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Abstract

Hardware computation is facing in the present age a deep transformation of its
own paradigms. Silicon based computation is reaching its limit due to the physical
constraints of transistor technology. As predicted by the Moore’s law, downscaling
of transistor dimensions doubled each year since the 60s, leading nowadays to the
extreme of 16-nm channel width of the present state-of-the-art technology. No
further improvement is possible, since laws of physics impose a different electrical
behavior when lower dimensions are attempted. Multiple solutions are then envis-
aged, spanning the range from quantum computing to neuromorphic computing.
The present dissertation wants to be a preliminary study for understanding the oppor-
tunities enabled by neuromorphic computing based on resistive switching memories.
In particular, brain inspires technology and architecture of new generation processors
because of its unique properties: parallel and distributed computation, superposition
of processing and memory unit, low power consumption, to cite only some of them.
Such features make brain particularly efficient and robust against degraded data,
further than particularly suitable to process and store in memory new information.
Despite many research projects and some commercial products are already propos-
ing brain-like computing processors, like spiNNaker or IBM’s Bluenorth, they only
mimic the brain functioning with standard Silicon technology, that is inherently serial
and distinguish between processing and memory unit. Resistive switching technol-
ogy on the other hand, would allow to overcome many of these issues, enabling a far
better match between biological and artificial neuromorphic computation.
Resistive switching are, generally speaking, Metal-Insulator-Metal structures able
to change their electrical conductance as a consequence of the history of applied
electric signal. In such sense, they behave exactly as synapses do in a biological
neural networks. For this reason, resistive switching when modeled as memristor,
i.e. memory-resistor, can act as artificial synapses and, moreover, are particularly
suitable to be interfaced with artificial Silicon neurons that are designed to replicate
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the biological behavior when excited with electric pulses. Anyhow, from the techno-
logical standpoint, there is still no standard on the design and fabrication of resistive
switching, so that multiple structure and materials are investigated.
In this dissertation, it is reported an analysis of multiple resistive switching devices,
based on various materials, i.e. TiO2, ZnO and H f O, and device architectures, i.e.
thin film and nanostructured devices, with the scope of both characterizing and
comprehending the physics behind resistive switching phenomena. Furthermore, nu-
merical simulations of artificial spiking neural networks, embedding Silicon neurons
and H f O-based resistive switching are designed and performed, in order to give
a systematic analysis of the performances reached by this new kind of computing
paradigm.
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Chapter 1

Introduction

1.1 Motivations

Artificial intelligence, (AI), has became one of the most prominent topic in tech-
nology, able to agglomerate around itself wide segments of society that in the past
usually remained disaggregated with respect to the development of science. In-
deed, the scientific community devotes huge efforts in the understanding of basic
principles of learning, both from the biologic and computational perspective, and
its development in real-world application. Their results are constantly monitored
by the industry world, that from applications into the production process up to
management of new services, are progressively integrating autonomous robot and
machine learning algorithms into their businesses. Interestingly, also the general
public is enthusiastically following the success reached by scientists and engineers,
developing in parallel to the technological progress a common thought interrogating
itself about the ethical and moral implications of artificial intelligence. It may sound
almost natural nowadays thinking about robots helping us side by side in our daily
life, but still it is an astonishing result getting real day after day. AI signs milestones
more and more frequently, winning world championship of chess (IBM’s Deep Blue,
May 1997), obtaining super-human performance in pattern recognition (IJCNN
Competition, 2011, [1]), recently winning he strategy based Go championship with
a self-teaching AI (DeepMind & Google’s AlphaGo, March 2016). Tools that allow
for direct interactions with machine through natural language are widespread, from
mobile-phones (Apple’s Siri), computers (Microsoft’s Cortana), personal assistance
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at home (Amazon’s Alexa). The latest technology pops up from automotive in-
dustry and regards self-driving cars. This is a step further in the realization of the
over-mentioned Internet of Things (IoT), constituted by network of devices able to
sense stimuli from the real world, communicate among each-other and actuate in
order to accomplish specific tasks. Devices in the internet of things are requested to
operate autonomously in remote areas, where in principle, electric power could not
be sufficiently available and remote control cannot be feasible. Nonetheless, device
activity needs to be desirably efficient, avoiding failures in task performances. In
order to accomplish such a demanding requirement, devices must be compact, power
efficient, optimized from the algorithmic standpoint and, above all, smart.
Smart devices must be able to process information gathered from the environment
and perform predictions about its dynamic. Such a prior information is then evalu-
ated to take decisions leading to the successfully accomplished task. In principle,
it is a particularly power demanding activity and it may be hardly implemented on
remote devices, that nowadays are indeed constantly communicating with servers
where computation is performed. This leads, just as examples, to delays in response
to stimuli, approximated analysis due to incomplete data, suffer from connection
failures... local computation would solve many of these limitations, struggling on
the other hand with the limited computational power.
Such an important challenge brought the scientific community to investigate further
machine learning algorithms and device architectures, looking for inspiration from
nature. The most effective example of extreme computational power, combined with
power efficiency, is undoubtedly the human brain.
The human brain has astonishing capabilities with a limited amount of resources.
We are able to perform task characterized by a high level of complexity, such as rec-
ognizing faces in very corrupted environment, as well as sounds, communicate with
multiple languages, define complex activity strategies based on external dynamic
variables. All of this with a more efficient power consumption, [2]. Brain has devel-
oped in its evolution an highly parallelized architecture completely different from the
Von Neumann one, that stays at the basis of computers. Von Neumann architectures
requires the computation unit (ALU) and the memory unit to be distinguished inside
the central processing unit (CPU), [3], see figure 1.1.

Within brain, such a distinction is not existing anymore and the computation
unit is merged with the memory unit, through synapses. The neural network is
indeed built out of about 1011 neurons, each of them generating an average of 104
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Fig. 1.1 Von Neumann Architecture

connections with other neurons in the cortex, [4]. These are dynamic connections, i.e.
synapses, that emerge or disappear according to the network functioning. Moreover,
their efficacy evolves in time according to the task performed, shaping what we
call memory, [5]. From this perspective, synapses are both the processing unit of
our brain, whose information is transmitted across neurons that acts as center of
integration, and the center where memory is stored. It is the neurons activity itself
that allows synaptic strength to change in time, according to a learning rule named
spike-timing dependent plasticity, (STDP), [6–9]
According to STDP, the time-correlation between the firing activity of pre-synaptic
neurons and post-synaptic neuron is responsible for potentiating or depressing the
synapse efficacy. Specifically, if a post-synaptic spike follows in time a pre-synaptic
spike, synapse strengthen its efficacy proportionally to their delay. Vice-versa, if
post-synaptic spike comes earlier that the pre-synaptic spike, i.e. the spikes are
anti-correlated in time, the synapse becomes depressed. In this way, information
processing happens locally in time and space, i.e. only when spikes occur at the level
of single synapse, and in parallel, thus for multiple synapses at the same time. Both
features are particularly desirable for algorithms embedded on independent smart
devices.
Because of all of these features expressed by the human brain functioning, the
scientific community began to investigate it also from the robotics and computer
science perspective. A new emergent technology seems to be particularly promising
for the realization of artificial neural network in hardware, called resistive switchings.
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1.2 Resistive Switching and Memristor

Resistive switching are devices able to perform a reversible transition in their resis-
tivity according to the variation of an external variable, like temperature, pressure,
magnetic field, voltage, [10]. Among the many physical mechanisms involved
with different material, the resistive switching addressed in this dissertation are
only those involving as control variable the applied voltage. Huge investigation
in the field comes from micro-electronics companies. Indeed more-than-Moore
technologies are of paramount importance in companies outlook, since the current
transistor based technology is reaching its physical limit, [11]. The Moore’s law,
[12], empirically defined in 1965, by Gordon Moore, founder of Intel, stated that the
micro-processors complexity doubles every 18 months. Taking in account that the
chip board remains nearly constant, the Moore’s law imply a constant doubling of
chip density. Since its definition, Moore’s law has been taken as growth target for all
electronic components producers, pushing the technology process toward optimized
Metal-Oxide-Semiconductor (MOS) fabrication with lower and lower channel size.
From the 60s, the channel dimension of CMOS stepped from microns to the 32
nm currently implemented in standard commercial laptops. Further research scales
down this reference dimension to 20 nm, touching the extreme limit of 16 nm, [13].
It is the limit imposed by physics to Moore’s law, since below this dimension, the
silicon doping allowing the functioning of MOS as logic gates cannot be guaranteed
anymore to be equivalent for all the nodes, i.e. being the doping process intrinsically
stochastic, the number of doping atoms in the channel cannot be tuned and lead
to a higher failure rate of single nodes in operative conditions. From this scenario
comes the pressure laying behind the investigation of resistive switching technology.
Indeed, different physical mechanisms would allow a further scale down of chip
components dimensions primarly for random access memories fabrication (RAM).
Particularly attractive from this standpoint appear to be magnetoresistances (MRAM)
[14], based on spintronics, phase change memories (PRAM), [15], and, more re-
cently, resistive switching (ReRAM), [16, 17]. Resistive switching phenomenon is
observed with a large varieties of devices characterized by different architectures,
metal-insulator-metal (MIM) layers or nanostructures, different materials, like tran-
sition metal oxides [18], transitional metal dichalcogenides [19], graphene-based
structures [20], organic compounds [21], colloids [22]. Among them, binary oxides,
like TiO2 [23], Ta2O5 [24], ZnO [25], H f O [26], WO3 [27], NiO [28], appears to
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be particularly promising for ReRAM applications. Mechanisms laying behind the
resitive switching phenomenon in MIM architecture are still under deep investigation
[29], but can classified in two major areas, i.e. valence change memories (VCM)
and electro-chemical memories (ECM), [16]. The former mechanisms involves
the presence of defects in the transition metal oxide matrix in the form of oxygen
vacancies. The absence of one oxygen atom in the lattice (that often is amorphous
or polycrystalline) creates a locally positive charged that is unstably occupied by
electrons, in order to respect the neutrality principle. The positively charged oxygen
vacancies thus are subject to external electric field imposed through the application
of a voltage to the two electrodes of the MIM structure and drifts through the lattice.
A distinction at this stage is done, identifying interface-type mechanism, [30, 31],
and filamentary mechanisms [32], depending on the characteristics of the material
adopted as insulator. With interface resistive switching, the insulator layer can be
observed to contain a sublayer under-stoichiometric with respect to the whole lattice.
Its resistance thus would be lower than the stoichiometric sub-layer and the whole
structure would act as the series of two resistances. Under the effect of external
electric field and with proper lattice properties, the interface between the two layers
could move, reaching the opposite electrode from the one where voltage is applied.
As soon as the whole lattice is homogeneously under-stoichiometric, the MIM device
switches from a high resistance state (HRS) to a low resistance state (LRS). In
filamentary RS on the other hand, rather than a moving interface, the movement of
oxygen vacancies is favored withing a tiny region of the lattice that thus assumes
locally a lower stoichiometry, [33]. The difference between the two mechanisms
is strongly dependent on the lattice properties, as it is determined by the potential
barriers height and distribution encountered by oxygen vacancies while drifting.
The second major subset of RS accounts for electro-chemical memories. ECM re-
quire the presence of an electro-migrating metal element as one of the two electrodes
adopted for the MIM structure, like Ag or Cu, [34]. In ECM, when positive voltage
is applied to the electro-migrating electrode, redox reaction happens at the interface
between metal and insulator, leading to anodic dissolution of metallic cations subject
to the electric field drift. Depending on the ion mobility within the insulator matrix,
they will reach the opposite electrode creating a so called Conductive Filament (CF).
CF is a metallic shortcut, cone-shaped, between the two electrode and through the
insulating material, usually few tens of nm in diameter [35].
In both mechanism, the phenomenon is reversible when opposite polarity voltage is
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applied and imposes drift toward the electrode of origin. When the LRS is reached in
fact, the electronic current transport dissipates energy under form of heat, respecting
the Joule law. Above a certain threshold thus, the CF can be interrupted and the
newly generated ions (both vacancies in the case of VCM and metal ions in case of
ECM) are drifted backward from the grounded electrode.
An optimized resistive switching reaches good repeatability in switching, cycle to
cycle endurance and state retention. Companies’ objective is the production of
ReRAM featuring these quality measures comparable to the present transistor-based
technology.
In 2008, the interest of the scientific community was awakened by results from HP
labs. The group of Strukov and William in fact, published a description of TiO2

based MIM resistive switching modeled as a memristor, [36].
Memristor, literally the contraction of the terms memory and resistor, was postulated
by Leon Chua in 1971 as the fourth missing fundamental circuit element, together
with resistor, capacitor and inductor, [37]. He proceeded from symmetrical reasoning,
comparing the constitutive equations of the three elements,

dv = R di

dq = C dv

dφ = L di

(1.1)

together with the definition of charge and magnetic flux as:

q =
∫

i dt

φ =
∫

v dt
(1.2)

Observing the previous set of equations, graphically depicted in figure 1.2, it
emerges that all the constitutive equations derive from the relation between two of
the fundamental quantities v, i, q and φ , but no relation exists between charge and
magnetic flux. Chua in [37] demonstrate that such a relation can exists for a passive
element, whose constitutive equation can be written as:
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φ = f (q)

dφ = M(q) dq
(1.3)

where M(q) is the so called memristance.

Fig. 1.2 Definition of the memristor from symmetric reasoning

Notice that one can always take the time derivative of such a constitutive equation,
obtaining:


v(t) =

d f (q)
dq

i(t) = M(q) i(t)

dq
dt

= i(t)
(1.4)

Some observation is important already at this stage about the memristor defini-
tion. First of all, the memristor is intrinsically a non-linear element, since if M(q)
would be constant, integrating the constitutive equation would lead to the case of
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linear resistor. Moreover, the quantity φ involved in the constitutive equation comes
from the Lenz’s law, that states the existence of an electromotive force, i.e. a voltage,
induced by the time variation of magnetic flux. This is certainly true in the case of
an inductor, where a coil generates a magnetic field, but it is not necessarily implied
in the case of a memristor, as it will be clarify in the next of this dissertation. Indeed,
φ should be considered not as a magnetic flux, but only as the integral of voltage in
time, and for this reason it will be called, as in the most recent literature, voltage
momentum, [38].
Memristor is an element with memory, i.e. its memristance value depends on the
quantity of charged that passed through the element under the effect of the applied
voltage in time. Thus, the history of the applied signal determines the resistance state
of the device.
As last consideration at this stage, from the equation 1.4 it can obtained that the
memristor fingerprint is an hysteresis loop pinched at the origin of axis, as the one
shown in figure 1.3.
In 1976, the memristor definition was generalized to non ideal cases by Leon Chua
and Sung M. Kang, introducing a so called state variable collecting all other depen-
dencies of the memristance different from charge, [39]. The new obtained set of
equation becomes then, in terms of voltage momentum and charge:


φ = f (q,x(t))
dx(t)

dt
= g(x, i)

dq(t)
dt

= i

(1.5)

and in terms of voltage and current:

v(t) = M(q,x(t)) i(t)
dx(t)

dt
= g(x, i)

(1.6)

where g(x, i) is the dynamic functional relation that specifies the evolution in
time of the state variables controlling the memristor and specifies the whole physics
involved. Examples of such variables could be the internal temperature, the applied
electric field, defect concentration etc., depending on the system under test. As it
can be noticed, the memristor is described as a non-linear dynamic systems.
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In 2008, HP labs scientists, Dmitri B. Strukov and Stanley R. Williams published
in Nature for the first time the description of a resistive switching, based on TiO2

and with MIM architecture, as a memristor, titling the paper "The missing memristor
found", [36]. In that case, they provided a simple model of interface-type resistive
switching, with a separation between region rich in positively charged dopant, i.e.
oxygen vacancies, and region poor of dopant, i.e. stoichiometric metal oxide, see
figure 1.3. Application of the external bias imposes a drift of the region boundary,
modeled as state variable of the system. Thus, considering the total thickness of the
device D and the dopant mobility µV , they write the dynamic equation of the system
as the series of two resistances:

v(t) =
(

RON
x(t)
D

+ROFF

(
1− x(t)

D

))
i(t)

dx(t)
dt

= µV
RON

D
i(t)

(1.7)

That yields for what concerns the state variable dynamics:

x(t) = µV
RON

D
q(t) (1.8)

The impact of such a paper on the scientific community was incredibly high,
since boosted renovated research on a field that since 1976 was stuck to purely
theoretical results, without any experimental counterpart. On the contrary, from
that moment on, huge scientific effort is devoted to the investigation of the physical
mechanism behind the resistive switching devices, together with their theoretical
modeling in the framework of Chua’s formalism.

From the perspective of neuromorphic systems, memristors offer particularly
favorable features to mimic synapse functioning. In fact, synapse is a junction
between two nodes of a circuit and it is in charge to transfer a weighted information
depending on its relevance for accomplishing a task. Relevance then is gathered
via experience, if we are talking from a biology perspective, or through what the
network has learned during its training phase, talking from the computer science
standpoint. Indeed, while learning synapses change their synaptic weight, i.e. their
efficacy, according to the signal they observe and then preserve that change. At the
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Fig. 1.3 HP Labs model of TiO2-based memristor.

very same level, memristor reaches a resistance state, mathematically formalized
by its state variable, depending on the history of signals applied and then preserves
memory of it. It means that, within a network, signals in the form of electric current
can be weighted by the internal resistance of memristors while being transferred to
other nodes. In the extreme cases, a highly insulating memristor is equivalent to an
open circuit and the information is not transferred, while a memristor in conductive
state lets the information be transferred without attenuation.
Memristors, in the experimental form of resistive switching, can be reasonably
investigated as synaptic element of hardware neural network to be embedded in
future smart devices.

1.3 Spiking Neural Network

Hardware devices designed specifically for machine learning purposes are usually
referred to as hardware neural networks (HNN). Since the end of the past century,
together with the faster development of deep neural networks in software simulations,
HNN received great attention because of their inherent advantages with respect to
the traditional computing technologies. Indeed, state of the art neural networks, such
as convolutional neural networks (CNN) and recurrent neural networks (RNN) are
particularly computational demanding. Moreover, NN are intrinsically parallel in
the computing architecture, but higher complexity of electronic systems is required
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when transferred on a serial computing architecture.
HNN then are particularly desirable for several properties: speed, specialized hard-
ware are optimized for learning tasks, outperforming standard technologies; intrinsi-
cally hardware-embedded parallel computing allows for improved computational
power and speed on the one side and, on the other, it provides a particularly robust in-
frastructure against system failures and degradation. Indeed, serial architectures are
particularly vulnerable to fail-stop operations, mainly because of lack of redundancy.
On the contrary, neural networks are extremely tolerant to single connection failures
as well as noise, and rather than stopping, they continue to operate with reduced
performances. All of these characteristics make HNN of considerable advantage for
the development of smart and remote technologies, [40].
If the number of advantages for HNN is considerable, a still large number of chal-
lenges must be faced by HNN designers. The most prominent regards the network
topology, whose high connection degree could result in a complex pattern of connec-
tivity to be transferred in silicon. Moreover, hardware technology could potentially
introduce further variability to the one accounted in the normal function of learning.
Another important fact is the non-linearity of activation function required by learning
algorithm, that for digital technology could require complex and power-angry control
circuits.
The complete landscape of HNN different implementations thus is still variegated and
accounts for multiple solution dealing with the aforementioned problems. They in-
clude digital, analog, hybrid solutions, optical solutions, FPGA (Field Programmable
Gate Array) based solutions, VLSI (Very Large Scale Integration) solutions.
Among those, neuromorphic Spiking Neural Networks (SNN) are gathering more
and more interest for many reasons. First they are event-based networks, where
computation happens only when an event, i.e. an electric (often differential) signal is
inputed to the network sensors. It allows to save power and speed up performances.
Moreover, they allow for bio-inspired learning algorithms implementation, such as
the one currently recognized by the neuroscience community as at the basis of brain
functioning, i.e. STDP.
Spiking Neural Networks convert the input stimulus into a train of Poisson spikes,
with frequency directly proportional to input intensity, e.g. in the case of image
recognition, pixel brightness is converted with direct proportionality into spiking
trains of certain frequency. Nodes of the SNN are then Integrate&Fire (I&F) neurons,
which receive input in form of current and accumulate it until a pre-defined threshold
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is reached. When the threshold is reached, the I&F neuron emits an output spike that
is forwarded in the network.
The state-of-the-art I&F neuron was developed in 2009 by Indiveri et al. with
analogue VLSI technology embedding 21 metal-oxide-semiconductor field effect
transistors (MOSFET) working in the subthreshold domain and capacitors, [41, 42].
Its schematics is reported in figure 1.4.

Fig. 1.4 Schematics of Integrate and Fire Neuron.

The exponential adaptive I&F neuron accounts for four different blocks, here
represented in different colors. The yellow block, named Differential Pair Integrator
(DPI) models the neuron’s leak conductance returning exponential sub-threshold
dynamics in response to constant input; this block contains the capacitor named
Cmem that mimics the neuron’s membrane capacitance. The green-block implements
spike frequency adaptation mechanism, mimicking the calcium current adaptation
mechanisms present in real neurons. The red block is responsible for generation of
amplified spike events. To conclude, the blue block resets the state of the neuron
to its resting state (set with Vre f ), providing a refractory period during which spike
generation is impeded.
The dynamics of the VLSI I&F neuron can be expressed in a single equation as
follow:
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(
1+

Ith
Imem

)
τ

d
dt

Imem + Imem

(
1+

Iahp

Iτ

)
= Imeminf + f (Imem)

τahp
d
dt

Iahp + Iahp = Iahp∞
u(t)

(1.9)

that, with linearization (approximable for Iin << Iτ ) and no adaptation, can be
reduced to:

τ
d
dt

Imem + Imem =
Ith
Iτ

Imem + f (Imem) (1.10)

with,

f (Imem) =
Ia

Iτ

(Imem + Ith)≈
Ia

Iτ

Imem (1.11)

where Imem is the neuron’s membrane current, Iahp is the current involved in
spiking-frequency adaptation, Ia is the positive-feedback current and u(t) is a step
function responsible for the refractory period of the neuron. All other parameters are
derived from MOSFET parameters and can be written as:

τ =
CmemUT

κItau

τahp =
CpUT

κIτahp

Iτ = I0e
κ

UT
Vlk

Iτahp = I0e
κ

UT
Vlkahp

Imem∞
=

Ith
Iτ

(Iin − Iahp − Itau)

Iahp∞
=

Ithahp

Iτahp

ICa

Ith = I0e
κ

UT
Vthr

Ithahp = I0e
κ

UT
Vthrahp

(1.12)
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with κ and UT the transistor permittivity and thermal voltage, I0 the transistor
dark current, Iin the input current, Ith and Ithahp the current through n-type MOSFETs
not present in figure 1.4.
As it can be noticed, the I&F neuron here presented is designed to faithfully replicate
the functioning of biological neuron, including hyper-polarization, refractory period
and adaptation. Moreover, such a design is low-power, compact and compatible with
asynchronous logic. Similar design can be adopted for VLSI artificial synapses as
well, embedding other tens of transistors. By the way, here it is where memristors
can contribute to the design of neuromorphic system and their simplification. Indeed
the memristor is particularly suitable to synaptic plasticity induced by input spikes
as the one produced by the I&F neuron, so it could be set as connection between
neurons in more complex network. Further control circuits are required for the
learning algorithm implementation, regardless of the synaptic device adopted.

1.4 Dissertation Outlook

The present dissertation is devoted to the investigation of resistive switchings and
their synaptic plasticity properties in the context of neuromorphic systems. Its
structure will proceed as follow:

TiO2 based resistive switching. In this first chapter, nanostructured devices and thin
film devices are investigated with different purposes, i.e. to study the physics
governing the switching mechanisms on the one hand and the device needs for
technology application and engineered materials on the other.
The discussion will start from TiO2 based nanotubes grown via anodic ox-
idation. Titania nanotubes offer an intrinsic multilayer structure, with mul-
tiple stoichiometry, that can potentially be exploited as VCM type resistive
switching. In order to deepen the role of oxygen vacancies in the switching
mechanism, multiple nanotubes arrays are produced in different conditions,
including also a top coating of polyacrylic acid responsible for the catalysis of
surface chemical reactions able to change the oxygen vacancies and the charge
carrier densities available to conduction.
Consecutively, TiO2 based thin layer will be briefly discussed. TiO2 thin film
are deposited via Atomic Layer Deposition (ALD). It is a technique partic-
ularly favorable for large scale production of nano-sized devices because of
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its peculiar features like self-limiting deposition and conformal deposition
without line-of-sight requirements. Deposition at different temperatures, i.e.
lower than the normally used in TiO2 processes are investigated, in order
to simplify the device fabrication process. Consequently, the variation on
materials properties and resistive switching response are analyzed.

ZnO based resistive switching. The research group focused particularly its attention
on ZnO based resistive switching because of the numerous techniques available
for material deposition and device fabrication. Indeed, both thin film devices
as well as nanostructured devices are fabricated. Thin film devices were fabri-
cated using either ALD deposition or Sputtering deposition. Nanostructured
devices in the form of ZnO nanowires were fabricated via Chemical Vapor
Deposition (CVD) and then characterized either as a forest of nanowires or
as a single nanowire. All the variety of techniques available within the group
allowed to compare performances and properties of devices among each-other,
with the aim of investigate the different physical mechanisms implied in the
resistive switching of ZnO, both in VCM and ECM configuration.
This chapter will be focused on ZnO thin film deposited via Sputtering tech-
nique. This work aims to compare ECM and VCM resistive switching re-
sponses with thin layers of different thicknesses, implying different crys-
tallinity conditions. Insights about the switching mechanisms are required in
order to obtain stable and repeatable electric response.

Simulation of learning network. The activity described in this chapter originated
from an international collaboration among the PoliTO group, CNR division of
material science, in Agrate Brianza, Italy, and the institute of Neuroinformat-
ics - INI, University of Zurich and Polytechnic University of Zurich, Zurich,
Switzerland. It is devoted to the simulation of a fully hardware spiking neural
network embedding silicon I&F neurons, as the one described in the previous
section, and experimentally characterized resistive switching, complete of
device variability distributions. CNR provided the HfO based resistive switch-
ing characterized with voltage pulse trains, while INI is an internationally
recognized institute for neuromorphic bio-inspired systems. The first section
of the chapter will be devoted to the description of the HfO based resistive
switching and the method of characterization and empirical modeling adopted.
The second part of the chapter will be instead dedicated to the description of
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STDP in the form of Fusi’s learning rule. To conclude, it will be described
the network architecture, reported and discussed the learning performances
of the network while trained with a database of hand-written digits known as
MNIST, currently used as benchmark for learning tasks.



Chapter 2

Experimental

The present chapter collects all the information about device fabrication processes
and material characterization setups, since most of them remain the same from
device to device. The first section reports the recipe for nanotubes and thin film
fabrication. The second one reports parameters adopted for material characterization
techniques. If special conditions occurs for specific device characterizations, they
will be specified directly in the referring chapters.
All fabrication processes discussed here are optimized in previous research performed
by collaborators. References to scientific literature reporting the optimization process
are reported in the corresponding section.

2.1 Device Fabrication

All the fabricated devices present a general trilayer structure, composed of bottom
electrode (BE), active metal oxide, and top electrode (TE) deposited onto a substrate.

2.1.1 TiO2 Nanotubes Array

Referring to TiO2 nanotubes array (NTA), the detailed structure accounts a Titanium
foil as both substrate and bottom electrode, TiO2 NTA as active metal oxide with
possibly Poly Acrylic Acid (PAA) coating and Platinum top electrode.
The Titanium foil (99.6% purity, thickness 200 µm, Goodfellow) was used as
substrate. After cleaning via ultra-sonication in acetone, rinsing in ethanol and
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nitrogen stream drying, the Ti foil was etched into 1 wt% HF solution in order
to obtain a fresh metal surface for NT nucleation. The anodization process was
carried out at room temperature in an ethylene glycol based electrolyte containing
0.5 wt% NH4F and 2.5 vol% deionized water, in a two electrode electrochemical cell
using a platinum sheet as counter electrode. The NTs growth was performed under
continuous stirring applying a constant voltage of 60 V by a DC power supply (GW
Instek SPD-3606). Optimized recipe at [43]. An anodization time of 30 s allowed
the formation of an ordered array of nanotubes with a thickness of about 250 nm,
well adhered to Ti foil substrate. The underlying Ti foil itself was used as bottom
electrode for all the resistive switching devices. Some of the as-grown samples were
thermally treated after anodic oxidation, being annealed in air at 450 °C for 1 h, in
order to crystallize TiO2 into anatase phase.
The thin film deposition of PAA (nominally 40 nm thick, if measured on a flat
surface), was performed in a low pressure plasma enhanced CVD reactor (IONVAC
PROCESS S.r.l., Pomezia, Italy), whose chamber base pressure was 37 mbar, (3.7 ·
10+6 Pa) and the excitation radio frequency 13.56 MHz. The liquid monomeric
precursor (acrylic acid, 99%) was stored in a quartz reservoir and the produced
organic vapors were carried into the deposition chamber by bubbling argon in the
reservoir. Acrylic acid vapors (3 sccm flow rate) were diluted in argon carrier gas
(20 sccm flow rate), needed to sustain the plasma discharge. Polymerisation was
performed by a pulsed plasma discharge with 200 W RF power, with 10% duty cycle
(ton = 10ms, to f f = 90ms) and 5 minutes deposition time. For further details and
reference to the optimization process, refer to [44].
Circular Pt top electrodes (200 nm thick with diameters of 1 and 2 mm obtained
through a shadow mask) were deposited at room temperature by DC sputtering in an
Ar atmosphere of 10−4 bar, (10 Pa), (metal-coater Q150T-ES, Quorun Technologies)
using a sputtering current of 50 mA for 180 s.

2.1.2 TiO2 thin film devices

Metal-Insulator-Metal TiO2 thin film devices account a Si wafer as substrate, Ti/Cu
bottom electrode, ALD-deposited TiO2 layer as active metal oxide and Pt top elec-
trode. The fabrication process proceeds as follow, using standard ultraviolet (UV)
photolithography and liftoff wet etching.
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Silicon <100> p-type wafers with 4" diameters were used as substrates and
washed in piranha solution followed by deionized water rinse. A thin Cu layer (200
nm thick) was deposited on a Si wafer by electron beam (e-beam) evaporation and
used as a common bottom electrode for all devices without patterning. Because of
the poor adhesion of evaporated Cu onto Si, a Ti adhesion interlayer (20 nm thick)
was deposited during the same process before Cu evaporation.
The definition in the ALD oxide active layer was obtained via a liftoff procedure.
First, a layer of photoresist was deposited on the Cu electrode and patterned by
standard UV photolithography into circular pads with 1.2mm diameters. Then, 30
nm-thick TiO2 thin films were deposited on the patterned photoresist via ALD in
a Beneq TFS-200 reactor, using TiCl4 as the precursor, H2O as the coreactant and
Ar as the carrier gas. Finally, wet liftoff etching of the TiO2-coated photoresist was
achieved via a mild sonication in dimethyl sulfoxide (DMSO) solvent at 50 °C, a
subsequent DMSO rinse at room temperature, and a deionized water rinse and drying
in N2 gas.
The Pt top electrode (100 nm thick) was deposited via sputtering following a liftoff
procedure similar to the one described above, to obtain circular electrodes 1 mm
in diameter. To optimize the liftoff procedure for the patterning of the TiO2 layers,
several ALD tests at relatively low temperatures were achieved by varying the
substrate temperature between 80 and 150 °C, while fixing the carrier gas flow rate
(250 sccm), precursor pulse (100 ms), H2O pulse (250 ms), purging times (2000 ms),
and number of ALD cycles (400). A reference sample was deposited using the same
growth conditions at a temperature of 230 °C. For the optimization process please
refer to [20].

2.1.3 ZnO thin film devices

Metal-Insulator-Metal ZnO thin film devices account a Si/SiO2 wafer as substrate,
Ta/Pt bottom electrode, sputter-deposited ZnO layer as active metal oxide and either
Pt or Cu top electrode. The fabrication process proceeds as follow.

Silicon <100> p-type wafers with 4” diameters were used as substrates and
washed in piranha solution followed by deionized water rinse. Then, Ta(10 nm)/Pt(100
nm) bottom electrode was deposited at room temperature (base vacuum pressure
10−4), in pure Ar atmosphere (gas pressure 1 Pa), by DC sputtering (7.4Wcm−2 for
Ta 5.9Wcm−2 for Pt) for 80 s and about 7 min, respectively. The thin Ta layer was
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used to improve adhesion of BE to the underlying Si wafer, common to all devices
present on the sample.
Deposition of ZnO thin films were performed by RF magnetron sputtering, starting
from a 4” diameter ceramic ZnO target. Suitable vacuum conditions (base pressures
ranging between 8.3·10−6 and 2.5·10−5 Pa) were obtained with a two-stage pumping
system. Each deposition process was carried out by heating the Si/Ta/Pt substrates
at 50°C and with a target-to-substrate distance of around 8 cm. All depositions
were performed in a pure Ar atmosphere, with a fixed gas pressure of 0.66 Pa and a
RF power density of 1.2 Watt/cm2. An average deposition rate of 100 Å/min was
achieved in such conditions. Prior to each ZnO deposition, pre-sputtering of the ZnO
target was performed for 15 min to avoid any incorporation of contaminants in the
grown films. For the optimization process please refer to [45, 46].
Finally, deposition of Pt and Cu circular top electrodes accomplished the fabrication
of the MIM devices. To this purpose, Pt TE (200 nm thick, with diameters of 1 and 2
mm) were obtained deposited at room temperature by DC sputtering (metal-coater
Q150T-ES, Quorun Technologies) in an Ar atmosphere of 10−4 bar, (10 Pa), using a
sputtering current of 50 mA for 180 s. Cu TE (200 nm thick, with diameters of 1
and 2 mm) were deposited by thermal evaporation using a Cu target on Tungsten
crucible, using an evaporation current of 125 A for 40 minutes. In both the cases,
the desired geometry of TE was obtained by using a shadow mask.

2.1.4 HfO devices

Onto highly doped Si (0.001-0.005 Ω ·cm) substrate cleaned in HF from native
oxide, 10 nm Ti and 40 nm TiN are grown by sputtering in 40 sccm Ar and mixed 4
sccm N2 / 40 sccm Ar fluxes, respectively. After vacuum breaking, 5.5 nm HfO2 is
grown by atomic layer deposition in a Savannah 200 (Cambridge Nanotech) reactor
with bis(methylcyclopentadienyl) methoxymethylhafnium(IV) (HfD-O4, by Sigma
Aldrich) and water as Hf and O precursors respectively according to optimized
recipes described at references [26, 47]. Top electrodes are defined by optical
lithography and lift-off process after 50 nm Pt sputtering in 40 sccm Ar flux. Device
lateral sizes used for this work are 40×40 µm2. The back of the substrates are coated
with 100 nm Al by e-beam evaporation for lowering the contact resistance with the
chuck of the electrical tests.
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2.2 Material Characterization

The morphology of nanostructures and thin films was assessed by field-emission
scanning electron microscopy (FESEM, ZEISS Auriga), equipped with an INCA
Oxford Energy dispersive x-ray spectroscopy detector (EDX) for elemental analysis.
X-Ray Photoelectron Spectroscopy (XPS) was performed to investigate the stoi-
chiometry and chemical composition of materials, by using a PHI 5000 VersaProbe
(Physical Electronics) system. The X-ray source was a monochromatic Al Kα

radiation (1486.6 eV). XPS depth profile was obtained by means of an Ar+ flux at 2
kV accelerating voltage.
The crystal structure and orientation of the resistive switching devices was investi-
gated by X-Ray Diffraction (XRD) measurements, using a Panalytical X’Pert Pro
Diffractometer in Bragg-Brentano configuration (Cu Kα radiation, λ = 1.54059 Å).
Structural characterization was assessed by Raman spectroscopy with a Renishaw
inVia Reflex micro-Raman spectrophotometer, equipped with a cooled CCD camera.
Samples were excited with a 514.5 nm wavelength solid state laser source.
Electrical characterization was performed using a Keithley 4200 Semiconductor
Characterization System. I–V electrical measurements were performed in a two-
point contact probe station at room temperature, maintaining the bottom electrode
electrically grounded and the top electrode under DC voltage sweep. Pulsed electri-
cal characterization is performed in a standard probe station equipped with Keysight
B1500A instrument. Pulses are sent through a B1525A Semiconductor Pulse Genera-
tor Unit and current is read through a B1511B Source Measuring Unit both interfaced
with the device through a custom board. Voltage is applied to top electrode while
bottom electrode is kept grounded. Devices are forced with trains of identical pulses
and the resistance is read after each pulse at 200 mV. Pulses are 30 µs-long with rise
and fall times of 1 µs with applied positive voltage of 1.1 V and negative voltage of
-0.8 V.



Chapter 3

TiO2 based resistive switching

3.1 TiO2 Nanotubes Array

Reference paper: Conti et al., Memristive Behavior in poly-acrylic acid coated
TiO2 nanotubes arrays, Nanotechnology 27 (2016) 485208 (10pp)

TiO2 has been extensively studied for its resistive switching properties since
its modelling within the memristor formalism in 2008, [36]. A pletora of papers
appeared in literature to investigate different deposition techniques, such as ALD
[23] and sputtering deposition [48, 49], and different device architectures, like single
layer TiO2 devices [48], multi-layers devices [48, 50], doped TiO2 devices [51].
A considerable amount of nanostructured TiO2 based devices appeared as well,
proposing nanotubes [52], nanowires [53] and nanorods [54] as viable structures for
installing resistive switching mechanisms. Two main advantages derive from these
peculiar structures: the first relies on the high surface to volume ratio, that could
enable physical mechanisms not exploitable in thin film devices. The second one
instead is based on the high aspect ratio of nanostructured devices, that still affecting
the surface to volume ratio, represents also an advantage for interfacing artificial
neuromorphic systems with the biologic counterpart [55].
Structures as TiO2 NTA offers an extremely high control on the device fabrication,
such high nanotubes height, diameter thickness, together with the low-cost parallel
production of self-ordering, self-standing large arrays, [56, 57]. TiO2 NTA are
already widely studied for the many properties they express for various techno-
logical applications, like in dye-sensitized solar cells [43], water splitting devices
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[58], Li-ion batteries [59, 60], supercapacitors [61], sensing devices (gas sensing
[62], molecular sensing [63]) etc.. Moreover, NTA grows amorphous and can be
crystallized to anatase phase through thermal annealing. They also present an inner
multilayer structure that is more porous for the layer closer to the tube cavity and
more stoichiometric at the tube bottom [57]. All of these properties could be advan-
tageous for the RS properties and their fine tuning.
Application of a PAA coating goes in the direction of tuning RS properties of the
tube. Nearly all of the works found in literature address the RS mechanisms observed
in nanostructured devices (including TiO2 NTA) to filamentary creation across the
layers or to ions movement on top of the structure surface itself. Creation of localized
ionic CF at the tube bottom could be advantageous for the control of RS electrical
behavior, but on the contrary it requires an extremely ordered NTA, reachable only
after multiple repetitions of the growth process and, even more important, a very
high control on the deposition of metal top electrode, required to reach the tube
bottom with internal surfaces coating, without creating shortcuts [64]. An homoge-
neous, partially conformal PAA coating on the other hand, does not imply specific
requirements on the NTA matrix and, most of all, enable catalytic surface reaction
that could affect the electric properties of the material, providing a fine tuning of
voltage-driven RS.
The present study regards the complete characterization of four samples:

• as-grown Ti/TiO2/Pt

• air annealed Ti/TiO2 −ann/Pt

• as-grown, polymer coated Ti/TiO2/PAA/Pt

• air-annealed, polymer coated Ti/TiO2 −ann/PAA/Pt

A schematic of which is reported in figure 3.1, highlighting the NTA multilayer
structures, panels a) and c), the PAA coating, panels b) and d) and a schematics of
the equivalent electrical circuit created, panels e).

3.1.1 TiO2 NTA structural characterization

The FESEM characterization of samples shows a regular array oriented orthogonally
to the Ti foil, with an average height of 250 nm, external diameter of 120 nm and
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Fig. 3.1 3D drawing of the TiO2 NTA samples, representing the multilayer structure of the
nanotubes. Panels a) and b) show as-grown material without and with partially conformal
PAA coating. Panels c) and d) show corresponding annealed NTA structure, highlighting
insurgence of thermal oxide as intermediate layer. Panel e) shows the equivalent electric
circuit schematics for the device.

internal diameter of the tube cavity that measured about 50 nm, see figure 3.2a).
These dimensions are selected by time and voltage adopted for the anodic growth,
since a linear relation exists between these quantities and the geometrical features
expressed by the final tube, [57]. In particular, the application of 60 V for 30 s
produces a bottom thickness of the tube of about 40 nm, so comparable with most of
the thin layer studied found in literature for resistive switching investigation. During
the nanotubes growth, anodic reactions induce the formation of a few nanometers-
thick barrier layer at the nanotube base, see figure 3.1. The barrier layer presents a
high concentration of impurities coming from the electrolytic solution that make the
layer highly resistive.
A Pt top electrode was deposited onto the first set of as-grown NTA devices, in
order to create electric contact. As it can be observed from the FESEM images,
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figure 3.2b), Platinum nucleates on top of the NTA structure in a columnar grain
configuration, feature possibly due to the particular pattern created by the top NTA
openings. For this reason, Pt does not penetrate into the tube cavity and thus, direct
metallic filamentary connection to the tube bottom are very unlikely.
On the second set of NTA devices, PAA was deposited on top of the array, creating
an homogeneous and partially conformal coating of the nanotubes. As it can be seen
in figure 3.2c), PAA fills the tube cavity for a depth comparable to the tube cavity
diameter itself, creating a completely different equivalent electric circuit with respect
to the one without polymer. Indeed, if the top layer of thin PAA creates a series
resistance to the titania nanotube (R1 in figure 3.1e)), within the first 50 nm close to
the tube opening a parallel of two resistances is created, (R2 and R3), connected then
with the tube resistance, R4. Thanks to the functional carboxylic groups, PAA can
exert polar and H-bond interactions with an oxygen-terminated surface (such as the
TiO2 one) and create a very stable surface interaction.
Generally, during a plasma polymer deposition, the plasma discharge activates the
surface promoting adhesion and fragments the monomer molecules, [44, 65], that
simultaneously recombine at the substrate surface. Therefore, a minimum thickness
of the polymer is needed to ensure the presence of a crosslinked (polymerised) matrix
also in z direction with respect to the surface plane. As reported in [66], the lowest
thickness that allows to get a stable polymer is 40 nm. On the other hand a thicker
film is not desirable as the 40 nm thick one already tends to hinder the NTA pores
and thus produces a resistivity increase only.

In order to assess the chemical composition of the samples and the possible
presence of impurities due to the anodic growth process, EDX analysis was conducted
on equivalent samples 1µm-thick, where only Ti NTA was present on Ti substrate,
adopting an accelerating voltage of 15 keV. Data collected reported a relevant
inclusions of Carbon and Fluorine, see figure 3.3, of 7% and 25% respectively,
consistently with what reported in [43]. Thermal annealing of the sample lets outgas
the impurities and a relative concentration of Ti:O elements of about 33% and 66%
is obtained, i.e. returning a good stoichiometry for the nanostructured TiO2.

Micro-Raman spectroscopy is performed in order to complete the structural
analysis and assess the crystallinity of as-grown and annealed NTA. The collected
data are compared with commercial TiO2 crystalline powder with grain size in the
range 15-20 nm, (Solaronix, Aubonne, Switzerland). As-grown sample returns
a diffused photoluminescence, without the presence of clear peaks, as typical for
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Fig. 3.2 FESEM characterization of NTA samples in top view, inset of panel a), and cross-
section. Panel a), as grown material. Panel b), Pt coated NTA. Panel c), PAA coated NTA.
PAA coating creates a homogeneous layer partially filling the tube cavities.

amorphous materials, see figure 3.4. Annealed NTA, on the other hands, showed
Raman peaks typical of the anatase phase, in particular the Eg modes at about 144,
197, and 639 cm−1, as well as two B1g modes at about 399 and 519 cm−1, showing
high relative intensity. The latter result is comparable to the Raman spectrum
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Fig. 3.3 EDX characterization of NTA samples. As-grown material shows typical peaks of
Carbon and Fluorine (blue trace), while only Titanium and Oxygen are present in annealed
sample (red trace).

obtained from commercial TiO2 powder, assessing the anatase nanocrystalline nature
of the annealed NTA.

Fig. 3.4 Raman spectroscopy of as-grown (blue trace), and annealed (red trace) NTA devices.
For comparison, it is reported Raman spectroscopy for commercial TiO2 powder.
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3.1.2 TiO2 NTA electrical characterization

Electrical characterization of the NTA devices was performed in voltage sweep
mode, applying voltage ramps up to ±3V . A current compliance, here named Icc

was also imposed in order to limit the maximum amount of current able to cross the
device and prevent possible breakdown of the device itself. Since the quite large
conductivity of the NTA samples, Icc was kept in the range 1−10mA.
In analyzing results obtained for RS behavior of TiO2 NTA, the layered structure
and the presence of defects should be considered, since the anodic titania act as a
n-doped material. The best results found in literature for such a characterization are
obtained by Schmuki et al., [52], for amorphous TiO2 nanotubes, returning about 20
cycles with Off/On ratio of about 14. On the contrary, the annealed samples by that
study returned only mild diode-like rectifying behavior.
In the following, uncertainty is considered as the cycle-to-cycle variation on the
measured quantity and it is computed as standard deviation. Since results obtained
from TiO2 NTA electrical characterizations are not particularly numerous, in terms
of number of data acquired, standard deviation may be slightly inaccurate and some
other dispersion measures would be preferable, such as mean absolute deviation
for example. It is here indicated as an approximate measure of data dispersion, but
without the fully corrected statistical significance.

As-grown TiO2 NTA was characterized applying voltage ramps in the range
[−1.5V,+1.5V ], with imposed current compliance of 10 mA. The overall result
obtained is an unstable resistive switching behavior, with very few (less than 10)
cycles scarcely reproducible, see figure 3.5. The pristine resistance state of the device
was equivalent to its low resistance state (LRS) and measured Ron = 92±25Ω. When
positive voltage was applied to the Pt electrode, the device exhibited a transition to
a high resistance state (HRS) Ro f f = 213± 153Ω, with an average ratio of about
r ≈ 2. In the present section, ratio is computed considering measurements on few
voltage ramp cycles with large cycle-to-cycle variability. Thus, ratio is meant here
as a qualitative point of reference for understanding the device electrical behavior.
As-grown device after few switching cycles came to a non-linear characteristic. It
is evident then that such a devices cannot be adopted for any application since they
produce unreliable electrical behavior.
When PAA coating is introduced on top of as-grown NTA, the measured initial
resistance is Ron = 970 ± 292Ω and a transition to HRS occurs in the positive
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Fig. 3.5 Electrical characterization of as-grown NTA devices. Panel a), three qualitatively
representative cycles for Ti/TiO2/Pt device. Panel b), three qualitatively representative
cycles for Ti/TiO2/PAA/Pt device showing resistive switching behavior. Panel c), resistance
states for the Ti/TiO2/PAA/Pt device, measured at V = 0.1V , for the first ten cycles.

polarity applied to Pt electrode, reaching a Ro f f =(4.9±2.3)kΩ. Thus, the measured
resistance Off/On ratio is r ≈ 5, preserved for 20 cycles.
The first implication of PAA coating is an overall increased resistance, due to the
series resistance introduced as in figure 3.1e). On the other hand, the presence of
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the polymer tends to stabilize, in terms of endurance, the electrical behavior of
NTA device and increase its Off/On ratio. A possible explanation of these facts
can be found in the surface reactions induced by the polymer at the TiO2 surface.
Deprotonation of PAA carboxyl groups induces the adsorption of carboxylate onto
the titanium dioxide surface, in bidentate configuration, [67]. Indeed, carboxylate
provides negative charge to the oxide, allowing to increase conductivity by means
of charge carriers’ increment. A second and simultaneous reaction occurring at the
NTA surface is due to the creation of hydroxyl groups. Hydrogen protons coming
from deprotonated PAA react with TiO2, by hydroxylation reaction, thus trapping
an oxygen atom onto the substrate surface [67–69]. This process results in the
generation of an oxygen vacancy and thus of a conductive region close to the surface
that contributes to enhance the conductivity in the ON state.

Electrical characterization of annealed devices returned a highly resistive and
non-linear behavior, coherently with what reported in [52]. Figure 3.6 reports quali-
tatively representative cycles for the device laying within cycle-to-cycle variability.
The measured resistance state is Ron = (26.3±1.1)kΩ with a Off/On ratio between
the two branches of hysteresis essentially equal to 1.
The main driver for electrical conductivity in a nanocrystalline material, like an-
nealed TiO2, are defects present in grain boundaries. It is established in literature
how anodization conditions and post-processing of such a material could strongly
affect the defect-based conduction of the specimens, altering surface states. In par-
ticular, temperature and annealing atmosphere could alter the material stoichiometry,
reducing the number of oxygen vacancies and the related band gap trap states. In-
deed, in literature it is reported how annealing process increases TiO2 based devices
conductivity. Conversely, in this case it is empirically observed an increment in the
device resistivity, that is related to the low thickness of the NTA adopted. Indeed,
thermal annealing produce also a thermal oxide layer at the interface between NTA
and Ti substrate, see figure 3.1c). Being its thickness comparable with the thickness
of NTA, it could strongly increase the overall device resistivity.
Annealed TiO2 NTA, with PAA coating is characterized with voltage sweep within
[−1.5V,+1.5V ] and Icc = 10mA. The pristine device returned a LRS Ron = (3.9±
2.9)kΩ and a transition with applied voltage in the positive polarity to HRS Ro f f =

(15.2± 10.3)kΩ, with ratio r ≈ 4 and endurance of 40 cycles. It should be high-
lighted that having such a large variation on the resistance values, the absolute
values of series and parallel resistances due to PAA can be neglected and indeed,
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Fig. 3.6 Electrical characterization of annealed NTA devices. Panel a), three qualitatively
representative cycles for Ti/TiO2 −ann/Pt device. Panel b), three qualitatively representa-
tive cycles for Ti/TiO2 −ann/PAA/Pt device showing resistive switching behavior. Panel
c), resistance states for the Ti/TiO2/PAA/Pt device, measured at V = 0.1V , for the first ten
cycles.

considering the large variability that characterize these samples, measured HRS
of TiO2 − ann/PAA is comparable with resistance state measured for TiO2 − ann
device.
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Comparing all the obtained results, collected in table 3.1, at least two major features
worth to be highlighted. First, PAA enable resistive switching with nanotubes, show-
ing longer cycle endurance and higher Off/On ratio, likely due to the larger income
of oxygen vacancies brought to the metal oxide by surface reactions.
Moreover, all devices show a pristine state equivalent to their LRS. This fact can be
explained considering the growth dynamics of nanotubes. The self-aligned NTA was
obtained with the application of an electric field able to activate redox reaction at
the interface of the Ti substrate. Under the effect of the field, the Ti4+ ions at the
metal surface interact with the OH− ions present in the fluorine solution, producing
oxidized Ti species. Dissolution of Ti ions moving toward the metallic cathode create
fractures at the metal surface that acts as porous growth centers for the nanotubes.
The weakened Ti-O bound allows for negative oxygen to move toward the bottom
of the pore, establishing a positive feedback loop that generates the tube growth.
When the anodic process is abruptly interrupted, excess of oxygen vacancies remain
trapped at the tube bottom and result in an oxygen deficient, i.e. under-stoichiometric,
TiO2 layer resulting in the LRS of the NTA devices. As soon as RS is imposed, the
oxygen vacancies are rearranged and the CF is interrupted.

Table 3.1 NTA devices electrical performances summary.

Sample Ron (Ω) Ro f f (Ω) Ratio Endurance

Ti/TiO2/Pt 92±25 213±153 ≈ 2 10
Ti/TiO2/PAA/Pt 970±292 (4.9±2.3)103 ≈ 5 20
Ti/TiO2 −ann/Pt - (26.3±1.1)103 ≈ 1 -
Ti/TiO2 −ann/PAA/Pt (3.9±2.9)103 (15.2±10.3)103 ≈ 4 40

3.1.3 Conclusions

In this study, a complete characterization of TiO2 nanotubes array devices was given,
investigating the electrical RS behavior of as-grown and annealed devices as well as
both devices decorated with PAA coating. Structural characterization highlighted
a regularly organized structure of nanotubes, orthogonally oriented with respect to
the Ti substrate. The Pt top electrode nucleated on top of the nanotubes opening
in a columnar configuration, preventing the metal from complete filling of the tube
cavity. On the other hand, PAA coating provides a partially conformal coating of
the tubes, with a penetration within the tube cavity to a depth equivalent to the
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tube internal diameter. This fact implies a different equivalent electric circuit and,
more important, the presence of surface reactions between the carboxylate groups
of PAA and defective TiO2 present at the tube surface. Raman spectroscopy and
EDX characterizations show an amorphous and defective material, with considerable
amount of Carbon and Fluorine absorbed, when as grown. On the other hand,
thermal annealing in air produces a nanocrystalline material with good stoichiometry.
Annealing causes also the creation of a thermal oxide layer at the interface between
NTA and metallic electrode, responsible for a relevant increase in the overall device
resistance.
Electrical characterization reported an unstable RS behavior for as-grown material,
slightly improved when PAA coating is introduced. Annealed device, on the contrary,
returns a diode-like behavior with a higher resistance expressed. Such a behavior is
drastically changed by the introduction of PAA coating, which separates the two RS
branches up to a ratio r ≈ 4 with an endurance of 40 cycles. These major changes are
presumably due to the surface reaction happening at the tube cavity surface, where
carboxylate groups react at the TiO2 surface and become adsorbed onto the metal
oxide surface, providing negative charge available to transport that lower the value of
LRS. Moreover, a second reaction happens at the same time between the hydrogen
proton coming from carboxylate groups deprotonation and reacts with oxygen at the
oxide interface, creating OH groups. Consecutively, an oxygen vacancy available for
the CF during RS is created and contributes to the enhancement of conductivity in
the ON state.
This analysis manifests the primary role of oxygen vacancies in RS and shows how
RS performances can be tuned by controlling their concentration within the metal
oxide, in order to obtain longer endurance and higher Off/On ratio. On the other hand,
nanostructured TiO2 devices offer poor performances for real devices applications
and should abandoned in favor of thin film devices.

3.2 TiO2 Thin Film

Reference paper: Porro et al., Low-temperature Atomic Layer Deposition of TiO2

thin layers for the processing of memristive devices, J. Vac. Sci. Technol. A 34(1),
Jan/Feb 2016
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Thin film devices are favorable for integrated chip accounting for very large
number of devices, because of the control they offer in the fabrication process and
the opportunity to design very dense circuits on the same wafer. Indeed, progress
in optical lithography sustained the Moore’s law toward the scaling dawn of 2D
technologies, allowing to embed on a single Silicon wafer billions of basic logic
units in a single fabrication process.
Atomic Layer Deposition (ALD) is a key technological resource in such a fabrica-
tion process, thanks to its self-limited and self-organized deposition mechanism, its
atomic thickness control and the relaxed constraint of line-of-sight deposition, [70].
It is a technique widely used also for the resistive switching technology, receiving
strong impulse by microprocessors company as well that see the memristive technol-
ogy as natural substitute of the Silicon technology in RAM fabrications, [10]. For
this reason, starting from the HP lab first study on TiO2 resistive switching in 2008,
a pletora of scientific articles appeared in literature discussing properties of this
material, most of which treated TiO2 deposited via ALD. ALD allows the fabrication
of a certain variety of TiO2 based RS, such as single layer RS [36, 48], multilayer
RS [50], doped RS [51] etc.
The present section regards the study of titanium dioxide based RS deposited via
ALD at lower deposition temperature (i.e. < 150°C) with respect to the usual temper-
ature window normally adopted (i.e. 200 - 250°C), [71]. The scope of such analysis
is to enable a simple fabrication process for thin film devices based on TiO2 that
allow to skip complicated and inaccurate dry etching steps in the patterning process,
[72]. Indeed, lower temperature deposition allows the metal oxide to be deposited
directly onto pre-patterned photoresist and thus, to obtain the RS device simply via
the easier lift-off technique. The study shows how with this simplified fabrication
recipe, similar resistive switching electrical characteristics can be obtained.
The fabrication process proceeds as described in the previous chapter, following the
steps depicted in figure 3.7.

First, Cu bottom electrode 200 nm thick was deposited as bottom electrode
onto the substrate. A thin layer, 20 nm, of Ti was deposited in between to enhance
adhesion of the metal layer onto the substrate. A subsequent step of standard optical
lithography was performed in order to deposit and pattern the photoresist. ALD was
then performed in order to deposit a metal oxide coating onto the complete substrate.
Metal oxide was deposited at different temperatures, in between 80°C and 140°C, in
order to assess the material quality for device production and RS properties. Lift-off
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Fig. 3.7 Schematics of the process flow for fabrication of Si/ Ti(20nm)/ Cu(200nm)/
TiO2(30nm)/ Pt(100nm) multilayer structure.

technique removed the metal oxide layer where it was not required by patterning. In
conclusion, top Pt electrode was deposited through a shadow mask.

3.2.1 Material Characterization

FESEM analysis of the deposited layers show a smooth and continuous thin film
successfully deposited in all the temperature range considered. See figure 3.8a) for
a reference top view picture of the sample deposited at 120°C. Anyhow, inset of
the same figure shows the formation of inclusions sparingly grown onto the surface.
Such inclusions are much less present in higher temperature deposited samples,
see figure 3.8b), and can be considered as by-product of the deposition parameters
chosen, that will be discussed later in this section. FESEM investigation confirmed
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that lift-off process was performed correctly, without any degradation of both metal
oxide film and photoresist during the deposition process, see figure 3.8c).

Fig. 3.8 FESEM characterization of TiO2 samples. Panel a), cross section and top view
(inset) of material deposited at 120°C. Panel b), top view of material deposited at temperature
of 230°C. Panel c), top view of sample at 120°C patterned via DMSO lift off.

Figure 3.9 shows the growth per cycle (GPC) measured for the deposition pro-
cesses at lower temperature. It is observed an inversed proportionality between GPC
and deposition temperature, with as a reference about ≈ 0.5Å/cycle at 140°C and
≈ 1.1Å/cycle at 80°C.
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Fig. 3.9 Growth per cycle for 400 cycles of TiO2 as a function of ALD deposition temperature.

High growth rate for metal oxide thin film could possibly lead to a less dense
film reacher in localized defects. Indeed, two principal processes could occur as
consequence of the low temperature, i.e. condensation and partial surface reaction
during the ALD process. H-bonded OH groups adsorbed onto the substrate surface
dominate the ALD reaction during the deposition process and condensation of these
groups contributed to the generation of active sites for growth of both precursors and
by-products of the deposition, contributing to the generation of deposition defects.
For this reason, the temperature windows identified for the RS devices fabrication
was limited to 120-140°C.

Raman spectroscopy was then performed for the samples deposited at 120°C,
130°C, 140°C and 230°C, taking a well crystallized Solaronix TiO2 commercial
powder as reference; data collected are reported in figure 3.10. Raman peaks typical
for the crystalline TiO2 in the anatase phase are observed. Well-crystallized TiO2

shows three Eg vibration modes at ≈144, 197 and 639 cm−1 and two B1g vibration
mode at ≈ 399 and 519 cm−1, that are comparable with what observed and reported
in table 3.2. In order to assess the amorphous to crystalline ratio of the samples
deposited at different temperature, peak fit was performed. Peaks center and full
width at medium hight (FWMH) were compared. As can be observed from data
reported in table 3.2 and 3.3, the three samples deposited within 120-140°C show
similar features that, regarding the FWMH, can be collectively considered higher
than the reference Solaronix powder, indicating a larger amorphous to crystalline
ratio. On the other hand, peak centers show a shift that is symptomatic of a residual
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Fig. 3.10 Raman spectra fo TiO2 deposited on Si wafer with Pt interlayer at 120-230°C.
Measured peaks, as reported in table 3.2, are typical of TiO2 in the anatase phase.

tensile stress in the substrate during deposition.

Table 3.2 TiO2 Raman peaks center comparison.

Sample
Peak Eg Peak B1g Peak B1g Peak Eg

144cm−1 399cm−1 519cm−1 639cm−1

TiO2 −120C 145.7 384 507 626
TiO2 −130C 145 381 na 627
TiO2 −140C 145 381 509 628
TiO2 −230C 147 392 512 635
Solaronix 146.9 397.7 518 639.6

In conclusion, XPS was performed to assess the chemical composition of the
samples and comparable and good stoichiometry was measured for all the low
temperature devices, with Ti ≈ 33% and O ≈ 66%, as shown in 3.11 for sample at
120◦C for reference. Main peaks identified during XPS analysis are reported instead
in figure 3.12, showing that no relevant concentration of impurities is present.
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Table 3.3 TiO2 Raman peaks FWMH comparison.

Sample
Peak Eg Peak B1g Peak B1g Peak Eg

144cm−1 399cm−1 519cm−1 639cm−1

TiO2 −120C 27.8 42.3 41.3 55.4
TiO2 −130C 27.7 na na 55.4
TiO2 −140C 26.6 43.1 40.3 52.9
TiO2 −230C 19 32.9 35 45.2
Solaronix 13.8 23 24 25

Fig. 3.11 XPS depth profile of TiO2 thin film device deposited at 120◦C.

3.2.2 Electrical Characterization

The produced devices are electrically characterized in voltage sweep mode, with
applied voltage ranging in between [−1,+1]V and applied current compliance of
100µA. The current compliance is set in order to reduce the probability of irre-
versible breakdown of the device during the soft breakdown imposed by the applied
voltage. The measured pristine state of TiO2 thin films is in the order of 10+7Ω

and requires a higher applied voltage in order to create the first conductive filament
bridging the two electrodes. Such a process is called electroforming and it is needed
in particular with highly resistive thin films, such as TiO2, H f O and Ta2O5. During
this process, with devices in ECM configuration like these, positive voltage is applied
to the Cu electrode, forcing the anodic dissolution of Cu2+ ions into the metal oxide
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Fig. 3.12 XPS core levels of TiO2 thin film device deposited at 120◦C.

matrix. Positive ions are drifted toward the counter electrode until they create a
metallic CF that brings the device in its LRS. A sufficiently high applied voltage
in opposite polarity then is able to interrupt the CF because of the generated Joule
heating. The metallic CF obtained in ECM are shown to be in conical shape and
thus are likely interrupted close to the opposite electrode with respect from the one
they originated, due to the thinner extreme of the CF itself and the reduced thermal
conductance toward the electrode, where heat is easily dissipated.

Figure 3.13 shows representative cycles obtained for samples at 120°C, 140°C
and 230°C, respectively panel a), b) and c). Table 3.4 reports a summary of results
obtained for measured electrical behavior, highlighting resistance states and ratio
with their respective cycle-to-cycle standard deviation. As it can be observed,
performance of the three devices are comparable, with pristine state in the order
of hundreds of MΩ and similar LRS, HRS and ratio. Standard deviations manifest
a high variation on RS behavior quite typical for RS based on titanium dioxide
and could easily make negligible possible variations due to the lower deposition
temperature.
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Fig. 3.13 Semilogarithmic plots of electrical characterization for TiO2 devices deposited
at different temperatures. Three representative cycles show comparable bipolar resistive
switching behavior for devices deposited at 120°C, panel a), 140°C, panel b), and 230°C,
panel c).
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Table 3.4 TiO2 thin film electrical performances summary.

Sample RPristine (108Ω) Ron (102Ω) Ro f f (104Ω) Ratio

TiO2 −120C 32±13 0.35±0.06 4.5±2.0 9±3
TiO2 −140C 0.66±0.08 60±20 260±3 23±8
TiO2 −230C (0.60±0.38) 2.1±1.2 15±10 17±15

3.2.3 Conclusion

In this study, characterization of TiO2 thin layer deposited via Atomic Layer Deposi-
tion at low temperature was given. ALD offers great advantages from the techno-
logical standpoint in terms of control of material deposition, conformal deposition
without line-of-sight requirements and density of nodes producible on single wafer.
On the other hand, TiO2 patterning suffers of poorly controllable and inaccurate
dry-etching process. Lower temperature deposition then becomes fundamental in
enabling accurate patterning of the metal oxide through standard optical lithography,
with ALD deposition of titanium dioxide directly onto the photoresist layer needed
for the process.
In the present analysis, a temperature window between [80◦C,140◦C] was explored,
well below the standard process temperature of 230°C. FESEM analysis shows a
well patterned, compact and adhered layer to the substrate with sparingly grown
inclusions. Such defects are likely to be produced as a consequence of the high
growth per cycle observed at low temperature depositions. Indeed, high GPC allows
inclusions due to condensation and partial surface reaction during the deposition
process. An inverse proportionality between deposition temperature and GPC is
observed. Raman spectroscopy shows TiO2 crystallized in the anatase phase and
fitting of peaks compared to commercial Solaronix powder highlights a higher amor-
phous to crystalline ratio for the deposited material. In conclusion, XPS analysis
shows good stoichiometry of the layer, with 66% Oxygen and 33% Titanium relative
concentration and no relevant impurities concentrations.
The electrical characterization of devices is performed in voltage sweep mode in
the maximum range [−1V,+1.5V ]. Current compliance is set to Icc = 10−4A only
in the positive polarity, in order to prevent damages to the dielectric because of too
high current densities. When positive polarity is applied to the Cu electrode, SET
transition is observed for all the tested devices, i.e. devices at 120°C, 140°C and
230°C deposition temperature; corresponding RESET transition is observed in the
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opposite polarity. Large variability is observed in all the electrical characteristics, as
typical for RS devices yet, but surely they can be considered comparable.
Low temperature deposition of ALD TiO2 layer has demonstrated the successful pat-
terning of devices via standard lithography, without impeding or relevantly affecting
the resistive switching behavior of the produced devices.



Chapter 4

ZnO based resistive switching

4.1 ZnO Thin Films

Reference paper: currently undergoing writing

A different material was studied for the realization and characterization of thin
film resistive switching, i.e. ZnO, zinc oxide. In particular, ZnO thin films are
widely studied for the many properties they express, like piezo-electricity [73, 74],
energy nanogeneration [75] and negative capacitance [45], optical properties [76],
semiconductor properties [77, 78] etc. ZnO attracted also great interest due to its
easiness of preparation, both as thin layer and nanostructure [79], device integration
and electrical behavior. A plethora of methods is available for ZnO thin films
preparation, like pulsed laser deposition [80], atomic layer deposition [23, 81],
sputtering [45], chemical vapour deposition and hydrothermal synthesis [82], etc..
Currently, sputtering represents one of the most promising synthetic strategies for
growing ZnO thin films with well-defined unipolar/bipolar RS behaviors, [83, 84].
Specifically for the research group from which this dissertation originates, ZnO offers
the opportunity to compare resistive switching behavior originated from great variety
of deposition and growth techniques. In particular, within the group are fabricated
and investigated resistive switching produced via sputtering deposition, atomic layer
deposition and chemical vapor deposition, in configuration of both single ZnO
nanowire and nanowires forest grown onto substrate. Such a great opportunity allows
to deepen the knowledge about ZnO properties due to different deposition methods,
further understand the mechanisms that lead to resistive switching and engineer
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devices toward the desired RS properties. The present dissertation, with this chapter,
will focus on sputter-deposited ZnO RS.
In particular, Zno thin film RS are produced in both ECM and VCM architecture,
adopting either Copper or Platinum as top electrode. Moreover, multiple device
heights are produced in order to investigate the influence of thickness and consequent
crystallinity on the RS properties. The studied devices are reported in the following:

• Ta/Pt/ZnO−50nm/Pt

• Ta/Pt/ZnO−50nm/Cu

• Ta/Pt/ZnO−100nm/Pt

• Ta/Pt/ZnO−100nm/Cu

• Ta/Pt/ZnO−250nm/Cu

With bottom 10nm-thick Tantalum as adhesion layer and Platinum as bottom
electrode.

4.1.1 Material Characterization

Before analyzing electrical RS properties, morphology, chemical composition and
crystal structure of the corresponding ZnO thin films are investigated.
Morphology of ZnO thin films is studied by FESEM analyses, both in top view and
cross section. Figure 4.1a) shows the top view image of sample ZnO - 50 nm. The
surface shows a fine-grained structure, with round-shaped grains and a typical size
of 20 nm.The cross section view is shown in figure 4.1b) and highlights the presence
of columnar grains oriented perpendicularly with respect to the Si/Ta/Pt substrate.
Such a structure is typical for sputtered ZnO thin films, [85], and it is even more
remarkable for the thicker ZnO samples, as shown in the next.

Figure 4.2 shows the cross sections FESEM images obtained for samples ZnO
- 100 nm and ZnO - 250 nm. The corresponding top-views are shown in insets
of the respective figures. Similarly to sample ZnO - 50 nm, also in this case the
columnar grain structure of the material is observed. However, some differences
can be appreciated. At first, the lateral size of the columns increases for higher ZnO
thicknesses. Then columnar grain assumes a more defined geometrical shape, that
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Fig. 4.1 FESEM characterization of ZnO - 50 nm sample deposited on Si/Ta/Pt substrate.
Panel a), top-view. Panel b), cross-section. In both the cases, images are acquired at 500k
magnification while the scale bar is 20 nm.

as obtained by XRD analysis reported in the following, approaches the hexagonal
structure characterizing the wurtzite phase typical of thickest ZnO film (250 nm).

The compositional analysis of ZnO thin films is performed on sample ZnO -
100 nm as reference. Since all deposition parameters except for the deposition time
were kept fixed for all the investigated ZnO thin films, no relevant changes in the
oxide stoichiometry and composition are expected for the remaining ZnO samples.
Figure 4.3 shows the XPS depth-profile analysis obtained for sample ZnO - 100
nm deposited on Si wafer. A quite good stoichiometry ratio between Zn and O is
observed within the oxide layer. This is due to the mutual combination of several
effects arising from the particular choice of the deposition parameters. Firstly, the use
of a stoichiometric ceramic ZnO target, secondly the presence of inert Ar atmosphere,
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Fig. 4.2 FESEM characterization of ZnO samples. Panel a), ZnO - 100 nm layer as observed
in cross section with SEM at 100k magnification, the shown scale bar is 200 nm. Panel a)
inset, ZnO - 100 nm layer as observed in top view with SEM at 250k magnification, the
shown scale bar is 100 nm. Panel b), ZnO - 250 nm layer as observed in cross section with
SEM at 100k magnification, the shown scale bar is 200 nm. Panel b) inset, ZnO - 250 nm
layer as observed in top view with SEM at 250k magnification, the shown scale bar is 100
nm.

thirdly the use of an optimal RF power density as defined in section 2, allowing
for the incorporation of oxygen within the growing films, avoiding the undesirable
oxygen deficiency that generally affects sputtered ZnO thin films.

The XPS core levels data reported in figure 4.4 for the same sample as above
shows that no impurities in relevant atomic concentration are present in the thin layer
produced.
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Fig. 4.3 XPS depth profile of ZnO-based MIM memristive devices, at ZnO film thickness of
100 nm as reference.

Fig. 4.4 XPS core levels spectrum of ZnO-based MIM memristive devices, at ZnO film
thickness of 100 nm as reference.

Raman spectroscopy shows the typical peaks of nanocrystalline ZnO in their
direct modes. As it could be expected, crystallinity of the material is preserved with
the film thickness and peaks in Raman analysis becomes more and more intense, see
figure 4.5.
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Fig. 4.5 Raman spectroscopy of ZnO samples at 50 nm thickness (black trace), 100 nm
thickness (red trace), 250 nm thickness (blue trace)

Figure 4.6 shows the XRD spectrum of the MIM devices fabricated with dif-
ferently thick ZnO films, i.e., 50 nm, 100 nm, and 250 nm. Apart from the strong
diffraction contribution due to Si wafer and Platinum electrode, only reflections com-
ing from ZnO wurtzite phase were detected. This is represented by the presence of
(002) and (101) diffraction peaks, located at around 34.4° and 36° 2θ positions. The
intensity of the corresponding peaks increases in line with the ZnO film thickness.
In particular, very broad and weak peaks are detected for the thinnest ZnO film (50
nm), see figure 4.7. Both the ZnO diffraction contributions become more intense
as the film thickness is increased up to 100 nm and, more noticeably, up to 250 nm.
Differences in the crystal orientation of the analyzed ZnO samples may be noticed
considering the corresponding I(002)/I(101) intensity ratio; it changes from 0.7
to 1.1, when the ZnO thickness increases from 100 nm to 250 nm. This is due to
the different intensities of the corresponding (002) peaks. Indeed, while the ZnO
(101) peak does not remarkably change, the intensity of the ZnO (002) peak, due to
diffraction of crystal planes oriented perpendicularly with respect to the thin-film
growth direction, becomes the higher the more film thickness increases. This also
stands for the existence of a preferential orientation within the ZnO structure along
the c-axis crystal direction, consistently with the columnar grain structure previously
shown in figure 4.2.
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Fig. 4.6 XRD spectra of ZnO-based MIM memristive devices, at the different ZnO film
thickness of 50 nm, 100 nm, and 250 nm.

Fig. 4.7 XRD spectra detail of ZnO-based MIM memristive devices, at the different ZnO
film thickness of 50 nm, 100 nm, and 250 nm.
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4.1.2 Electrical Characterization

Devices are characterized in voltage sweep mode, applying consecutive positive and
negative voltage ramps, not necessarily symmetric, while limiting the maximum
amount of current transported across the device. The device is thus voltage controlled,
up to the moment in which the current compliance is reached and becomes current
controlled. This precaution is adopted in order to avoid irreversible breakdown of
the device under test during transitions to lower resistance states.
In all the measures reported in the following, variability is computed as standard
deviation of cycle-to-cycle measures.

The first device characterized here reported is ZnO – 50 nm VCM. Zinc oxide is
particularly conductive and the measured resistance stays in the order of hundreds
of ohms. For this reason, also the imposed current compliance is kept in the order
of mA. Ten representative electric characterization cycles for the present device are
reported in figure 4.8a), with one of them shown in red as reference. Electric charac-
terization starts at 0-voltage with positive ramp up to 0.5V applied and consecutive
negative ramp with absolute maximum negative voltage of -0.8V. Before the positive
maximum voltage is reached, quick transition to LRS is observed. In the specific
case represented, the current compliance is not required because of a low maximum
voltage set. A quick and opposite transition is then observed in the negative voltage
polarity, with a decrement to the original HRS. Already in the few cycles reported
here, it appears evident how the characterization does not reach a stable electrical
profile and observables like LRS, HRS, SET and RESET voltages are extremely
variable. The resistance states during the voltage sweep themselves are unstable and
largely noisy. Such characterization is consecutively repeated with more equivalent
devices, spanning different range of maximum voltages as well as of current compli-
ance values, without being able to stabilize the electrical response. On the other hand,
irreversible electrical behavior is obtained for ZnO – 50 nm ECM. SET transition is
obtained whenever positive voltage is applied to the copper electrode, but despite of
the presence of current limitation, RESET transition is not obtained. Figure 4.8b)
shows a representative characteristic of the ECM device once the breakdown is ob-
tained. Many trials are attempted, reducing the current compliance as well as leaving
the device forced only in the negative polarity up to 100 mA, but no reversible SET
transition is observed. Copper is a highly electromigrating metal, that eventually
under the application of electric field easily cover the whole 50 nm of zinc oxide
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Fig. 4.8 Electrical characterization for ZnO - 50 nm samples. Panel a), voltage sweep cycles
for ZnO/Pt sample showing bipolar resistive switching behavior; representative cycle is
reported in red. SET transition is observed in positive voltage polarity, RESET transition
is observed in negative voltage polarity. Panel b), voltage sweep cycle for ZnO/Cu sample.
Dielectric breakdown is observed in positive polarity and irreversibly shortcut the device.

interposed between the two electrodes. On the other hand, VCM relies only on the
presence of oxygen vacancies within the oxide matrix. The switching characteristics
observed suggest the presence of a sufficient concentration of vacancies to start
the resistive switching, but not for obtaining stable electrical behavior. Observing
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the good stoichiometry of the material, one can suppose that the main source of
vacancies within the oxide is then probably laying on the grain boundaries of ZnO
and alongside the grain surfaces of the columnar structure observed, rather than in
the polycrystalline and partially amorphous material.
In order to increase the amount of oxygen vacancies available for the resistance
switching, a thicker device is thus realized, depositing 100 nm zinc oxide in both
VCM and ECM configuration, with aim of stabilizing performances of VCM and
further investigate those of ECM. In measurements performed with both devices,
it is not observed a stable and sharp transition from pristine state to a higher con-
ductance state, i.e. electroforming, but rather a smooth transition. Indeed in both
measurements with ZnO - 100 nm, the pristine state is found to be in the same order
of magnitude of high resistance state measured for the first few cycles.

Figure 4.9a) reports the observed behavior found for ZnO – 100 nm in VCM
configuration. Among 100 cycles performed, two variable resistance states are
observable, see inset in figure 4.9a). The device shows resistive switching behavior
with SET transition dispersed around 2 V and RESET transition at about -2 V.
As reported in table 4.1, standard deviations for these quantities are wide and
the measured resistance in both LRS and HRS is about one order of magnitude
higher than what previously measured. This is obviously a consequence of the
thicker insulating material interposed between the two electrode, that is likely richer,
in absolute terms, in oxygen vacancies available for the creation of a conductive
filament, but still not enough to show a stable LRS. Indeed, observing the inset of
figure 4.9a), it appears evident how in about 50% of measured cases, the positive
voltage ramp is not enough to induce the SET transition. The LRS is not stabilized
also by the relatively high current compliance, set to 35 mA. From this facts, it
emerges that increasing further the thickness of a VCM device would likely bring to
a scarcely relevant improvement in performances, while the increment of resistivity
would lead toward a highly resistive device, that in this configuration would demand
a particularly high applied voltage in order to induce sufficiently high electric field
for the creation of the conductive filament.
On the contrary, ZnO – 100 nm ECM shows a much more reliable performance in
comparison to the VCM counterpart. Figure 4.9b) reports the last 100 cycles out
of 200 I-V curves measured. All 200 cycles corresponding resistance states are
reported in the inset of the same figure. As can be observed, HRS undergoes a drift
from higher resistance toward the nearly stable state observed in last 100 cycles.
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Fig. 4.9 Electrical characterization for ZnO - 100 nm samples. Panel a), voltage sweep cycles
for ZnO/Pt sample showing bipolar resistive switching behavior; representative cycle is
reported in red. High failure rate is observed. SET transition is observed in positive voltage
polarity, RESET transition is observed in negative voltage polarity. Panel a) inset, resistance
states measured at V = 0.1V for 100 cycles. Panel b), voltage sweep cycles for ZnO/Cu
sample showing bipolar resistive switching behavior; representative cycle is reported in
red. SET transition is observed in positive voltage polarity, RESET transition is observed
in negative voltage polarity. Panel b) inset, resistance states measured at V = 0.1V for 100
cycles.
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This is likely to be a consequence of ECM mechanism, in which the conductive
filament composed of metal atoms is get enlarged by continuous operation of the
device, that progressively reduces its resistance. The standard deviation of LRS,
HRS, SET and RESET voltages is narrower than the previous case and indeed,
the failure of transition happens only for a few cycles too. From this standpoint,
performances of ECM appears to be largely greater than VCM and promising for
applications. The peculiar conformation of ZnO polycrystalline matrix appears to
play a stabilization role for copper ions moving orthogonally to the substrate surface
without becoming a limit. In this perspective, device thickness does not seem to be a
deterrent for operative devices in the ECM configuration and on the contrary, could
favor better performances. In order to investigate further this insight and understand
the feasibility of extremely thick resistive switching in ECM configuration, a ZnO –
250 nm device is fabricated, at this stage only with asymmetric Platinum-Copper
electrodes.

Table 4.1 ZnO devices electrical performances summary: exhibited LRS, HRS and ratios.

Sample Ron (Ω) Ro f f (Ω) Ratio

ZnO−100−Pt 124±33 (1.2±1.0)103 14±19
ZnO−100−Cu 27±7 160±57 6±3
ZnO−250−Cu 24±2 180±17 7±1

Table 4.2 ZnO devices electrical performances summary: voltage ranges for SET and RESET
transitions.

Sample
SET RESET

Voltage Range (V) Voltage Range (V)

ZnO−100−Pt [1.5, 2.5] [-1.5, -2]
ZnO−100−Cu [1.0, 1.7] [-1.3, -2]
ZnO−250−Cu [1.0, 1.6] [-0.5, -0.8]

The same electrical characterization is performed for ZnO - 250 nm. In this case,
on the contrary to what observed with thinner devices, a sharp electroforming is
observed, inducing transition from pristine resistance state, measured in the order of
7kΩ at V = 0.1V , to resistance states one order of magnitude lower.
Figure 4.10a) shows 400 I-V curves measured with voltage ramps between +2V
and -1.7V, with current compliance set to 20 mA only in the positive polarity. 400
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Fig. 4.10 Electrical characterization for ZnO - 250 nm samples. Panel a), voltage sweep
cycles for ZnO/Cu sample showing stable and repeatable bipolar resistive switching behavior;
representative cycle is reported in red. SET transition is observed in positive voltage polarity,
RESET transition is observed in negative voltage polarity. Panel a) inset, resistance states
measured at V = 0.1V for 400 cycles. Panel b), resistance states ratio computed for 400
cycles. Panel c), retention measurements for LRS and HRS, measured with V = 0.1V ,
Thigh = 1ms, T = 10ms

consecutive I-V cycles is the best endurance obtained for the produced devices
and its stability is remarkable. Already from the plot reported, it appears evident
the overlap between consecutive cycles. A more quantitative analysis then shows
standard deviation for all the relevant observables narrower than the previous cases,
as shown in table 4.1. The resistance states themselves are shown in inset of figure
4.10a), while panel b) of the same figure shows their ratio. It is observed a slightly
increasing Off/On resistance ratio dispersed within the range [5,9]. Good stability
of ZnO - 250 nm allowed for retention measures, performed in both LRS and HRS,



4.1 ZnO Thin Films 57

forcing with constant signal of 0.1V for with 10% duty cycle and 10 ms period. The
performed retention measurement showed extremely stable resistance for 2.2 ·10+4

reads both in HRS and LRS, see figure 4.10c), after which the measurement was
interrupted.
ZnO - 250 nm shows far better performances in ECM configuration than all the pre-
vious devices characterized. Its peculiar features from the material standpoint relies
mainly in the crystalline structure of the layer. Already from the FESEM character-
ization, the prevalent orientation of crystal grains orthogonally to the SiO2/Ta/Pt
substrate is remarkable. The XRD analysis then confirms an emerged favoured
crystallographic orientation along the c-axis, coexisting with direction (101). The
particular crystallinity of the ZnO layer is direct consequence of the thicker layer
and could stand at the basis of the observed electrical performance. Thick devices
in VCM configuration already at 100 nm shows a high resistance and unstable elec-
trical response, while when electromigrating metal atoms are involved, stability is
reached. Moreover, in the latter case, values for LRS and HRS are comparable to
the one measured with thinner MIM devices in ECM configuration and supports the
hypothesis of the role of Cu atoms involved in the switching rather than Oxygen
vacancies. Thus movement of ions and crystal orientation seems to be positively
correlated and responsible for reliable performance of ZnO based resistive switching.
On the other hand, the layer thickness is not impeding the formation of a conductive
filament, that because of the thickness involved and the typical CF diameters reported
in literature [35], seems to be unlikely continuous. Other works in literature shows
that with relevant, still different, ZnO based devices the CF continuity is not required
for observing resistive switching [86].

4.1.3 Conclusions

The present study investigated RS properties of ZnO thin film devices in both ECM
and VCM configuration, at different thicknesses. The FESEM analysis of the sam-
ples highlighted a progressively more columnar crystallization of the ZnO oriented
orthogonally to the Si/Ta/Pt substrate. Samples at 50 nm thickness express barely
visible columns, while wurtzite phase becomes predominant when the sample at 250
nm thickness is observed. Raman spectroscopy and XRD spectroscopy highlights
also more and more intense peaks of nano-crystalline ZnO as the layer thickness
increases, with predominance of peak (002), with respect to peak (101), as the
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thickness reaches its maximum. Thus, grains are oriented alongside the c-axis, con-
sistently with what observed with FESEM analysis. Finally, XPS spectroscopy shows
a nearly stoichiometric film, due to the specific sputtering deposition conditions
adopted. In particular, the choice of ZnO ceramic target, the inert Ar atmosphere
and the accurate sputtering power calibration.
The electrical characterization of the devices shows an unstable and unreliable RS
behavior for ZnO - 50 nm in VCM configuration. On the other hand, The same
device in ECM configuration is easily shortcut within the first cycles of voltage
sweeps. In order to increase the amount of oxygen vacancies available for the CF
creation, the thickness of both devices is increased to 100 nm. Indeed, because
of the particular structure of the ZnO film, oxygen vacancies available are mainly
concentrated alongside the grain boundaries of the columnar grains present. ZnO -
100 nm shows an improved RS characteristic but, still, with very high failure rate,
due to difficulties in performing the SET transition. On the contrary, the same device
in ECM configuration performs far better, with only about 5% of failure rates and
endurance shown up to 200 cycles. If thickness represents a problem for the creation
of an oxygen vacancies based CF, Cu ions are able to electromigrate and stability
create a more conductive area within the ZnO grains alongside the complete length
of the film.
Finally, the largest thickness sample in ECM configuration exhibits the best perfor-
mances of the series, with the narrower standard deviation on all measured quantities,
400 cycles of endurance reached and 104 reads of state retention.
In conclusion, ZnO thin films resistive switching devices shows reliable perfor-
mances in voltage sweep mode preferably in ECM configuration and with a higher
crystallinity, induced by a larger film thickness. Such a performance would be al-
ready exploitable for learning networks implementation. On the other hand, spiking
neural networks, required a voltage pulse characterization, not yet available in the
present study for these samples. Moreover, if the ZnO samples are particularly
interesting for the study of mechanisms at the basis of resistive switching, because
of their relatively large conductivity they are not the most favored for large network
implementations, since they would induce a huge power dissipation. Other materials
thus are adopted for the synapse-like implementation of RS in SNN, like Ta2O5 and
H f O.



Chapter 5

Memristive Neuromorphic Systems

Reference paper: Brivio et al., Dynamics of spike-based learning in hybrid analog-
digital CMOS-memristive neuromorphic systems. Currently undergoing submis-
sion.

Neuromorphic systems acquired more and more attention in the past decades
because of their advantages with respect to the present computing technology, [40].
Indeed, they are particularly suitable for managing the noisy and unstructured amount
of data constantly produced by the numerous device connected to the internet. An
interpenetrated architecture merging computation unit and memory unit allows to
overcome the limitation of Von Neumann’s architecture, mostly in terms of com-
munication bottleneck and chip size, boosting computational speed and reducing
power consumption. Distinctive features of brain-like architecture are parallel and
asynchronous computation, together with learning and adaptation to average activity
mechanisms. Their potential have already been demonstrated by technologies like
IBM’s TrueNorth, [87], and SpiNNaker, [88], despite they are still based on conven-
tional CMOS-based technology that hardly adapt to bio-inspired hardware.
Resistive switching, adopted together with refined chip architecture for emulating
neurons functioning are particularly promising for the realization of bio-inspired
devices. Analog electronics and event-driven computation indeed can be exploited
to match the energy efficiency of brain, [89].
Most of the research activity in the field then is devoted to the understanding and
modeling of resistive switching functioning in neuromorphic chips, dealing with the
large device variability that such a new technology presents. As it already emerges
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from the previous discussion of this dissertation, there is no standard yet for the
memristor technology useful to be embedded in state of the art network. Numerous
device architectures, like thin films or nanostructures, are explored in order to enable
their successful implementation and control the switching mechanisms required for
implementing learning algorithm in hardware. Variability is one of the main issues
related to resistive switching, since both the final value of resistance state and of the
control variable (electric field, internal temperature or others) needed for the switch
could show a large variability. Many works in literature are devoted to demonstrate
the robustness of neural networks against such variability, [90, 91] or to demonstrate
its usability for the implementation of stochastic learning algorithms, [92].
Resistive switchings are also particularly suitable for neuromorphic systems because
of their interoperability with spiking networks. Voltage spikes are of prominent
importance in information transmission in brain, since they are generated by neurons
and transmitted across the network through synapses. Artificial spiking neural net-
works are designed to behave similarly, implementing CMOS-based neurons able to
integrate the input signals coming from the network and generate a voltage spike, i.e.
a pulse, as similar as possible to the biological one. Such a pulse is then transmitted
as the neuron output to the resistive switching and possibly imposes a transition
in the resistance state. For this reason, it becomes important to have a complete
characterization of the resistive switching in case of forcing pulse train, other than
with voltage sweeps. As a second aspect, spiking computation can be described as a
computation on demand, in which power is used only when an event, i.e. a spike
generated by the input, is transmitted across the circuit. This fact contributes sensibly
to the reduction of power consumption by the entire chip and favor its adoption
for compact independent devices that cannot rely on constant accessible source of
energy.
In the present chapter it is described the design of a spiking neural network em-
bedding I&F CMOS-based neurons, as described in the Introduction of the present
dissertation, and pulses-characterized resistive switching. Devices adopted to this
purposes are realized by the Italian Council of Research, CNR - Agrate, with which
a scientific collaboration as been established. The third side of the scientific collabo-
ration comes from the Institute of NeuroInformatics of Zuerich, INI - ETH and UZH,
that brings into the project competences for the circuit design and its implementation.
Description of this second phase of the research project proceeds as follow: at first,
the resistive switching devices will be described in their fabrication and character-
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ization process. Empirical modeling of their functioning will be discussed, since
it will be then employed in the spiking neural network learning algorithm. Then,
Spike Timing Dependent Plasticity, together with its variation proposed by Fusi et
al. [93], will be over-viewed. A brief description of the hardware designed is given.
In conclusion, the behavior of the network is extensively analyzed with numerical
simulations while performing the task of hand-written digits classification from the
MNIST dataset, [94].

5.1 STDP and Fusi Learning

Spike Timing Dependent Plasticity is chosen as the learning rule implemented in the
memristive network, because of its similarity to the biological processes believed to
happen in brain functioning and because of its suitability to hardware [6–9, 89].
Human brain is thought to realize complex cognitive tasks and store memory thanks
to the synapses composing its neural network. Indeed synaptic plasticity allows for a
dynamic change of network configuration due to experience, realized in the form
of variations in synaptic efficacy (also named synaptic weight, w) in transmitting
information. Subset of synapses, during brain activity, becomes more responsive
to specific stimuli rather then other; on the contrary, different subsets of synapses
could become inhibited for the same reason. At its extreme, this behavior leads to
the formation and pruning of synapses connected to dendrited of cells, physically
changing the neuronal network itself, [5]. Synapses configuration becomes distinc-
tive for the reaction to particular events experienced by the subject and are believed
to be at the basis of our memory. The two types of dynamics leading to synapse
efficacy strengthening and weakening are Long Term Potentiation (LTP) and Long
Term Depression (LTD) respectively [9].
STDP models LTP and LTD as phenomena related to the firing activity of pre-
synaptic neuron and post-synaptic neuron, considering their time-difference. Synap-
tic weight variation is defined as a function ξ = f (∆T ), with ∆T = tpost − tpre,
being tpost and tpre the time instant of post-synaptic spike and pre-synaptic spike
respectively. STDP introduces a concept of causality in synaptic potentiation and
depression, favoring the potentiation of connections between those neurons whose
activity is positively correlated in time and reducing the relevance of those anti-
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correlated. Moreover, as seen in figure 5.1, the relative weight change is proportional
to the time delay happened between spikes.

Fig. 5.1 Schematics of STDP functional behavior. Pre-synaptic neuron activity and post-
synaptic neuron activity can induce synaptic weight update, following behavior depicted
in the bottom panel, depending on their time correlation. Bottom panel, dot represents
experimental data, solid lines represent mathematical inferred model. Reproduced from
Scholarpedia, 5(2):1362

The scheme proposed by Fusi and coworkers, [93], corresponds to a general-
ization of the STDP learning rule. Conditions for the synaptic weight change to
happen do not depend on the time of pre- and post-synaptic spike, but rather on the
membrane current present at the post-synaptic neuron when stimulated by an input
spike. In such a way, variation of synaptic weight is potentially always enabled, still
depending on the activity of the post-synaptic neuron through the membrane current.
In order to preserve a measure of time correlation, it is introduced a further variable
inspired by biological feedback loop present in the neuron, i.e. Calcium ions current.
It acts as a low pass filter of post-synaptic neuron activity and provides a measure
of average firing rate on long time-scales. Setting opportunely thresholds to both
membrane current, i.e. Imem, and Calcium current, i.e. ICa, neuron activity could
enable alternatively LTD or LTP depending on values assumed by both variables.
Looking more into the details of the circuit activity, a synapse connects couple of
neurons. Neurons integrate current incoming at their input according to the following
equation:
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dImem

dt
=−λ + I(t),

Imem ⩾ 0,
(5.1)

where I(t) is the overall incoming current and λ is a constant leak. Whenever
the membrane current overcomes a pre-determined threshold Ispkθ

, the post-neuron
fires in its output and the membrane current is reset to a fixed value. This be-
havior emulates the refractory period experienced by biological neuron in which
hyper-polarization occurs and silent the neuron activity until equilibrium is restored.
Dynamics of the second internal variable of the neuron is governed as follow:

dICa

dt
=− 1

τC
+ JC ∑

i
δ (t − ti), (5.2)

where contributions due to spiking JC ·δ (t − ti) with amplitude JC occurring at
time ti are summed up and integrated with a time constant τC. The state variables Imem

and ICa define the neuron operative modes among LTD, LTP and neutral, according
to the learning rule [93]:

LT D : Imem < Iθ ∧ ΘDlow < ICa < ΘDup

LT P : Imem > Iθ ∧ ΘPlow < ICa < ΘPup

neutral : otherwise

, (5.3)

where Iθ specifies thresholds on membrane current, ΘDup,low and ΘPup,low specify
bands thresholds for LTD and LTP. Depending on the chosen thresholds, different
regimes of learning can be observed, as it will further explained in the following
sections.

5.2 HfO Resistive Switching

5.2.1 Characterization

Pt/HfO2/TiN resistive switching are adopted as the weighting elements for synapses
in the neuromorphic architecture. The inverse of the device resistance, i.e. the
conductance, can be easily exploited as the measure of the synaptic weight. Devices
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have been already demonstrated to undergo resistance switching operation through
accumulation and dissolution of oxygen vacancies according to the picture of con-
ductive filament formation and dissolution with good performances in terms of state
retention, endurance and device scalability down to 28 nm [26, 95–97]. In this work,
devices have been characterized and simulated through a simple compact model that
both allows the simulation of a large amount of synaptic connection and at the same
time captures the salient features in term of resistance levels and boundness of the
synaptic weight that impact the final neuromorphic network.
Moreover, devices have been characterized with multiple set of temporal and elec-
trical parameter, among which two are chosen for device simulations in neural
networks, in order to observe the different electrical response in terms of conduc-
tance change. Indeed, what is usually reported as the voltage-time dilemma puts
in evidence the still un-modeled variation in conductance dynamics observed when
devices are characterized with electrical pulses of different amplitude and period.
Intuitively, longer pulses of higher voltage, apply a stronger electric field within the
oxide that induce a faster transition toward a lower resistance state. Conversely, short
pulses of lower voltage require more numerous pulse trains to induce the same transi-
tion. Which the boundaries are for pulses parameter and how to model intermediate
conditions is still object of research. In this study, two conditions are examined and
are referred to as Pulse Parameter Set 1 and 2, i.e. PPS1 and PPS2. Please, refer to
table 5.1 for details. Proceeding with the simulations, it has been found that PPS2 are
more suitable for neural network with higher classification performances, as it will
be clarified in the following of the present chapter. For such a reason, it is reported
here characterization and modeling of devices with PPS2, while analysis performed
with PPS1 is left for a more complete overview in appendix A

Pulse Parameter VLT P(V ) VLT D(V ) T (µs)

PPS1 1.1 -0.8 30

PPS2 0.5 -0.45 30
Table 5.1 Pulse Parameter sets adopted for electrical characterization of RS devices.

The switching characteristics of HfO2-based devices, characterized with PPS2,
are summarized in figure 5.2. When stimulated by sequences of identical positive
spikes, devices undergo transition to LRS and LTP, see panel a), (increase of conduc-
tance). On the contrary, when stimulated by sequences of identical negative spikes,
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Fig. 5.2 RRAM representative conductance evolution as a function of the number of pulses
from 1 to 2k pulses for LTP (a) and LTD (b): symbols correspond to the average of 50
experimental curves; dashed lines are the fitting curves. Grey shaded regions correspond
to 1σ variability. (c) Conductance change driven by one pulse as a function of the initial
resistance for both LTP and LTD, in red and blue respectively. (d) Comparison of tens of
weight evolution as obtained from device and simulations including pulse-to-pulse variability
for LTP (from pulse 1 to 2000) and LTD (from pulse 2000 to 4000). Grey small filled
symbols are experimental data and large empty symbols corresponds to the simulated data.
Thick white lines are the average of the simulated data.

devices undergo transition to HRS and LTD, see panel b), (decrease of conductance).
Conductance is easily converted into synaptic weight through direct proportionality
and mapped in the range [0,1]. In this way it becomes evident how the change in
conductance, i.e. synaptic weight δw, depends on the current value of the weight
itself w, see figure 5.2c). Observing the dynamics of LTD (blue dots) and LTP
(red dots) process, asymmetries between the two processes emerge. Indeed, weight
change is much faster for LTP and LTD, when the weight is close to the extreme
value, and then saturates as the dynamics proceeds. The complete dynamic is shown
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in 5.2d). The evolution of the conductance in LTD and LTP reported in figure 5.2a-d)
evidences the major non-idealities of memristors for synaptic applications as already
emphasized in several publications [98, 99]. The resistance change is non-linear as
a function of number of pulses and it is faster for low pulse numbers (i.e. at low
resistance for LTD and high resistances for LTP, respectively). The second aspect
is that the LTP is observed to have a faster dynamics with respect to LTD, i.e. it
presents an increased non-linearity than LTD.

5.2.2 Modeling

The gradual conductance change featured by the device in response to sequences of
identical spikes is found to be thoroughly described by two separate equations easily
expressed in terms of synaptic weight for both LTD and LTP processes, starting
form LRS and HRS respectively. First of all, conductance is converted into synaptic
weight according to equation 5.4.

wexi = f ∗ ( G
Gmax

− Gmin

Gmax
), wex ∈ [0,1] (5.4)

with f = 2. In terms of w, LTD and LTP processes can be written as in equation
5.5.

LT D : δw =−αDwγD

LT P : δw = αP(1−w)γp

wt+1 = wt +δw

, (5.5)

where parameters αD,P and γD,P are evaluated by fitting experimental data with
equations 5.5. Fitting of experimental data are reported in figure 5.2a) and b) for
both LTD and LTP with dashed white lines. Fitting curves follow nicely the same
dynamics of experimental data and overlap data average over 50 experimental curves,
figure 5.2a) and b). Pulse-to-pulse variability is captured as well, producing simulated
conductance distributions that overlap the experimental data ones, figure 5.2d).
Variability is evaluated as the standard deviation value of the conductance change
per unit pulse ∆G(n) = G(n)−G(n− 1) taken over tens of cycles for both LTD
and LTP. The experimental standard deviations σ∆G are almost constant for both
LTD and LTP and they are used to faithfully reproduce device behavior. During
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numerical simulations, when specified, variability is added to the new computed
synaptic weight value as Gaussian noise with σ∆G standard deviation.

LT D : σ∆G = δD

LT P : σ∆G = δP
. (5.6)

Parameter αD γD αP γP δD δP

value 0.0053 3.4 0.0064 3.2 0.005 0.005
Table 5.2 Values of the fitting parameters for the general synaptic weight evolution and for
the modeling of the device variability for both LTD and LTP.

5.2.3 Memristor implications to Neural Networks

The saturation of synaptic weight is the most important issue that distinguish software
neural networks from hardware realizations. Indeed, from very general considera-
tions, it has been demonstrated that the existence of boundaries for synaptic weights
definitely limits the storage capacity and the precision of neural networks [93, 100]
As discussed by Fusi et al.[93], this issue is only mitigated by the increase of the
number of accessible synaptic weights values. On the other side, boundaries of the
resistance value spectrum are soft, according to the terminology of Fusi et al., in
the sense that they are defined as a slowing down of the LTD and LTP processes at
high and low resistances as shown in figure 5.2c). The figure, indeed, shows that the
normalized conductance change, i.e. the synaptic weight change, depends on the
actual conductance value and, in particular, that the conductance change is negligible
at low conductances for LTD and at high conductances for LTP, respectively.
The existence of intermediate resistance levels between a minimum and a maximum
and the softness of the boundaries allows to improve the memory capacity of the
network [93].
The boundness of the accessible weight range of hardware synapses requires a slow
learning operation for consolidating past experiences and memory lifetimes accord-
ing to the slow learning - slow forgetting principle. To some extent, the gradual
resistance evolution of memristive devices as shown in figure 5.2 is useful to imple-
ment a robust progressive learning and helps in keeping track of a certain amount of
past events experienced by the synapse itself. On the other hand, the employment
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of a generalized implementation of STDP learning rule allows slowing the learning
process down.

5.3 Neuromorphic hardware architecture

In this section, it is proposed a neuromorphic system that implements the learning
protocol described before. While the exact architecture proposed in this section has
not been implemented in Silicon, the building blocks have been implemented and
tested in Silicon [42, 101, 102].

Synapse architecture

Figure 5.3 illustrates the design of a memristor-based synapse circuit, that consists
of a memristor, switching transistors, and a digital control circuit that controls the
connectivity of the memristor to various nodes. The digital controller consists of
two pulse extender circuits for generating extended pulses that are used for reading
and programming the memristor. A synapse is addressed by row and column select
signals labeled as AERx and AERy in figure 5.3. The pulse extender circuits are
essential because the AERx and AERy signals are generated by the AER interfacing
circuitry. The AER is an asynchronous communication protocol that uses very-
short duration pulses, of the order of ns, to maximize through-put. These pulses
are extended by tunable pulse extenders to interface with neuromorphic circuits
operating in biologically plausible time-scales. Each synapse is provided with an
independent digital control module which allows multiples synapses to be read from
or written to simultaneously.
In the synapse shown in figure 5.3, the arrival of AER events triggers a read event
by setting the Read and Read signals to logical high and low levels respectively.
This turns on the transistors, S1 and S2, connecting the terminals of the memristor,
Dtop and Dbot , to Vrd and bot, respectively. The node marked bot is connected
to a sensing circuit that feeds the sensed state to a neuron. The read phase ends
with the falling edge of the Read pulse, which initiates the programming phase by
triggering the second pulse extender that sets Write and Write to logical high and
low, respectively. The synaptic digital control block accepts UP and DN as inputs
from learning controller of the neuron connected to the synapse. Depending on
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the UP and DN signals, this either increases or decreases the conductance of the
memristor. Note that the learning controller ensures that both UP and DN are not
simultaneously high. The Set (Reset) signal enables the switching transistors S3 and
S4 (S5 and S6) for the duration of the Write pulse to increase (decrease) conductance
of the memristor.

AERx
PULSE EXTENDER

Read
PULSE EXTENDER

UP

DN

Set

Reset

Write

Read

Read Set

Reset

Vrd Vst

bot Vrst

Reset

Set

AERy
Read

Set

Reset

Dtop

Dbot

S1

S2

S3

S4

S5

S6

Fig. 5.3 A memristor synapse. AERx and AERy are the select signals used to access the
synapse. The node marked bot will be connected to a sensing circuit that sets the node
voltage to V rdb. UP and DN are inputs to the synapse that determine if the conductance of
the memristor should be increased or decreased. Vst and Vrst are the voltages applied across
the memristor when increasing and decreasing its conductance, respectively.

System level architecture

Figure 5.4 illustrates how the synapse described in section 5.3 can be assembled into
a neuromorphic system. The read and write voltage lines V rd, V st, and V rst are
shared by all the memristors in the array. The bot node shown in figure 5.3 of all
the synapses in a row are connected together. All the synapses in a row also share
the resistance sense circuitry. The sense circuitry is implemented with an Op-Amp
circuit. The sensing mechanism is described in the following paragraph using the
top-most row of figure 5.4 as reference.
The Op-Amp, Op1, is connected in a negative feedback loop with a MOSFET that
ensures that the bot node of the first synaptic row is set to voltage V rdb. This
ensures that the voltage across the memristors during read operation is V rd −V rdb.
Therefore, the current into the current mirror pair M1−M2 is a linear function of
the conductance of the memristor. A sensing circuit using an op-amp in a similar
feedback mechanism was used in an earlier work [102]. The output current from
the current mirror is driven into a DPI circuit which implements a linear first-order
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low-pass filter with tunable gain and bandwidth [42]. The output from the DPI is
sent to the neuron N1. The neuron circuit is similar to the design from an earlier
work [101]. Recall from Section 5.1, that each synaptic input to the neuron is scaled
and convolved with a decaying exponential function. The arrangement described in
this section implements this operation because the gain and bandwidth of the DPI
circuit can be programmed to the desired value. The only constraint is that the circuit
should be operated in sub-threshold. This can be ensured by making V rd −V rdb
small to make the currents small. Further note that the filtering operation can be
shared by all the synapses because of the principle of linear superposition.
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Fig. 5.4 A neuromorphic system implementing the proposed learning architecture. The AER
Row and Column select modules generate the AERx and AERy signals, shown in Figure 5.3,
to access each synapse. The AER Neuron output module communicates the spikes generated
by the neurons to the configured target.

Each neuron is associated with its own learning block that implements the
learning rule described in Section 5.1. This circuit has been implemented in an
earlier work [101]. The learning block generates a 2-bit signal UP and DN that is
used by the synapses connected to the neuron to perform the programming operation.
The mechanism for programming the synaptic weights has already been described in
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Section 5.3. This approach avoids use of pulses with complicated shapes [103–105]
or long overlapping pulses [90, 104, 106, 107], making the system more power and
area efficient.

5.4 Network

5.4.1 Neurons Populations

In the present study, the spiking neural network demanded to classify digits in
MNIST database, is composed by four different neurons populations as described
in the following and depicted in figure 5.5. The input population, (IP), receives the
external stimulus, i.e. the MNIST digit, as pixel intensities and maps it to a Poisson
process with spike train frequency directly proportional to the pixel intensity itself.
The Poisson neurons population counts 784 nodes, corresponding to the total number
of pixels presents in the 28x28 image size, and inputs to the output population. The
inhibitory population, (InhP), accounts a limited number of Silicon neurons and
receives input signal from the IP. In this network it is chosen an inhibitory population
counting 392 neurons, thus one half of the excitatory population. Inhibitory neurons
act as well as leaky integrate and fire neurons, but contribute to the wired neurons in
the network with a negative input current. This is meant to modulate the total amount
of current coming from the excitatory population and thus balance the firing rate of
output neurons. The teacher population, (TP), is composed of the same number of
neurons counted in the output population. Teacher neurons provide the signal for
implementing a semi-supervised learning, [93], and bringing the membrane current
of the respective output neuron above threshold only when the targeted digit is
presented. Thus teacher neurons are Poisson neurons with fixed and high spike train
frequencies. The output population, (OP), when referring to the simplest network
architecture, defined as perceptron and composed by one input layer addressing one
single output node, is composed of a single Silicon neuron and receives input signal
from the IP, InhP and TP. Its activity is determined by the input current driving its
output firing rate. In case of the complete network designed for the recognition
of all digits, OP accounts for 10 times an integer number of neurons, i.e. 100 in
case of 10 neurons addressed by each digit. It introduces a voting rule for the digits
classification that improves considerably the recognition performances. Indeed,
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being the process intrinsically stochastic, included also the spiking frequency of
output neurons, the average firing rate of the neuron population computed on a larger
number of nodes provides a more confident evaluation of performances.

Fig. 5.5 Architecture of the complete network adopted in the learning task. Four different
neurons population are represented in different colors. IP is represented in blue and inputed
with MNIST digits as represented in the picture. InhP is represented in green, TP in orange,
OP in black. IP and OP, IP and InhP as well as InhP and OP are fully connected, but for sake
of clearness, only the first set of edges is shown in the picture. Only synaptic connections
represented with thicker lines are plastic. TP and OP are connected one to one when a digit
belonging to the specific class is presented.

5.4.2 Synaptic Connections

IP and OP are fully connected through plastic synapses adapting their weight accord-
ing to the output neuron membrane current and calcium current values, only when
an input spike is coming from IP. Resistive switchings conductances are directly
proportional to synaptic weights, being multiplied by an integer factor f and rescaled
within 0 and 1. IP and InhP are fully connected with non-plastic synapses, as well
as InhP to OP. Pairs of neurons in TP and OP are connected. No further synaptic
connections are present in the network.
Each synapse in the network, including the memristive synapses, is governed by an
equation as described in 5.7:

dIsyn

dt
=

−Isyn

τ
(5.7)
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where τ is specific for any synaptic population. Moreover, the contribution
to current coming through each synapses can be written as Isyni = Iw ∗wi, with wi

synaptic weight and Iw is a current representing the synaptic efficacy. In these terms,
the total current inputed to the OP through synapses can be written as 5.8:

Iin =
Sex

∑
i

Iwexwexi +
Sinh

∑
i

Iwinhwinhi +
St

∑
i

Iwt wti (5.8)

where again Iw represents the synaptic efficacy for IP, InhP and TP, while w
represents the synaptic weight for IP, InhP and TP and S represents the total number
of synapses wired to the output neuron from IP, InhP and TP. The weights evolving in
time are wex, because of synaptic plasticity, while all the other quantities in equation
5.8 are constants and fixed at the beginning of the simulation. In particular they are
initialized as follows: wex =U(0,1), thus representing resistances dispersed in the
whole accessible states, wIP−inh =U(0,0.8), winh−OP = G(µ = 1.1,σ = 0.05) and
wt = G(µ = 1.3,σ = 0.05) respectively, where U(•) is uniformly distributed and
G(•) is Gaussian distributed. All other custom parameters used into the simulation
are specified in tables 5.3 and 5.4. Whenever an input spike reaches the synapses,
the present membrane current and calcium current of the output neurons inputed by
the synapse are checked against the respective thresholds. If conditions for LTP or
LTD are satisfied, then a new resistance value is computed according to equation 5.5
and the synaptic weight is updated.

5.4.3 Perceptron

Preliminary tests with a perceptron network demanded to acquire features discrimina-
tive for 0s and 1s are performed. Only in this specific section, the presented analysis
refer to devices characterized and simulated with pulse parameter set PPS1; such a
choice is related to differences between the electrical characteristics observed in the
two different cases, confront with appendix A. Indeed PPS1 induces more abrupt
transitions in the devices conductance and thus, put in evidence their dynamics
also in short representative simulation, better than what it would be observed with
simulation involving PPS2.
Perceptron is a single layer neural network acting as linear discriminator. It accounts
for a single input layer of nodes, connected through plastic synapses to a single
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output neuron. The network is instructed to respond positively (output neuron ac-
tive) to the input of a specific digit. Perceptron network, still composed of all the
populations enumerated before, is the building block that allows to monitor correct
functioning of all elements in the network. To this purpose, it is exploited to first
check the correct behavior of simulated resistive switchings inside the network when
LTD and LTP happens.
Observing figure 5.6, the perceptron is run for 900ms while being presented a single
digit and requested to acquire features of digit 1. In both preliminary simulations,
the resistive switchings are simulated excluding device variability. In the first case, a
single digit 0 is presented. Figure 5.6a) shows the total weight map, i.e. the value of
each synaptic weight connecting one input pixel of the digit to the output neuron,
in false colors. Weights generally preserves the initial Gaussian distribution around
mean 0.2, but it starts being evident a depression area of zero shape. This is the
consequence of LTD for those synapses receiving high frequency of bright pixels
defining the digit zero. Observing panel c), dynamics of two specific synaptic weight,
i.e. one from the center of the weight map (in red) and one from the bottom left
corner (in blue), is presented. Red line is constant for the whole duration of the
simulation, since being in the background of the image, no input spike is presented.
Blue line on the contrary shows a slow decay to lower synaptic weights, equivalent
to higher resistances. The relative variation of the weight is low since it is already
close to the asymptotic value of the resistance, reaching the bound of the allowed
resistance distribution without variability.
Figure 5.6b) and d) show the same information for the case of digit 1 presented to
the network. The specific input activates the teacher neuron that starts contributing
to current income of the OP. Thus, output firing activity has higher frequency and
enable LTP. Features of digit 1 appears on the weight map has a subset of weights
with very high value, close to the maximum. The single weights dynamics show
a consistent increase of synaptic weight for both values monitored, respecting the
empirical functional behavior modeled from the real device characterization.

Figure 5.7 reports the same analysis described above in the case of device
variability accounted in the simulation. Few considerations worth mentioning. First,
depressed features of digit 0 in panel a) manifest a lower homogeneity with respect
to the previous case. Looking at panel c), the weight dynamic represented in
blue is not monotonic anymore, despite the same simulation condition. Thus, the
dominant contribution of LTD remains, but variability allows for mixed increment
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Fig. 5.6 Panel a), synaptic weights after a single 0 digit presented for 900 ms. Panel b),
synaptic weights after a single 1 digit presented together with teacher signal. Panels c) and
d), dynamics of weights in the former two cases respectively. Blue traces correspond to
weight excited by both digits, while red traces correspond to weight excited only by digit
1. Traces make evident LTD process, when the only input is shown, and LTP process when
teacher signal is applied. The narrow relative variation in weight for LTD is due to an already
high value of initialized resistance, that brings dynamics toward saturation.

and decrement of synaptic weight. The red curve remains still constant since its
variation depends on the pre-synaptic spike input. Looking at results for digit 1 as
input, features are still acquired and evidently recognizable, but differently from the
previous case, dynamics of two distinct synaptic weights are much less overlapping.
In conclusion resistive switching behavior during network learning is perfectly
comparable with the experimental characterization of real device; variability as well
affects the dynamics of synaptic weight during both LTD and LTP, without impairing
the features acquisition at the basis of digit learning.

Longer simulations with more than one input digit are then performed in order
to gain insights about the dynamics of Silicon neurons variables, i.e. Imem and ICa.
Indeed, the two are of prominent importance in specifying the learning dynamics and
the way in which current thresholds are specified affect deeply the network dynamics.
In particular, at first the network dynamics is analyzed for two different Ca band
configurations:

1. thresholded LTD/LTP modes;
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Fig. 5.7 Panel a), synaptic weights, including device variability, after a single 0 digit presented
for 900 ms. Panel b), synaptic weights, including device variability, after a single 1 digit
presented together with teacher signal. Panels c) and d), dynamics of weights in the former
two cases respectively. Blue traces correspond to weight excited by both digits, while red
traces correspond to weight excited only by digit 1. Traces make evident LTD process,
when the only input is shown, and LTP process when teacher signal is applied. The device
variability is evident in the noisy and non-monotonic dynamics.

2. confined LTD/LTP bands;

Let us consider the thresholded LTD/LTP case first, in which LTD and LTP bands
do not overlap and together they cover the entire spectrum of values accessible by ICa

(see top of figure 5.8). The evolution of the variable Imem is a measure of the short
time-scale activity at the post-synaptic neuron input terminal and presents in figure
5.8a) slowly varying or rapidly oscillating Imem behavior whether a 0 or a 1 is shown
to the network, respectively. The incoming stimulation provokes the output activity
of the post-synaptic neuron that can be appreciated as a raising of the ICa variable
in figure 5.8b). For all the time the Calcium current variable remains in the LTD
(LTP) band the synaptic weight could undergo depression (potentiation) depending
on the relative value of Imem with respect to the chosen threshold, giving rise to the
oscillating behavior shown in figure 5.8c), for two representative synaptic weights
corresponding to pixels that are either shared by digits 0s and 1s or specific of digit 1s.
It is evident from the previous description that a mean temporal correlation between
the firing of the pre-synaptic and the post-synaptic neurons exists as required by a
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STDP algorithms. In summary, in case of thresholded LTD/LTP modes, the large
synaptic weights oscillation lead to fast learning and fast forgetting dynamics which
prevents the storage of the information of the six presentation of the digit 1, as
evident by the final configuration of the weight matrix in figure 5.8d).

Fig. 5.8 Example of perceptron learning dynamics with thresholded ICa bands when 10 input
digits are presented. Panel a), output neuron membrane current. Low frequency corresponds
to digit 0 presented. High frequency corresponds to digit 1 presented together with teacher
signal applied. Panel b), output neuron Calcium current acts as a low pass filter of membrane
current. Regions for LTD and LTP are highlighted. Panel c), dynamics of weights during
learning. Blue trace correspons to weight excited by both digits, red trace corresponds to
weight excited only by digit 1. Large ICa bands allow for fast dynamics of weights that do
not preserve features. Panel d), weight map after 10 digits presented.

In order to reduce the impact of this behavior, one needs to slow down the
learning process, i.e. to reduce the transition probabilities both in LTD and LTP
cases. Such a purpose is pursued limiting the current thresholds involved in the
learning process. In particular, ICa thresholds are particularly suitable to this purpose,
because narrowing the delimited bands for transitions act directly on the transition
probabilities themselves. Furthermore, the image training time has been reduced to
250ms.
Thus, in the second analyzed case, LTD and LTP bands are confined and exclude
low and high values of ICa, as shown on top of figure 5.9, which correspond to
high and low post-synaptic output firing rates, respectively. In this case, though
Imem and ICa evolutions reported in figure 5.9 are qualitatively similar to those of
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figure 5.8, because the stimulation scheme is the same, the change in the LTD/LTP
bands results in slowly varying synaptic weights that progressively retain more
and more information about the presentation of the digit 1, as evident also by the
weight map obtained at the end of the learning process. From this simple analysis is
already evident how the choice of thresholds determines the network dynamics and
consequently its performances. Moreover, at this stage becomes evident the reason
behind the choice of pulse parameter set PPS2 for the device characterization and
simulations. Devices characterized with less intense voltage pulses perform more
gradual transitions toward the alternative conductance state. In such a way, they
intrinsically reduce the impact of quickly varying synaptic weight described above.
Slower resistive switching dynamics thus implies a better retention of information
acquired during simulation.

Fig. 5.9 Example of perceptron learning dynamics with confined ICa bands when 30 input
digits are presented. Panel a), output neuron membrane current. Low frequency corresponds
to digit 0 presented. High frequency corresponds to digit 1 presented together with teacher
signal applied. Panel b), output neuron Calcium current acts as a low pass filter of membrane
current. Regions for LTD and LTP are highlighted. Panel c), dynamics of weights during
learning. Blue trace corresponds to weight excited by both digits, red trace corresponds to
weight excited only by digit 1. Confined ICa bands allow for slow dynamics of weights that
do preserve acquired features. Panel d), weight map after 30 digits presented.
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5.4.4 Linear Synapses Network

Before starting with simulations of the complete network embedding resistive switch-
ing dynamics, preliminary tests with linear dynamics synapses are led. Linear
dynamics for synaptic change means a constant increase or decrease in synaptic
weight for each LTP or LTD event, respectively. Such a behavior is defined additive
weight dynamics, since it does not involve any dependency on the actual synaptic
weight and a constant variation is imposed to the weight. Moreover, in this way
the total number of available synaptic states is perfectly defined at the beginning of
the simulation. Indeed, these two features are opposite respect to those expressed
by the resistive switching dynamics, that on the contrary is multiplicative, i.e. the
synaptic weight change depends on the actual synaptic weight, and do not allow to
determine precisely the number of available states because of the large variability
and the asymptotic behavior. To this extent, these preliminary tests with linear
synapses allow first to understand the performance of the designed network and
learning algorithm. Then, when resistive switching dynamics will be embedded in
the simulation, their impact on performances will be clearly distinguishable.
The network simulated here is composed of the complete Input population and In-
hibitory Population, while the Output Population counts 10 neurons, i.e. one neuron
per class. Correspondigly, the Teacher Population counts 10 neurons, one active at
a time. Three different set of simulations are led, imposing three different weight
change amplitudes, as reported in the following:

1. δw = 0.1; 10 states available

2. δw = 0.01; 100 states available

3. δw = 0.001; 1000 states available

Parameters adopted in the network and related to the firing activity are reported
in the table 5.3; parameters related to learning activity are instead reported in ta-
ble 5.4. The main STDP learning rule drawback relies in its difficulty in defining
network parameters, being them significantly detached from an optimization model
that allows their inference during the learning process itself. More practically, pa-
rameters of the network should be empirically determined by the user from the
network functioning in a greedy-like fashion. For this reason, and particularly for
what concerns thresholds on output neurons variables, multiple tests are performed
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with different simulations. Change in the membrane current thresholds as well as on
Calcium current thresholds have major impact on the network classification power.
Meaningful collection of these tests are reported and briefly discussed in appendix
B.

Parameter Ispkthr,ex Ispkthr,inh Iwex Iwinh Iwinhout Iwt

value 600 pA 600 pA 7 pA 5 pA 5 pA 1 nA
Table 5.3 Parameters adopted in the memristive network.

Parameter Imem,thr θD,l θD,u θD2,l2 θD2,u θP,l θP,u

value 500 pA 125 pA 132 pA 15 pA 30 pA 120 pA 145 pA

Table 5.4 Thresholds adopted for Imem and ICa in the doubled LTD band network.

At first, simulations are run for 2000 training images in batch of 100 images at
a time, alternated with test batch of 100 images during which classification rate is
computed.
Recognition rate in literature is computed in many possible ways, all sharing the
common feature of preserving the highest average firing frequency for the targeted

output population i, here indicated as Fi =
1
N

N
∑

k=1
fk, with N being the number of

neurons in a class of the Output Populations and fk the output neuron firing rate. In
the present analysis, it is computed with two separated measures, imposing either
a soft-constraint or a strong one: the first, here named ravg computes the average
firing rate for each population when a single input is presented to the network.
An input digit is taken as correctly classified by the network if the corresponding
subpopulation of output neurons fires with the highest average firing rate, i.e. when
Fi∗ > Fj,∀ j ̸= iand i∗ = digit. A stronger-constraint recognition measure is also
evaluated with a different procedure. First, the average firing rate of a class is
computed on all the test epochs in which a digit associated to that class is presented:

Fi =
1

Mdgt

Mdgt

∑
j=1

Fi, j, where Mdgt represents the total number of epochs in which a digit

dgt belonging to class i is presented and Fi is defined as above. The winner pool,
i∗, is the one that when test digit is presented has an average firing rate, Fi∗ , that
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overcomes Fi∗ times an arbitrary threshold θrec, and in the meanwhile, all other
classes have an average firing rate below the same quantity. In formulas:

Fi∗ > Fi∗ ·θrec
∨

Fi < Fi ·θrec∀ i ̸= i∗ (5.9)

The threshold is newly chosen at every iteration as the one maximizing the recog-
nition rate and frequently falls in the range [0.9,1]. MNIST digits pixel intensities
are multiplied by an amplification factor and linearly converted to Poisson frequency.
During training, each digit is applied to the input layer for 250ms, while during
testing phase, each digit is applied for 800ms.

Looking at figure 5.10, it is reported the recognition rate ravg, 5.10a) with red
lines, and ravg, 5.10b) with blue lines, for the three cases of linear synapses under
analysis. Figure 5.11 reports instead the final weight maps reached after 2000 train-
ing images presented and 5.12 the corresponding distributions of synaptic weights.

(a) Recognition rate ravg (b) Recognition rate rth

Fig. 5.10 Recognition rate ravg, panel a) red lines, and rth, panel b) blue lines, computed for
10 synaptic states available (dotted line), 100 states (dashed line) and 1000 states (solid line)
in a 2000 training images simulation.

As it can be observed, simulation performed with 10 synaptic levels available
does not reach a recognition rate above 20% with both measures, meaning that such
a low number of available levels together with the simple network architecture are
not sufficient to learn ten different patterns. Anyhow, looking at the corresponding
weight map in figure 5.11a), it is evident that some features of digit presented start
to appear. Eventually, their definition does not allow the network to perform correct
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(a) δw = 0.1 (b) δw = 0.01 (c) δw = 0.001

Fig. 5.11 Weightmaps obtained after 2000 training images simulations for network embed-
ding linear synapses. Panel a), 10 states available, Panel b) 100 states available, Panels c)
1000 states available.

(a) δw = 0.1 (b) δw = 0.01 (c) δw = 0.001

Fig. 5.12 Weight distributions obtained after 2000 training images simulations for network
embedding linear synapses. Panel a), 10 states available, Panel b) 100 states available, Panels
c) 1000 states available.

classification of the query pattern during the test phase. On the contrary, simulations
performed with δw = 0.01 and δw = 0.001, i.e. with 100 and 1000 levels available
show better results. Indeed, both simulations lead to higher recognition rate with
both measures ravg and rth. Focusing on ravg, see 5.10a), the former simulation with
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100 states available, dashed red line, oscillates around 50% of correctly classified
pattern, while the latter simulation with 1000 states available, solid red line, tends to
overcome 60% without reaching saturation. Same behavior is shown monitoring rth,
see 5.10b), with overall lower recognition rate with respect to ravg. Indeed, also from
the weightmap viewpoint, features in 5.11b) are much more defined that what they
are in 5.11c), making emerge that in the latter case the process of feature extraction
is still evolving. In the three cases, the distribution of synaptic weight, that was
initialized uniformly in the range [0,1], accumulates to the two extremes allowed,
producing a bimodal distribution that in this case reduces to two sharp peaks, see
figure 5.12. This is an immediate consequence of the additive learning rule, that do
not prevent synaptic weights to diverge from their mean value.
Starting from these results, longer simulations are performed in the cases of δw =

0.01 and δw = 0.001, discarding the case with δw = 0.1 because no further improve-
ment would be reached. Moreover, in these simulation are introduced 10 output
neurons per class, so that the output population is composed of 100 neurons in
total. This is helpful because introduces a voting rule in determining the class that
correctly classifies the input by averaging the ouput firing activity among all neurons
composing the class. Results are reported in figure 5.13, again reporting different
classification rates measured with both ravg, see 5.13a), and rth, see 5.13b).

(a) Recognition rate ravg (b) Recognition rate rth

Fig. 5.13 Recognition rate ravg, panel a) red lines, and rth, panel b) blue lines, computed for
100 synaptic states available (dashed line) and 1000 states (solid line) in a 20000 training
images simulation.

Two main observations can be done from results reported in figure 5.13. Simula-
tion involving 100 states available soon reaches recognition rate close to 60%, dashed
red line, but, after about 5000 train images presented, it begins to constantly decrease



84 Memristive Neuromorphic Systems

(a) 100 states, 1k images (b) 1000 states, 1k images

(c) 100 states, 20k images (d) 1000 states, 20k images

Fig. 5.14 Weightmaps obtained after 1000, Panel a) and b), and 20000, Panel c) and d),
training images simulations for network embedding linear synapses. Panel a) and c), 100
states available, Panel b) and d), 1000 states available

for the rest of the simulation. It is most likely a sign of the limited storage capacity
of the network, as discussed in Brader et al. [93]. In his paper, Brader correlates
the memory capacity of the network to the number of available states offered by
synapses, describing the process of forgetting the information acquired as soon as
the limit capacity is reached. Such a behavior is less evident in 5.13b), dashed blue
line, where rth is monitored, most likely because the strong-constraint recognition
rate makes the performances measure safer against early weight variations. On
the contrary, this phenomenon is not observed in simulations with δw = 0.001 and
1000 states available in which saturation is only reached after 5000 training images
presented and express a recognition rate stable in between 70% and 80% for both
recognition measures, see solid red and blue lines. Moreover in this simulation,
defined features are evident from the weightmap reported in figure 5.14, as well as
bimodal distribution peaked at the two extreme of the available range of synaptic
weight distribution, see figure 5.15. In figure 5.14, comparison between the simu-
lation with 100 states available, 5.14a) and 5.14c), and simulation with 1000 states
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(a) 100 states, 1k images (b) 1000 states, 1k images

(c) 100 states, 20k images (d) 1000 states, 20k images

Fig. 5.15 Weight distributions obtained after 1000, Panel a) and b), and 20000, Panel c) and
d), training images simulations for network embedding linear synapses. Panel a) and c), 100
states available, Panel b) and d), 1000 states available

available, see 5.14b) and 5.14d) are reported. It is evident the slower pace of feature
extraction that lead the latter simulation to a more variable weightmap, while in
the former simulation discrimination between background and feature extracted is
already emerged. The same analysis is reported for weight distribution in figure 5.15.
Results reported in this section are taken as reference for simulations performed
in the following, since they enclose the classification capacities and limits related
to network architecture and learning rule, rather than the effects due to resistive
switching components.

5.4.5 Fast Dynamic Memristive Network

The first simulations including resistive switching dynamics performed refers to
device characterized with pulse parameter set PPS1, thus with conductance change
manifesting a faster dynamics as a function of number of applied voltage pulses.
It must be noticed that for this set of simulations, excitatory weights have a differ-
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ent initialization, i.e. wex = G(µ = 0.2,σ = 0.05). As mentioned above, resistive
switching dynamics imposes a multiplicative update rule for synaptic weights, that
means that the amplitude of weight change is the more important as the lower the
weight is and vice-versa. In this way, the resistive switching behavior brings network
dynamics toward weights stability, i.e. synaptic weights tends to remain confined
close to a mean value rather than diverge during network activity. Stability, generally
speaking, is a desirable property, in particular for networks embedding unbounded
synaptic weights, while in cases like the one presented in this dissertation, resistive
switching are already naturally imposing a soft-bound to the synaptic dynamics. For
this reason, multiplicative networks often requires further algorithmic expedient to
enable the strong competition among output neurons needed to acquire discriminant
features from input pattern. Indeed, if we take as an example the potentiation process
of a single synapse, in order to reach the highest reachable value of the synaptic
weight a long pulse train of the same voltage polarity is required. However, if such
a pulse train is interrupted by the realization of a depression event, LTP process is
immediately interrupted and the synaptic weight is decreased with a sudden jump
that prevent the asymptotic value to be preserved. Moreover, if LTP would be ex-
cessively prominent with respect to LTD, it would favor features blurring, allowing
those pixels that stay close to the digit border to be potentiated with few input spikes.
With the scope of reducing weight stability effectiveness, it is necessary to act on
LTD and LTP events distributions, leveraging on membrane current threshold and
calcium current thresholds. Since the former encloses the information about time
correlation between pre- and post- spikes, Calcium thresholds are preferred for the
further network tuning required.
In order to improve performances in terms of recognition rate of the network and
reach satisfying performances with both the recognition measures, learning is slowed
down reducing the transition probabilities for both LTD and LTP. Thus, thresholds
for calcium current are increased. Moreover, it has been chosen to enforce competi-
tive learning and depression with respect to potentiation introducing a second LTD
calcium current band. In literature, equivalent expedients are usually adopted with
multiplicative STDP learning networks, [91]. In the specific case reported, Calcium
current bands are kept thresholded as in the previous simulations, then a second LTD
band is added with thresholds θD2,l = 15pA,θD2,u = 30pA, see table 5.5. The joint
effect on learning of teacher signal and doubled calcium band intuitively allow to
acquire features of the presented digit within the targeted subpopulation and simulta-
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neously to possibly depress correlated weights within different subpopulations. A
greater separation between background and feature extracted is thus favored.

Parameter Imem,thr θD,l θD,u θD2,l2 θD2,u θP,l θP,u

value 500 pA 125 pA 132 pA 15 pA 30 pA 120 pA 145 pA

Table 5.5 Thresholds adopted for Imem and ICa in the doubled LTD band network.

(a) (b)

Fig. 5.16 Panel a), recognition rate achieved by PPS1 memristive network with parameters
as specified in tables 5.3 and 5.5, without device variability. Performance are computed
as ravg (red line) and rth (blue line) across 20k training epochs. Panel b), recognition rate
achieved by memristive network with parameters as specified in 5.5 with device variability.
Performance are computed as ravg (red line) and rth (blue line) across 20k training epochs.

Results obtained from the simulation of this new network are shown in figure
5.16, comparing performances for synapses not reporting, panel a), and reporting,
panel b), resistive switching variability. Plots show recognition performances for
both ravg (red line) and rth (blue line). As it can be observed, curves are nicely
overlapping, both in terms of the two recognition measures and in terms of device
variability. It signifies that device variability is not impeding network learning and
performances are not relevantly affected.
Looking at the weight distribution, figure 5.17, as in the previous case histograms
compare the weight evolution in case of variability accounted and not accounted at
different steps of the simulations. Figure 5.17a) and 5.17c) report the distribution
after 1000 and 20000 training images presented, respectively, in the case in which no
device variability is embedded. Figure 5.17b) and 5.17d) report the distribution after
1000 and 20000 training images presented, respectively, in the case in which device
variability is embedded. All distributions preserve partially the weight initialization,
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centered around w = 0.2, that creates the mean peak of the distributions. LTP and
LTD bring weights to evolve toward the extremes, creating two shoulders at higher
weight values and lower weight values. The doubled LTD band is effective in
allowing depression toward minimum weight. Nonetheless, in case of variability
accounted, distributions highlight more dispersed weights in comparison to what
reported in figure 5.17a) and 5.17c). Indeed variability allows to explore the high
number of intermediate configuration of resistance state reachable with real devices
and without limiting the classification performances.

(a) (b)

(c) (d)

Fig. 5.17 Weight distributions obtained after 1000, Panel a) and b), and 20000, Panel c) and
d), training images simulations for network embedding resistive switching synapses. Panel
a) and c) report simulations not accounting for device variability, Panel b) and d) report
simulations accounting for device variability.

The weight maps, see figure 5.18, reflects this behavior. Panels a) and c) reports
the weight map for simulation without device variability at simulation epoch 1000
and 20000. For comparison, panels b) and d) reports weight maps for simulations
with device variability at the same epochs.

Figure 5.18 highlights two main features: first, the chosen thresholds on Calcium
current allow a consistent depression nearby digits (see for example digit 1) and



5.4 Network 89

(a) (b)

(c) (d)

Fig. 5.18 Comparison between features maps of synaptic weights for network without device
variability, panel a) and c), and network with device variability, panels b) and d). Maps are
reported after 1000 epochs, panel a) and b), and after 20000 epochs, panel c) and d).

an enhancement of those subsets of features that are discriminative for the digit
itself (see digit 2 enhanced at its extrema). Evidently, such a process does not reach
a conclusion within the simulated training epochs and acquired features are too
broad to accomplish better classification. Secondly, comparison between features
without and with device variability do not show evident differences, but for a higher
homogeneity in acquired features in the former case. Thus, from the perspective
of recognition rate, weight distribution and acquired features, the network is robust
against resistive switching variability.
These results show the importance of an extended LTD distribution that allows
to reach the overlap between the two recognition measures. It also initiates the
acquisition of discriminative features during learning, but still it is not sufficient to
reach good classification performances.
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5.4.6 Slow Dynamic Memristive Network

The set of simulation reported in this section are performed taking into account the
resistive switching dynamics characterized with pulse parameter set PPS2. Accord-
ingly to such electric characterization, the switching dynamics is slower and more
gradual, tending toward the asymptotes in a larger number of applied pulses. Any-
how, switching dynamics is still strongly non-linear and gives rise to a multiplicative
update rule for synaptic weights. On the other hand, the gradual process leading
to extreme values of synaptic weights, allows to virtually explore a larger number
of available synaptic states, with respect to those available when a fast dynamic
resistive switching is accounted.
Network parameters adopted in the present simulations are as those reported in table
5.3 and 5.5, adopted in the previous simulations. In this network, excitatory synapses
weights are randomly initialized with uniform distribution in the range [0,1].

(a) (b)

Fig. 5.19 Panel a), recognition rate achieved by PPS2 memristive network with parameters
as specified in tables 5.3 and 5.5, without device variability. Performance are computed
as ravg (red line) and rth (blue line) across 20k training epochs. Panel b), recognition rate
achieved by memristive network with parameters as specified in 5.5 with device variability.
Performance are computed as ravg (red line) and rth (blue line) across 20k training epochs.

Results found from simulations of this new network are shown in figure 5.19,
in which performances are compared for synapses not accounting, panel a), and
accounting, panel b), resistive switching variability. Plots show recognition perfor-
mances for both ravg (red line) and rth (blue line). First of all, again comparing the
two performances of the classification tasks, variability is not affecting the network
functioning and classification rates are not sensibly reduced. Moreover, recognition
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rates are higher than those obtained with devices characterized with pulse parameter
set PPS1, reaching an average rate close to 60% for ravg measure and slightly lower
for rth. Indeed, the lower synaptic weight change allows to explore the number of
synaptic states available and improve learning abilities.
Such a recognition rate is similar to what obtained for linear synapses with 100 and
1000 synaptic states available. In particular, staying bounded between the two results
observed in the previous case, classification abilities of the new network do not ap-
pear to be degraded as the simulation proceeds, like in the case of δw = 0.01 linear
simulations. Moreover, the present network does not reach average classification
rate as high as in δw = 0.001 linear weight change network. Thus, it can be deduced
that the number of available synaptic states offered by resistive switching expressing
a slow dynamics are included in between 100 and 1000. They should be higher than
the former, since the network preserve the information learned without classification
performance degradation, and lower than the latter, because of the slightly worse
performances in terms of recognition rates.
Looking at the weight distribution, figure 5.20, as in the previous case histograms
compare the weight evolution in case of variability not accounted and accounted
at different steps of the simulations at different time steps of the simulation. Fig-
ure 5.20a) and 5.20c) report the distribution after 1000 and 20000 training images
presented, respectively, in the case in which no device variability is embedded. Fig-
ure 5.20b) and 5.20d) report the distribution after 1000 and 20000 training images
presented, respectively, in the case in which device variability is embedded. Again,
the multiplicative weight update rule brings rapidly the synaptic weights toward a
unimodal distribution centered close to the mid value of the synaptic weight range.
All weights, including those that lay in the background of the input pattern, when
evolving as a consequence of alternative LTP and LTD events, move toward an aver-
age value, leaving the weight map with a low contrast between what is background
and what digit features, see figure 5.21a-c). Nonetheless, digit features are just
visible on top of the weight map, and drive the recognition rate toward the observed
value. Indeed, the weight distribution observed in figure 5.20 is not symmetric, but
present a shoulder toward lower weights. Such a shoulder represents those weights
belonging to pixels common to multiple digits, that when excited by digits from
another class are depressed. This behavior manifests the tendency of the network
toward a bimodal distribution, that encodes information belonging to the pattern
background (synaptic depression leads toward a peak close to minimum weights)
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and discriminative features of the pattern (synaptic potentiation leads toward a peak
close to the maximum weights). On the other hand, multiplicative weight update
rule imposed by resistive switching dynamics drastically limits the drift of the two
peaks one apart from eachother, reducing also the classification performances of the
network.
In order to put more in evidence these aspects of the network and the tendency to ac-
quire discriminative features of input digit, in Figure 5.22 is reported the weightmap
reached after 20000 images presented, without device variability, with color-map
rescaled in a narrower range of weights. Here it becomes evident the difference
between the enhanced digit features in red, encoded by synapses that become poten-
tiated, and the digit background in blue, where synapses become suppressed.

(a) (b)

(c) (d)

Fig. 5.20 Weight distributions obtained after 1000, Panel a) and b), and 20000, Panel c) and
d), training images simulations for network embedding resistive switching synapses. Panel
a) and c) report simulations not accounting for device variability, Panel b) and d) report
simulations accounting for device variability.

The same analysis is reported for the case with device variability considered
in the simulation and showed in figure 5.20b) and 5.20d). As it can be observed,
weights distribution preserves show the same unimodal peak centered ad mid-values,
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but with a sensibly higher dispersion in comparison to what reported in figure 5.20a)
and 5.20c). Indeed variability allows to explore the high number of intermediate
configurations of resistance state reachable with real devices without limiting the
classification performances.

The weight maps, see figure 5.21, reflect this behavior. Panels a) and c) reports
the weight map for simulation without device variability at simulation epoch 1000
and 20000. For comparison, panels b) and d) reports weight maps for simulations
with device variability at the same epochs. Similarities between the two conditions
are particularly relevant. Thus, from the perspective of recognition rate and weight
distribution, the network can be said robust against resistive switching variability.

(a) (b)

(c) (d)

Fig. 5.21 Comparison between features maps of synaptic weights for network without device
variability, panel a) and c), and network with device variability, panels b) and d). Maps are
reported after 1000 epochs, panel a) and b), and after 20000 epochs, panel c) and d).
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Fig. 5.22 Weightmap of synaptic weights for network without device variability after 20000
training images presented. False colors map has been rescaled in a narrow range in order to
put in evidence discriminative features acquired.

5.5 Conclusions

In the present chapter it has been presented the complete study performed for the
design of a memristor-based spiking neural network.
Resistive switching adopted for the task are produced and characterized by CNR -
Agrate Brianza, partner of the scientific collaboration set up for the present study,
together with the Institute of Neuroinformatics of Zuerich. RS are HfO-based MIM
structures characterized with trains of pulses with equal polarity and period. Two sets
of electrical parameters are adopted for device characterization. Empirical models
for the resistance transition to HRS (LTD) and LRS (LTP) are then extrapolated
from data, capturing the pulse dependent behavior of both processes. Cycle-to-cycle
variability has been quantified as well. All these features are accounted in simulations
of the designed spiking neural network, demanded to perform a learning task with
handwritten digits coming from the MNIST database.
Spiking Neural Network accounts for four different populations: input population,
converting pixel intensities into Poisson spike trains, output population, composed of
Silicon I&F neurons mimicking the biological behavior and connected to IP through
resistive switching plastic synapses. Inhibitory population, composed of Silicon
I&F neurons and inputing the OP with negative current, and to conclude, teacher
population, designed to perform semi-supervised learning.
The adopted learning rule is a generalization of STDP formalized by Fusi and Brader
in 2007. It is particularly suitable for hardware application since it involves two slow
varying variables, i.e. membrane current and Calcium current of the output neurons,
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to discriminate between LTD and LTP events.
After preliminary tasks with a perceptron network, performed in order to verify the
correct function of all elements of the network and the empirical behavior of resis-
tive switching synapses, the study has proceeded with simple network embedding
synapses with linear weight update. The different amount of available weight states
during network training has been shown to deeply affect the network performances
in terms of recognition rates, stating the better performances, the more synaptic
states available. Results obtained at this stage are taken as reference for the network
learning capabilities and compared with results obtained from networks embedding
resistive switching synapses.
Simulation running the complete network with 10 neurons per digit output class are
then performed, comparing performances reached with both fast and slow dynamics
resistive switching synapses. First, a slow dynamics in conductance change has
been shown to be preferable, since it allows performances closer to linear synapses
with a sufficiently high number of synaptic level. In this way, slow dynamic re-
sistive switching synapses offer a higher number of weight levels. Moreover, the
study highlights the mandatory requirement of narrow ICa bands in order to limit
the number of events for both LTD and LTP. ICa bands are placed at high spiking
frequency, in order to capture variation during teacher imposed learning, and are
associated with a second LTD band at lower frequency, allowing for depression of
correlated digit features. This choice for thresholds allow to start the acquisition of
discriminative features of input digits and to increase the network recognition rate
with both measures defined, i.e. ravg and rth. By the way, it is not sufficient to break
the weight stability due to multiplicative weight update rule intrinsically embedded
in resistive switching. Indeed, weight update relies on the new value of resistance
imposed by a new incoming pulse, that has been shown to be pulse-dependent, highly
non-linear and asymmetric, e.g. high with low number of pulses and saturating with
high number of pulses. Such a feature brings weight distribution to be unimodal and
peaked at weight mean value, making it unable to discriminate between input digit
features and input background.
The present study does not go into the change to network architecture demanded to
break weight stability, that are postponed to further studies.



Chapter 6

Conclusions

The present dissertation wants to be a preparatory study for the new generation
of smart devices based on hardware artificial intelligence. An always increasing
number of publications has appeared in the recent years in literature discussing
properties of neural networks implemented in various hardware architectures, both
with standard Silicon technology and with new type of devices. The renown interest
for brain-inspired hardware neural networks has been strongly pushed forward by
the resistive switching technology and its description with the memristor formalism.
Indeed, memristor could behave as artificial synapses able to tune their strength,
i.e. conductance and synaptic efficacy depending on the field of application, as a
consequence of the history of electric signals applied to the two terminals device.
The applied voltage imposes a change in the device resistance that is then preserved
and used to modulate the input information transferred across the network. A pletora
of studies concern the various architectures, nanostructures and materials adopted for
resistive switching fabrication and operation, without converging toward a standard
for memristive devices exploitable in intelligent hardware design.
The present study, realized as the start of a new research line for the group in this
university, is an investigation of the physical mechanisms involved in the resistive
switching phenomenon as well as an engineering process devoted to the fabrica-
tion of devices suitable for synaptic application in hardware neural networks. The
second part of the research activity is then focused on acquiring the fundamental
knowledge about spiking neural network simulation tools, STDP learning rule and
the functioning of hardware building blocks composing the designed circuit, such
as I&F Silicon neurons. An extensive analysis of the learning behavior is lead, in
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order to comprehend the dynamics of resistive switching devices during learning
task, together with advantages and limitations imposed by the physics governing the
device functioning.
At first, TiO2 based resistive switching are investigated. Nanostructured TiO2, in the
form of nanotubes arrays, are grown via anodic oxidation on Ti foil. Both as-grown
and air annealed material is studied and adopted for device fabrication with poly-
acrylic acid coating and Platinum top electrode. The multi-wall structure generated
during tube growth can be exploited for installing the resistive switching behavior
based on Oxygen vacancies movement. Indeed, valence change memories relies
on the creation of a conductive filament composed of Oxygen vacancies present in
under-stoichiometric material. The PAA coating is then introduced in the device
structure as a tuner for charge carriers density and Oxygen vacancies concentration,
allowing to establish a more stable resistive switching phenomenon in terms of
repeatability and endurance. More in detail, the study on PAA coated TiO2 NTA
allows to investigate the RS behavior of VCM exploiting chemical surface redox
reactions, that are particularly advantageous in a high aspect-ratio device such as the
one here presented. Despite the great interest in the physical phenomena involved in
RS for nanostructures, such a kind of devices are of hard implementation in more
complex electronic circuits. For this reason, TiO2 thin film devices are realized.
TiO2 is among the first materials studied for the realization of RS and formalized as
memristor. Numerous laboratories, both in private companies as well as in univer-
sities, devoted great effort in the modeling and engineering of resistive switching
based on this material, aiming to fabricate the next generation of dense, low-power
ReRAM memories. Particular interest comes also from the opportunity to fabricate
TiO2 based devices via Atomic Layer Deposition, an extremely controllable and
accurate techniques for thin layer depositions. On the contrary, patterning of TiO2 is
a problematic step in circuit fabrication because of the mechanical resistance of the
material and usually results in imprecise process or even failure. The investigation
reported in the present dissertation is thus devoted to validate a new recipe for TiO2

device fabrication based on low temperature deposition and optical lithography.
Low temperature deposition of TiO2 via ALD is performed in the range [80°C,
140°C] and an inverse proportionality between growth per cycle and temperature
is observed. High GPC induces the formation of defects and inclusions on the
thin layer, due to possible processes of condensation or other chemical reactions
as by product of the deposition. On the contrary, correct patterning of the material
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needed for device fabrication is successfully demonstrated. Moreover, no significant
change in material properties is observed in all characterizations performed. From
the electrical characterization standpoint, RS is observed with comparable features in
all the measured devices, i.e. 120°C, 140°C and 230°C as reference. In conclusion,
low deposition temperatures do not affect the RS switching properties of the material
and enables a new and easier fabrication process with respect to the most adopted
one.
TiO2 based RS devices do not express particularly stable electrical behavior and, on
the contrary, manifest a quite high variability in RS response. This issue is addressed
in numerous studies present in literature and has lead the scientific community toward
the consideration of different materials among metal oxides.
The last material investigated for the RS properties is ZnO. ZnO offers the opportu-
nity to be deposited exploiting different techniques. i.e. ALD and sputtering, and
grown in nanostructures such as nanowires. Object of the present dissertation is
ZnO thin films RS deposited via sputtering. A number of devices has been realized
and studied, both in VCM and ECM configuration, in order to obtain the most
accurate and stable electrical response from the produced devices. Devices with Pt
top electrode and Cu top electrode are fabricated at crescent thickness, i.e. 50 nm,
100 nm and 250 nm.
FESEM characterization shows a columnar structure of the layer that goes to be more
evident at highest thicknesses. Raman spectroscopy shows material typical peaks
of nanocrystalline phase and XRD analysis shows preferred orientation (002) and
(101). Deposition of thicker ZnO layer returns more intense peaks and highlights the
prevalence of (002) orientation in the film. XPS analysis shows nearly stoichiometric
material.
Electrical characterization of thinner ZnO highlights unstable RS behavior for VCM
type devices, while ECM type devices do not express any significant electrical re-
sponse. Indeed, irreversible breakdown is reached for the characterized devices in
ECM configuration. The increase in ZnO layer thickness aims to provide higher
concentration of Oxygen vacancies available to RS in the VCM type cell, prevalently
present on grain surfaces. Anyhow, electrical response of ZnO - 100 nm devices
in VCM configuration, despite being improved, is not yet satisfactory because of
high failure rate in installing the SET transition. On the contrary, ECM device shows
much better RS response. Thicker ECM type ZnO device is the best performing and
returns stable and repeatable RS response in terms of endurance and state retention,
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showing the narrowest standard deviations on all measured quantities. The fact
that such a thick MIM structure produce the stablest RS response let think that the
formation of a CF does not require to be continuous and can instead exploit the
preferred orientation of crystals within the ZnO layer.
The observed performances, despite not being sufficient for the production of com-
mercial ReRAM, could be preliminary exploitable for the realization of neuro-
morphic circuits. Anyhow, ZnO would not be the preferred material for circuit
realization because of its relatively high conductance, that would results in high
power dissipation during the circuit functioning. For this reason, other insulating
materials, like H f O and Ta2O5 are preferred to this purpose. Moreover, voltage
pulse characterization is required for correct embedding of resistive switching in
spiking neural network, and it is not available yet for the present devices. For this
reasons, a collaboration between the National Council for Research, site of Agrate
Brianza - Italy, and the Institute of Neuroinformatics in Zuerich - Switzerland has
been established.
The last part of this dissertation is devoted to the simulation of spiking neural net-
work embedding H f O based resistive switching and totally designed for its hardware
implementation.
Pulse characterization of RS returns highly-non linear and asymmetric behavior for
SET transition to LRS and RESET transition to HRS. Data collected by the CNR
group are used to extrapolate an empirical models of the transitions, complete of
cycle to cycle variability, that can be embedded into the neural network simulations.
SET transition, when remapped into the learning context, is equivalent to synaptic
long term potentiation, while RESET transition is equivalent to long term depression.
Both LTP and LTD show a fundamental dependence on the pulse numbers for the
conductance update, that results in a so called multiplicative weight update rule.
Indeed, weight update, i.e. conductance update, is high with a low number of pulses
and low with high number of pulses.
The network simulates the function of real hardware circuit demanded to perform
the learning of handwritten digits present in the MNIST database exploiting a gen-
eralized and hardware suitable STDP learning rule. MNIST classification is a task
considered as benchmark for the testing of neural networks as well as different
learning rules. The network architecture considered in this study is a single layer
network composed of four different neuron populations: input population, converting
pixel intensities into Poisson spike trains, output population, composed of Silicon
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I&F neurons mimicking the biological behavior and connected to IP through resistive
switching plastic synapses, inhibitory population, composed of Silicon I&F neurons
and inputing the OP with negative current, and, to conclude, teacher population,
designed to perform semi-supervised learning.
After preliminary test of a simplified perceptron network functioning and simula-
tions with linear synapses, complete analysis of the learning dynamics with resistive
switching dynamics is performed. Indicative recognition performances are reached
with opportunely chosen thresholds on neurons variables, but the main issue that
requires to be addressed in order to reach state-of-the-art learning performances
comes from multiplicative weight update due to RS physical behavior. Indeed de-
pendence on pulse number for the weight update brings dynamics towards a stable
configuration with weights distributed in a unimodal distribution peaked at weight
mean value. This particular feature impedes to acquire discriminative features of the
input and thus correctly classify the presented digits.
Future work will still see a long way before of real hardware implementation of
memristive neuromorphic systems, that goes from the resistive switching physical
phenomenon description, to the proper memristive modeling, concluding to a for-
malized STDP learning rule able to solve issues imposed by multiplicative weight
updates without the introduction of complex network architectures. Nonetheless, the
author of the present dissertations is faithful that in the nearest future, this technology
will grow side by side and even further than the actual state-of-the-art technology.
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Appendix A

Fast Dynamics Resistive Switching

Pt/HfO2/TiN resistive switching are adopted as the weighting elements for synapses
in the neuromorphic architecture. The conductance can be easily exploited as the
measure of the synaptic weight. Depending on the characteristics of applied voltage
pulses used for the electrical characterization of the device, different conductance
dynamics can be reached and then exploited in learning simulations.
In this appendix, it is reported the characterization of resistive switching devices
with pulses as reported in table A.1.

Pulse Parameter VLT P(V ) VLT D(V ) T (µs)

PPS1 1.1 -0.8 30
Table A.1 Pulse Parameter sets adopted for electrical characterization of RS devices.

The switching characteristics of HfO2-based devices are summarized in figure
A.1 and a representative characterization of device endurance is reported in figure
A.2, where it emerges the repeatability of resistive switching characteristics for a
number of pulses in the order of 104.

LTD process brings the device from LRS gradually to the HRS as shown in figure
5.2a) and b), from 1 to 50 and from 1 to 300 pulses, respectively. LTP brings the
device from the HRS gradually to the LRS as shown in figure 5.2c) and d) from 1 to
50 and from 1 to 300 pulses, respectively. It can be noticed that LTP is more abrupt
at low number of pulses with respect to LTD because the former reaches almost
the saturation within 50 pulses (figure 5.2b) while LTD slowly proceeds beyond 50
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Fig. A.1 Representative resistance evolution as a function of the number of pulses from 1
to 50 pulses and from 1 to 300 pulses starting from LRS and HRS for LTD (blue, a and b)
and LTD (red, c and d), respectively. Panel e), distribution of resistance values for HRS and
LRS obtained after 300 LTD and LTP spikes. Panel f), dependence of the 1-spike normalized
resistance change as a function of the pre-spike resistance value. Symbols reports the average
among tens of experimental curves acquired on a single device and error bars corresponds to
one sigma standard deviation.

pulses (figure 5.2a). The evolution of the resistance in LTD and LTP reported in figure
5.2a-d) evidences the major non-idealities of memristors for synaptic application.
The resistance change is non-linear as a function of number of pulses and it is faster
for low pulse numbers (i.e. at low resistance for LTD and high resistances for LTP,
respectively). The second aspect is that the LTP is observed to have a faster dynamics
with respect to LTD, i.e. it presents an increased non-linearity than LTD.
With set of pulses parameters PPS1, transitions toward LRS and HRS happen faster
than what observed in chapter 5, in particular for what concerns the first set of
applied pulses, cfr. figure 5.2 and A.1. Saturation of the potentiation and depression
processes lead to bimodal resistance distribution of LRS and HRS as shown in figure
5.2e.
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Fig. A.2 Representative endurance test over LTD (blue squares) and LTP (red circles)

A.1 Modeling

The gradual resistance change featured by the device in response to sequences of
identical spikes is found to be thoroughly described by two separate equations for the
resistance R for LTD and LTP processes starting form LRS and HRS respectively.

LT D : R = R0,D +αD · ln(n)

LT P : R = R0,P −αP · (1−
1

βP
)
, (A.1)

where n is the number of pulses and parameters αD,P and βP are evaluated by fitting
experimental data with equations A.1. Representative fitting of experimental data
are reported in figure A.3a) and b) for LTD and LTP, respectively.

Variability is evaluated as the standard deviation value of the resistance change
per unit pulse ∆R(n) = R(n)−R(n−1) taken over tens of cycles for both LTD and
LTP and is reported in figure A.3c) and d). The experimental standard deviations
σ∆R are almost constant for LTD and is decreasing as a function of the number of
pulses (i.e. with decreasing resistances) for LTP. Therefore, beyond the asymmetry
in the average resistance evolution between LTD and LTP processes, an asymmetry
exists also in their variability.

LT D : σ∆R = δD

LT P : σ∆R =
γP

n
+δP

. (A.2)
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Fig. A.3 Fitting and simulation of the HfO2 memristors. Panel a) and b), representative
LTD and LTP processes respectively (symbols, the experimental results and lines, fitting
according to equation A.1. Panels c) and d), standard deviation of resistance variation per
pulse ∆R for LTD and LTP respectively. Representative switching cycles: experimental,
panel e), simulated without variability, panel f), and simulated with pulse to pulse variability,
panel g). Resistance values histograms obtained with tens of cycles: experimental, panel h),
simulated without variability, panel i) and simulated with pulse to pulse variability, panel j).

The fitting parameters of equations A.1-A.2 are used to simulate the behavior of
the devices according to the general laws that link the resistance variation per pulse
to the actual device resistance, reported below:

LT D : ∆R = αD · exp
(
−

R−R0,D

αD

)
+∆Rvar.

LT P : ∆R =−αP ·βP · (α +R0,P −R)−
1+βP

βP +∆Rvar.

, (A.3)

where ∆Rvar is the pulse to pulse variability contribution simulated as a Gaussian
noise with standard deviation according to equations A.2. Representative simulations
without variability and with pulse to pulse variability are reported in figure A.3f)
and g) and compared to the experimental results in figure A.3e). The comparison
evidences that the average behavior without variability describes a very ideal case,
while simulation with variability faithfully reproduce that device behavior. A sta-
tistical assessment of the same consideration can be obtained by comparing the
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histograms of the resistance values reached among tens of LTD and LTP cycles, as
reported in figure A.3h) and j) for experimental data and simulated without and with
variability. Indeed, the bimodal distribution of experimental results is reproduced
in the simulation. However, average simulations performed with LTD and LTP
processes stopped at 300 pulses display an unrealistic cut off of the distribution at
low and high resistances. Such an issue is solved in simulations taking into account
device variability.

Parameter R0,D αD R0,P αP βP δD γP δP

average 3234 502 6032 3350 0.612 139 286 17
Table A.2 Averages and standard deviations values of the fitting parameters for the general
resistance evolution and for the modeling of the device variability for both LTD and LTP.



Appendix B

Parameters Investigation

Parameters adopted for the network simulations deeply affect the network classifi-
cation performances. This is particularly evident in case of variations on learning
thresholds applied to output neurons variables: membrane current and Calcium
current. Membrane current embeds information related to events time-causality. Cal-
cium current embeds informations about neurons average activity. Different choices
of thresholds can be particularly restrictive on transition events that pre-synapses
experience. Nonetheless, the whole set of parameters has relevance on the network
dynamics and classification performances.
As already described in this dissertation, STDP learning rule lacks a rigorous method
for cost function optimization that includes all the network parameters. For such
a reason, only an empirical testing of parameters sets can give insights about the
network functioning.
In this appendix are reported tables of subsets of parameters sets tested. Resis-
tive switching embedded in the network tested here are characterized with pulse
parameter set PPS1. Some tests include also slight variation of the network learn-
ing dynamics that have been tested, without bringing tangible improvement to the
classification performances. All of them will be briefly explained in the following
subsections.
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B.1 Unbounded Calcium Current

Time correlation is encoded mainly in membrane current of the output neuron, since
the post-synaptic spike is triggered by a sufficient income of pre-synaptic spikes.
On the other hand, Calcium current encodes average activity of the output neuron,
low-pass filtering the firing rate of the neurons itself, i.e. its membrane current
dynamics.
In figure B.1 are reported parameters for a set of simulations in which no bounds (or
very soft bound) are imposed to Calcium current, in order to investigate to which
extent only membrane current can be exploited for successful STDP to take place.
From such simulations emerge that depression is overcoming completely potentiation,
since Fusi’s STDP does not focus on correlation between two spike time instants, but
rather on a time window. Reducing the threshold on the membrane current enlarges
the time window loosing correlation. On the contrary, increasing the threshold
captures better correlation but sensibly increases probability of depression events.

B.2 Bounded Calcium Current

Time correlation is encoded mainly in membrane current of the output neuron, since
the post-synaptic spike is triggered by a sufficient income of pre-synaptic spikes.
On the other hand, Calcium current encodes average activity of the output neuron,
low-pass filtering the firing rate of the neurons itself, i.e. its membrane current
dynamics.
In figure B.2 are reported parameters for a set of simulations in which bounds are
imposed to Calcium current, in order to limitate the probability of LTD and LTP
events.
First trials report thresholds on neurons variables that are inspired by the work
of Brader et al, that in the following trials are adapted to the present simulations.
Despite the multiple combinations tried, only a subset of which is reported here, no
condition on variable thresholds allows to limit the impact of multiplicative learning
rule imposed by resistive switching on weight update. More clearly, no combination
of thresholds is able to discriminate and sufficiently separate LTD and LTP events,
so that discriminative features of input digit are acquired.



118 Parameters Investigation

B.3 Dynamic Calcium Current

Starting from parameters identified in the previous set of simulations, it is imposed a
priori a linear dynamic on Calcium current bands, see figure B.3. The ratio behind
this subset of simulations emerges from observation of the early epochs of network
functioning. Indeed, features extraction of input digits already happens in the first
1000 epochs of learning, but then they roughly disappear because of the general drift
of synaptic weights toward their mean value.
This subset of simulation then imposes a linear drift on Calcium current lower thresh-
olds that tend to make narrower Ca bands both for LTD and LTP events, resulting in
a much lower probability of transitions after the first epochs of learning.
In figure B.3, four more lines reports angular coefficient and offset used for the thresh-
old dynamics, following the simple equation: ΘDl,Pl = mLT D,P ∗ epoch+ qLT D,P.
Update happens in a number of limited epochs at the beginning of the simulations,
that in table are referred as Update window.

B.4 Homeostatic Principle

Homeostatic principle is an expedient that is usually applied to biologically inspired
neural network. It is usually embedded to reduce the over- and under-activity
of network elements, avoiding saturations. Homeostatic principle comes from
biological observation of specific operative range for cells in brain.
Within the present simulations, see figure B.4, homeostatic principle is imposed on
teacher signal. It modulates the contribution coming from teacher neurons in such a
way that the output neurons firing rate remains within specified targets. Moreover,
this expedient is intended to allow a positive feedback on features extraction, since
a reduction of teacher signal is expected to let emerge a higher contribution of
potentiated (depressed) synaptic weights in enabling LTP (LTD). Unfortunately, no
relevant contribution of this kind is observed during simulations. Dynamics on the
teacher signal can happen in a number of limited epochs at the beginning of the
simulations, that in table are referred as Homeo window. After such a number of
epochs, if specified, the teacher contribution is imposed to a fixed value, reported in
figure as asymptotic Iw,t .
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B.5 Double Calcium Bands

The only expedient allowing a tangible improvement on learning performance, due
to the enabling of discriminative features acquisition of input pattern, comes from
the introduction of a second Calcium band for Long Term Depression, see figures
B.5 and B.6. Indeed, in order to boost suppression of synaptic weights referring to
input pattern background, a second LTD Ca band at low values exploits the weak
activity of not excited input neurons. It sensibly increases the probability of LTD
events for those synapses that are not primarily excited by the input digit.
Simulations reported in chapter 5 results from the parameter optimization process
reported here.
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Fig. B.1
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Fig. B.2
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Fig. B.3
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Fig. B.4
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Fig. B.5
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Fig. B.6
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