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An Unsupervised and Non-Invasive Model for
Predicting Network Resource Demands

Fulvio Corno, Member, IEEE, Luigi De Russis, Member, IEEE, Andrea Marcelli, Student Member, IEEE, Teodoro
Montanaro, Student Member, IEEE,

Abstract—During the last decade, network providers are faced
by a growing problem regarding the distribution of bandwidth
and computing resources. Recently, the mobile edge comput-
ing paradigm was proposed as a possible solution, mainly in
consideration of the provided possibility of transferring service
demands at the edge of the network. This solution heavily relies
on the dynamic allocation of resources, depending on the user
needs and network connection, therefore it becomes essential
to correctly predict user movements and activities. This paper
proposes an unsupervised methodology to define meaningful user
locations from non-invasive user information, captured by the
user terminal with no computing or battery overhead. The data
is analyzed through a conjoined clustering algorithm to build
a stochastic Markov chain to predict the users’ movements
and their bandwidth demands. Such a model could be used
by network operators to optimize network resources allocation.
To evaluate the proposed methodology, we tested it on one
of the largest public community’s labeled mobile and sensor
dataset, developed by the “CrowdSignals.io” initiative, and we
present positive and promising results concerning the prediction
capabilities of the model.

Index Terms—Unsupervised modeling, Markov chain, network
resources allocation, non-invasive user information

I. INTRODUCTION

THE rapid growth of connected devices and online ser-
vices, one of the effects brought by the increase of the

adoption of Internet of Things (IoT) in the human society,
introduces new challenges for network providers. In fact, as
reported by Brogi et al. [1], it is extremely difficult to support
the transfer of data from billions of IoT devices due to the
volume and the geo-distribution of those devices. In addition,
the need of reduced latency, high quality connections, and the
availability of storage closer to where data is generated, is
evident.

Recently, the mobile edge computing (MEC) paradigm was
proposed as a possible solution to such needs and problems:
it consists of a strongly virtualized platform that delivers a
rich portfolio of services and applications at the edge of the
network [2], [3]. To the basics, the MEC architecture defines
heterogeneous intelligent nodes, called Edge Data Centers
(EDC), which are mainly distributed at the proximity of the

F. Corno, L. De Russis, A. Marcelli and T. Montanaro are with the
Department of Control and Computer Engineering, Politecnico di Torino,
Corso Duca degli Abruzzi, 24 - Torino, Italy 10129 e-mail: {fulvio.corno,
luigi.derussis, andrea.marcelli, teodoro.montanaro}@polito.it

Manuscript received November 17, 2017; revised May 17, 2018 and July
3, 2018.

Copyright (c) 2018 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

users. However, a high user mobility generates a new issue in
the management of the resources provided by the EDCs. In
fact, as users move across different geographical areas, they
should be ideally connected to the closest EDC and this causes
large variations in resource demand at each EDC [4]. Thus,
the load required to an EDC could be very intense in some
moments (e.g., during an event, like a concert) and very low
in others, and such a variability should be addressed by the
network providers during the design of their networks, while
both reducing costs and enhancing user satisfaction.

One possible solution, already described in the literature
(e.g., [4]–[6]), is to predict the future resource demand in each
EDC to efficiently and dynamically adjust the EDC capacity
while maximizing resource utilization.

These works apply the capability of estimating user mean-
ingful locations (i.e., locations that carry some meaning to the
user and to which the user can potentially attach some mean-
ingful semantics [7]) to the maximization of global network
resources, in order to dynamically adapt EDC capacity to day
time and other user constraints.

In this paper, we extend the original concept of user mean-
ingful locations, and we define the user meaningful network
locations as user specific recurring spatio-temporal conditions,
spatially identified by the user connected networks, and where
the user spends a significant portion of time (e.g., more than
one hour). Each location can be later assigned a network
usage pattern that can be exploited by network provides
to predict and dynamically adapt the EDC capacity to day
time and other user constraints. Indeed, human mobility is
highly regularized rather than randomized in both temporal
and spatial domains [8], and if it is possible to predict the
future network bandwidth demand, based on user mobility, it
is possible to optimize the resources allocation too [9].

This paper introduces an unsupervised methodology to sup-
port network providers in predicting user meaningful network
locations, based on non-invasive users information, like Wi-
Fi- and cellular-based inferred locations. Non-invasive users
information is the kind of data that can be accessed by network
providers without any additional license agreements, and users
are already used to its collection, as mobile operators and
device manufacturers commonly acquire it in order to improve
the quality of their services. Compared to GPS location,
network inferred location is less invasive for the user privacy,
it has a negligible impact on the battery consumption, and it
provides the level of detail required to predict the resource
demand in each ECD. To the best of our knowledge, this is
the first work that uses non-invasive user information, collected
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by the user terminal without computing or battery overheads,
to support network operators in managing the distribution of
network resources.

The proposed approach is based on a two stages methodol-
ogy. The former extracts a set of meaningful locations for each
user, using non-invasive information collected from the end-
user terminal, i.e., temporal information, mobile network cells,
and properly anonymized Wi-Fi Service Set IDentifier (SSID).
The latter analyzes the data to build a stochastic Markov chain
to predict the users movements and their bandwidth demands.

To evaluate the proposed methodology, we tested it with one
of the largest community labeled mobile datasets, developed
under the “CrowdSignals.io” initiative [10], and we present
positive and promising results concerning the prediction capa-
bilities of the model.

The rest of this paper is organized as follows. Section II
describes in details the proposed methodology. Section III
illustrates the dataset, while Section IV covers experimental
results and performance evaluation. Related works about user
locations estimation are reported in Section V. Finally, Sec-
tion VI concludes the paper and illustrates future work.

II. METHOD

This paper proposes an unsupervised methodology to sup-
port network providers in predicting user network demand,
relying on a minimal subset of non-invasive data to be
collected from end-user terminals. It exploits the temporal
correlation between wireless networks visible by the terminal,
in particular, all the visible Wi-Fi networks and the connected
cellular base station at a given time. The approach has been
designed to be applicable to any dataset where such wireless
information is available, and it is based on a two stages
methodology.

In the first stage, a clustering approach is used to infer a set
of meaningful network locations MNL for each user and for
each time period. We define a meaningful network location
as a specialization of the concept of meaningful location
proposed in [7], as a recurring network (or a set of networks)
that the user is connected to, in a significant period of time. It
does not imply a geographical location, but just the position
of the user from the point of view of the network operator.
When a user is in a given MNL, he will consume a given
amount of traffic, and the knowledge of the MNLs of each
user, as well as their evolution, allows network resource pre-
allocation, reservation and caching.

The resulting clusters represent frequently occurring mean-
ingful network locations. In order to increase the robustness
of the model, the clusters are jointly computed by analyzing
in parallel Wi-Fi-detected locations and cellular-detected lo-
cations, and the maximum accord between the two clustering
results is sought. In the second stage, the computed clusters
are used to build a probabilistic Markov chain, which is used
to estimate the most likely meaningful location where the user
could move, depending on the current location and time.

In the following paragraphs both phases will be presented.

Fig. 1. illustrates the first phase of the proposed methodology: the conjoined
clustering. A clustering algorithm (HDBSCAN) is iteratively applied with
different combination of parameters p1, p2 P P to the Wi-Fi and Cell data
of user u separately, then the maximum accord between the two clustering
results is sought (bestpHw

u , Hc
uq).

A. Infer meaningful user locations

The first phase of the proposed approach consists in extract-
ing meaningful network locations by exploiting a completely
unsupervised methodology. Figure 1 illustrates the process.

For each user u P U , Wi-Fi and cellular (Cell) data are
treated distinctly, using a clustering algorithm to automati-
cally infer groups of meaningful locations related to the user
daily activities. Having two independent sources allows us
to increase the robustness of the unsupervised learning, by
leveraging self-consistency of the detected clusters. Indeed,
an external clustering index is used to compare the structure
of the two cluster sets, and the entire clustering process is
iterated to maximize the value of such an index.

From the point of view of the network, the impact coming
from any user depends on the user location and activity (i.e.,
bandwidth consumed in that location). Locations, on the other
hand, tend to be dependent on temporal variables (hour, day of
week, etc.), due to user habits. For these reasons, the clusters
are defined in terms of spatial and temporal variables.

From the general data set DS, we extract the entries Dpuq,
consisting of all data samples related to user u:

Dpuq � td P DS | d.user � uu

The set of features F puq used by the clustering algorithm
for user u are a combination of spatial features Fspdq and
temporal features Ftpdq, are extracted from each entry d:

F puq � txFspdq, Ftpdqy | d P Dpuqu

Spatial features Fspdq are encoded as a high-dimensional
Boolean vector in EspFspdq, uq, where all the possible net-
works N visited by user u (N � td.network | d P Dpuqu)
are represented in a one-hot encoding. Given the available
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network n P N , we set Esrns � 1 if the device is covered by
the network, Esrns � 0 otherwise.

EspFspdq, uq �
¡
nPN

n P Fspdq

Temporal features Ftpdq are encoded in EtpFtpdqq as a low-
dimensional integer vector, where each component represents
one kind of periodicity (e.g., daily, weekly). Specific details
of the representation of Ftpdq are dependent on the dataset,
and the ones adopted in this paper are reported in Section III.

The final encoding Epuq for user u is defined as:

Epuq � txEspFspdq, Nq, EtpFtpdqqy | d P Dpuqu

We adopt a density-based clustering approach to locate
regions of high density, surrounded by regions of low density.
Differently from other clustering methods, density-based algo-
rithms can effectively discover clusters of arbitrary shape and
filter out outliers, increasing cluster homogeneity. Addition-
ally, the number of expected clusters to be found in the data
is not required in advance, and in many practical cases, such
as the number of meaningful user locations, this is hard to be
defined a priori. In low-dimensional spaces, the time complex-
ity of density-based clustering can be as low as Opn log nq,
while its space requirement is Opnq, making it applicable
to large datasets. In 2013, Campello et al. [11] proposed
Hierarchical Density-Based Spatial Clustering of Applications
with Noise (HDBSCAN), which practically iterates DBSCAN
over several values of the parameter ε, which specifies how
close points should be to each other to be considered a part of
a cluster, and integrates the results to find a clustering that
provides the best stability over ε. This allows HDBSCAN
to find clusters of varying densities, and be more robust to
parameter selection.

HDBSCAN relies on two parameters p � pmss,msq: the
choice of a minimum cluster size (mss), which determines the
smallest allowed size for a cluster, i.e., we considered only
clusters with a minimum of mss samples as a meaningful
user location; and minimum samples (ms), which influences
the expected density of clusters in the results. As a matter
of fact, a higher value of ms restricts clusters to more dense
areas, but it also increases the number of outliers.

Encoded features Epuq are firstly normalized as rEpuq, to
have zero mean and unit variance. Then, the high dimen-
sionality of rEpuq, mostly due to the large number of Wi-
Fi and cellular networks visited by the user u (e.g., up to
thousands), is handled by a linear dimensionality reduction
by means of truncated singular value decomposition (SVD),
down to a more manageable number of components. The
application of SVD is also beneficial for discovering linearly
independent combinations of networks and for filtering out
rogue or sporadic networks, that are frequent especially in the
case of Wi-Fi.

We finally apply HDBSCAN on the normalized and SVD-
reduced dataset of user u, with parameters p, that generates a
clustering result Hu,p:

Hu,p � HDBSCAN
�

SVD
� rEpuq	 , p	 , p P P

P � tmss1, . . . ,mssmu � tms1, . . . ,msqu

The clustering result is represented by the function Hu,ppdq,
that associates each entry d of the dataset of user u (Dpuq) to
a cluster ci.

Hu,p : Dpuq Ñ tci | @iu, Hu,ppdq � ci

In order to optimize the parameter selection p, the clustering
algorithm is iteratively applied through a set of possible values
P , trying to find the pair of assignments that best fits both
the Wi-Fi (Hw

u ) and the cellular data (Hc
u) at the same time.

We call this approach a conjoined clustering, since it aims at
evolving in parallel two sets of clusters with high correlation
among them. In our experiments we iterate through values of
mss P t50, 100u and ms P t10, 20, 30, 40, 50u.

For each combination of p1 and p2 (100 combinations in
total), we measure the similarity of the two assignments Hw

u

and Hc
u, and we save the best resulting clusters bestpHw

u , H
c
uq

that maximize such similarity.

bestpHw
u , H

c
uq � argmax

p1PP, p2PP

�
ARI pHw

u,p1 , H
c
u,p2q

�

Cluster similarity is measured by using the Adjusted Rand
Index (ARI) [12]. ARI is defined as the number of pairs of
items that are either both in the same cluster or both in
different clusters in the two partitions, normalized over the
total number of pairs of items. The index lies between 0
and 1: when two partitions perfectly agree, the ARI achieves
the maximum value 1, and more in general a larger ARI
means a higher agreement between two partitions. Moreover,
ARI allows measuring the level of agreement even when
the compared partitions have different numbers of clusters.
The resulting best matching clusters are therefore assumed to
approximate the meaningful network locations for user u.

At this point, for each best-matching cluster ci, it is possible
to compute the corresponding resource demand Ru,ci :

Ru,ci �
¸

dPDpuq^Hupdq�ci

d.traffic

At the end of this phase, we have the following available
results:

 Two sets of clusters tcwi | @iu and tccj | @ju, extracted
from two independent sensor data streams (i.e., Wi-Fi
and cellular data), and cross-validated thanks to the max-
imization of the ARI index, that approximate the mean-
ingful network locations for user u. Each cluster contains
a spatial and a temporal component pFspdq, Ftpdqq.

 The resource demand Ru,ci (e.g., bandwidth) consumed
by a user u in the given cluster (or MNL) ci, obtained
by aggregating resource demands for all the original data
entries assigned to that cluster.

B. Build a stochastic Markov chain

The clustering information is useful to have a map of
the actual location of the user, and its associated resource
consumption. From the network operator point of view, the
most useful information would be to predict the future cluster,
in order to have, in the short term, the expected user location
and the associated resource demands.
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For this reason, we build a stochastic Markov chain, with a
time-step of one hour, that encodes the transition probabilities
among different clusters. We adopt a “time-homogenous”
Markov Chain [13], where we assume that transition proba-
bilities are not time-dependent. This assumption is intuitively
justified by the structure of each Markov state (that contains
both a spatial and a temporal component) and by the clustering
process: whenever the behavior of a user depends on a
temporal feature (e.g., the hour of the day), we will have two
separate states.

Again, two models are built, one for Wi-Fi data, and the
other for cellular data.

As a pre-processing step, time-related information in clus-
ters must be extracted. The items in the best-matching clusters
are grouped by hour (h) and day of the month (dm), and the
most frequent cluster in each temporal interval is extracted and
saved. Specifically, we defined two frequent cluster functions
poswpu, h, dmq and poscpu, h, dmq, that return, for each time
interval, the most representative cluster for the wireless and
cell network, respectively.

poswpu, h, dmq �

argmax
cwi PH

w
u

|tHw
u pdq � ci : d.h � h^ d.dm � dmu|

poscpu, h, dmq �

argmax
cciPH

c
u

|tHc
updq � ci : d.h � h^ d.dm � dmu|

The two time-mapping functions poswpu, h, dmq and
poscpu, h, dmq therefore predict the most frequent cluster
(MNL), depending on time variables.

The Markov chain for the Wi-Fi data is defined as follows
(the one related to the cellular data is similarly constructed):

 each distinct value of poswpu, h, dmq is a state swu P Sw
u :

it represents the user being in a given meaningful network
location in a given time period (identified by ph, dmq):

Sw
u � tposwpu, h, dmq | @h, dmu

 transitions between states are created for every adjacent
time step (hour Ñ hour � 1 in the same day)

txposwpu, h, dmq, poswpu, h� 1, dmqy | @h, dmu

 transition probabilities pwu ps1, s2q are assigned according
the frequency of the transition between the clusters ob-
served in the temporal stream of the dataset. In particular:

pwu ps1, s2q 9 |tposwpu, h, dmq � s1

^ poswpu, h� 1, dmq � s2 | @h, dmu|

The Markov chain, therefore, models the stochastic evo-
lution of the user across the set of meaningful locations
associated to his habits. For each state we also know the as-
sociated resource demand Ru,ci , thus stochastically modeling
the evolution of network resource demands, too. In general
user habits evolve over time, hence the model is useful to
predict user demands over a limited period of time; after that,
it should be updated with new incoming data [8].

III. DATA COLLECTION

A. Dataset
The clustering approach and the Markov chain described in

the previous section allow the definition of a user mobility
model able to support network providers in predicting user
network demand and, consequently, to improve the resource
distribution strategies. To validate the proposed methodology,
we used one of the largest community labeled mobile datasets,
developed under the “CrowdSignals.io” initiative [10].

The “CrowdSignals.io” dataset contains longitudinal mo-
bile and sensor data recorded from smart-phones and smart-
watches available to the community1. It was selected as the
most recent available dataset that contains almost all the data
that can be acquired through mobile devices.

As of May 2018, the “CrowdSignals.io” initiative is still in a
“pilot” phase, consequently, the dataset contains data collected
from 40 users among 30 days of actual usage, only. Moreover,
by considering the high variability of the involved devices
and the possibility of disabling some device features (e.g., on
some Android devices, the operating system may deactivate
some features depending on the current battery level), some
information is not available for all the 40 users. For this reason,
after a pre-processing phase on the dataset, the present work
uses data from 11 users. That portion of the dataset, in fact,
is the only one that contains all the needed information.

As already explained in the previous sections, only the Wi-
Fi and the cellular network data fields were selected among all
the available information, as they constitute the least invasive
user information that network providers can easily access
and that can be captured without computing and/or battery
overhead.

Wi-Fi data consists of the full list of wireless networks
(identified by their SSID, which was anonymized in the
dataset) visible by the user’s smartphone at a given time,
independently from its actual connected network and from the
signal strengths of those networks. Therefore, over the lifetime
of the data collection, each user may have seen thousands
of different SSIDs. Table I reports the number of available
wireless network samples, the total number of distinct SSIDs
for each user.

TABLE I
WI-FI DATA FOR THE SELECTED SUBSET OF USERS

User Id N. of Samples N. of SSID N. of Hours

1 9,524 2,614 163
2 23,822 7,654 266
10 15,164 3,145 243
21 41,677 3,322 414
28 34,633 6,572 332
29 4,972 9,682 223
30 2,920 3,364 96
31 13,955 3,003 248
37 15,990 3,224 168
39 13,372 7,082 346
41 19,075 2,848 253

Cellular data samples the Base Station Identifier (BID)
of the cellular towers to which the user smart-phone was

1The dataset can be obtained from http://crowdsignals.io/

http://crowdsignals.io/
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connected. At most one BID is available per each sample (i.e.,
base stations that may be in range but are not connected are
not saved), therefore the total number of distinct BIDs is in the
order of dozens, depending on the movements of each user.
Table II reports the details about cellular data.

TABLE II
CELLULAR DATA FOR THE SELECTED SUBSET OF USERS

User Id N. of samples N. of BID N. of hours

1 6,616 58 164
2 34,870 10 279
10 50,005 18 321
21 4,886 55 155
28 28,639 9 331
29 85,051 17 336
30 32,195 18 168
31 33,978 12 305
37 17,211 15 167
39 31,733 17 320
41 27,768 46 241

Finally, Tables I and II report the number of hours in which
samples are available. It is possible to notice that the overlap
between Wi-Fi data and cellular data is not complete, as it
depends on the actually collected data.

B. Feature selection

The accurate selection of features is a crucial step in every
machine learning approach. In this section, we describe how
the general method presented in Section II is applied to the
just presented dataset, taking into account its limitations and
characteristics. From the available data, we extract the features
F , composed of a spatial component Fs and a temporal
component Ft.

Spatial Features Fs: Spatial features are encoded differently
in the Wi-Fi and cellular cases. For the Wi-Fi case, the feature
vector Fw

s , is encoded in Ew
s using the one-hot encoding

of the set of SSIDs; this vector may grow to thousands of
components, and it may contain one or more “1” values in
each sample. For the cellular case, instead, F c

s is encoded in
Ec

s using the one-hot encoding of the BID; such a vector has
exactly one “1” per sample, corresponding to the uniquely
connected base station.

Temporal Features Ft: Temporal features represent the time
instant where the samples were taken, and are decomposed to
discern possible periodicity effects in the data. In particular, Ft

contains seven time-related information fields, automatically
derived from the time-stamp of each sample: month, day
(of the month), day of the week, hour, minute, second and,
finally, time of the day that breaks the day according to the
assignments reported in Table III.

As explained in Section II, encoded features Ew and Ec

are then normalized, to have zero mean and unit variance,
and SVD-reduced to lower the number of components. The
choice of the maximum number of components is related to the
dataset size and the cardinality of distinct wireless networks
visited by each user. In our experiments we used a maximum
of 100 components, as it delivered best results. Similarly, the
choice of the distance to use during cluster analysis is tied

TABLE III
TIME OF THE DAY FEATURE VALUES ASSIGNMENT

Day hours Day activity

00-05 sleep
06-08 breakfast
09-11 morning activities
12-13 lunch
14-17 afternoon activities
18-19 evening activities
20-21 dinner
22-23 night activities

to the type and the dimension of selected features, and we
experimentally found that the Euclidean distance delivered the
best performance.

IV. EXPERIMENTAL RESULTS

We implemented the proposed methodology in a few thou-
sands lines of Python 3.6 code2. All tests were performed on a
server equipped with a 4-core Intel i5 processor (i5-2500 CPU
@3.30 GHz), 16 GB of RAM, and running Ubuntu 16.04.3
LTS. For the clustering algorithm, we exploited a high perfor-
mance implementation of HDBSCAN from L. McInnes [14]
and the Scikit-learn library [15] for the data analysis and
validation process.

A. Conjoined clustering

The conjoined clustering algorithm described in Sec-
tion II-A was run separately for each user u to generate a
pair of cluster assignments Hw

u and Hc
u. The HDBSCAN

algorithm is memory-friendly: in our tests the memory usage
never exceeded 1 GB, and the run time of each HDBSCAN
run was always less than a minute.

The results of the HDBSCAN algorithm were then filtered,
thanks to the frequent cluster functions poswpu, h, dmq and
poscpu, h, dmq, by selecting only the most frequent clusters
for each one-hour time step.

For example, Table IV shows some of the clusters assigned
to User 1. For every Day/Hour combination, the most fre-
quent Wi-Fi cluster and the most frequent Cellular cluster are
extracted. In some cases, the data points might not belong to
any cluster, and in these cases the cluster is marked as “�1”.

Table V shows for each selected user the number of frequent
clusters inferred from Wi-Fi and Cellular data. The rightmost
column highlights the number of hours of data acquisition
that the two subsets of data have in common. The size of the
cluster is larger for Wi-Fi in some cases and for Cellular in
other cases, but this depends on the actual user data.

The dataset also provides the amount of network resources
consumed by the users in each data sample. After the con-
joined clustering, we may estimate the network demand Ru,ci

for a user u in a specific cluster ci (i.e., in a specific meaningful
location). For example, Table VI shows the traffic demands for

2The source code used to run the experiments is available at https://github.
com/jimmy-sonny/CrowdSignals.io. The code is licensed under the 2-Clause
BSD license.

https://github.com/jimmy-sonny/CrowdSignals.io
https://github.com/jimmy-sonny/CrowdSignals.io
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TABLE IV
EXAMPLE OF CLUSTER ASSIGNMENT FROM USER 1

Day Hour WI-Fi Cluster Cellular Cluster

.. .. .. ..
23 20 11 17
23 21 11 17
23 22 11 17
23 23 11 17

.. .. .. ..
24 19 12 10
24 20 12 10
24 21 12 10
24 22 -1 -1
24 23 -1 -1

.. .. .. ..

TABLE V
CLUSTERING RESULTS FOR THE SELECTED SUBSET OF USERS

User Id N. Wi-Fi Clusters N. Cell Clusters N. hours in common

1 12 12 160
2 22 23 166
10 30 29 158
21 32 10 79
28 10 28 168
29 8 8 145
30 8 7 97
31 14 31 156
37 20 29 167
39 21 18 168
41 9 11 168

User 1 in his various meaningful network locations, using Wi-
Fi data, both in average terms (i.e., by taking into account the
time spent in the locations) and in total. The last line reports
the network traffic attributed to data samples that were not
included in any cluster (outliers): 73.86% of the total traffic
was accounted by clusters, and therefore may be predicted by
the model.

TABLE VI
NETWORK RESOURCE DEMAND FOR USER 1 WI-FI CLUSTERS

Cluster # AVG Network Traffic (MB) Total Network traffic

0 8.02 16.03
1 30.05 30.05
2 0.00 0.00
3 17.55 210.65
4 5.44 16.32
5 0.00 0.00
6 0.00 0.00
7 1.50 7.53
8 0.00 0.00
9 25.54 1302.82
10 14.16 42.47
11 0.035 0.31

outliers 10.66 575.54

The same data is reported graphically in Figure 2 for User
1, and in Figure 3 for User 39, where the clusters with high
network usage have been highlighted in red. This shows how
a network operator may optimize its resources, according to
the overall demand, and in a completely automatic way.

Analyzing the result of clustering is challenging as it

Fig. 2. Network resource demand for User 1 Wi-Fi clusters

Fig. 3. Network resource demand for User 39 Wi-Fi clusters

involves the use of subjective criteria of optimality, specific
to a particular application. Therefore, no commonly accepted
standard for validating the output of a clustering procedure
exists [16].

As mentioned in Section II-A, we adopt the Adjusted Rand
Index (ARI) to estimate cluster similarity, and therefore ensure
the self-consistency of the results of the conjoined clustering.
In addition to ARI, we also computed the following indexes of
the quality of the clustering result, as proposed by Rosemberg
and Hirschberg [17]:

 Homogeneity, which measures whether its clusters con-
tain only data points which are members of a single class;

 Completeness, which measures whether all the data points
that are members of a given class are elements of the
same cluster;

 V-measure, measured as the weighted harmonic mean
of homogeneity and completeness; this is useful since
homogeneity and completeness of a clustering solution
run roughly in opposition: increasing the homogeneity
of a clustering solution often results in decreasing its
completeness.

Table VII reports the evaluation of clustering assignment
from the external clustering indexes ARI, Homogeneity, Com-
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TABLE VII
UNSUPERVISED EXTERNAL INDEXES COMPARISON

User Id ARI Homogeneity Completeness V-Index

1 0.35 0.73 0.68 0.70
2 0.12 0.76 0.72 0.74
10 0.20 0.27 0.27 0.27
21 0.06 0.16 0.23 0.19
28 0.08 0.13 0.06 0.08
29 0.02 0.08 0.07 0.07
30 0.01 0.18 0.20 0.19
31 0.10 0.24 0.25 0.25
37 0.14 0.45 0.23 0.30
39 0.23 0.84 0.77 0.80
41 0.08 0.45 0.50 0.48

pleteness, and V-measure.
The computed values of the ARI were satisfying, especially

for a dataset collected in-the-wild and with various shortcom-
ings. Only users 21, 28, 29, and 30 exhibited too low values.
In most cases, even a low ARI value is compensated by a
significantly better value of Homogeneity.

B. Markov chain

While the clustering results allow the representation, in a
synthetic way, of the behavior of the user, the Markov chain,
computed as described in Section II-B, allows the prediction
of her near-future behavior (in the next hour), in terms of
location and of network demand.

The computation of the Markov chain relies on the fre-
quent clusters assigned to each time period through the time-
mapping functions poswpu, h, dmq and poscpu, h, dmq, and
each cluster encodes a single state in the Markov chain.
The Markov model includes transitions every hour, with the
probability of getting to a specific cluster, given the previous
one.

As an example, Figures 4 and 5 illustrate a heatmap
representing the transition probability for the Markov chains
computed for User 1, using the Wi-Fi data and the Cellular
data, respectively.

Fig. 4. Markov model from the Wi-Fi data of User 1

The availability of such models allows the network operator
to predict the future meaningful locations of the user, given his
current location (measured in real time). The operator might

Fig. 5. Markov model from the Cellular data of User 1

rely on the most-likely location, only, or might consider all
the likely future locations, to pre-allocate network resources
to the closest EDC. Since each cluster is associated with a
specific network demand, resources can be allocated with a
fine level of granularity.

Moreover, the operator can benefit from two separate predic-
tion models (Wi-Fi and Cellular), and select the most suitable
one according to the available information.

We can also observe that, thanks to the clustering process,
the Markov chain associated to each user is really small: the
operator may therefore maintain prediction models for each
user, within acceptable computational resources.

V. RELATED WORKS

The prediction of network resource demand has been subject
of extensive studies in the literature, but only a few works
exploit the estimation of future user movements. Tan et al. [4],
for example, propose a novel location-aware load prediction
approach which deals with user mobility by correlating load
fluctuations of EDCs in physical proximity. They exploited
GPS coordinates of 536 taxis collected over 25 days to
generate the historical load time series for each EDC and de-
clared that their method outperforms state-of-the-art location-
unaware prediction methods by up to 4.3%.

On the other hand, the estimation of user future movements
through two-stage approaches has been subject of existing
studies in the literature, nonetheless, they usually exploit
invasive user information captured with relevant computing
and/or battery overhead, and require the installation of specific
applications on the user terminals.

Pant et al. [18] present a two-stage method that uses a)
a Varied-K Means clustering technique to establish the user
meaningful locations from GPS data, and b) Hidden Markov
Model techniques to predict user’s future movements based on
the user’s past historical data, i.e., weekday and time period
within the day. A similar work is performed by Ashbrook
et al. [19], [20]. They present a system that automatically
clusters GPS data taken over an extended period of time into
meaningful locations. These locations are then incorporated
into a Markov model that can be used to predict user locations.
Their prediction is dependent on the user’s past location, but,
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differently from the previous work, it does not use day and
time. Another similar proposal is presented by Yang et al. [21].
It, also, presents a two-stage approach for predicting user
locations based on GPS data. However, they employ DBSCAN
techniques, instead of K-means, to cluster GPS data.

As can be depicted from the presented descriptions, all
the presented works are similar: they use GPS information
to cluster user meaningful locations as a the first step and,
then, they provide a model representative of user movements.
However, the GPS information used by all of them is both
a) battery-draining and b) cannot be acquired by network
operators without specific license agreements (and ad-hoc
installation of applications on the user terminals). Therefore,
the following paragraphs analyze existing solutions to cluster
user meaningful locations without using GPS information
and/or other battery-draining data.

From the literature, three of the most used information in
clustering user meaningful locations without causing com-
puting and/or battery overhead are: “precision sensors” data,
anonymized Wi-Fi SSID, and cellular network data. The “pre-
cision sensors” data includes information acquirable through
accelerometer, gyroscope, digital compass, microphone, and/or
magnetometer sensors. They are used in various existing
works (e.g., [22]–[24]), but, even though some techniques
were proposed to reduce battery consumption in their acqui-
sition [22], they are not, in any case, acquirable by network
operators without additional license agreements. Thus, we will
concentrate on the other two, i.e., anonymized Wi-Fi SSID and
the cellular network data, that are not battery-draining data and
that are easily accessible by network operators.

Regarding the anonymized Wi-Fi SSID, Nguyen et al. [25]
present a method to determine significant locations by cluster-
ing Wi-Fi access points in close proximity using the Affinity
Propagation algorithm, an unsupervised algorithm that is able
to cluster the samples without knowing the cluster number in
advance. They demonstrate the reliability of their approach
on the Wi-Fi data obtained from the Mobile Data Challenge
(MDC) dataset: the correlation between the inferred locations
with the user’s visited locations included in the dataset con-
firms the validity of their approach. Similarly, Zhao et al. [26]
use Wi-Fi scanlists that are clustered into a set of stay places
by a clustering method. They, also, confirm that techniques
that use anonymized Wi-Fi SSID to cluster user meaningful
locations are a promising approach, to be further investigated.

For what concern the cellular network data, instead,
Fanourakis et al. [27] present a lightweight method to form
semantically meaningful clusters of cellular IDs from cellular
ID sequences. The method was preliminarily tested on 15
weeks of data, collected from one real user in her natural
daily environments. Furthermore, Isaacman et al. [28] propose
new techniques based on clustering for analyzing anonymized
cellular network data to identify generally important location.
Results presented in both works are promising as a step
towards a lightweight method to cluster cellular IDs into
meaningful information for the user neighborhoods.

The problem of dynamically adjust EDC capacity and
optimize resource utilization is similar to the dynamic resource
allocation in the fog computing architecture. Zhang et al. [6]

propose an optimization framework, based on the “Stackel-
berg games” and the “many-to-many matching” algorithm,
to achieve an optimal resource allocation schema in a fog
architecture. On the other hand, Ni et al. [5] present a dynamic
resource allocation strategy for fog computing, based on Petri
nets (PTPNs), to improve the efficiency of fog resources
utilization and to satisfy user QoS. Since a fog application
can be decomposed into several tasks to be executed on
fog resources, they propose a performance prediction model
to reduce the task response time, maximize the resource
utilization, and lower the global costs.

VI. CONCLUSION AND FUTURE WORK

Future generation networks will face the challenge of in-
creased user mobility, and pressing resource demands due to
IoT services, to be served by a dynamic reconfigurable net-
work. This scenario requires intelligent network mechanisms
able to adapt to the evolving user demands, even in real time,
and shift resource allocation according to user behavior.

This work proposes a predictive model, which is based
on non-intrusive monitoring of user data connections and
consumed network resources, able to identify the meaningful
network locations of each user, and its associated resource
demand. The model allows a network operator to estimate and
pre-allocate network resources with a one-hour time step, ac-
cording to the predicted demand customized to each user’s be-
havior. Quantitative results over the “CrowdSignals.io” dataset
validate the proposed model and show its effectiveness.

In future work, we aim at exploiting a Markov model that
integrates Wi-Fi and cellular meaningful network locations,
thanks to the correspondence between the clusters given by
the conjoined clustering. Moreover we plan to extensively test
the proposed methodology on other available datasets.

We will also investigate alternative unsupervised method-
ologies, in particular we will try to model meaningful network
locations using embeddings. In a similar way, we will explore
alternative approaches to predict the future users’ network
demands, testing the effectiveness of the adoption of machine
learning classification algorithms in this field too.
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