs) of the modified ApEn show a close
to linear variation with H.

Representative Application to
Experimental EEG
Figure 6 shows a representative application to EEG data from
a healthy subject and a patient who, after a brain trauma,
entered a vegetative state. The study was approved by the
Ethical Committee of the Hospital CTO (Centro Traumatologico
Ortopedico, i.e., Centre for Orthopaedic Trauma) in Turin,
conducted following the principles of the Declaration of Helsinki

and provided by a medical doctor (acknowledged at the end
of the paper). Data were acquired from 19 channels using the
standard 10–20 during a rest condition with closed eyes for a
duration of about 4 min. Sampling frequency was 256 Hz, but
data contained more than 99% of their energy below 30 Hz,
so that they were resampled at 100 Hz after low-pass filtering
(Chebyshev Type II, order 13, stop-band starting at 32 Hz with
30 dB of minimum attenuation). Channel F7-RF was selected.
Notice from Figure 6A that the EEG from the patient shows low
frequency trends, confirmed by the power spectral density shown
in Figure 6B. The data from the healthy subject contain larger
components of high frequency, e.g., there is a peak in the alpha
band and some contribution in beta.

Data were split into 25 epochs of 8 s. Different complexity
indexes were computed after high-pass filtering with a cutoff of
either 0.2 or 1 Hz (Chebyshev Type II, with 20 dB of minimum
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FIGURE 5 | Estimation of complexity indexes considering fractional Brownian motions (fBm) with different Hurst exponents. (A) Epochs of different signals (they were
assumed to be sampled at 100 Hz). Data may include slow trends: in the following panels, the effect is shown of either keeping or removing the trend (by a
high-pass filter of Chebychev Type II, order 4, with cutoff 5/T, where the duration of the processed epochs was T = 50 s). (B) ApEn (median, quartiles, range, and
outliers shown individually) estimated for 25 epochs of fBm with Hurst exponent ranging from 0.1 to 0.9 (r = 0.2 std). The mean values of the estimates versus Hurst
exponents were interpolated by a line and the percentage root mean squared error (with respect to the overall mean) is indicated. (C) Same as (B), but considering
de-trended data. (D) Modified ApEn (self-recurrences removed, τ = 1, percentage of recurrence points for the lowest dimension imposed to be 5%) applied to raw
data. (E) Modified ApEn applied to de-trended data.

attenuation in the stop-band). In this way, movement artifacts
were removed; moreover, when attenuating components under
1 Hz, trends that cannot be reliably studied in the considered
epochs were attenuated.

Data were compared with surrogates (Mesin, 2017).
Specifically, for each processed epoch, 20 surrogates were
generated using the iterative amplitude-adjusted Fourier
transform method (Schreiber and Schmitz, 1996). These
surrogates had the same amplitude distribution and
(approximately) the same spectral density of the original
data, but they were stochastic. For more than the 80 and 88%
of the epochs, ApEn and the modified index (respectively)
were significantly lower than those computed from surrogates
(Wilcoxon rank sum test, significance level 0.05). The number
of statistically significant cases was higher for the data from the
healthy subject, as they were more complex (so that it was easier
for a test of non-linearity to indicate the significance).

The modified index allows to get a better discrimination of
the two cases. It appears to be evident from the graphs, but it is
also confirmed when measured by the Fisher discrimination ratio
(Theodoridis and Koutroumbas, 2008), which was in the average
about 3 and 5 for ApEn and the modified index, respectively.
Moreover, the modified ApEn provides consistent results in all

conditions, indicating that the data recorded from the healthy
subject is more complex than the EEG from the patient (in
line with the literature, which indicates that EEG complexity
decreases if the level of consciousness is lower; Burioka et al.,
2005; Koskinen et al., 2006; Wu et al., 2011). On the other hand,
the standard ApEn provides different indications, depending
on the choice of parameters and on the de-trending filter
used.

Notice that the embedding dimensions (estimated using the
Cao’s method, Cao, 1997) were equal to 4 for both signals (so that
false recurrences were completely removed when considering
m = 4). Indeed, in such a case, the modified index allows to get
a good discrimination of the two signals and reliable indications
of complexity (in contrast with the estimations of ApEn with the
same value of m).

DISCUSSION

S. M. Pincus indicated that ApEn should be considered only
in relative sense (Pincus and Goldberger, 1994), after fixing the
values of embedding dimension m and tolerance r. However,
standardizing the choice of parameters would help in comparing
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FIGURE 6 | Example of experimental application. Two EEGs were recorded in rest conditions from a healthy control and a patient who entered a vegetative state
with closed eyes (duration of the recording 250 s, sampling frequency 256 Hz; before processing, data were resampled at 100 Hz after low-pass filtering with cutoff
32 Hz using a Chebyshev Type 2 filter of order 13). Data from channel F7-RF are considered. (A) Example of a portion of data from the two subjects. (B) Power
spectral density (PSD; estimated by the Welch method, using Hamming windows of duration 16 s with no overlap). (C) Distribution of estimations of ApEn (r = 0.2
std) and modified ApEn (self-recurrences removed, τ = 1, percentage of recurrence points for the lower dimension imposed to be 10%) considering 25 epochs of
8 s, high-pass filtered with cutoff 0.2 Hz (Chebyshev Type 2 filter of order 4). (D) Same as (C), but considering a high-pass filter with cutoff 1 Hz (Chebyshev Type 2
filter of order 6).

different studies. Stressing this concept is important as very
different values of parameters can be found in the literature,
even when the same type of data is studied (here, EEG was
considered). Moreover, some studies were conducted considering
parameters for which the estimation of ApEn, as a statistical index
of complexity, was not reliable (see the “Introduction”, where
examples of studies are given in which the embedding dimension
was larger than 5 and the sampling frequency was more than 10
times the bandwidth of the considered signal).

Problems in ApEn Estimation and Proper
Choice of Parameters
This work provides some examples of simple conditions in which
ApEn gives not stable indications. Specifically, ApEn is affected
by the sampling frequency of the processed data, the embedding
dimension, the duration of the processed epoch and the presence
of low frequency trends. The behavior of ApEn when varying each
of these parameters can be interpreted as follows:

(1) Oversampling induces a linearization of the deterministic
information contained into the data;

(2) Increasing the embedding dimension reduces the
probability of finding recurrences, making ApEn estimation
less stable and affected by self-recurrences;

(3) The shortening of the processed epoch reduces the time
span in which the dynamics is explored, with the risk of
failing to observe specific behaviors or to find recurrences;

(4) Low frequency trends affect the estimation of recurrent
patterns.

These observations provide some indication on how to choose
parameters in order that ApEn can give reasonable indications
and that different studies can be compared. In particular, the
following suggestions are given.

(1) The sampling frequency should be close to the Nyquist
limit, otherwise, for larger sampling rates, the dynamics
of the system generating the time series is linearized and
the value of ApEn decreases (because the next sample is
more predictable, as it is close to the previous ones; see
Figure 1), unless a high frequency noise is present, so
that its complexity biases the estimation of ApEn to large
values. The bias in ApEn estimation due to the sampling
frequency can hinder the comparison of studies on similar
data sampled at different rates.

(2) Low values of embedding dimension should be used
(as already suggested in Pincus and Goldberger, 1994).
By increasing the embedding dimension, recurrences are
harder to be found (see Figure 4), so that self-recurrences
have a greater influence in biasing ApEn toward low values
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(Figure 2). Moreover, it is more difficult to discriminate
the signals with different levels of complexity considered
in Figure 2 for larger embedding dimensions. However,
more recurrences can be found by increasing the sampling
frequency, so that there could be a combination of
parameters, with high embedding dimension and sample
rate, for which ApEn provides results which could appear
interesting (either because they are in line with the literature
or as they allow to discriminate better among different
groups). This paper does not support to keep these
apparently good outcomes, as they result from two wrong
choices of the parameters. In fact, an embedding space
with too large dimension cannot be explored by the short
epochs which are usually processed and a sampling rate
which is too high has the effect of linearizing the dynamics
of the investigated system (moreover, the complexity of
the high frequency noise could further bias the estimation
of ApEn, as mentioned above). The interpretation of the
results are further complicated by the different possible
choices of the threshold r. Indeed, by increasing its value,
runs that are more distant are considered as neighbors,
increasing the number of recurrences. Thus, it is another
parameter that could compensate for the reduced number
of recurrences when using a large embedding dimension.
This could allow to get again (by chance) some good
outcomes, when searching for optimal results by making an
exhaustive test of all combinations of parameters. However,
by using a too large value of r, far runs are considered
neighbors, so that the possible divergence of distant points
is studied to compute ApEn, even if it is not an indicator
of complexity (only the divergence of close points indicates
system complexity). Thus, for a reasonable estimation of
ApEn, the tolerance should be fixed at a small value relative
to std, as suggested in (Pincus and Goldberger, 1994).
Notice that in the literature there was even the attempt
of fixing the value of the threshold, without reference
to std: this choice should be avoided, as in such a case
ApEn would obviously depend on the signal amplitude
(Sarlabous et al., 2010); this was even considered as a
positive outcome, though there are better solutions to
estimate the signal amplitude than using an index of
complexity!

(3) The epoch duration should be chosen as a trade-off between
the need of considering the signal stationary and that of
providing enough information to decode the dynamics
of the system. Shortening the epochs, the estimation of
ApEn is more and more unstable, as fewer recurrences are
found (see Figure 4), so that the dynamics of different
neighbors are not well represented to extract statistically
stable conclusions about convergence or divergence of
trajectories. Figure 3 shows the instability of the estimations
of ApEn as the epoch duration shortens. Figure 4 indicates
also that, using a large embedding dimension and short
epochs, ApEn could be even larger for regular than for
chaotic data (thus, arbitrary indications could be obtained
by changing parameters out of reasonable ranges, as
mentioned above).

(4) Removing the low frequency trend is important (Figure 5),
even if it is allowed only under specific assumptions (i.e.,
if the dynamics at shorter temporal scales is not affected
by the trend, as discussed in the section “Materials and
Methods”). The epoch duration imposes the minimum
frequency of oscillations that can be studied (at least 5–10
low frequency oscillations should be available in the epoch
in order to explore possible recurrences); it is also related
to the time interval in which the data can be considered
stationary, as mentioned above.

Properties of the Modified ApEn
The previous observations suggest modifying ApEn in order
to get more stable indications in some critical conditions: a
new index was then proposed, which was here called modified
ApEn. The main variations with respect to the standard index
are the followings: a delay between phases (possibly different
from 1) is considered to compensate for an over-sampling, self-
recurrences are avoided by introducing a window within which
recurrences are removed and the threshold is defined imposing
a fixed percentage of neighbors for the trajectory in dimension
m (the number of recurrences will drop in dimension m+1,
depending on the level of complexity). The results of this paper
do not guarantee that this new index is always to be preferred
with respect to ApEn. Indeed, in some conditions, requiring a
fixed number of recurrences could result in a large threshold,
so that there could be distant points considered as neighbors
(the correct percentage of recurrences should be selected in order
that the threshold is feasible, otherwise neighbors could be too
distant). Moreover, only representative examples of data are here
considered and with specific values of the parameters (a test
on a large range of conditions and the comparison of different
methods for complexity estimation is beyond the aims of this
work, but an interesting topic for future investigation). Thus,
there could be conditions, which were not found here, in which
the new index gives unstable or contradicting results. However,
the new algorithm was developed under reasonable hypotheses
and, at least for the limited cases considered in this paper, it
provided some interesting results. For example, the following
outcomes are of relevance.

(1) The new index compensates for over-sampling (as shown
in Figure 1), providing an indication of complexity which
is not related to the specific sampling rate or to the
bandwidth of the data (whereas ApEn has a bias toward
higher values for data containing components of higher
frequency, independently of their level of regularity).

(2) The modified ApEn allows to get reasonable estimates even
for large values of the embedding dimension. Indeed, the
number of recurrences does not drop as m increases, as in
the case of the standard index. This allows to the modified
index to maintain a good discrimination of the simulated
data with different levels of complexity shown in Figure 23.

3This property could allow to estimate the modified ApEn on data correctly
embedded (i.e., using a dimension which guarantees to remove false near
neighbors, Kantz and Schreiber, 1997). Indeed, the results shown in Figures 1–3
indicate that good discrimination was obtained applying the modified ApEn to data
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(3) The new index, when using a proper embedding dimension,
allows to obtain stable results with shorter epochs than the
standard ApEn, as shown in Figure 3 (again, this is due to
the large number of recurrences that are always available,
even with short epochs).

(4) When applied to fractional Brownian motion after low
frequency trend removal (Figure 5), the modified ApEn
linearly scales with the Hurst exponent (and hence also with
the fractal dimension) of the simulated data.

Finally, the two indexes were applied to representative
examples of EEG from a patient in vegetative state and a
healthy control. ApEn showed contradicting results considering
different sets of parameters, whereas the modified version
indicated that the complexity was always larger for the data
from the control subject (in line with the literature, Burioka
et al., 2005; Koskinen et al., 2006; Wu et al., 2011). Moreover,
good discriminability was obtained only for the modified index
when using m = 4, which is the correct embedding dimension
(i.e., the one guaranteeing to remove false recurrences). This
indication, together with those obtained from simulations,
suggests that the correct embedding should be used (but only
with the modified ApEn), as it allows to correctly identify
recurrences.

Comparison With SampEn
Additional results are shown in the Supplementary Material,
where the modified ApEn is compared to SampEn, which is
another popular index for estimating complexity in biomedical
data, already introduced to compensate for some problems in
the use of ApEn (Richman and Moorman, 2000). It measures
the Renyi entropy rate of order 2 or quadratic entropy rate,
whereas ApEn estimates the Renyi entropy rate of order 1 (Lake,
2010). It does not require to include self-recurrences and is
more stable, as it is not affected by the local behavior of the
time series, which could be poorly represented in short time
series, as in the case of rare events. Notice that this is a strength
of SampEn, but also a limitation, as this index reflects the
global regularity, without emphasizing rare events, i.e., those
that are more informative. However, there are conditions in
which irregularity is ruled by rare events. For example, some
systems show bursts of activities (Keener and Sneyd, 1998),
which reflect the transition between a few states and only the
times of transition between them, not the dynamics within them,
are irregular. Also EEG could be interpreted as an alternation
of regular rhythms (with the inclusion of some additional
particular waveforms), where most of the irregularity is due to
the schedule of the transitions between them. As shown in the
Supplementary Material, SampEn is affected by sampling rate,
embedding dimension, duration of the processed epoch and low
frequency trends, with results similar to those of ApEn. However,
consider that the classical algorithm for SampEn estimation was
considered, but more stable methods have been introduced in
the literature (Lake and Moorman, 2011). Its classical definition

with embedding dimension equal to the number of state variables of the Rössler
system. Moreover, Figure 6 shows good outcomes when applying the modified
ApEn with m = 4, which is the estimated embedding dimension of the EEGs.

could also be modified in the future, with a straightforward
integration of the ideas discussed here (e.g., possible over-
sampling can be compensated and low frequency trends can be
removed).

Other Advanced Complexity
Measurements
In this paper, the standard algorithms to estimate ApEn and
SampEn were considered to be compared to the proposed
modified ApEn. As already mentioned, other approaches were
proposed in the literature to get better estimations of complexity,
in terms of robustness and consistency in short epochs.

For example, an interesting method to estimate complexity
in very short epochs is given in (Lake and Moorman, 2011),
where a variation of SampEn is considered. The same problem
was faced in Udhayakumar et al. (2017), where a profile of
ApEn values over different tolerances was computed, from
which secondary measures were extracted to estimate complexity.
Another approach is provided by the corrected conditional
entropy (CCE), discussed in Porta et al. (1998). It requires
computing the minimum with respect to the embedding
dimension m, avoiding the selection of a fixed pattern length.
Computing the maximum of ApEn with respect to the threshold
r was proposed in Lu et al. (2008). The last two methods appear
to be computationally intensive, as different values of either m or
r should be considered.

Maybe, for their computational cost or because of their
complex interpretation, the above-mentioned methods had
limited outcome in the literature on applications, compared
to the classical ApEn and SampEn. On the other hand,
the modified ApEn has the same interpretation as the
original ApEn upon which it is built. Moreover, it has a
computational cost that is similar to that of ApEn and SampEn
(tests on data with a number of samples among 100 and
3000 indicates that the computational cost of the present
implementation4 of the modified ApEn is twice that of classical
algorithms).

CONCLUSION

ApEn is a complexity index, which was extensively used
(and maybe also abused) in the literature. It is sensitive
to the choice of parameters that sometimes were chosen
out of reasonable ranges. Thus, different results could be
obtained by widely changing parameters, when looking for
an indication that better fits the expectation of the user.
However, this is not a correct way for searching complexity
in the data. This paper shows some simple conditions in
which ApEn provides unstable or contradicting results and
proposes a modification of the index, which could compensate
in part for these problems. The advice is to use ApEn or
its modified version with caution, selecting the parameters in

4The additional computational cost is due to the estimation of the tolerance. It
was performed by a dichotomic search on the vector of distances between pairs of
points.
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order that the estimations are in line with the rationale behind the
definition of such indexes.
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