
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Parallel Simulation of Very Large-Scale General Cache Networks / Tortelli, Michele; Rossi, Dario; Leonardi, Emilio. - In:
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. - ISSN 0733-8716. - ELETTRONICO. - 36:8(2018),
pp. 1871-1886. [10.1109/JSAC.2018.2844938]

Original

Parallel Simulation of Very Large-Scale General Cache Networks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/JSAC.2018.2844938

Terms of use:

Publisher copyright

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2711472 since: 2018-12-14T13:54:12Z

IEEE

1

Parallel Simulation of Very Large-Scale
General Cache Networks

Michele Tortelli∗, Dario Rossi∗, Emilio Leonardi†
∗ Telecom ParisTech, Paris, France
† Politecnico di Torino, Torino, Italy

Abstract—In this paper we propose a methodology for the
study of general cache networks, which is intrinsically scalable
and amenable to parallel execution. We contrast two techniques:
one that slices the network, and another that slices the content
catalog. In the former, each core simulates requests for the whole
catalog on a subgraph of the original topology, whereas in the
latter each core simulates requests for a portion of the original
catalog on a replica of the whole network. Interestingly, we find
out that when the number of cores increases (and so the split
ratio of the network topology), the overhead of message passing
required to keeping consistency among nodes actually offsets
any benefit from the parallelization: this is strictly due to the
correlation among neighboring caches, meaning that requests
arriving at one cache allocated on one core may depend on
the status of one or more caches allocated on different cores.
Even more interestingly, we find out that the newly proposed
catalog slicing, on the contrary, achieves an ideal speedup in the
number of cores. Overall, our system, which we make available as
open source software, enables performance assessment of large-
scale general cache networks, i.e., comprising hundreds of nodes,
trillions contents, and complex routing and caching algorithms,
in minutes of CPU time and with exiguous amounts of memory.

I. INTRODUCTION

In today’s Internet, content distribution plays a central
role. Future Internet architectures, such as 5G Mobile Edge
computing [6] and Information Centric Networks [30], further
make caching an integral part of the network. Caching is
attractive as it helps meeting 5G requirements of lower latency,
while relieving traffic load at the same time, and thus also
providing users with higher available bandwidth.

Yet the performance evaluation of cache networks is made
challenging by many factors. To start with, the correlation
between miss streams of neighboring caches (particularly true
for general cache networks with arbitrary topologies, complex
routing, cache decisions and replacement algorithms), either
makes analytical models fail to capture system behaviors, or
it sharply increases the complexity of their numerical solution.
This makes event-driven simulation an appealing alternative.
Additionally, the global and pervasive scale of cache networks
further adds complexity to performance evaluation. Indeed,
due to prohibitive CPU and memory requirements, simulating
large-scale scenarios is hard. For instance, consider that just
storing the description of a popularity law for realistic content
catalogs [29] requires allocating a vector of 1012 64-bits
double precision floating points, i.e., 8 TB of RAM memory.
While downscaling is appealing here, however ingenuity is
needed as naı̈ve approaches introduce tremendous biases in
the results, rendering the evaluation useless (cfr Sec.II).

To get beyond these limits, we proposed a hybrid technique
named ModelGraft [40], which is able to aggressively down-
scale the original system while fully preserving its properties.
This technique relies on the assumption that caches (for a
large class of replacement policies) are well approximated by
a Time-To-Live (TTL)-based equivalent, whose eviction timer
is set equal to the characteristic time (TC) of the original
system. This allows us to use meta-objects in the downscaled
system, whose role is to represent aggregate of objects. We
sample objects in a way that maintains structural properties
of the original catalog. We implemented ModelGraft as an
alternative hybrid engine into an already available and open-
source simulator. We show that it consistently downscales the
original system, gaining several orders of magnitude in terms
of CPU time (100-300×) and memory occupancy (10,000×),
with a very good accuracy on the cache hit rate (<2% error).

This work makes a significant step further, by proposing and
implementing a parallel technique for the evaluation of general
cache networks that achieves an ideal speedup. We show that
this is non trivial due to the correlation between neighboring
caches (i.e., miss-streams’ propagation): therefore, partitioning
the simulation of nodes over multiple cores incur a massive
overhead associated to Message Passing Interface (MPI), with
an overall slowdown of the execution time. Our original
contribution is to recognize that the decoupling principle of
the Che’s approximation [8] yields to dynamics of meta-objects
that are completely independent from each other. The original
network can be well described by the aggregate of several
independent networks, each comprising the whole original
topology, but simulating requests for portions of the original
content catalog. This constitutes a significant breakthrough, as
it effectively makes each thread independent, thus resulting in
very good scaling properties of the parallelization technique.

In more details, we design, implement and evaluate two
techniques (network vs content slicing) for parallel simulation
of cache networks, and additionally contrast two downscal-
ing strategies. These techniques make a significant leap by
reducing the simulation time by almost 10000x with respect
to event-driven simulation, and by up to 70x with respect to
our previous work ModelGraft [40]. We make our code, able
to simulate trillion-scale objects scenarios in just one hour of
CPU time, available at [1].

In the rest of this paper we motivate this research (Sec.II)
and recall ModelGraft [40] (Sec.III). We next detail the dif-
ferent alternatives we implement to parallelize the evaluation
of cache networks (Sec.IV–Sec.V). We then thoroughly assess

2

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

104 105 106 107 108 109 1010 1011 1012

C=100

C=1000

C=10000

A
gg

re
ga

te
 re

qu
es

ts
 fo

r t
op

 C
 c

on
te

nt
s

(L
FU

 h
it

ra
tio

 fo
r c

ac
he

 s
iz

e
C

)

Catalog size (M)

True Zipf quantiles
log(C)/log(M) approx

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

102

105
103

106
104

107
105

108
106

109
107

1010
108

1011
109

1012

Event driven simulation
(ccnSim v0.3 v0.4)

ModelGraft
[31]

This
work

C
ac

he
 h

it
ra

tio
 (p

hi
t)

Cache and catalog (C/M ratio = 10-3)

α = 1.2
α = 1.0
α = 0.8

Fig. 1. Motivation: Cache network performance misestimation for (a) fixed cache size and downscaled catalog vs (b) jointly downscaled cache and catalog.

their performance (Sec.VI-Sec.VII), and finally review related
work (Sec.VIII) and summarize our findings (Sec.IX).

II. MOTIVATION

The need for approaches such as the one proposed in this
paper clearly emerges by gauging the distortion entailed by
naı̈ve downscaling of important system parameters. In the
case of cache networks, two options naturally arise: either (i)
shrinking the catalog size M , while keeping other parameters,
like the cache size C, unchanged, or (ii) jointly shrinking
both catalog and cache size, thus keeping their ratio C/M
unchanged. As we shall see, none of these options leads to
meaningful results in practice.

A. Downscaling catalog M
First, note that important catalog properties, such as Zipf’s

popularity slope α, are gathered from real systems with large
catalog size M . It is quite intuitive that if α is measured over
a catalog of M objects, its use into a system of size M ′�M
introduces a distortion of the gathered performance. 1

For instance, the percentage of aggregated requests involv-
ing the first C most popular objects, out of a catalog of size
M , is depicted in Fig. 1-(a) for α = 1: it can be seen that
downscaling the catalog size while keeping the cache size
constant increases the relative volume of requests directed to
the head of the catalog, translating into a significant over-
estimation of the cache hit. Downscaling the catalog from
M=1012 to M ′=104 in a system with a stationary catalog and
a single cache operating with Least Frequently Used (LFU)
replacement policy, which statically places the C most popular
objects in a cache of size C < M , would imply a relative error
of 200%, 350% and 500% for caches storing C = 100, 1000
or 10000 objects respectively.

More generally, the quantile of the Zipf distribution for an
object of rank C, i.e., the sum of frequencies for objects having
rank ≤ C can be written as

P (C) =

∑C
k=1 1/kα∑M
k=1 1/kα

. (1)

1Traffic is synthetically generated in our simulator. We refer the reader to
[43] for a discussion on the necessity of synthetic traffic models and how to
generate realistic traffic traces.

which corresponds to the aggregate rate of requests for the
most popular C objects, and in the case of LFU, also corre-
sponds to the hit rate h of a cache of size C. In case α = 1,
numerator and denominator of 1 correspond to the Harmonic
numbers HC =

∑C
k=1 1/k (and HM), which are known to be

well approximated asymptotically by a logarithmic function,
since

lim
X→∞

HX − ln(X) = γ, (2)

where γ ≈ 0.57 is the Euler-Mascheroni constant. Hence, in
the large C and M regime, we have:

h = P (C) ≈ ln(C)/ln(M). (3)

It follows that, for a given cache size C in the LFU model,
the cache hit error in the downscaled system goes as:

ln(M)− ln(M ′)

ln(M)
, (4)

where M ′ < M is the downscaled catalog size. Thus,
overestimation error slowly decreases as M ′ increases toward
the true catalog size M .

B. Jointly downscaling catalog M and cache C

Yet, compensating the aforementioned bias is not trivial:
for instance, an opposite behavior leading to a significant
underestimation of the cache hit-ratio happens when catalog
cardinality and cache size are jointly downscaled in order to
keep their ratio constant. This can be noticed from Fig. 1-(b),
which reports the cache hit ratio, phit, of a 15-nodes binary
tree of depth four for different Zipf’s skews α ∈ {0.8, 1, 1.2}.
Results refer to different combinations of catalog M and
cache C sizes; specifically the cache to catalog ratio has
been fixed to C/M = 0.1%. The figure also highlights
the scale achievable with different performance evaluation
methodologies (i.e., event-driven simulation, ModelGraft [40],
and the parallel technique proposed in this work).

In particular, it clearly appears that phit increases at each
joint increment of C and M (translating into a potential error
of 135% between the biggest and the smallest scenario with
α = 1, as an example), which is tied to the increasing ratio

3

between the cache size C and the different percentiles of the
catalog when jointly increasing both C and M .

The net effect of these over- or under-estimation errors
is that simulation results, gathered over naı̈vely downscaled
versions of the original system, are not more quantitatively
accurate than uninformed guesses: this testifies the need for
approaches such as our previous single-core technique [40],
as well as the parallel technique we propose in this paper.
Of course, other properties of the evaluation scenario, such as
topological [34] and workload [42] aspects are still important,
and any devised technique should correctly support these
aspects (see Sec. III-B).

III. BACKGROUND ON MODELGRAFT

A. Modeling background

Che’s approximation [8], conceived for a LRU cache, is
essentially a mean-field approximation which greatly simpli-
fies the analysis of the interactions between different contents
inside a cache. The approximation consists in replacing the
cache characteristic time TC(m) for content m, i.e., the
(random) time since the last request after which object m will
be evicted from the cache (due to arrival of requests for other
contents), with a constant eviction time TC (independent from
the content itself, and rather a property of the whole cache).

Notice that under LRU, content m is considered to be in
the cache at time t, if and only if, at least one request for
m has arrived in the interval (t− TC , t]. Supposing a catalog
with cardinality M , for which requests are issued following
an Independent Reference Model (IRM) with aggregate rate
Λ =

∑
m
λm, the probability pin(m) for content m to be in a

LRU cache at time t can be expressed as:

pin(λm, TC) = 1− e−λmTC . (5)

Denoting with 1{A} the indicator function for event A, and
considering a cache of size C, we have, by construction, that
C =

∑
m 1{m in cache at t}. Averaging both sides, we obtain:

C =
∑
m

E
[
1{m in cache at t}

]
=
∑
m

pin(λm, TC). (6)

It follows that the characteristic time TC can be computed by
numerically inverting (6), which admits a single solution [8].

Our previous work [40] leveraged the intuition that the
analysis of complex and large cache networks can be greatly
simplified by replacing every LRU cache with a simpler Time-
to-Live (TTL) cache [18, 13, 26, 27], where contents are
evicted upon the expiration of a pre-configured eviction timer
T ′C , which, for each content, is set upon the arrival of the
last request if the content is not in the cache, and reset at
every subsequent cache hit. As experimentally shown in [8],
and remarked in [13, 25], the dynamics of a LRU cache with
characteristic time TC , fed by an IRM process with a catalog
of cardinality M become indistinguishable from those of a
TTL cache with deterministic eviction timer T ′C set equal to
TC (i.e., T ′C = TC), and operating on the same catalog.

Yet, TTL caches are impractical since their size is not bound
a priori, so that simulating TTL caches would require more
memory than with classic LRU ones [41]. We thus proposed

TABLE I
SCOPE OF ModelGraft APPLICABILITY

Workload IRM, Dynamic [21]
Forwarding SP, NRR [37], LoadBalance [36]
Cache decision LCE, LCP [5], 2-LRU [25], CoA [4]
Cache replacement LRU [8], FIFO [25], RND [14]

a technique to opportunely downscale the system to avoid the
aforementioned biases, that we identified as ModelGraft [40].
As the main aim of this work is to parallelize its workflow,
to make this paper self-contained we provide a high-level
description of ModelGraft, referring the reader to [40, 41] for
details, analytical proofs, and experimental results.

B. ModelGraft goals and scope

ModelGraft achieves very low memory and CPU complexity
with respect to classic event-driven simulation, while at the
same time yielding to performance that accurately represent
those of the original system. Additionally, it retains simulation
simplicity, as it is implemented and readily available as a sim-
ulation engine of ccnSim-0.4 [1]. Finally, it retains simulation
flexibility, as it can be seamlessly applied to complex scenarios
involving several schemes, summarized in Tab. I, that represent
the current state of the art.

While in this work we limit our attention to networks of
LRU caches, it is worth pointing out that ModelGraft can
be applied whenever the original system admits a mean-field
approximation, such as the one introduced by Che for LRU
caches [8], and later extended to a fairly large class of cache
networks [14, 25]. In particular, mean-field approximations
exist for most cache replacement strategies, such as LRU,
RANDOM, and FIFO, under both IRM and non-IRM traffic
patterns with dynamic popularities [16] fit over real traces [42]
(a theoretical justification is given in [21]). In addition, a fair
variety of cache decision policies are supported, including
classic Leave Copy Everywhere (LCE), Leave Copy Proba-
bilistically (LCP) [5], k-LRU (whose behavior has been proven
to converge to LFU [21]), and newer Cost-Aware (CoA) [4]
and Latency-Aware Caching (LAC) [7] schemes. Finally, for-
warding strategies are not limited to Shortest Path (SP), but
state-of-the-art techniques including Load Balancing [36] and
Nearest Replica Routing (NRR) [11], are equally supported
over arbitrary graphs [34].

It follows that a parallelization of the ModelGraft technique
would inherit the same wide scope of applicability of the
underlaying simulation engine. On the one hand, a ccnSim [1]
implementation would readily benefit the population of its
users (at time of writing, ccnSim has been downloaded over
4,000 times). On the other hand, it would be beneficial for
the technique to be generally applicable to other existing
simulators, such as those overviewed in [39].

C. ModelGraft components and workflow

In a nutshell, ModelGraft combines elements of stochastic
analysis within a simulative MonteCarlo approach of oppor-
tunely downscaled systems, where LRU caches are replaced

4

Transient Simulation cycle

Steady state

monitor

Consistency checkT correctionC

Downscaling

& sampling C'

C

C
~(z)

T C
 (0)

C' C
~

T C
(z) (z+1)

T C
(z) = |C'-C | < ε

~(z)
1

Δ

Fig. 2. Synoptic of ModelGraft workflow (simplified view of [40])

by their Che’s approximated version, implemented in practice
as TTL caches. Crucial ingredients are (i) the use of the so
called characteristic time TC of LRU caches as Time-To-Live
parameter of their TTL counterparts; (ii) an effective down-
scaling of the catalog, which preserves crucial properties of its
stationary probability distribution; (iii) the use of a rejection
inversion sampling technique as random number generator
to cope with memory explosion, and (iv) a self-regulation
loop that guarantees accuracy by ensuring convergence to a
consistent state. The ModelGraft workflow, as depicted in
Fig.2, starts with a downscaling and sampling of the scenario,
before entering a MonteCarlo TTL-based simulation phase.
During the MonteCarlo TTL phase, statistics are computed
after a transient period, where an adaptive steady-state monitor
tracks the dynamics of the simulated network in order to
ensure that a steady-state regime is reached without imposing
a fixed threshold (e.g., number of requests, simulation time,
etc.) a priori. Once at steady-state, a MonteCarlo TTL simu-
lation cycle performs a number of requests, downscaled by a
factor of ∆. The monitored variable is then sent to the self-
stabilization block: a consistency check decides whether to end
the simulation, or to go through a TC correction phase and
start a new simulation cycle.

In particular, ModelGraft automatically infers the correct
TTL parameter, i.e., TC , by starting from uninformed guesses
and automatically correcting the value according to the fol-
lowing observation. Despite TTL-based caches have not a
fixed size, their average measured size C̃(z) at the end of
the z-th step should be equal to the target downscaled cache
C ′ = C/∆. As such, when all caches in the network are
within a small error ε from their expected size, the results of
the downscaled system are consistent with those that would
have been gathered in the original one. Otherwise, ModelGraft
exerts a controller action on the characteristic time of the
next step T

(z+1)
C , to compensate for the observed cache size

discrepancy, T (z+1)
C = T

(z)
C C ′/C̃(z). In practice, convergence

requires only a handful of cycles even when the input TC differ
by orders of magnitude from the correct ones (see Sec. VII-B).
Notice that cache size C does not need to be homogeneous
across nodes. Finally, we may be wondering: up to which
point can we enlarge safely the downscaling factor ∆, in our
simulations? The answer is rather simple: indeed, convergence
is guaranteed whenever the downscaled cache size can be
reliably measured (e.g., C ′ ≈ 10) so that a rule of thumb
identifies the largest ∆ ≈ C/10 as the most effective and
robust setting. These properties make ModelGraft a hybrid

ns

cs

Catalog

Caches

Routers

C
P
U

M
e
m

C
P
U

M
e
m

Fig. 3. Slicing alternatives for parallel simulations: Catalog Slicing (CS) vs
Network Slicing (NS). Both CS and NS allow to use multiple CPU cores, at
the price of a larger memory occupancy.

simulation engine that can be seamlessly applied to any event-
driven scenario.

IV. PARALLEL CACHE NETWORK SIMULATION:
HIGH-LEVEL DESIGN

In practice, the ModelGraft downscaling technique shifts
the bottleneck for evaluation of large-scale scenarios from
RAM memory to CPU execution time: the main contribution
of this work is to break this CPU bottleneck by exploiting
parallelism in the evaluation of cache networks. In doing
so, we explore a broad design space, that we overview at
high-level in this section and review in greater detail in
Sec.V. Specifically, Sec.IV-A introduces two complementary
strategies for parallelization, namely Network Slicing (NS) vs
Catalog Slicing (CS): the latter technique yields a close-to-
ideal multi-threading speedup, and is the main contribution
of this work. Furthermore, Sec.IV-B introduces two strategies
for the catalog downscaling and its mapping to multiple-
cores, that respectively spatially or temporally split the request
generation process: again, the latter technique yields to both
an improvement in the results accuracy as well as a further
speedup, and it is an additional contribution of this work.

A. Network vs Catalog Slicing

We illustrate these strategies with the help of Fig. 3, where
we depict network nodes, caches, and content catalog. The
left part symbolizes the single-threaded (ST) case, where the
whole simulation is executed by a monolithic process, thus
leaving the available resources (such as additional CPU cores
and RAM memory) unexploited. The right part illustrates the
multi-threaded (MT) strategies, with colors highlighting the
primary resource to share over the different threads. As parallel
execution increases the RAM usage, downscaling techniques
are clearly required (Sec.IV-B).

NS Under Network Slicing (NS), network topology is cut
into multiple slices, whose simulation is assigned to different
threads: thus, each thread simulates requests for the whole
catalog over a portion of the network only. Two main factors

5

can however limit the efficacy of NS: first, the maximum
number of multiple threads which can run in parallel is upper-
bounded by the size of the network N � M . Second, and
most importantly, the propagation of miss streams throughout
the network (which influence the arrival processes at different
nodes) translates into a strong correlation between neighboring
caches. As such, the overhead tied to message passing is
expected to grow with the degree of parallelism P (i.e., the
number of parallel threads). For the sake of clarity, consider
the simple hierarchical tree topology reported in Fig. 3: since
leaves are independent, they can efficiently run on independent
threads. However, already at the first level above the leaves,
the request process becomes correlated with the incoming
miss streams from the leaves: this forces the exchange of
synchronization messages to keep consistency in the network
state. As a consequence, we may expect NS gain to remain
limited in practice.

CS Under Catalog Slicing (CS), the catalog is cut into
multiple slices, whose simulation is assigned to different
threads: thus, each thread simulates a portion of requests over
the whole network. The CS strategy is one of the main con-
tributions of this work and leverages the following intuition.
Recall that the constant characteristic time TC of the early
introduced stochastic model does not depend on the content
itself: as individual contents become de facto independent in
the approximation, we argue that it should be possible to
shard requests for independent contents over multiple cores.
Our proposal, complementary to the classical NS approach
outlined above, is thus to let each thread have a full view of the
network (as nodes are correlated), but only a partial view of
the catalog (as contents are independent). In turn, given that
contents are independent, we do not face additional overhead
tied to synchronization of network state across threads, unlike
in the NS gain, from which we expect sizeable multi-threading
gains. To the best of our knowledge this intuition is unexplored
(cfr. [17, 20] in Sec.VIII-B), despite it appears quite intuitive
in hindsight.

B. Content slicing: Binning and mapping strategies

It is easy to recognize that CS technique alone would face a
memory bottleneck. First, as the topology is entirely replicated
for each thread, the amount of memory required to simulate
the cache space C for each of the N nodes increases with
the parallelism degree P . Second, the catalog M � NC
still represents the dominant factor for memory occupancy.
Techniques to properly downscale the original scenario, as
well as to map it to the multi-threaded execution are thus
required: Fig.4 illustrates the binning and mapping strategies
that we consider in this work and describe next.

PRE One option is to fix binning a priori (PRE). Under a
downscaled catalog of cardinality M ′ = M/∆, each meta-
content m ∈ [1,M ′] is requested with a rate λ̄′m, equal to
the average request rate for contents in the correspondent bin
[(m − 1)∆ + 1,m∆] of the original catalog. This preserves
the peculiarities of the original catalog, i.e., it guarantees

C
a
ta

lo
g
 b

in
n

in
g

Mapping to Threads(s)

1 M

1 M'=M/Δ

Δ

2

2Δ} } } }

} } } }

...

...

P
R

E
P

O
S

T

identity
Spatial

Splitting

identity
Temporal
Splitting

Single (ST) Multi (MT)

Fig. 4. Content slicing (CS): synopsis of Binning (PRE vs POST) and
Mapping (ST vs MT) strategies. The original ModelGraft [40] technique
can be identified as CS-PRE-ST in the terminology of this paper. Mapping
strategies are tightly coupled to the binning in the multi-threaded MT
execution: PRE binning spatially splits the catalog, whereas POST binning
temporally splits the requests’ process.

that ratios between the request rates of meta-contents exactly
mimics the original ratios between aggregate rate of the
corresponding bins.

Under PRE binning, a number of M ′ independent genera-
tors are needed in order to be mapped to one (ST) or more
(MT) cores. In single-threaded simulation, all generators are
mapped to the same core; the ModelGraft [40] technique,
indeed, can be identified as CS-PRE-ST according to the
notation of this paper. In the CS-PRE-MT multi-threaded
execution, instead, each of the M ′ bins has to be assigned
to one of the P threads. Practically, the downscaled request
process R′ is spatially split [20] into non-overlapping portions
zp of the downscaled catalog, each of which is spatially
mapped to a different thread p, i.e.:

R′ =

P∑
p=1

R′p =

P∑
p=1

∑
i∈zp

λ̄′iTend, (7)

where R′p is the number of requests generated by assigning
the zp meta-contents to core p, the catalog is partitioned into
M ′ disjoint sets zp ∩ zq = ∅, ∀p 6= q, and Tend is the
scheduled end of the entire simulation. Intuitively, to maximize
the efficiency of the execution, it would be desirable to
distributed the load among threads. Equivalently, the objective
is to minimize the makespan, i.e., the total time after all cores
have finished processing assigned jobs, which can be seen as a
particular instance of the “multiprocessor scheduling” (or job
shop scheduling with atomic instances):

min max
p

Yp(zp)

s.t.
P∑
p=1

∑
i∈zp

Yp(zp) = R′

zp ∩ zq = ∅, q 6= p

(8)

where Yp(zp) =
∑
i∈zp λ̄

′
iTend can be considered as the load

of core p. We remark that the CS-PRE-MT mapping, which
assigns each of the M ′ meta-contents to one thread to avoid
overlapping, requires the preliminary solution of a NP-hard
optimization problem – whose computational time, even for
sub-optimal greedy heuristics, can grow large enough to offset
parallel execution gains of CS-PRE-MT.

6

POST Another option is to infer binning a posteriori (POST).
In other words, the POST strategy relies on the inversion
rejection sampling technique to build a single generator which
extracts random numbers in the interval [1,M] of the original
non-downscaled catalog, following the original Zipf distribu-
tion with exponent α. Binning is done after the extraction of
the random number m: the correspondent request rate λm is
computed and associated to the correspondent meta-content
m′ according to the bin it falls into, i.e., m′ = bm/∆c+ 1.

The POST binning strategy can be applied in the single-
threaded execution case: interestingly, the CS-POST-ST exe-
cution is not only more accurate, but it also achieves a 2×
speedup with respect to the CS-PRE-ST technique originally
used in [40] (see Sec.VII).

The CS-POST-MT mapping strategy further leverages the
fact that, due to Che’s approximation [8], contents’ dynam-
ics can be considered both spatially as well as temporarily
independent. As such, instead of spatially/deterministically
splitting the request process as in CS-PRE-MT, under CS-
POST-MT the request process is temporally/randomly split
over multiple threads. Formalizing, we can re-write equation
(7) as:

R′ =

P∑
p=1

Rp =

P∑
p=1

M
′∑

i=1

λ̄′iTend
P

, (9)

where the inner sum now extends over the whole downscaled
catalog M ′: this clearly simplifies mapping, as now each
thread can potentially generate requests for all the meta-
contents, but along a limited amount of time (i.e., Tend/P).
Temporal splitting [17] used by SC-POST-MT also entails
load-balancing among threads, without incurring NP-hard
complexity as in the spatial SC-PRE-MT case, from which
we expect significant practical gains.

V. PARALLEL CACHE NETWORK SIMULATION:
IMPLEMENTATION DETAILS

In this section we introduce the components involved in
the parallel simulation workflow, that we implement in the
ccnSim [35], an open source cache network simulator [1] built
over Omnet++ and written in C++. In particular, we use the
Akaroa2 [9] software suite to parallelize the single-threaded
workflow (early depicted in Fig.2) with a master-slave archi-
tecture (illustrated in Fig. 5 and described in the following).
The for lack of space, the detailed software structure is omitted
in this description but is available in GitHub [2].

A. Akaroa2

Akaroa2 [3, 9] is a licensed software written in C, offering
all the fundamental master-slave network programming APIs.
At high level, Akaroa2 assists in instantiating multiple inde-
pendent replications of the same scenario on different cores:
observations of the monitored KPIs are regularly sent to a
central unit, i.e., the master thread, which is in charge of
consolidating the statistics and eventually stopping the sim-
ulation when the desired level of accuracy has been reached.
If P independent copies of the simulation are instantiated

Consistency checkT correctionC

Downscaling
& sampling

C'

C

C' C
~T C

Transient Simulation cycle C
~(z)

(z) (z+1) T C
(z) = |C'-C | < ε~(z)

T C
 (0)

1

cs

Aggregation

C
~(z)

Transient Simulation cycle C
~(z)

Transient Simulation cycle C
~(z)

Transient Simulation cycle C
~(z)

color

C''
C''
C''
C''

Slaves Master

Steady state
monitor

1 2

P...1

3

2

4

5

Fig. 5. Synoptic of parallel workflow: (1) Instantiation of parallel downscaled
scenario; (2) Distributed collection of samples for centralized (3) steady-state
monitoring (inner loop). Finally, (4) KPI consolidation and (5) optional TC
correction (outer loop).

in parallel, measures are taken P times the rate of a single
instance, thus potentially leading to a proportional speedup
with the number of parallel cores.

There are three main components in Akaroa2. The akmaster
process, which coordinates all the other processes, to which
it is connected in a logical star topology. The akslave pro-
cesses, used by the akmaster to launch and communicate
with a simulation engine: there must be one akslave process
on each host, and a single akslave process can launch and
communicate with multiple simulation engines on the same
host. The akrun process is used to instantiate a simulator run
(i.e., selecting the engine, the scenario, the parallelism degree
P), and to communicate with akmaster to choose and instruct
the necessary akslave processes for that run.

In general, akmaster simply collects local estimates from the
simulation engines, calculates global estimates, and decides
when to stop the simulation. In our specific case, we needed
to extend the Akaroa2 framework APIs to report a richer
set of statistics (i.e., miss and hit vectors as opposite to just
scalar values) and to integrate and centralize all the decisional
logic (e.g., steady-state monitor, stability check, etc.) inside
the master process. To let Akaroa fit our parallel simulation
design, we modified 17 of its core component, that we release
as patches at [2].

B. Parallel Workflow

Limiting our attention to the Content slicing (CS) technique,
we now describe each block of the parallel workflow illustrated
in Fig. 5. For the sake of clarity, each of the P worker threads
(notice that there are NH < P akslave processes, where
NH is the number of physical hosts) is represented with a
solid color, whereas the master process is represented with
a blended color. With respect to the Network slicing (NS)
technique, CS limits communication overhead both because
(i) it is limited to slave and masters only, unlike in NS, but
especially because (ii) communication is purposely designed
to infrequently collect independent statistics from slaves for
consolidation at the master, as opposite to frequently exchang-
ing messages to synchronize simulation state as in NS. To
simplify the exposition, in the following, we assume all caches
in the network to be of the same size, but we remark that our
approach naturally extends to the more general case.

7

1 Initial resource allocation. Before executing the parallel
simulation of the cache network, it is important to downscale
the scenario and to dimension the master-slave infrastructure:
this boils down to setting ∆ ≈ C/10, selecting the binning
and mapping strategies, choosing a parallelism degree P ,
and instantiating a number of slave processes on the desired
hosts. In practice, given NC (resp. 2NC) the number of
physical cores on a given host (resp. virtual cores under hyper-
threading), it is advisable to spawn akslaves processes on at
least dP/NCe hosts.

2 Distributed Collection of Samples. Once the parallel
simulation starts, slaves start collecting statistics (counters of
hit and miss events) that they periodically communicate to the
master. At high level, the purpose of statistic collection is to
test for steady state using batch-means for cache hit rate over
a window of W samples. Since samples are collected from P
independent instantiations of the same scenario, the individual
window size (i.e., the number of samples collected from each
slave) can be set as:

WP = bW/P c, with WP ≥ 10, (10)

where W is the desired window size for the single-threaded
case, and where the lower bound of 10 samples is introduced to
avoid collecting vanishing samples at high parallelism degrees.
In particular, every τ simulated seconds, each slave checks for
the availability of a new valid2 sample for each node of the
simulated network. When a large majority of nodes Y N , with
Y ∈ [3/4, 1), have collected WP valid samples, a summary
vector containing 2N WP samples is sent to the master (where
the factor of 2 is due to the need of counting both hit and
misses in the distributed case). The parameter Y is useful to
avoid being slowed down from nodes whose cache is rarely
accessed (e.g., as the root of a deep tree, or nodes that are in
peripheral positions under arbitrary topologies), and that thus
only minimally affect system performance. Once the summary
vector is sent, the slave waits for a message from the master,
that will either signal the start of the steady-state phase, or
confirm the transient state.

3 Centralized Steady-State Monitoring. During transient
state, the master collects distributed samples from all slaves:
data collected during the transient phase are used to check
whether steady state starting conditions are met (with a batch
means technique). In the current implementation, the master
operates in synchronous mode, meaning that it waits for the
summary vector from all the simulation engines before contin-
uing with the aggregate computation, leading to possible idle
time at slaves. Yet, in our experiments (Sec.VI), we see that
synchronous mode is efficient in setups with tens (to hundred)
of cores, such as the one at our disposal. Another possible
design, which we leave for future work, is the asynchronous
mode, which could avoid idle times at slaves: however, clocks
between workers may drift, and it could still lead to resource

2A sample is valid when the cache has received a non-null number of
requests since the last sample and its state has changed, i.e., a new content
has been accepted in the cache and an old one evicted from the cache.

wastage (i.e., the events simulated between the last batch
signaled by the slave and the steady-state signal by the master).
This mode may be more efficient in the many-core regimes,
such as Graphical Processing Units (GPUs) with (possibly
several) thousands of cores.

Once all P vectors are received for the sampling interval j,
all valid3 samples collected from different slaves and related
to the same nodes i are aggregated. Denoting with hitk(j, i)
the number of hit events collected for node i during slot j by
slave k, we have that the hP (j, i) sample for the hit ratio of
node i aggregated over the P slaves during j is:

hP (j, i) =

∑P
k=1 hitk(j, i)∑P

k=1 hitk(j, i) +
∑P
k=1missk(j, i)

(11)

from which the master computes the average hit ratio h̄P (i)
and the corresponding coefficient of variation CVP (i):

CVP (i) =

√√√√ 1
WP−1

WP∑
j=1

(
hP (j, i)− h̄(i)

)2
1
WP

WP∑
j=1

h̄P (j, i)

(12)

Denoting with εCV a user-defined threshold, the master con-
siders the whole system to enter in steady-state when:

CVP (i) ≤ εCV , ∀i ∈ Y, (13)

where |Y| = dY Ne is the set of the first Y N nodes
satisfying the convergence condition. In case condition (13)
is not verified, the master signals all slaves to continue the
transient phase (inner loop of Fig. 5). When instead (13)
holds, slaves are instructed to enter the steady-state phase,
where R′P = R′/P total requests are issued. Data collected
during the steady steady are used to generate steady state
measurements and check convergence conditions for the outer
loop.

4 Centralized KPI Consolidation. At the end of a steady
state phase (outer loop of Fig. 5), whereas hit rate is computed
as described in step 3 , consolidation of the cache size
depends on the binning/mapping strategies. In particular, in
the CS-PRE-MT case, each of the P slaves runs a different
“spatial” portion of the catalog: the expected cache size for
each slave is 1/P -th of the cache size C ′ = C/∆ of the
single threaded case. It follows that for CS-PRE-MT, the
measured cache size of a node i in the TTL-based system
is consolidated by summing the individual contribution of the
different slaves, i.e., C ′P (i) =

∑P
k=1 C

′
P (i, k). Conversely,

in the CS-POST-MT case, each of the P slaves runs a
“temporal” slice of the whole catalog: the cache size is thus
expected to be invariant with respect to the single-threaded
case C ′P (i) ≈ C ′, so that the cache size is consolidated over
the P slaves by averaging the individual slave contributions,
i.e., C ′P (i) = 1

P

∑P
k=1 C

′
P (i, k).

3As early stated, some “peripheral” nodes (i.e., outside the first Y N nodes
collecting valid samples), have not completed their collection: the sample is
thus marked as invalid by the slave and disregarded by the master.

8

5 Centralized Consistency Check and TTL Correction. The
per-node measured TTL-based cache size C ′P (i) is used to
assess the quality of the results: while the size of a TTL-based
cache is not upper-bounded a priori, however it is expected
that it will match that of the approximated LRU one, i.e.,
C ′P (i) ≈ C ′. Once all steady state measures are received, the
master checks, for all nodes, the consistency of the measured
and expected cache sizes:

1

Y NP

P∑
k=1

∑
i∈Y

∣∣C ′ − C ′P (i)
∣∣

C ′
≤ εC , (14)

where C ′ is supposed to be equal for all nodes without loss
of generality, εC is a user-defined consistency threshold and,
for coherence, measures are taken on those |Y| = Y N nodes
that have been marked as stable in the previous phase.

If condition (14) is verified, the master signals all the simu-
lation engines to stop the simulation. Otherwise, discrepancies
between measured C ′P (i) and expected size C ′ are due to
imprecisions in the value of the characteristic time TC used
as Time-To-Live in the simulation: given that the consolidated
cache size is the same as in the single-threaded case, the master
can then exert the same controller action than in the original
ModelGraft [40] (as reported in Fig.5, the input TC values are
corrected proportionally to the ratio between the C ′/C ′P (i))
and execute a new parallel simulation cycle (in which case,
statistics are discarded and counter resest).

VI. RESULTS

In this section, we evaluate the performance of the proposed
parallelization techniques. We first describe the experimental
settings and scenarios (Sec.VI-A). We then contrast the multi-
threading speedup under Network vs Content slicing tech-
niques (Sec.VI-B) and then the PRE vs POST binning and
mapping strategies (Sec.VI-B), showing merits and limits of
each technique. Finally, we contrast accuracy, memory and
CPU complexity of the parallel techniques to event-driven and
monte-carlo simulations (Sec.VI-D).

A. Experimental settings
As a reference, we consider a large-scale scenario, depicted

in Fig.6, describing a Content Distribution Network (CDN)-
like topology, where 4-level binary trees representing access
topologies are interconnected through a backbone of 11 nodes
arranged as the classical Abilene2 topology. The network
comprises a total of N = 67 nodes, equipped with LCE-LRU
caches able to store C = 107 objects out of a catalogM com-
prising M content objects, with M ∈ {109, 1010, 1011, 1012},
whose popularity distribution follows a Zipf trend with expo-
nent α = 1 (unless otherwise stated). We defer the analysis of
more complex (e.g., non LCE-LRU) scenarios to Sec.VII.

We run our experiments using two clusters: one where
resources are shared (but always available) and another where
resources are dedicated (but is subject to reservation). The
shared cluster comprises NS = 5 servers equipped with 48 GB
of RAM memory4 and 2× NUMA nodes with a Xeon E5-2665

4In reason of memory limits, the largest scenario attainable with event-
driven simulation has a catalog of M = 10

9 objects

...
...

...
...

... ...
...

Fig. 6. CDN-like scenario: 4-level binary trees representing access topolo-
gies are interconnected through an Abilene2 backbone of 11 nodes, com-
prising a total of N = 67 nodes. LCE-LRU caches are able to store
C = 10

7 objects out of a catalog comprising M content objects, with
M ∈ {109, 1010, 1011, 1012}.

CPU operating at 2.40GHz. As there are NC = 8 physical
cores per NUMA node, each server features 32 virtual cores
in Hyper-threading available for parallelization. The dedicated
cluster comprises NS = 4 servers equipped with 378 GB of
RAM memory and 2× NUMA nodes with a Xeon E5-2690
CPU operating at 2.60GHz (with NC = 12 physical cores
per NUMA node, thus 48 virtual cores per server in Hyper-
threading). To gather conservative results, we mostly use the
shared cluster that operates at a lower frequency, and defer
results of the dedicated cluster to Sec.VII.

As for the shared cluster, we cannot guarantee that our
experiments run in isolation. To lessen the impact of uncon-
trolled workloads operating on the same server at the same
time, we (i) poll each server load and select those that are
instantaneously the least loaded, we (ii) repeat experiments 25
times, and (iii) measure the minimum execution time across
repetitions. At the same time, since the only impact of the
additional workload is to limit the achieved speedup, it follows
that results we report in the following are conservative.

B. Network Slicing (NS) vs Content Slicing (CS): Quantitative
Comparison

To assess the scaling properties of NS against CS tech-
niques, we start by observing the relative speedup that a degree
of parallelism P brings to each technique with respect to their
monolithic single-threaded version (i.e., original ModelGraft
[40]). Notice that we are not comparing, for the time being,
against event-driven simulation, which is orders of magnitude
slower. Formally, denoting with T (P) the execution time of
a simulation with P parallel threads running independently,
we define the relative speedup as S(P) = T (P)/T (1). For
the sake of completeness, we report that for the scenario
under consideration (i.e., CDN-like and M = 1011) T (1) =
4.82 hours. Fig. 7 reports the speedup as a function of the
degree of parallelism P for the NS vs CS techniques. The
top x-axis additionally reports the number of servers NS and
cores NC involved for any given P .

NS Considering the Network Slicing case first, two remarks
emerge from Fig. 7: first, for low parallelism (i.e., when the
topology is split over P ∈ [2, 3] parts, assigned to independent

9

�����

����

��

��

��

��

���

���

���

� � � � �� �� ��

����
����

�
�

�
�

�
�

�
��

�
��

�
��

�
��
�
��
�
��

�
�
��
��
��

����������������������

�������������������������������������

��������������������
��������������������
�����

Fig. 7. Comparison of Network Slicing (NS) vs Catalog Slicing (CS): speedup
(or slowdown) with respect to the single-core case, as a function of the degree
of parallelism P (i.e., the number of slave threads). The number of servers NS
and cores NC is reported on the top x-axis. NS incur a significant slowdown
due to MPI overhead, already in single-server settings, when P > 4. Instead,
CS speedup is ideal even with multiple servers (i.e., P = 32 and NS = 2),
and flattens afterwards (P = 64 and NS = 3).

parallel threads), NS yield to a noticeable speedup, that how-
ever quickly degrades and vanishes already for P = 4. Indeed,
while for simple topologies (e.g., a tree), slicing can achieve
some benefit for low parallelism (e.g., right-half and left-half
sub-trees), however more complex topologies and arbitrary
routing protocols makes it hard to slice the network in practice.
Furthermore, for higher parallelism, i.e., P > 4, network
slicing entails a significant slowdown, already in single-server
settings: notice, indeed, that when P = 8 simulations are 4×
slower than their single-threaded counterpart, and thus 32×
slower than in the case of an ideal speedup (we do not carry
out experiments for P > 8, which would further share the
load over multiple machines). Slowdown happens due to the
correlation between neighboring caches: we also carried out
experiments varying the MPI laziness5, that correlates with the
frequency at which synchronization messages are exchanged
between different logical processes, with no observable bene-
fit. As it seems that the overhead of using MPI quickly offsets
any benefits tied to parallel execution, this makes NS of limited
practical appeal.

CS Consider next the Catalog Slicing case, in its CS-POST-
MT configuration (i.e., with a single generator whose requests
are randomly split over time). Again, two observations can be
gathered from Fig. 7: remarkably, an ideal speedup is not only
achieved in single-server setting (P = 16), but it also persists
even with multiple-servers (NS = 2 or P = 32). Second,
while in the range P ∈ [32, 64] the speedup deviates from the
ideal reference, it is important to notice that the speedup still
grows, albeith slowly, in that range (which is hard to appreciate
in the log-log scale). Several factors possibly contribute to the
deviation from ideal speedup, notably: (i) external workload,
that is more likely to be encountered when the number of
servers increases; (ii) synchronous mode of operation at the

5Specifically, the laziness parameter in Omnet++ MPI is a synchronization
rate λ ∈ [0, 1], with maximum (minimum) synchronization rate achieved for
λ equal to 1 (0).

0

25

50

75

100

M=109 M=1010

Zipf α

M
ax

im
um

 d
eg

re
e

of
 p

ar
al

le
lis

m
 P

*

0.8

1.0

1.2

M=108

12.2s

1.8s

12.5s

2m

2m4s

16.5s

20m10s

20m40s

2m41s

M=1011

200m

200m9s

20m45s

Fig. 8. CS-PRE-MT: maximum parallelism degree P ∗ for different sizes of
the catalog M and Zipf’s exponents. Execution time of the greedy solver are
also annotated.

master; (iii) growing impact of transient, statistic collection,
output procedures for large P . We will come back on (iii) in
Sec.VI-C, and dwelve (i),(ii) in Sec. VII-A

C. Catalog Slicing: PRE vs POST binning and mapping

As early illustrated, two strategies allow to downscale the
original catalog, and map it to a multi-thread scenario: an a
priori binning strategy (PRE) does so by a spatial splitting of
the objects that each thread simulates, whereas an a posteriori
binning strategy (POST) allow to temporally split the request
process over multiple threads.

PRE The idea of the request splitting approach is to distribute
the request process among the several threads running in
parallel, in such a way that each one would generate an equal
amount of total requests (i.e., Rp, with p ∈ [1, P]) for non-
overlapping meta-contents. This requires the execution of an
optimization problem, with the goal of finding the optimum
partition of the downscaled catalog that maximizes the number
of efficient parallel threads P ∗, i.e., the maximum parallelism
P ∗ such that splitting the simulation among P > P ∗ threads
would not bring any additional benefit, which is due to the
skew in object popularity. Intuitively, under Zipf popularity
skew (and α = 1 for simplicity) in the limit case P → ∞
where each content could be split into a different bin, then
request process associated to the bin comprising the most
popular object (having rank 1) would generate two (three,
etc.) times more request than the bin with rank 2 (three, etc.)
object. In other words, due to skew in the object popularity,
a skew in the per-thread workload persists, and the whole
simulation execution is bottlenecked by the slowest thread.
More in details, in the PRE binning strategy, meta-contents
follow a Zipf distribution with decreasing popularity (i.e.,
λi > λj , for i < j): the first meta-content represents an
aggregate of ∆ objects, whose request rate λ′1 is considerably
higher than the one associated with the last meta-content M ′,
corresponding to the last batch of [M − ∆,M] unpopular
objects. Hence, since requests for the first meta-content cannot
be split further and assigned to different threads, λ′1 caps
the maximum number of efficient parallel threads P ∗, in the
sense that any additional core with λ′x < λ′1 would have a

10

 100

 1000

 10000

1 2 4 8 16 32 64
5%

10%

15%

20%

25%

30%

NS=1
NC=1

1
2

1
4

1
8

1
16

2
32

3
64

C
PU

 ti
m

e
[s

]

St
ab

ili
za

tio
n

[%
]

Degree of Parallelism (P)

Number of cores (NC) and servers (NS)

Tend
Tstab

Tstab %

Fig. 9. CS-POST-MT: Tend total execution time, Tstab stabilization time,
and Tstab/Tend relative percentage, for different degrees of parallelism P ,
NC , and NS configurations. CDN-like scenario with M = 10

11.

shorter individual execution time, without however lowering
the global execution time dominated by the first meta-content.

To understand the maximum parallelism under CS-PRE-MT,
we solve the optimization problem with a greedy heuristic
approach. Specifically, Fig.8 reports the maximum number of
useful threads P ?, for different catalog cardinalities M and
popularity skews α, as output of the optimization problem,
when requesting P = 100 parallel threads as input (which is
limited by the number of cores at our disposal). As expected,
when content popularity skew is low (i.e., α = 0.8), the
corresponding per-thread workload is more uniform and the
maximum number of efficient parallel threads P ∗ is not capped
by λ′1 (since P ∗ = P). However, using popularity skews that
are typically found in the CDN/ICN literature, the maximum
number of useful threads P ∗ is possibly limited (to about
P ? ≈ 20 threads when α = 1) or even dramatically reduced
(P ? = 7 when α = 1.2). Notice, also, the decreasing trend
of P ? (e.g., from P ? = 25 at M = 108, to P ? = 20 at
M = 1011) as the original content catalog M grows; this
results from the fact that the head of the catalog becomes more
important as M grows (recall Sec.II). Notice, finally, that the
choice of P ∗ and the mapping process itself has a sizeable
cost: e.g, the running time of the greedy solver for M = 1011

can grow up to 200min, and we interrupted the solution for
M = 1012 after one day of CPU time, as this could end up
dominating the parallel simulation duration.

Overall, it seems that while the PRE binning strategy plays
well in a single-threaded environment (CS-PRE-ST), and was
indeed used in ModelGraft [40], however its extension to
a multi-threaded environment faces a number of unexpected
complications. Notably, the expected speedup widely varies
with the popularity skew (7×-100×), and slightly diminishing
for increasing catalog sizes The allocation of workload to
the different threads possibly requires significant computa-
tion time, especially for large catalogs. It seems thus that a
parallelization of the CS-PRE-MT technique can be scenario-
dependent and yield to fragile gains, which thus limits its
appeal from a practical viewpoint.

POST The POST binning strategy slices request over time,
mapping them with a random temporal splitting among
threads. This achieves two immediate advantages over PRE:
first, it is not scenario dependent, and removes the need to
solve a preliminary optimization process to instantiate the most
efficient configuration to be used for the parallel evaluation
of a cache network; second, random temporal splitting makes
mapping very simple and also tends to equalize the load among
multiple cores. In particular, since all the meta-contents can be
requested by any thread during each independent realization of
the same simulation, load distribution is just done by sharing
the total number of requests RP = dR/P e (and so the
approximated end time) according to the number of parallel
threads P .

While this does not impose an a priori capping on P , as
in the PRE case, however an ideal speedup is not always
guaranteed as P grows high, even for POST, as Fig.7 from
Sec. VI-B illustrates. Here, we report complementary details
of the same evaluation presented in Fig.7; in particular, Fig.9
depicts the total execution time of the simulation (Tend, red
squares) as well as the stabilization time (Tstab, green circles),
i.e., the time it takes the master process to state the end of the
transient phase. Additionally, the picture reports the relative
importance of the stabilization time over the whole simulation
duration (Tstab/Tend, blue line). It can be seen that both Tend
and Tstab decrease linearly in the number of threads (notice
the log-log scale) up to P = 8; already for P = 16, there is
a noticeable change of slope in the Tstab curve, whereas the
linear decrease continues for Tend up to P = 32: specifically,
Tstab still decreases, albeit slowly, up to P = 16, where there
is a change in the trend and it starts to increases for P > 16.

As highlighted in Sec.VI-C, this is due to multiple factors,
like (i) a higher probability of sampling busy machines when
increasing P (i.e., part of the CPU can be consumed by other
tasks), or (ii) the de-synchronization among the P threads
that send hit and miss sample in different time instants,
thus progressively delaying the centralized computation of the
steady-state done by the master. Hence, the relative importance
of the stabilization (which accounts for roughly 10% of the
whole Tend up to P = 8), remarkably grows (to account for
30% of the simulation duration for P = 64), thus limiting the
global speedup with respect to the single-threaded version of
the same scenario.

D. Comparison at a glance

We finally report results comparing all techniques at a
glance in Fig. 10. We now include 1 Event-Driven (ED)
simulation strategy, the 2 single-threaded CS-PRE-ST tech-
nique originally introduced by ModelGraft [40] and 3 the
best performing among the different parallelization techniques
explored in this work, namely CS-POST-MT.

We stress that not all techniques can scale to the same
scenario size. Particularly, Event-Driven (ED) simulation faces
a RAM memory bottleneck: ED techniques can scale only up
to M ≤ 108 when rejection inversion sampling is not used
(ccnSim-v0.3), and up to M ≤ 109 when rejection inversion
sampling is used (ccnSim-v0.4). It follows that M = 109 is

11

 C
P

U
 T

im
e

{M=109}

 211s
13s 54s

37m 655s

9.3h
1.3h

4d

500d

11.4h
5d

50d

H
it

ra
te

 h
 [%

] 33.2 31.4 33.5

 M
em

or
y

[M
B

]

38

6371
829

1 2 31 2 3

ED
CS-PRE-ST

CS-POST-MT
ModelGraft

1

2

3

Projected
Simulated

31 2
 194x 16x

 3157x

 194x 41x

 8000x

 129x 51x

 6595x

 125x 74x

 9230x

31 2 31 2 31 2

{M=1010} {M=1011} {M=1012}

Fig. 10. Results at a glance: Accuracy and memory requirements for the CDN
scenario with M = 10

9 (top) and simulation duration for M ∈ [10
9
, 10

12
]

(bottom) for Event Driven (ED), the original ModelGraft [40] (CS-PRE-ST)
and the best performing multi-threaded alternative (CS-POST-MT). Gains,
annotated over the arrows in the bottom part of the figure, increase with
increasing scenario size.

the largest scenario where we can directly contrast all relevant
key performance indicators on the execution of the very same
scenario with different techniques. In particular, results related
to both average hit rate and memory usage in the CDN-like
scenario for M = 109 are reported in the top part of Fig. 10.
The total CPU time is shown in the leftmost plot of the bottom
part of Fig. 10 for M ≥ 109.

Scenario M = 109 is instrumental to appreciate hit rate ac-
curacy and memory performance. Conversely, such a “small”-
scale scenario does limit the achievable gain in CPU time6.
We remark that hit rates measured in the downscaled CS-
PRE-ST and in the parallel CS-POST-MT evaluation are close
to statistics gathered with ED. We will analyze accuracy at
a greater detail in Sec. VII-C and Sec. VII-B. In terms of
memory requirements, while ED requires nearly 7GB of RAM,
CS-PRE-ST just needs 32MB (i.e., 1/167 of 1) which is
due to both downscaling and inversion rejection sampling.
RAM usage increases in CS-POST-MT to 829MB due to
the replication of the downscaled catalog for each thread.
However, this is not of a concern given that (i) this is still about
one order of magnitude less than ED, (ii) it is not expected
to increase for increasing catalogs, since the downscaling
factor ∆ increases as well (indeed, memory occupancy in the
M = 1012 case tops to nearly 2GB, that is furthermore shared
over multiple servers).

The bottom portion of Fig. 10 reports simulation duration
for growing catalog sizes. While for CS-PRE-ST 2 memory
is no longer a bottleneck, CPU time can still grow arbitrarily
large due to single-threading: without loss of generality, we
thus set a threshold of 1 day of CPU time per instance: i.e.,
single-threaded executions on scenarios whose CPU times are

6Note that CS-POST-MT completes in just 13 sec with only P = 16 threads
(instead of 11.4 hours as in ED), a sizeable part of which is spent in executable
loading, bootstrapping and IO (logs and statistics)

 1

 2

 4

 8

 16

 32

 64

1 2 4 8 16 32 64
 128
 256
 512
 1024
 2048
 4096
 8192
 16384

NS=1
NC=1

1
2

1
4

1
8

1
16

2
32

3
64

Sp
ee

du
p

C
PU

 T
im

e
[s

]

Parallelism degree (P)

Number of cores (NC) and servers (NS)

Dedicated cluster
Shared cluster
Ideal Speedup

Fig. 11. Shared vs Dedicated Cluster: relative speedup (blu lines) and absolute
execution time (red lines) for different degree of parallelism (P). CDN-like
scenario with M = 10

11.

expected to be longer than 1 day are only projected7: projected
durations are represented by a bar dashed margins and gradient
fill in Fig. 10. For CS-POST-MT 3 , results are obtained
using only minimal server resources8: as expected, the relative
speedup brought by multi-threading grows with the size of
the scenario, topping when M = 1012 to a gain of nearly
2 orders of magnitude over 2 and 4 orders of magnitude
over event driven simulation 1 . Hence, with current common-
off-the-shelf hardware, simulating cache networks at a scale
M = 1012 is attainable only with multi-threading, and in
particular only with the CS-POST-MT technique as the others
fail (NS or even CS-PRE-MT). To put it otherwise, given a
memory limit and time budget, techniques such as CS-POST-
MT enables the study of scenarios that are orders of magnitude
larger than those attainable by any known technique. This
allows to study realistic scenarios, getting rid of the over- and
under-estimation errors due to naı̈ve downscaling shown early
in Sec.II.

VII. SENSITIVITY ANALYSIS

In this section we assess the robustness of the introduced
technique, by assessing performance variability across across
different hardware infrastructures (Sec. VII-A), verifying that
the self-stabilization property holds on multi-threaded sim-
ulation (Sec. VII-B) and finally evaluating the speedup and
accuracy under more complex scenarios, including non-LRU
caches (Sec. VII-C). Further scenarios corresponding to 340
parameters combinations, for cumulated 31 days of CPU time
are available in an extended technical report [38].

A. Shared vs Dedicated Hardware Infrastructure

While all the results presented so far have been collected
from simulations carried out in a shared cluster, in this section

7Notice that, given that the number of requests in the steady state is
known (user-defined), and the event processing rate per scenario is known (by
empirical observation), the expected simulation time of ED and ModelGraft
can be accurately estimated [41].

8Specifically, only a single server NS = 1 with P = 16 for M = 10
9,

two servers NS = 2 with P = 32 for M = 10
10, and all the three servers

in the shared cluster with P = 64 for M ≥ 10
11.

12

��

��

��

��

��

��

��

�������� ������ � �� ����

��
�
��
��
�

����������������������������

���������
����������
����������

(a) Number of Cycles

��

��

��

��

��

��

��

�������� ������ � �� ����

�
��
��
��
��
�
��
��
��
�

����������������������������

���������
����������
����������

(b) Accuracy Loss

Fig. 12. TC Sensitivity: comparison of POST vs PRE binning in both ST and MT configurations.

we add a dedicated cluster as further term of comparison.
These two infrastructures exhibit a clear tradeoff. On the
one hand, computing resources are always available in the
shared cluster, which simplifies the scheduling of experiments;
however, as there is no resource isolation, exogenous workload
can perturb the execution of our simulations. On the other
hand, the dedicated cluster guarantees complete isolation of
the allocated resources, but it introduces an additional burden
tied to resource reservation, which could impact the whole
simulation campaign agenda.

Hardware characteristics of the dedicated cluster have been
thoroughly listed in Sec. VI-A, but it is interesting to point out
that CPUs in the dedicated cluster runs at a higher frequency
than in the shared one, and that are additionally equipped with
a larger L1/L2/L3 cache memory. In reason of the higher-
profile specs, and of the absence of exogenous workload, we
thus expect the dedicated cluster to outperform the shared one.

Fig. 11 reports both the relative speedup (blue lines, left
y-axis) with respect to the single-threaded execution of each
scenario, i.e., CS-POST-MT/CS-POST-ST on either a shared
or a dedicated cluster, and the absolute execution time of CS-
POST-MT (red lines, right y axis). In particular, we simulate
the CDN-like scenario described in Sec. VI-A with a catalog
of M = 1011 contents downscaled by ∆ = 105. In terms of
relative speedup, Fig. 11 confirms for the dedicated cluster
the trend early shown in Fig. 7: ideal speedup up to P = 32,
and slower increase afterwards. As the trends is practically
indistinguishable, this also confirms the growing relevance of
the stabilization time in the total execution time. Especially, it
identifies in the synchronous mode (as opposite to exogenous
traffic, which is absent by design9 in the dedicated cluster)
the first performance bottleneck at high parallelism degrees
P ≥ 64.

Notice also that differences in the absolute execution times
(red lines, right y-axis) are simply due to the different per-
formance between the two hardware sets (by about a factor

9We remark that since performance trends are very similar, it also follows
that using a well designed script to probe the load on the shared servers
and allocate slaves on the least loaded ones, helped to minimize possible
performance degradations related to exogenous loads in the shared cluster.

of 1.5×). It hence follows that absolute simulation duration
values reported in this paper are rather conservative.

B. Self-stabilization
Self-stabilization is a key property to let the methodology

have a practical relevance: as the TC values of a complex
system are not easily guessed, the self-stabilization property
makes the technique resilient against wrong TC values pro-
vided as input. However, self-stabilization has been proven
only for the single-threaded CS-PRE-ST configuration [40].
The aim of this section is to ensure this property to hold also
for different configurations proposed in this paper. Specifically,
we aim at assessing both the impact of the newly proposed
binning and mapping strategy (i.e., POST instead of PRE) as
well as the impact of distributed measurement at slaves (i.e.,
MT instead of ST) and their centralization into a consistency
check at the master (point 5 of Sec. V-B).

In particular, we stress the self-stabilization property by
purposely introducing controlled errors in the input TC values:
T 0
C(i) = b(i)T simC (i), where T 0

C(i) is the initial characteristic
time for node i, T simC (i) is the accurate value (gathered
via event-driven simulation), and b(i) ∈ [1/(Bu), Bu] is
a multiplicative factor obtained by multiplying a controlled
bias value B ∈ [1, 100] (equal for all the nodes) by a
uniform random variable u ∈ (0, 1]. This means that we allow
both overestimating (when b(i) > 1) and underestimating
(b(i) < 1) the actual T simC (i) value. Notice that, in case of
maximum bias (i.e., Bmax = 100), T 0

C(i) will differ from
T simC (i) by up to two orders of magnitude, varying furthermore
from node to node due to the uniform random variable u.

Fig. 12 summarizes, as a function of the input error mag-
nitude (i.e., bias b(i)), results obtained from CS-PRE-ST (i.e.,
the original ModelGraft [40]) against CS-POST-ST (i.e., the
new binning strategy proposed in this work, still applied in
a single-threaded mode) and CS-POST-MT (i.e., full-flavored
multi-threading evaluation). In particular, Fig. 12(a) reports the
average number of cycles (with 95% confidence intervals com-
puted over 25 repetitions) needed to converge to a consistent
state and stop the simulation. Fig. 12(b) instead reports the
average accuracy loss with respect to the event-driven results
(again with 95% CI).

13

Observing the number of cycles in Fig. 12(a), one gathers
that (i) as expected, the number of cycles equal to 1 when the
input T 0

C(i) ≈ T simC (i), which happens for b ≈ 1. At the same
time, notice that (ii) the number of cycles is generally very
small (i.e., below 3) even for widely wrong input T 0

C(i) values.
This confirms the methodology to converge fast under all
explored settings (i.e., CS-PRE-ST, CS-POST-ST, CS-POST-
MT) with only a very limited impact across different binning
and multi-threading options. Observing Fig. 12(b), one further
gathers that (iii) not only the simulation converge fast, but also
converges to an accurate value, as the error is bound below 2%
across all CS-PRE-ST, CS-POST-ST, CS-POST-MT strategies.
Finally, (iv) the newly introduced CS-POST-ST and CS-POST-
MT strategies are even more accurate than CS-PRE-ST (i.e.,
accuracy improves with respect to ModelGraft [40]).

In general, one can conclude that the combination of the
POST binning with the MT mapping preserves the self-
stabilization property: regardless of the level of parallelism,
the number of cycles always remain bounded to a small integer
value, for an accuracy loss lower than 1% in expectation.

C. Accuracy under complex scenarios
We finally assess the accuracy of the newly proposed POST

binning in more details. While POST is crucial to achieve ideal
speedup in MT settings, we also remark that it additionally
yields to a higher accuracy than the PRE binning. It is
however interesting to assess properties of the POST binning
independently of its MT application, and to particularly select
other more complex strategies than simple LRU caching, to
assert whether accuracy improvements still hold.

Specifically, we consider a network comprising caches oper-
ated with different decision policies. In particular, we consider
(i) Leave a Copy Everywhere (LCE) where all new data is ad-
mitted in the cache forcing the eviction of an old copy, a simple
(ii) Leave a Copy Probabilistically (LCP) strategy where new
data is admitted in the cache with probability p = 1/10 and
a significantly more complex (iii) a 2-LRU strategy where
the admission process happens in two phases: only in case of
a “name” hit in the first cache, the corresponding “data” is
cached in the second cache. We remark that this choice is of
particular relevance, since LCP is used in practice [5] and is
the basis for a richer family of probabilistic approaches [4],
and since 2-LRU, whose behavior has been proven to converge
to LFU in the case of stationary catalog [21], is furthermore
the best choice in non-stationary cases [16].

We instantiate the large-scale scenario of [40], i.e., 4-level
binary tree, with M = 109 contents, C = 106 cache size,
downscaling ∆ = 105, popularity skew α = 1. By simulating
this scenario, we can not only compare the performance of
both CS-PRE-ST (i.e., the original ModelGraft [40]) and CS-
POST-ST, but also include performance gathered with a classic
Event-Driven (ED) simulation approach.

Results are summarized in Tab. II: it clearly appears that,
despite the already satisfactory accuracy of the CS-PRE-ST
strategy (i.e., losses smaller under 2%), the new CS-POST-
ST technique is (i) significantly faster (i.e., almost 2×), and
(ii) remarkably more accurate (i.e., accuracy loss significantly
reduce and tops to 0.6% in the worst case) than CS-PRE-ST.

TABLE II
EVENT-DRIVEN SIMULATION VS CS-PRE-ST VS CS-POST-ST:

ACCURACY LOSS, CPU AND MEMORY GAIN

Cache Decision
Policy

Technique phit Loss
CPU
time

Gain Mem [MB] Gain

LCE

CS-PRE-ST 31.4% 1.8% 211s 194x 38 168x

Event-driven 33.2% 11.4h 6371

0.1% 286x 277x33.1% 143s 23

LCP(1/10)

34.0% 1.4% 291 90x 38 168x

Event-driven 35.4% 7.3h 6404

0.1% 153x 277x35.3% 171s 23

2-LRU

36.1% 0.9% 402s 97x 38 234x

Event-driven 37.0% 10.8h 8894

0.6% 216x 370x37.6% 180s 24

CS-POST-ST

CS-POST-ST

CS-PRE-ST

CS-POST-ST

CS-PRE-ST

We believe that, while not the main focus of this work, this
result represent a contribution on its own. Notice indeed that,
albeit a 2× improvement may seem quite small compared to
an ideal speedup of P×, nevertheless this improvement holds
for single-threaded execution as well – and a factor of 2×
improvement is an engineering accomplishment on its own.
Additionally, the speedup comes with a significant increase in
the accuracy – a not-so-common win-win situation.

VIII. RELATED WORK

Discrete-Event Simulation (DES) is an important method-
ology for the study of complex systems such as networked
protocols: however, classic DES approaches face massive
computational and time requirements, which makes their usage
prohibitive in large-scale scenarios. Valuable work aiming at
overcoming these limits, have either attempted at parallelizing
execution of packet-level simulation or using hybrid modeling
techniques to alter the granularity of the simulation. Clearly,
the area of cache networks modeling is also relevant.

A. Parallel discrete-event simulation

A first approach, known as Parallel Discrete-Event Simu-
lation (PDES) [15], focuses on parallelization as a method
to speedup execution time: the simulation model is divided
into sub models, called Logical Processes (LPs), which can
be distributed among processors/cores. The whole instruction
set is split among LPs, which execute their own event-list fol-
lowing their own simulation clock; however, they are limited
by the so called causality constraint (i.e., instructions need
to be executed following a timestamp order), which requires
the exchange of explicit synchronization messages among LPs,
thus often offsetting benefits coming from parallelization. This
is true not only for cache networks (where the correlation
among neighboring caches makes the overhead of message
passing offsetting any benefit in the NS strategy), but for every

14

scenario that presents challenging features (e.g., reaching a
50% parallel efficiency for a very large-scale scenario with
thousands of high-speed links would be possible only if using
supercomputers with million processors [22]).

In this context, several work have tackled the study of
caches, although from the perspective of a computer architec-
ture: numerous existing techniques are well covered in [44].
In this space, our work shares similarity with seminal work
such as [17, 20]: more specifically, [17] introduces parallel
cache simulation via time partitioning, and [20] further adds
horizontal slicing along the orthogonal content dimension.
From a high-level viewpoint, the PRE and POST techniques
introduced in this work can be traced back respectively to
[20] and [17]. However, there are several important differences
between [17, 20] and this work: first, computer architecture
work limitedly focus on single LRU cache, or a very small
cache hierarchy (e.g., L1 and L2 caches). Our work is fit
for complex network of caches with arbitrary topologies,
routing algorithms and meta-caching algorithms (recall Tab.I).
Second, the workload are extremely different: furthermore,
by exploiting content dynamics decoupling induced by Che’s
approximation, our work introduces innovative downscaling
techniques, that –relatively simple in the hindsight– were not
previously introduced to the best of our knowledge.

B. Hybrid modeling techniques

A complementary approach leverages analytical models [31,
24, 32, 23, 40] to abstract the fine-grained packed level
simulation dynamics into a coarse grained (and possibly down-
scaled) hybrid network models with improved performances
with respect to classic DES. For instance, fluid models for
TCP/IP networks [31] are used to either feed a suitable scaled
version of the system with a sample of the input traffic [32],
or to represent background traffic as fluid flows [24, 23].

Fewer work combines multi-resolution and parallelization
techniques: for instance, [28] implements the model of [31]
in a parallel hybrid network simulator offloading computa-
tionally intensive background fluid-based traffic calculations
to Graphic Processing Units (GPUs), which offer better per-
formance (i.e., 10×) and parallelization with respect to normal
CPUs. Despite what we propose in this paper shares the spirit
of [28] in integrating hybrid simulation with parallelization, it
differs in the (i) target (i.e., cache networks), (ii) approach (i.e.,
downscaling), and (iii) parallelization technique (i.e., catalog
slicing), which jointly enable the design of a lean and efficient
simulator for networks of caches.

C. Cache networks models

The above hybrid techniques however targets very different
application domain than network of caches: with this respect,
close work worth referencing is [8, 19, 33, 12, 37, 26].

Particularly, approximate [8] and exact [19] models for
cache asymptotics are relevant. Interestingly, we stress that
Fagin [10] already published in 1977 the results (on “com-
puter” caches) independently found by Che [8] in 2002 (on
“network” caches) that this work build upon and extends to
general cache networks.

Simple models of general cache networks are also given in
[33] and [37] for Shortest Path and Nearest Replica Routing
respectively. However, as we show in [37], the accuracy of
these models degrades significantly as we move to topological
regions faraways from the leaf nodes –as they resort on
independence assumptions among the states of caches, and
rough characterizations of the request processes at non-leaves
caches– this does not happen with the new technique we pro-
pose, which is able to correctly represent the request processes
at every cache while capturing existing correlations. Moreover
we would like to remark that differently from previous models,
which are limited to the analysis of steady state regime, our
new technique also allow to study transient behavior, make
links fall down, change the routing, add and remove nodes.

Finally, TTL caches are studied in depth by [12, 26], which
this work also heavily leverages. However, as their size is not
fixed a priori (unlike LRU caches), simulating TTL caches may
become impractical (as their simulation requires more memory
[41]). Thus, downscaling techniques such as the one proposed
on this (CS-POST) our own previous work (CS-PRE, referred
to ModelGraft in [40]) are highly relevant.

Finally, worth mentioning is the space of cache network
simulators: we point out that a direct comparison with existing
simulators have been presented in [39], from which it emerges
that ccnSim is among the fastest and the most scalable ones.
Given the generality of the technique proposed in this work,
we hope that releasing its description and code can simplify
its porting to other tools such as those compared in [39].

IX. CONCLUSION

In this work, we question whether it is possible to efficiently
and accurately perform parallel simulation of general cache
networks. We find that while the question has a positive
answer, however a design that yields to ideal speedup is not
easy to find. This paper carries on a broad exploration of the
design space, and reports on detailed performance evaluation
from implementation of different strategies in this space.

Our first and foremost contribution is the introduction
of a Catalog slicing (CS) technique, which is essential to
circumvent the (huge) MPI overhead suffered by classic Net-
work slicing (NS) approaches, which is due to correlation
among neighboring caches and that render NS useless from
practical purposes. A second contribution is the exploration
of different combinations of binning strategies for the catalog
downsizing (PRE vs POST), that are either based on an a
priori partitioning of the catalog along the spatial dimension,
or on a posteriori splitting of the request process along the time
dimension. These binning strategies naturally yield to different
mapping strategies for the multi-threading case. We observe
that MT mapping under PRE binning yields to an optimization
problem, which ends up being the dominating running time
cost and thus render CS-PRE-MT of little practical relevance.
Conversely, MT mapping remains simple under CS-POST-
MT, which enables an ideal speedup for a large range of
parallelism degree. Particularly, the POST binning strategy
represents another contribution in itself, as it (i) enables an
ideal speedup of CS-POST-MT up to P < 64, (ii) is twice

15

as fast as PRE when P = 1 and (iii) is additionally more
accurate under both MT and ST settings.

While our methodology is general, we additionally make
the knowledge gained in this research readily available to the
community as an simulation engine (i.e., directly usable on
standard scenarios of event-driven simulation) of the ccnSim
open source simulator at [1].

ACKNOWLEDGMENTS

This work was carried out at LINCS (https://lincs.fr) and
benefited from support by NewNet@Paris, Cisco’s Chair
“NETWORKS FOR THE FUTURE” at Telecom ParisTech (http:
//newnet.telecom-paristech.fr).

REFERENCES

[1] http://perso.telecom-paristech.fr/drossi/code/ccnSim.
[2] ttps://github.com/TeamRossi/ccnSim-0.4-Parallel.
[3] Akaroa Project Website. https://akaroa.canterbury.ac.nz/akaroa/.
[4] A. Araldo, D. Rossi, et al. Cost-aware caching: Caching more (costly

items) for less (isps operational expenditures). IEEE Transactions on
Parallel and Distributed Systems,, 2015.

[5] S. Arianfar and P. Nikander. Packet-level Caching for Information-
centric Networking. In ACM SIGCOMM, ReArch Workshop. 2010.

[6] ATIS 5G Americas. Understanding information centric networking and
mobile edge computing. https://goo.gl/QMEbKV, 2016.

[7] G. Carofiglio, L. Mekinda, et al. Analysis of latency-aware caching
strategies in information-centric networking. In Proc. of ACM CoNEXT,
CCDWN Workshop. 2016.

[8] H. Che, Y. Tung, et al. Hierarchical web caching systems: Modeling,
design and experimental results. IEEE JSAC, 20(7):1305, 2002.

[9] G. Ewing, K. Pawlikowski, et al. Akaroa-2: Exploiting network
computing by distributing stochastic simulation. SCSI Press, 1999.

[10] R. Fagin. Asymptotic miss ratios over independent references. Journal
of Computer and System Sciences, 14(2):222, 1977.

[11] S. K. Fayazbakhsh, Y. Lin, et al. Less Pain, Most of the Gain:
Incrementally Deployable ICN. ACM SIGCOMM, 2013.

[12] N. Fofack, P. Nain, et al. Analysis of TTL-based cache networks. In
Proc. of VALUETOOLS. 2012.

[13] N. Fofack, P. Nain, et al. Performance evaluation of hierarchical TTL-
based cache networks. Elsevier Computer Networks, 65, 2014.

[14] C. Fricker, P. Robert, et al. A versatile and accurate approximation for
LRU cache performance. In Proc. of ITC24. 2012.

[15] R. Fujimoto. Parallel discrete event simulation. Commun. ACM,
33(10):30, 1990.

[16] M. Garetto, E. Leonardi, et al. Efficient analysis of caching strategies
under dynamic content popularity. In Proc. of IEEE INFOCOM. 2015.

[17] P. Heidelberger and H. S. Stone. Parallel trace-driven cache simulation
by time partitioning. In IEEE Winter Simulation Conference. 1990.

[18] J. Jaeyeon, A. W. Berger, et al. Modeling TTL-based Internet caches.
In Proc. of IEEE INFOCOM. 2003.

[19] P. Jelenkovic and A. Radovanovic. Asymptotic insensitivity of least-
recently-used caching to statistical dependency. In In Prof of. IEEE
INFOCOM. 2003.

[20] R. E. Kessler, M. D. Hill, et al. A comparison of trace-sampling tech-
niques for multi-megabyte caches. IEEE Transactions on Computers,
43(6):664, 1994.

[21] E. Leonardi and G. Torrisi. Least Recently Used caches under the Shot
Noise Model. In Proc. of IEEE INFOCOM. 2015.

[22] J. Liu. Parallel simulation of hybrid network traffic models. In Proc. of
IEEE PADS Workshop. 2007.

[23] J. Liu and Y. Li. On the performance of a hybrid network traffic model.
Simulation Modelling Practice and Theory, 16(6):656 , 2008.

[24] Y. Liu, F. Presti, et al. Scalable Fluid Models and Simulations for Large-
scale IP Networks. ACM Trans. Model. Comput. Simul., 14(3):305, 2004.

[25] V. Martina, M. Garetto, et al. A unified approach to the performance
analysis of caching systems. In Proc. of IEEE INFOCOM. 2014.

[26] D. Berger et al. Exact Analysis of TTL Cache Networks: The Case
of Caching Policies Driven by Stopping Times. In Proc. of ACM
SIGMETRICS, pages 595–596. 2014.

[27] N. Fofack et al. On the performance of general cache networks. In
Proc. of VALUETOOLS Conference, pages 106–113. 2014.

[28] J. Liu, Y. Liu, et al. GPU-assisted Hybrid Network Traffic Model. In
Proc. of ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation (PADS’14). 2014.

[29] K. Pentikousis et al. Information-centric networking: Evaluation
methodology. Internet Draft, https://datatracker.ietf.org/doc/draft-irtf-
icnrg-evaluation-methodology/, 2016.

[30] G. Xylomenos et al. A survey of information-centric networking
research. IEEE Commun. Surveys & Tutorials,, 16(2):1024, 2014.

[31] V. Misra, W. Gong, et al. Fluid-based Analysis of a Network of AQM
Routers Supporting TCP Flows with an Application to RED. ACM
SIGCOMM Comput. Commun. Rev., 30(4):151, 2000.

[32] R. Pan, B. Prabhakar, et al. SHRiNK: A Method for Enabling Scaleable
Performance Prediction and Efficient Network Simulation. IEEE/ACM
Trans. Netw., 13(5):975, 2005.

[33] E. J. Rosensweig, J. Kurose, et al. Approximate Models for General
Cache Networks. Proc. of IEEE INFOCOM, 2010.

[34] D. Rossi and G. Rossini. On sizing ccn content stores by exploiting
topological information. In IEEE INFOCOM, NOMEN Worshop,.
Orlando, FL, 2012.

[35] G. Rossini and D. Rossi. ccnSim: a highly scalable CCN simulator. In
Proc. of IEEE ICC. 2013.

[36] G. Rossini and D. Rossi. Evaluating CCN Multi-path Interest Forward-
ing Strategies. Comput. Commun., 36(7):771, 2013.

[37] G. Rossini and D. Rossi. Coupling caching and forwarding: Benefits,
analysis, and implementation. In Proc. of ACM ICN. 2014.

[38] M. Tortelli, D. Rossi, et al. Accurate, scalable and flexible analysis of
general cache networks (extended version). In Tech. Rep. 2016.

[39] M. Tortelli, D. Rossi, et al. Icn software tools: survey and cross-
comparison. Elsevier Simulation Modelling Practice and Theory, 63:23,
2016.

[40] M. Tortelli, D. Rossi, et al. Modelgraft: Accurate, scalable, and flexible
performance evaluation of general cache networks. In ITC28. 2016.

[41] M. Tortelli, D. Rossi, et al. A hybrid methodology for the performance
evaluation of internet-scale cache networks. Elsevier Computer Net-
works,, 2017.

[42] S. Traverso, M. Ahmed, et al. Temporal locality in today’s content
caching: Why it matters and how to model it. ACM SIGCOMM Comput.
Commun. Rev., 43(5):5, 2013.

[43] S. Traverso, M. Ahmed, et al. Unravelling the impact of temporal and
geographical locality in content caching systems. IEEE Transactions on
Multimedia, 17(10):1839, 2015.

[44] J. J. Yi and D. J. Lilja. Simulation of computer architectures: Simulators,
benchmarks, methodologies, and recommendations. IEEE Transactions
on computers, 55(3):268, 2006.

Michele Tortelli received the MSc and PhD degrees
from Politecnico di Bari, Italy, in 2011 and 2015, re-
spectively. He has lead the Telecom ParisTech team
in the EIT Digital European project “Information-
aware data plane for programmable networks”, and
he participated in the program committee of IEEE
and ACM ICN conferences. He is currently a Re-
search Assistant at Telecom ParisTech, working on
the design, modeling, and performance evaluation of
massive-scale information-oriented networks.

Dario Rossi received his MSc and PhD degrees from
Politecnico di Torino in 2001 and 2005 respectively,
was a visiting researcher at University of California,
Berkeley during 2003-2004, and is currently Profes-
sor at Telecom ParisTech and Ecole Polytechnique.
He has coauthored over 150 conference and journal
papers, received several best paper awards, a Google
Faculty Research Award (2015), and an IRTF Ap-
plied Network Research Prize (2016). He is a Senior
Member of IEEE and ACM.

Emilio Leonardi received the Dr. Ing. degree in
electronics engineering and Ph.D. degree in telecom-
munications engineering from the Politecnico di
Torino, Turin, Italy, in 1991 and 1995, respectively.
He is currently a Professor with the Department
of Electronics at Politecnico di Torino, Turin, Italy.
His research interests include performance evalua-
tion of computer networks and distributed systems,
dynamics over social networks, and human centric
computation.

https://lincs.fr
http://newnet.telecom-paristech.fr
http://newnet.telecom-paristech.fr
http://perso.telecom-paristech.fr/drossi/code/ccnSim
ttps://github.com/TeamRossi/ccnSim-0.4-Parallel
https://akaroa.canterbury.ac.nz/akaroa/
https://goo.gl/QMEbKV

	Introduction
	Motivation
	Downscaling catalog M
	Jointly downscaling catalog M and cache C

	Background on ModelGraft
	Modeling background
	ModelGraft goals and scope
	ModelGraft components and workflow

	Parallel Cache Network Simulation: High-level Design
	Network vs Catalog Slicing
	Content slicing: Binning and mapping strategies

	Parallel Cache Network Simulation: Implementation Details
	Akaroa2
	Parallel Workflow

	Results
	Experimental settings
	Network Slicing (NS) vs Content Slicing (CS): Quantitative Comparison
	Catalog Slicing: PRE vs POST binning and mapping
	Comparison at a glance

	Sensitivity analysis
	Shared vs Dedicated Hardware Infrastructure
	Self-stabilization
	Accuracy under complex scenarios

	Related work
	Parallel discrete-event simulation
	Hybrid modeling techniques
	Cache networks models

	Conclusion
	References
	Biographies
	Michele Tortelli
	Dario Rossi
	Emilio Leonardi

