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Abstract

The mechanism of molecular sequestration is involved in many biological processes,
ranging from growth factors signalling to transcriptional and post-transcriptional
regulation. This kind of dynamics involves two types of molecular species, targets
and sequesters, that bind to form a complex. In the framework of mass-action
law, key features of this kind of systems appear to be threshold-like profiles of
the amounts of free molecules as a function of the parameters determining their
possible maximum abundance. In biology, stochastic fluctuations, i.e. noise, play
an undisputed role at the molecular level. Such noise can be usually divided into
an intrinsic component, due to the probabilistic nature of biochemical processes,
and an extrinsic one, related to the coupling with the variability of the environment
in which reactions take place. Several studies highlighted the relevance of the
variability induced by extrinsic fluctuations in shaping cell decision making and
differentiation in molecular networks. Bimodal distributions of gene expression
levels are a common feature of this kind of processes. Indeed, the two modes of the
distribution often indicate the presence of two different physiological states of the
system. In this thesis, we investigate the consequences of the introduction of a source
of extrinsic noise onto a system governed by molecular sequestration, focussing
on the appearance of bimodal distributions. To do that, we first study a minimal
stochastic model of molecular sequestration and introduce extrinsic noise through
a fluctuating parameter. In this framework, we analytically show how bimodal
distributions can appear and characterize them as a result of noise filtering mediated
by the threshold response. We then investigate the behavior of the correlations
between targets of the same sequester and show how extrinsic fluctuations can
induce a positive correlation that counterbalances the negative one due to competition.
Given these results, we move to investigate the appearance of bimodal phenotypes in
the context of microRNA (miRNA)-mediated gene regulation. MiRNAs are small
noncoding RNA molecules that downregulate the expression of their target mRNAs.
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The interaction between miRNAs and targets is based on molecular sequestration
and threshold-like responses are a known feature of this system. Recent studies
suggested that miRNAs can be involved in the appearance of bimodal expression
distributions of their target genes. To investigate this phenomenon, we characterize
the system through an analytic and numerical approach and introduce extrinsic noise
as a fluctuating miRNA transcription rate. We observe that bimodal distributions of
target expression can appear for a wide range of parameters in presence of extrinsic
noise. Furthermore, we show how the bimodal shape of the distribution can be tuned
by the interplay between different target mRNAs competing for a common miRNA.
In conclusion of this thesis we present some synthetic-biology experiments that are
aimed at studying the role of extrinsic fluctuations in the appearance of bimodal
distributions in the context of miRNA-mediated regulation.
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Chapter 1

State of the art and thesis outline

Different kinds of regulatory mechanisms and related network motifs are involved
in gene expression. Transcriptional regulation is among the best characterized:
one or more proteins, called transcription factors, bind to the promoter of a target
gene and enhance or impede its transcription into RNA. The combinatorial and
cooperative nature of this regulation gives rise to an enormous and heterogeneous
network of interactions between genes. In recent years, a completely new layer of
gene regulation, coupled to the transcriptional one, was discovered and characterized
[11–15]. This kind of regulation occurs at the post-transcriptional level and involves
interactions among transcripts. Post-transcriptional regulation is mediated by 22
nucleotides long non-coding RNA molecules called microRNAs (miRNAs) [16–19].
MiRNAs recognize and bind to their target RNAs thanks to the complementarity
between their sequences. The miRNA molecule is loaded on a protein complex
called RNA-induced silencing complex (RISC). When the miRNA binds to the target
RNA, RISC promotes its degradation or reduces its translation into protein, leading
to a downregulation of the expression of the corresponding gene. For this reason,
miRNAs are considered as post-transcriptional down-regulators of gene expression.

Several studies [4, 7, 8, 20–23] suggest that miRNA-target interaction is based
on a mechanism of molecular sequestration. The idea is that, when a miRNA
binds to its target, they form a complex which prevents further interaction with
other molecules until dissociation. This mechanism of "titrative" interaction has
already been well studied in other contexts. Examples are protein ubiquitination [24],
growth factors signalling [25, 26], transcription factors sequestration [27, 28, 1],
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the interaction between RNA polymerase and its sigma factors in bacteria [29]
and bacterial persistence [30]. Titration has the property to induce threshold-like
responses in the mean amount of molecules as a function of some key parameter
as, for example, their production rate. Indeed, if the amount of sequester (e.g. the
miRNA) is larger than the amount of target (e.g. the mRNA), most of the target
molecules are bound to a sequester and their free amount is close to zero (the
repressed regime). On the contrary, when the amount of target is larger than the
amount of sequester, almost all the sequester molecules are bound, but some target
molecules are always free (unrepressed regime). In this case, the amount of free
targets increases linearly with their total amount. The combination of these repressed
and unrepressed regimes originates the threshold behavior, with the threshold located
approximately at the equimolarity point between target and sequester. In proximity
to the threshold, a small change in the total amount of target can lead to a big fold
change in its free amount. This property is called ultrasensitivity [1].

The regulation operated by miRNAs is combinatorial: one species of miRNA
can regulate several different targets and one target is regulated by many different
miRNAs [31–33]. The underlying interaction network is based on the competition
between targets for binding to the same pool of miRNAs and such competition is
a source of crosstalk among them. In such a network, the overexpression of one
of the targets, achieved for example by increasing its transcription rate, induces a
derepression of the other targets that share the same pool of miRNAs and leads to a
net increase of their free molecule share. This happens because the transcripts of the
overexpressed target act as a "sponge" for the miRNAs, sequestering them and con-
sequently reducing the level of repression on other targets [34, 35]. The importance
of this crosstalk, also called Competing Endogenous RNA (ceRNA) effect [36–38],
was demonstrated in different physiological and pathological conditions [38–40] and
represents a key element that has to be taken into account in order to understand the
whole interaction network among genes, including the ones originating non-coding
transcripts.

Previous works [20, 7] focused on the ceRNA effect from a theoretical point of
view. Mathematical modeling, based on a stochastic approach, has been useful both in
describing crosstalk among targets and in predicting the coupling of their fluctuations.
The model, that takes into account the processes of miRNA and target transcription,
degradation and interaction, is associated to a master equation whose solutions can be
found at the steady state through analytic approximations. These analytic results were
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experimentally validated by exploiting a synthetic system composed of two different
genes having binding sites for the same miRNA [8]. The two genes coded for
different fluorescent proteins and were inserted in mammalian cells that endogenously
express their common miRNA. Measurements were conducted using flow cytometry,
a technique that allows to measure fluorescence in single cells obtaining then a proxy
for the targets’ expression. The results, besides confirming the model’s predictions,
revealed regions of optimal crosstalk where the relative fluctuations of targets can
be potentially synchronized. Furthermore, these experiments were also a source of
new interesting interrogatives, related to the appearance of distinct phenotypes in the
distribution of target expression in case of strong miRNA repression.

A key feature of molecular networks is their intrinsic stochasticity [41, 42]. This
is due to the inherent randomness of chemical reactions which are governed by
thermal fluctuations. This intrinsic noise is negligible for macroscopic systems, but
it plays a crucial role in biological systems at the cell and sub-cell level, where
the number of molecules involved in the reactions is small. These systems can
be influenced by other sources of noise, different from the intrinsic one [43–48].
These sources of extrinsic noise can be fluctuations in the external environment
which affect in a different way identical systems. At the cell level, extrinsic noise is
composed of all the fluctuations that affect the space in which biochemical reactions
occur. Variations, across identical cells, of the amount of cellular components and
molecular machineries, for example ribosomes, can be considered as extrinsic noise,
as well as gradients of signaling molecules in the external environment. The presence
of extrinsic noise, together with the intrinsic one, results in phenotypic variability
across a population of identical cells. This phenotypic variability is sometimes
organized in bimodal distributions, which highlight the existence of two distinct
phenotypes. Bimodal expression distributions are often encountered in processes of
cell decision-making and cell differentiation, but they can also point out the presence
of an ill phenotype, together with the healthy one [49–54].

As mentioned above, miRNA-mediated gene regulation can give rise to bimodal
distributions. Given the strong involvement of miRNAs in processes of cell differ-
entiation and in the preservation of homeostasis, their ability to produce bimodal
distributions can be a crucial element of their regulatory role. A core part of this
thesis is dedicated to the quantitative understanding of how miRNAs can give rise
to bimodal distributions and to the role that can be played in this context by some
extrinsic noise.
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In chapter 2 of this thesis, we briefly review the mechanism of molecular se-
questration and use it to explain the process of miRNA-target interaction. We then
present some properties of this kind of regulation, focusing in particular on the role
of miRNAs as "micromanagers of gene expression" and noise buffers. Consequently,
we introduce the ceRNA effect and describe a mathematical model that reproduces
the phenomenon and allows to study the stochastic properties of the system. Fi-
nally, we describe in detail the experimental setup used to validate the theoretical
predictions of models of miRNA regulation and ceRNA effect.

Chapter 3 is dedicated to the study of how miRNA regulation can give rise to
bimodal distributions, in relation to the presence of an extrinsic source of noise. In
this chapter, we first introduce a minimal model of molecular sequestration and show
analytically that the addition of extrinsic noise can lead to bimodal distributions.
We then study a more complex model describing in more detail the process of
miRNA-mediated gene regulation. Through analytic and numerical approaches, we
characterize the presence of bimodal distributions in this system, highlighting the
difference between the single-cell and the population levels.

In chapter 4, we extend the analysis of the previous chapter to a system of two
targets competing for the same sequester. Following the outline of chapter 2, we first
extend the minimal model with the addition of one target species, consequently, we
study a model of miRNA-mediated gene regulation with two genes competing for
the same miRNA. Both the models are studied in presence and absence of a Gaussian
source of extrinsic noise. Thanks to the analytic control on the minimal model, we
characterize in detail the behavior of the correlations induced by the competition
between the targets. Finally, we use the model of miRNA-target interaction to obtain
some insights on how bimodal distributions can be tuned by the crosstalk between
the targets.

In chapter 5, we analyze some slightly modified variations of the minimal model
of molecular sequestration, in order to build the bridge towards the model of miRNA-
mediated gene regulation. The addition of some elements that make the minimal
model more similar to the complete one leads to non-trivial results, like the disap-
pearance of the threshold behavior.

Finally, chapter 6 is dedicated to the description of our experimental activity. We
are currently following two lines of research aimed at studying different aspects of
miRNA-mediated gene regulation.



5

The aim of the first experiment is the in vitro exploration of the role played by
the extrinsic noise in the rise of bimodal distributions of miRNA targets. It is based
on the study of the expression distributions of a synthetic target of an endogenous
miRNA. The heterogeneity of the cells with respect to cell cycle is assumed to be
an extrinsic source of noise and single-cell measurements are performed at the flow
cytometer.

With the second experiment, we want to investigate the behavior of the correlation
between two miRNA targets beyond the steady state. In order to investigate the time
behavior of the system, we follow an experimental approach based on fluorescence
time-lapse microscopy. With this technique, we study temporal correlations between
two synthetic miRNA targets in single cells. Furthermore, we plan to use this
experimental setup to study the response of the system to an external perturbation,
like the sudden switch on or off of one of the two synthetic targets.

The work described in this thesis led to two theoretical papers and was par-
tially included in a book chapter on Computational Biology of non-coding RNA in
Biomedicine:

• D. G. M., Bo S., Grigolon S., Bosia C., On the role of extrinsic noise in
microRNA-mediated bimodal gene expression, Plos Computational Biology,
14:1-26, DOI 10.1371/journal.pcbi.1006063, 2018 [10]

• D. G. M., Bosia C., Grigolon S., Bo S., Stochastic sequestration dynamics: a
minimal model with extrinsic noise for bimodal distributions and competitors
correlation, Scientific Reports, 8(1):10387, DOI 10.1038/s41598-018-28647-9,
2018 [9]

• Martirosyan A., D. G. M., Enrico Bena C., Pagnani A., Bosia C., De Martino
A., Kinetic modelling of competition and depletion of shared miRNAs by
competing endogenous RNAs, Methods in Molecular Biology, under revision
[55]

An additional paper on the experiments described in chapter 6 is in preparation.

The research activity conducted during this Ph.D. involved also the collaboration
to other projects not described in this thesis. These collaborations led to the following
publications:
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• Campa C.C., Margaria J.P., Derle A., D. G. M., De Santis M.C., Gozzelino
L., Copperi F., Bosia C., Hirsch E., Rab11 activity and PtdIns(3)P turnover
removes recycling cargo from endosomes, Nature Chemical Biology, DOI
10.1038/s41589-018-0086-4, 2018 [56]

• Enrico Bena C., D. G. M., Gueudré T., Miotto M., Turco E., De Martino A.,
Bosia C., Inoculum-density dependent growth reveals inherent cooperative
effects and stochasticity in cancer cell cultures, arXiv:1710.10978 [57]



Chapter 2

Overview on molecular sequestration
and microRNA-mediated gene
regulation

In this chapter we will introduce the properties of the process of molecular seques-
tration and we will relate it to post-transcriptional gene regulation mediated by
microRNAs. The main feature of molecular sequestration is the possibility to obtain
threshold responses and ultrasensitivity in absence of molecular cooperativity. This
property is found also in gene networks regulated by microRNAs. Further studies
in this context showed that this mechanism of interaction plays an essential role in
gene regulation, by providing stability to specific phenotypes, buffering expression
noise and inducing crosstalk between target genes.

2.1 Main properties of molecular sequestration

The process of molecular sequestration involves two molecular species: a titrating
molecule (titrant) and a target. The titrant binds, with a given rate kon, to the target
molecule and forms a complex (heterodimer) which sequester the target from the
environment, often inhibiting its activity. The complex can in turn dissociate with
rate ko f f , releasing both the titrant and the target again in the environment, where
they are free to interact. This mechanism of interaction is common to proteins.
Imagine for example a transcription factor (TF) whose activity is kept under control
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Fig. 2.1 Scheme of molecular sequestration for protein interaction. Adapted from [1].

by another protein. Such protein sequesters the TF by binding it in an inactive
complex, see figure 2.1. This simple interaction network was analyzed in detail
by Buchler and Louis in [1] with the help of mathematical modeling, based on a
deterministic approach. In the following, we will summarize the most important
results of this analysis.

Following the scheme of figure 2.1, we can easily define the dissociation constant
of the network:

Kd =
ko f f

kon
=

[A][B]
[AB]

,

where [A], [B] and [AB] are the concentrations of species A, B and complex AB
respectively. Additional equations that hold for this system are the conservation laws
which state that the total concentration of A and B is constant ([AT ] = [A]+ [AB] and
[BT ] = [B]+ [AB]). The resulting system of equations can be solved, obtaining the
equilibrium solution for the concentration of free A.

When [BT ]> Kd , the presence of the complex AB is favored against the presence
of free A. In this condition, two regimes can be discriminated, depending on the total
concentration of A present in the system. If [AT ] < [BT ], almost all the molecules
of the target, A, are bound to molecules of the titrant, B, and their free amount is
close to zero. In particular, in this regime [A] ≈ [AT ] ·Kd/[BT ], and the system is
more repressed for high values of the binding rate kon. If [AT ] > [BT ], the titrant
is saturated by the target A, whose free concentration grows linearly with [AT ]:
[A] ≈ [AT ]− [BT ]. These two regimes give rise to a threshold-like response of [A]
as a function of [AT ], with the threshold located in [AT ] = [BT ]. The threshold gets
steeper as the dissociation constant Kd decreases, meaning that the binding rate
kon gets higher with respect to the unbinding rate ko f f . This behavior makes the
system ultrasensitive in proximity to the threshold. Indeed, in this region, a small
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fold change in the total amount of A can result in a huge fold change in the amount
of free A. The intensity of the response increases as Kd/[BT ] decreases.

The typical context in which ultrasensitivity in molecular reactions can be found
is the formation of protein homo-oligomers: protein complexes composed of few
identical molecules. In these reactions, the affinity for binding can increase with
the number of monomers already bound in a complex. This phenomenon, called
molecular cooperativity [58–61], induces nonlinearities between the total concen-
tration of the input monomer and the concentration of the output oligomer. These
nonlinearities lead to ultrasensitivity.

Molecular sequestration represents a way to build up systems with high ultra-
sentitivity without cooperative binding. This mechanism of interaction is found in
different contexts, ranging from protein-protein interaction to microRNA-mediated
gene regulation. This last will be the subject of the next sections.

2.2 Molecular sequestration in microRNA-mediated
gene regulation

In the following sections we will review some experimental and theoretical results
regarding the process of microRNA-mediated gene regulation, focussing on its
effects on phenotypic stabilization, expression noise buffering and crosstalk among
transcripts.

2.2.1 Overview about microRNAs

MicroRNAs (miRNAs) are small non-coding RNA molecules that actively downreg-
ulate gene expression at the post-transcriptional level [3, 16–19, 62, 63].

MiRNAs were first identified as small temporal RNAs (stRNA) regulating timing
of developmental events in Caenorhabditis Elegans [11–15]. “The extension of
miRNA-mediated regulation from being a curiosity in C. elegans to a potentially
general mechanism for gene regulation began with the work of the Tuschl, Bartel and
Ambros groups [13–15], who collectively identified more than 100 novel miRNAs by
cloning and sequencing endogenous small RNAs of 21–25 bp long from worms, flies
and mammals.” [64].
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Fig. 2.2 MiRNA biogenesis. Adapted from [2].

Up to now more than 25000 miRNAs have been identified in animals, plants
and viruses, about 2500 in human cells [65, 66]. MiRNAs, well conserved in
animals and plants, play a role in a wide range of regulatory mechanisms involved in
organogenesis and differentiation [67–69], apoptosis [70, 71] and cell proliferation
[72–74] and their dysregulation can lead to important diseases, including cancer
[65, 75–78].

In the following, we will briefly review miRNA biogenesis in animals and
describe their mechanism of interaction with target mRNAs, see figure 2.2.

Genes coding for miRNAs can be found as autonomous units in intergenic regions
of the genome [79–81], in introns (i.e. non-coding regions inside a gene that are
removed after splicing) of both protein coding and non-coding genes [63, 82–85] and
even in exons (i.e. regions coding for a portion of the mature RNA) of non-coding
genes [82, 86–88]. MiRNAs transcribed antisense from exons of protein-coding
genes exist, but a detailed characterization is still missing [89–91]. MiRNA genes
can also form clusters regulated by a common promoter, creating a polycistronic
transcription unit [92, 82]. The primary product of the transcription of a miRNA
gene is a long transcript called pri-miRNA which contains a 5’ cap structure and a
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3’ poly(A) tail. Pri-miRNAs are processed in the nucleus by the enzyme Drosha,
originating ∼100 nucleotides long miRNA precursors with a hairpin structure, called
pre-miRNAs. These precursors are transferred to the cytoplasm by the protein
Exportin-5, where they undergo further processing by the Dicer enzyme. This
enzyme cuts the hairpin loop of the pre-miRNA, leading to a double stranded RNA
(dsRNA) duplex with imperfect match between the sequences. The duplex is then
incorporated into a protein complex called RNA-induced silencing complex (RISC).
Within the RISC, only one of the two strands of the miRNA is loaded, the other
being released and degraded.

Once loaded in the RISC, the mirRNA is ready to exert its repressive action
on its target mRNA, whose sequence is recognized through Watson–Crick base
pairing. The complementarity of the two sequences is usually almost perfect in
plants. Conversely, in animals, miRNAs recognize their targets through the nearly
perfect pairing with a smaller region, about 6 nucleotides long, contained in the 5’
end of the miRNA, the so called seed region [31]. Usually, the sequence of the target
complementary to the seed region is located in the 3’-UnTranslated Region (3’UTR),
but evidences of miRNAs binding the 5’UTR [93] and the coding sequence have
also been found [65, 94, 95].

In plants, due to the high complementarity between the sequences of miRNA
and target, the target is cleaved by the RISC. Differently, in animals, the incomplete
base pairing usually does not lead to the target cleavage, but promotes translational
repression and mRNA destabilization [3]. The sequestration of target molecules,
possibly combined to an enhanced degradation, is then at the basis of miRNA-
mediated gene regulation.

Computational models predict that more than the 60% of human genes is targeted
by miRNAs [31, 96]. Moreover, miRNAs bind also to other non-coding transcripts,
like long non-coding RNAs and pseudogenes [39, 97]. The action of the miRNAs is
combinatorial: one miRNA can regulate several different targets and one target is
regulated by many different miRNAs [31–33]. Altogether, these properties underline
the fact that miRNAs are key players in gene regulation.
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C D

Fig. 2.3 MiRNA action as a switch or a fine tuner. Adapted from [3].

2.2.2 Theory: noise

The main role of miRNAs has been debated for long. In this section we introduce
the most important interpretations and theoretical results on the action of miRNAs.

An important interpretation of the role played by miRNAs was introduced by the
Bartel’s group [98, 3]. The idea is that miRNAs can be considered “micromanagers
of gene expression” [98] that fine tune the protein output of a gene, to maintain
physiological expression levels. In this context, miRNAs can help to stabilize the
protein expression in different cell phenotypes and can act as a switch in response
to environmental or developmental stimuli. Indeed, cells belonging to different
tissues tend to present anticorrelated expressions of miRNAs and relative target
mRNAs [99–102]. This means that miRNAs can act as reinforcers and stabilizers of
transcriptional patterns, sharpening differences in gene expression among different
tissues or different developmental stages.

In figure 2.3, adapted from [3], the role of the miRNA as a switch or a fine tuner
is described. The left panels represent the response of the target protein level to the
sudden expression of the miRNA. The right panels represent the opposite situation,
in which the transcription of the target is switched on in a cell in which the miRNA
is already present. As can be seen, the miRNA can act as a switch between two
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phenotypes (panel A), it can keep the protein amount below a threshold level that
separates two phenotypes (panel B) and it can bring or keep the amount of proteins
in an optimal region (panels C and D).

In [4] the miRNA-target interaction mechanism was investigated through both
single-cell experiments exploiting a synthetic miRNA target and deterministic math-
ematical modeling. A result of this analysis was that the regulation mediated by the
miRNA induces nonlinearities between the constitutive expression of the target and
the amount of the target protein. In particular, below a certain threshold level of
constitutive expression, the protein production is highly repressed, while, above the
threshold, the protein amount increases linearly with the target expression level.

The threshold-like response observed in these data is compatible with a mecha-
nism of molecular titration [1] and can be accurately described through mathematical
modeling. In the model of Mukherji and coworkers, miRNAs that bind to target
mRNAs impede their translation into proteins and enhance their degradation. The
steepness of the threshold transition is related to the value of the binding rate: a
higher value of the binding rate, which means a stronger miRNA-target affinity,
corresponds to a steeper threshold, see figure 2.4 (B,D). The level of target expres-
sion corresponding to the threshold point, is instead set by the amount of miRNA
present in the cell. As the number of miRNAs increases, the threshold point is shifted
towards higher values of target expression, see figure 2.4 (C,E).

In the repressed region below threshold, the target molecules are significantly
outnumbered by the miRNAs, almost no mRNAs are free to be translated and
the protein level is very low. On the contrary, above threshold, free mRNAs are
present and their amount increases linearly with the target expression level. As a
consequence, proteins are translated and also their amount increases linearly with
the target expression level. These results support the idea that miRNAs can act both
as a switch, when the system is in the repressed regime, and as a fine tuner of the
target expression, when the system is in the linear regime.

Open questions still remain about the effective role of miRNAs in cell physiology.
The point that rises these questions is the fact that miRNAs are highly conserved and
regulates thousands of genes, but their repressive effect on targets is usually weak
[103, 104]. Moreover, knockouts experiments, in which a miRNA gene is silenced,
very rarely produce phenotypic changes. In order to investigate these questions,
it was hypothesized that miRNAs can have a role in controlling the noise level of
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Fig. 2.4 (A) Model of miRNA-target interaction studied in [4]. The total concentration of
miRNA is constant, the target mRNA is transcribed and degrades, both spontaneously and
as a consequence of the interaction with the miRNA. (B-E) Steady state solutions of the
model describing the concentration of free mRNA as a function of the transcriptional activity
(concentration of mRNA in absence of miRNA regulation. (B,D) Solutions for different
values of the binding rate. (C,E) Solutions for different concentrations of miRNA. Adapted
from [4].
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Fig. 2.5 Predictions of the model described in [5] for the noise of a miRNA-regulated gene.
Regulation reduces intrinsic noise at low expression levels and increases extrinsic noise at
high expression levels. Adapted from [5].

protein expression. The intrinsic component of the expression noise is mainly set by
the variability of the transcription process and by low mRNA copy numbers [43].

Theoretical works have investigated the ability of post-transcriptional control
to attenuate intrinsic noise [105]. Moreover, it was speculated that miRNAs can
reduce the intrinsic component of expression noise with respect to the unregulated
case. This is due to the combination of their repressive action, that enhances mRNA
turnover, and the increased target transcription which is needed to achieve the same
protein level of the unregulated case [99]. Nonetheless, the interaction with the
miRNA is expected to constitute an additional source of noise for the system. This
problem was recently addressed by Schmiedel and coworkers in [5]. In this work,
the authors developed a mathematical model that accounted for both the intrinsic
noise reduction and the additional extrinsic fluctuations introduced by the miRNA
interaction. In addition to that, experiments with synthetic targets of an endogenous
mRNA were performed in order to validate predictions of the model. As a result,
both the model predictions and the experimental evidences pointed out a decrease
of the total noise at low target expression levels and an increase at high expression
levels, with respect to the unregulated case, see figure 2.5. Intrinsic noise reduction
dominates at low expression, while extrinsic fluctuations due to the coupling with
the miRNA dominate at high expression. Moreover, the extrinsic contribution due
to the coupling with miRNA fluctuations increases as the miRNA-target interaction
gets stronger.

These conclusions suggest an interpretation to the fact that miRNAs target
preferentially genes that are expressed at low levels: in this case the noise reduction
would be significant. Also the combinatorial action of different miRNAs weakly
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Fig. 2.6 MiRNA-mediadet Feed-Forward Loops (FFLs). (A) Positive coherent FFL. (B)
Negative coherent FFL. (C,D) Incoherent FFLs. Adapted from [6].

repressing the same target might be understood in this framework. Indeed, the
resulting target repression can be significant and noise can be reduced, due to the
fact that the extrinsic contribution is small.

Another evidence of the role played by miRNAs as noise buffers derives from
the study of specific network motifs called miRNA-mediated feedforward loops
(FFLs). These motifs consist of a transcription factor that simultaneously regulates
the expression of a gene and the expression of a miRNA that targets the regulated
gene [6]. Different computational approaches [106, 107] showed that this kind
of circuits is overrepresented in the network representing the interactions among
transcription factors, miRNAs and target genes. The fact that miRNA-mediated
FFLs are conserved is a hint of their important role in gene regulation.

The topology of these motifs can be divided into two categories: coherent FFL
and incoherent FFL, see figure 2.6. In the coherent FFL the two pathways of
regulation originating from the transcription factor are consistent, meaning that
they both lead to the activation or repression of the target gene. On the contrary,
in the incoherent FFL, one pathway leads to positive regulation of the target and
the other one to negative regulation. The overall effect of the coherent FFL can be
either positive, with the transcription factor activating the gene and repressing the
miRNA (fig. 2.6 A), or negative, with the transcription factor repressing the gene and
activating the miRNA (fig. 2.6 B). Also the incoherent FFL can be divided in two
variants, with the transcription factor activating or repressing both the gene and the
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miRNA, see figure 2.6 C and D respectively. On the one hand, a negative coherent
FFL can be interpreted as a failsafe control, with the miRNA helping the transcription
factor at preventing the gene expression. On the other hand, an incoherent FFL can
be seen as a fine tuner of the gene expression [108].

In addition to these observations, the ability of the miRNA-mediated incoherent
FFL at controlling the variability of gene expression was also investigated. In [108]
the authors showed with stochastic modeling and numerical simulations that the
incoherent FFL is able to buffer fluctuations originating from the transcription factor,
conferring robustness to the expression of the target. This result supports the idea
of the incoherent miRNA-mediated FFL as a fine tuner of gene expression: this
motif can both tune the expression level and reduce its fluctuations. The fine-tuning
function of many miRNAs can then represent a way to approach the issue of the
weak repression exerted by miRNAs on most of their targets.

2.2.3 Overview about ceRNAs

As described in previous sections, the action of miRNAs is combinatorial. Indeed,
one miRNA can regulate several different targets and one target can be regulated
by many different miRNAs. Moreover, miRNAs can target both protein coding and
non-coding transcripts. As a result, a potentially enormous miRNA-target interaction
network exists. This fact led to the idea that the miRNA-target interaction network
could be based on the competition between targets for binding to the same pool
of miRNAs and that this competition could be a source of crosstalk between them.
Indeed, in principle, the overexpression of one of the targets of a common miRNA,
for example by increasing its transcription rate, could induce a derepression of the
other targets via a sponge effect, leading to an increase of their free molecule share
(i.e. the amount of mRNA molecules not bound to miRNAs). This is due to the fact
that, when a miRNA molecule binds to a target mRNA, it is sequestered from the
environment and it cannot repress other target molecules. The sponge effect consist
in the fact that, when one target is overexpressed, its high number of mRNAs capture
most of the miRNAs, leaving other targets less repressed. MiRNAs constitute then a
limiting resource for which target transcripts compete.

When one of the target genes is upregulated, the miRNA molecules will preferen-
tially bind to it, due to the increased amount of its transcripts. The miRNA repression
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on the mRNAs of the competing genes will be then reduced and their free amount
will increase. The crosstalk between targets of a common pool of miRNAs induced
by this phenomenon was named competing endogenous RNA (ceRNA) effect [37]
and its importance was experimentally demonstrated in different physiological and
pathological conditions [38–40]. Particularly illustrative is the case of the tumor
suppressor gene PTEN and its pseudogene PTENP1 [39]. Indeed, it was shown that
the transcript of the pseudogene [109, 110] PTENP1, thanks to the high similarity
of their sequences, exerts a regulatory function on PTEN by binding to a pool of
common miRNAs. Furthermore, a dysregulation of PTENP1 seems to be involved
in human cancer.

These results suggest that the crosstalk between targets of a common pool of
miRNAs can represent a key element that has to be taken into account in order to
understand the whole interaction network between protein coding and non-coding
genes.

2.2.4 Theory: competition and crosstalk

Several studies [7, 20, 21] theoretically investigated the ceRNA effect by exploiting
mathematical modeling. In [7] the authors followed a solution approach that took
into account the stochastic nature of the system. In particular, a general network
of M miRNAs and N target mRNAs (ceRNAs) was investigated by studying the
master equation describing the dynamics of the system. The processes included in
the master equation were the transcription and spontaneous degradation of miRNAs
and ceRNAs and the titrative interaction between them, parameterized through an
effective association rate, which constitutes an additional degradation channel. A
supplementary parameter of the model is the so called catalyticity, which represents
the fraction of the miRNAs that are degraded during the interaction with the target
mRNA (which is always degraded). The value of this parameter, ranging from 0,
completely catalytic interaction, to 1, completely stoichiometric interaction, has been
discussed for long and there is not unanimous agreement on it [111–116].

The master equation resulted to be too difficult to solve analytically, even at
the steady state. Indeed, the hierarchy of the moments obtained from the moment
generating function was not closed. In order to go around this problem, a Gaussian
approximation was used. In this way, the joint probability distribution describing the
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system at the steady state was approximated with a multivariate Gaussian distribution.
Then, the fact that for this kind of distribution each moment can be written as a
function of the first two was used to close the hierarchy and solve the master equation.
The approximated steady-state probability distribution was used, together with exact
numerical simulations, to investigate the behavior of mean values, fluctuations and
correlations of the system.

As a first result, the threshold-like behavior of the means (both of ceRNAs
and miRNAs), due to the titrative nature of the miRNA-target interaction, was
recovered. Particular attention was payed to the fact that this behavior can be seen as
a function of the transcription rate of one of the ceRNAs, but also as a function of the
transcription rate of one of the miRNAs, see figure 2.7. By looking at the behavior
of the means, the crosstalk induced by the competition was also shown. In a network
composed of multiple ceRNAs competing for binding to common miRNAs, the
threshold level is located at the equimolarity point between ceRNAs and miRNAs.
As a consequence, a variation in the expression of one of the targets can propagate to
the other competitors and move the entire system above or below threshold. CeRNAs
can then crosstalk due to the fact that they bind to the same pool of miRNAs, but,
in a mirror-like way, also miRNAs can crosstalk by binding to the same pool of
ceRNAs. From now on, we will focus on the behavior of the targets, even though all
the results hold also from the miRNA perspective.

In addition to the results described above, the approximated probability distribu-
tion allowed to analytically compute noise indexes, i.e. Fano factor and coefficient
of variation, and correlations, in terms of the Pearson correlation coefficient. The
interesting result was that both noise and correlation presented a maximum in prox-
imity to the threshold, where the number of free molecules is small and the system is
ultrasensitive, see figure 2.8. These observations seem to indicate that in proximity
to the threshold relative fluctuations are high, but also highly correlated. This phe-
nomenon could be crucial for systems in which the relative amount of the protein
output of different targets should be taken under control. For example, this could be
the case of two target genes coding for proteins that have to interact making a dimer.

The results described above were shown to be robust with respect to the value
of the catalyticity parameter. Indeed, even in case of purely catalytic interaction, in
which all miRNAs are recycled after binding to the mRNA, the threshold behavior
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A B

Fig. 2.7 Network composed of two genes competing for two miRNAs. Mean values as a
function of (A) the transcription rate of miRNA1 and (B) the transcription rate of ceRNA1.
Lines are obtained as approximate solution of the model described in [7], dots are numerical
simulations. Adapted from [7].

A B

Fig. 2.8 Network composed of two genes competing for two miRNAs. (A) Coefficient of
variation as a function of the transcription rate of ceRNA1. (B) Pearson correlation coefficient
as a function of the transcription rate of ceRNA1. Lines are obtained as approximate solution
of the model described in [7], dots are numerical simulations. Adapted from [7].
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and noise and correlation maxima can be observed as an out-of-equilibrium property
of the system.

Finally, some hints were obtained about the out-of-equilibrium behavior of a
system of ceRNAs in response to the sudden switch on or off of one of the targets.
In particular, the response times, defined as the time needed by the system to reach
half of the way between the initial and final steady state, were studied through the
numerical integration of the deterministic set of equations associated to the model. In
a system of two targets competing for one miRNA, it was shown that, as a function
of the miRNA transcription rate, the response times to the switch-on and to the
switch-off of a target presented a maximum and a minimum respectively. These
peaks were located at a value of the miRNA transcription rate corresponding to the
threshold. These intriguing results demand further investigation and could be in
principle validated through synthetic biology experiments.

2.2.5 Experimental evidences

The ability of miRNAs to induce threshold responses was shown through synthetic
biology experiments in [4]. In this work the authors developed a two-color fluorescent
reporter system, consisting in a plasmid, i.e. circular filament of DNA, containing two
genes coding for fluorescent proteins: mCherry (red) and eYFP (yellow). The two
genes were controlled by a bidirectional promoter, so that they could be transcribed
by RNA polymerase with equal probability. On the 3’UTR of the gene coding for
mCherry, a fixed number of binding sites (0,1,4,7) for the miRNA miR-20a was
engineered, while the gene coding for eYFP was left untouched, see figure 2.9. The
higher the number of binding sites, the stronger the interaction between the mCherry
mRNA and miR-20a.

The plasmids containing the fluorescent reporter system were inserted in Human
Embryonic Kidney cells 293 (HEK 293) by performing a transient transfection.
In this way, the plasmids enter the cells and can be transcribed, but they are not
permanently integrated in the cell genome, meaning that they are not replicated
and are diluted when the cell duplicates. HEK 293 cells endogenously express the
miRNA miR-20a which targets the mCherry mRNA. At the moment of transfection,
the number of plasmids that enter each cell is random, then the expression of the
fluorescent proteins is different from cell to cell. Nonetheless, due to the bidirectional
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Fig. 2.9 Two-color fluorescent reporter system used in [4]. Bidirectional plasmid coding for
mCherry and eYFP. The mCherry gene is engineered to contain a fixed number N of binding
sites for the miRNA mir-20 on its 3’UTR. Adapted from [4].

promoter, the mCherry and eYFP genes are always expressed at the same level inside
the cell. At the steady state after transfection, the fluorescence intensity of each
cell in the channels of mCherry and eYFP was measured both through fluorescence
microscopy and flow cytometry. The latter technique exploits microfluidic channels
to measure the fluorescence intensity of each cell in the two channels, by exciting
them with lasers with fixed wavelength. In this way the number of measured cells
can reach the order of 105-106.

As pointed out above, the mCherry 3’UTR is engineered to contain 0, 1, 4 or 7
binding sites for miR-20a. When binding sites are present, the mCherry mRNA is
targeted by the miRNA and the translation of the corresponding fluorescent protein
is repressed. The expression of the eYFP protein, not regulated by the miRNA, is
used as a control to monitor the level of transcriptional activity of the target mCherry,
i.e. its expression level in absence of miRNA regulation. Transcriptional activity is
different from cell to cell, due to the random number of plasmids entered into the
single cells, and this allows to study a wide range of expression levels.

As expected, in absence of miRNA binding sites on the target mCherry, the
scatter plot of the fluorescence intensity of mCherry as a function of eYFP presented
a linear dependence. Increasing the number of binding sites, a nonlinearity and then
the threshold-like behavior appeared. As previously described, the level of transcrip-
tional activity corresponding to the threshold was found to be set by the amount of
miRNAs. This evidence was obtained experimentally by modulating the amount
of miRNAs through the transfection of either miR-20a mimic oligonucleotides or
miRNA sponges inhibiting miR-20a activity. Furthermore, the steepness of the
threshold was shown to be controlled by the miRNA-target interaction strength, in
terms of the number of miRNA binding sites present on the 3’UTR.
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A

B

Fig. 2.10 Fluorescent reporter system used in [8]. (A) Bidirectional plasmid described in
figure 2.9. (B) Bidirectional plasmid coding for mCerulean and mKOrange. The mCerulean
gene is engineered to contain a fixed number N of binding sites for the miRNA mir-20 on its
3’UTR. Adapted from [8].

These results gave important insights on how miRNAs can regulate their targets
and suggested that the mechanism of interaction is based on molecular sequestra-
tion. Recent studies [8, 117] investigated with a similar experimental setup the
phenomenon of the competition between targets of a common miRNA (ceRNA
effect). In particular, the work by Bosia and coauthors [8] aimed at validating experi-
mentally some of the theoretical results obtained in [7] and discussed in the previous
section. The authors built a system composed of two plasmids: the previously de-
scribed one, used in [4], and a second plasmid with the same structure but coding for
two different fluorescent proteins, mCerulean and mKOrange. Exactly as described
above, the 3’UTR of the gene coding for mCerulean was engineered to contain 0, 1,
4 or 7 binding sites for the miRNA miR-20a, while the gene of mKOrange was left
as a control to monitor the transcriptional activity, see figure 2.10.

The two plasmids constituted a system of two synthetic targets of the same
miRNA. With this system, the ceRNA effect was investigated by performing trans-
fection experiments with plasmids with different combinations of miRNA binding
sites. The fluorescence intensity of each cell was then measured through flow cy-
tometry. The results confirmed the model predictions on cross regulation. It was
shown that the expression of one target and the steepness of its threshold response
can be modulated by varying the interaction strength of the miRNA with the other
target. Moreover, the results showed that the miRNA-mediated regulation increases
cell-to-cell variability and in case of strong repression of one target (many binding
sites on this target, few on the other one) its coefficient of variation presents a local
maximum in proximity to the threshold, exactly as predicted by the model.
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In addition to these results, it was found that also the correlation between the
targets is maximal around the threshold and that an optimal range of values of
miRNA-target interaction strength exists. This correlation originates from the fact
that the fluctuations of one target are coupled to the fluctuations of the other target
through the extrinsic noise of the miRNA, a phenomenon called retroactivity [118–
120].

Finally, as an additional result of these experiments, it was shown that, in case of
strong repression of one of the targets, bimodal distributions of fluorescence intensity
can appear near the threshold. This result supports the interpretation that miRNA-
mediated regulation increases cell-to-cell variability, but the fact that this variability
is organized in two distinct phenotypes represents an intriguing phenomenon that
deserves further investigation. In the following chapter we will theoretically address
this question, relating it to the role played by extrinsic noise.



Chapter 3

Extrinsic noise induces bimodal
distributions in miRNA-regulated
genes

As described in the previous chapter, gene regulation mediated by microRNAs is
an example of molecular sequestration. This mechanism induces a threshold-like
response that makes the system ultrasensitive in proximity to the equimolarity point
between miRNAs and mRNAs. An intriguing experimental result related to this
system is the possibility of observing bimodal distributions of target expression in a
population of identical cells. This phenomenon, observable without the need of any
peculiar regulatory link, is thought to be related to the threshold-like behavior of the
system and has not been characterized yet.

In this chapter we will address the question of how these bimodal distributions can
emerge, showing the role that extrinsic noise can play in enhancing the phenomenon.
We will first introduce a minimal model of molecular sequestration, that reproduces
well the threshold behavior, and show analytically that the addition of extrinsic noise
can lead to bimodal distributions. We will then analyze a more complex model which
describes in more detail the miRNA-mediated gene regulation and reproduces most
of its features. Through an analytic and a numerical approach we will characterize
the onset of bimodal distributions in this system, highlighting the difference between
behaviors at the single-cell and at the population level.

Part of the results discussed in this chapter have been published in [9] and [10].
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3.1 Minimal model of molecular sequestration

In chapter 2 we presented the features of molecular sequestration, with particular
attention to miRNA-mediated interactions. In this section, we will introduce a
minimal model of molecular sequestration and use it to have an insight on how
bimodal distributions can occur in presence of an extrinsic source of noise.

The model consists of two molecular species: T , the target and S, the sequester.
The species S binds to T with rate k+ forming a complex T S that sequesters both the
molecules. The complex can then dissociate with rate k− releasing the molecules in
the environment where they can interact again. This first order reaction network is
defined as follows:

T +S
k+
⇌
k−

T S . (3.1)

For sake of simplicity, we will assume that the total number of molecules of the
two species, i.e. the sum of the free and the bound molecules, is conserved. This
leads to the following conservation laws:

ST = S+T S = const , (3.2)

TT = T +T S = const . (3.3)

Thanks to the conservation laws above, given TT and ST , S is simply a function
of T (S = ST −T S = ST −TT +T ). This model has then only one free variable and,
from now on, we will assume it to be T .

In order to study the features of this minimal model, we will first follow a
deterministic approach, then a stochastic one. With the first approach we will have
an insight on the behavior of the means, completely neglecting fluctuations, which
are then taken into account by the stochastic analysis. Since we are here interested
in the long term behavior of the system, in the following we will focus on the steady
state solutions.
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3.1.1 Deterministic approach: threshold characterization

In the deterministic approach, the observables of the system are the concentrations of
the molecular species involved in the reaction network. This approximation is useful
in the macroscopic limit, when the number of molecules composing the system is
high. Nonetheless, we can use it to have an insight on the behavior of the mean
values of the observables.

The rate equation describing the average behavior of our model is:

d[T ]
dt

=−k+[T ][S]+ k−[T S] , (3.4)

which can be easily solved at the steady state by exploiting the conservation laws
for the concentrations [ST ] = [S]+ [T S] and [TT ] = [T ]+ [T S] . The only acceptable
solution of the resulting second order equation is:

[T ] =
[TT ]− [ST ]−K +

√
([TT ]− [ST ]−K)2 +4K[TT ]

2
, (3.5)

where K = k−/k+ is the dissociation constant [1].

The concentration of T , as a function of its total concentration, presents the
threshold-like behavior typical of the sequestration mechanism. Indeed, it shows
a repressed regime, in which most T molecules are bound to S molecules, and an
unrepressed regime, where the concentration of T increases linearly with that of TT .
In this regime nearly no molecule S can bind to T because most of them are already
part of a complex with a T molecule.

In figure 3.1 some curves describing the mean value of T as a function of its
total amount are shown, together with the analytic stochastic solution that we will
present in the next section. The dissociation constant K controls the steepness of the
threshold and, as a consequence, the ultrasensitivity of the system. The threshold
becomes steeper as K decreases, meaning that S is more likely to bind the target T ,
while it becomes smoother, tending to a linear behavior, as K increases, meaning
that the complex has a higher propensity to unbind. When the threshold is steep the
system is ultrasensitive near the threshold point. This means that, in this region, a
small variation of the total target concentration [TT ] can produce a big fold-change
in the concentration of free target T . The location of the theoretical threshold, i.e.
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Fig. 3.1 ⟨T ⟩ as a function of TT for ST = 10 and ST = 30 and different values of the
dissociation constant K. Dots correspond to the solution of the rate equation (3.5), while
solid lines are obtained from the solution of the master equation (3.6).

the threshold obtained when k+ ≫ k−, is set by the total amount of the sequester ST

and coincides with the equimolarity point between T and S.

3.1.2 Stochastic approach: master equation solution

The deterministic analysis allowed to study the average behavior of the minimal
model, without taking into account any fluctuation. However, such fluctuations can
be extremely relevant when the system is composed by only few elements. This is
precisely the case of our model, where fluctuations play an essential role.

To take into account the stochastic behavior, we first write the master equation of
our system [121, 122]. This equation describes the time evolution of the probability
of having T free molecules at time t:

dP(T, t)
dt

= k+(T +1)(S+1)P(T +1, t)+k−(T S+1)P(T −1, t)−[k+T S+k−T S]P(T, t).
(3.6)

The master equation (3.6) includes the positive terms of binding and unbinding,
when in the system there are T +1 , S+1 and T −1 , S−1 free molecules respectively,
and the corresponding negative terms, when there are already T and S free molecules.
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By implementing the conservation laws, eqs. (3.2) and (3.3), the master equation
can be written in terms of T only:

dP(T, t)
dt

= k+(T +1)(ST −TT +T +1)P(T +1, t)+ k−(TT −T +1)P(T −1, t)+

− [k+T (ST −TT +T )+ k−(TT −T )]P(T, t) . (3.7)

Since the state of the network (3.1) is completely defined by the value of one
variable and the reactions involved are reversible, we are in the presence of a
reversible Markov Chain. Indeed, at the steady state a probability distribution
P(T ) exists, so that the following relation holds:

P(T = i)π( j, i) = P(T = j)π(i, j) , (3.8)

where π(i, j) = P(T (t +1) = i|T (t) = j) is the transition probability from state
j to state i. Equation (3.8) is also known as detailed balance relation and states that
the flux of probability from state i to state j is equal to the one from state j to state
i. This relation implies that at the steady state the system reaches equilibrium and
P(T ) is the equilibrium distribution.

The detailed balance relation specific for our model reads:

P(T +1)k+(T +1)(S+1) = P(T )k−T S , (3.9)

where P(T ) = limt→∞ P(T, t). By recalling the conservation laws, eqs. (3.2) and
(3.3), eq. (3.9) can be written in terms of T only:

P(T +1)k+(T +1)(ST −TT +T +1) = P(T )k−(TT −T ) , (3.10)

which gives:

P(T +1) =
k−
k+

(TT −T )
(T +1)(ST −TT +T +1)

P(T ) . (3.11)

Given the fact that in our model the total number of molecules is conserved for
both the species, the minimal number of molecules of T depends on the value of
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ST . If TT ≤ ST , all T molecules can in principle be bound to S molecules, then the
minimal number of T molecules allowed is 0. On the contrary, if TT > ST , even if all
S molecules are bound in complex with T , there are TT −ST free target molecules.
We can then define the minimal number of target molecules Tmin as:

Tmin =

{
0 for TT ≤ ST

TT −ST for TT > ST
. (3.12)

In the following we will derive the equilibrium solution of the master equation
(3.7) through a recursive argument. Equation (3.11) can be used to write the prob-
ability P(T ), starting from the probability of having the minimal number of target
molecules P(Tmin):

P(Tmin +1) =
k−
k+

(TT −Tmin)

(Tmin +1)(ST −TT +Tmin +1)
P(Tmin)

P(Tmin +2) =
k−
k+

(TT −Tmin −1)
(Tmin +2)(ST −TT +Tmin +2)

P(Tmin +1)

P(Tmin +3) =
k−
k+

(TT −Tmin −2)
(Tmin +3)(ST −TT +Tmin +3)

P(Tmin +2)

...

P(Tmin +n) =
k−
k+

(TT −Tmin −n+1)
(Tmin +n)(ST −TT +Tmin +n)

P(Tmin +n−1) ,

obtaining:

P(T ) = P(Tmin +n) =
(

k−
k+

)n (TT −Tmin)(TT −Tmin −1)...(TT −Tmin −n+1)
(Tmin +n)(Tmin +n−1)...(Tmin +1)

·

· 1
(ST −TT +Tmin +n)(ST −TT +Tmin +n−1)...(ST −TT +Tmin +1)

P(Tmin) .

(3.13)

The above relation can be written in a more compact form making use of factori-
als:
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P(T )=P(Tmin+n)=
(

k−
k+

)n (TT −Tmin)!Tmin!(ST −TT +Tmin)!
(TT −Tmin −n)!(Tmin +n)!(ST −TT +Tmin +n)!

P(Tmin).

(3.14)

Finally, by implementing the substitution n = T −Tmin, introducing again the dis-
sociation constant K = k−/k+ and including constant elements in the normalization
term, we obtain:

P(T ) = KT
(

TT

T

)
N

(ST −TT +T )!
, (3.15)

defined in the interval Tmin ≤ T ≤ TT , with the normalization term N given by:

N =
1

∑
TT
T=Tmin

KT
(TT

T

) 1
(ST−TT+T )!

. (3.16)

Equation (3.15) is the solution of the master equation (3.7) and represents the
equilibrium probability distribution of having T free molecules.

In figure 3.2 the shape of the probability distribution P(T ) is shown for some
values of the parameters. Keeping fixed the total amount of sequester molecules ST ,
we vary (i) the dissociation constant K (which coincides with the effective strength
of the interaction between T and S), and (ii) the total amount of target molecules TT

(above and below threshold). The distribution has a truncated Gaussian-like shape
which turns into a more exponential-like one, centered in T = 0, as long as TT is
decreased below the threshold value TT = ST . Indeed, when the total amount of target
TT is small with respect to the total amount of sequester ST , the most probable state
is the one with all T bound in complex with S and then T = 0. Moreover, a decrease
in the dissociation constant K induces the distribution to take an exponential-like
shape peaked on the minimal value of allowed free T . This happens because small
K means high interaction strength and, consequently, the most probable state is the
one with T = Tmin (i.e. most S molecules tend to be bound to T ). As a remark, we
have to notice that the shape of the probability distribution always presents a single
mode, no hints of multimodality can be found. This aspect of the distribution will be
studied in more detail in the next section.
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Fig. 3.2 P(T ) for ST = 10,30,40 and for different values of the dissociation constant K.

To conclude, we present the analytic solution for the mean, studied in the previous
section through the deterministic approach. By taking the ensemble average of T
over the probability distribution P(T ), we obtain the exact expression for the mean
of T , written in terms of Hypergeometric functions [123, 124]: 1

⟨T ⟩= Tmin
2F2(1,Tmin −TT ;Tmin,1+Tmin −TT +ST ;−K)

2F2(1,Tmin −TT ;1+Tmin,1+Tmin −TT +ST ;−K)
. (3.17)

The above expression can be simplified if we separately consider the two regimes
TT ≤ ST and TT ≥ ST . When TT ≤ ST and Tmin = 0 we have:

⟨T ⟩= K
TT

1−TT +ST

1F1(1−TT , 2−TT +ST ;−K)

1F1(−TT , 1−TT +ST ;−K)
, (3.18)

when TT ≥ ST and Tmin = TT −ST :

⟨T ⟩= (TT −ST )
1F1(−ST , TT −ST ;−K)

1F1(−ST , 1+TT −ST ;−K)
. (3.19)

as found in [125].

In figure 3.1 we compare the analytic behavior of the mean as a function of TT

to the deterministic solution. The correct threshold-like behavior is well approxi-

1

xFy(a1, ...,ax;b1, ...,by;z) =
∞

∑
n=0

(a1)n...(ax)n

(b1)n...(by)n

zn

n!

where (a)0 = 1 and (a)n = a(a+1)(a+2)...(a+n−1) n ≥ 1
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mated by the deterministic approximation, with larger deviations in proximity to the
threshold, where nonlinearities are stronger.

3.2 Minimal model with extrinsic noise

Probability distributions presenting two modes, repressed and unrepressed, can be a
feature of systems based on molecular sequestration. The phenomenon, although
lacking a proper theoretical and experimental characterization, may have relevant
biological implications regarding phenotype control, differentiation and related
diseases. In order to deepen the understanding of how bimodal distributions arise in
the context of molecular sequestration, and in particular to determine the minimal
ingredients necessary for bimodality, we will develop the study of this phenomenon
in the analytically well defined framework of our toy model. The work described
in the following sections originates from the intuition that combining a threshold
response and a fluctuating parameter can make the system explore two distinct states:
a repressed and an unrepressed one. We will justify the fluctuating parameter as
the result of an extrinsic source of noise. In our context, as introduced in chapter 1,
extrinsic noise consists of all the fluctuations that affect the environment in which the
stochastic reactions of biochemical networks take place. Variations, among identical
cells, in the amount of cellular components and molecular machineries, for example
ribosomes, can be considered as extrinsic noise, as well as gradients of signaling
molecules in the extracellular environment. Moreover, variations related to cell
cycle can also be considered as extrinsic noise when looking at a population of cells
heterogeneous with respect to cell cycle. In our system, we will model extrinsic
noise relaxing the assumption that the total amount of sequester molecules ST is
constant and allowing it to be described by a probability distribution P(ST ). The
following sections will define this probability and derive the analytic solution by
implementing the law of total probability.

3.2.1 Discrete gaussian kernel

The minimal model of molecular sequestration in presence of extrinsic noise coin-
cides with the model described in section 3.1 with the only difference that ST is not
a constant value, but has a probability distribution P(ST ). The functional form of
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P(ST ) can be important because the shape of this distribution strongly influences the
resulting distribution P(T ). In this section and in the following ones we will define
and discuss the effects of a Gaussian probability distribution for the total amount of
sequester, P(ST ). The implications of using other kinds of extrinsic noise will be
discussed in section 3.3.

Given that the variable T , being a number of molecules, can only assume discrete
values, we chose P(ST ) as defined by the discrete Gaussian kernel T (n,x) which
coincides with the scaled regular modified cylindrical Bessel function of integer
order n [126]. In detail we have:

T (n,x) = e−|x|In(x) , (3.20)

where x is a real number and In(x) is the regular modified cylindrical Bessel
function of the first kind of integer order n [123]:

In(x) = i−nJn(ix) , (3.21)

with Jn(y) being the Bessel function of the first kind of integer order n. Functions
in eq. (3.21) are the solutions of the modified Bessel equation, i.e. the Bessel
equation in which the variable is changed from x to ix [123].

The probability distribution P(ST ) is finally defined as follows:

P(ST ) = T (ST −⟨ST ⟩,x) , (3.22)

where ⟨ST ⟩ is the mean value of the distribution and x controls its width: the
greater x, the larger the distribution. Given the definition of eq. (3.22) the probability
distribution P(ST ) is always properly normalized.

3.2.2 Law of total probability and the full solution

We can think of our model in presence of extrinsic noise as composed of a population
of identical systems, each of them with a constant ST whose value is picked from
the probability distribution P(ST ). This suggests that the steady state probability
distribution P(T ) is the superposition of single probability distributions obtained
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for a given value of ST , weighted with the probability of picking that value of ST .
In a more rigorous way, by exploiting the law of total probability [127], P(T ) can
be written by the superposition of the conditional probabilities P(T |ST ) (with ST

running from zero to infinity), weighted by P(ST ):

P(T ) =
∞

∑
ST=0

P(T |ST )P(ST ) . (3.23)

The conditional probability P(T |ST ) is the solution of the master equation (3.7)
obtained for a constant ST . Given the fact that ST ranges from zero to infinity,
in presence of extrinsic noise the minimal value of T is always Tmin = 0 and the
distribution P(T ) is then defined in the interval 0 ≤ T ≤ TT .

3.2.3 The probability distribution can be bimodal

Even though the expression of P(T ) in presence of extrinsic noise is difficult to
derive analytically, the sum over ST is straightforward to compute numerically. We
thus have access to the full solution and we can study the effects of extrinsic noise
without any approximation. In this section we will first focus on the shape of the
resulting distribution P(T ) and then discuss the consequences of the introduction of
extrinsic noise on the behavior of the mean of T .

The distribution P(T ) is obtained by the weighted superposition of probability
distributions with constant ST .

In section 3.1.2 we showed that the target distribution in case of pure intrinsic
noise can take either a Gaussian-like or an exponential-like shape, depending on the
value of the dissociation constant K and on the distance from the threshold, fig. 3.2.
The superposition of this kind of curves presents a non trivial shape that in turn can
be tuned by K, TT and by the level of extrinsic noise. The intensity of noise can be
quantified by the Coefficient of Variations (CV), a noise estimator defined as:

CV =
σST

⟨ST ⟩
, (3.24)

where σST is the standard deviation of the probability distribution of ST with
mean ⟨ST ⟩.
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Fig. 3.3 Examples of probability distribution of T in presence of extrinsic noise. The presence
of a bimodal distribution can be modulated both by varying TT and by varying the noise level.
Adapted from [9].

As an example, in figure 3.3 we show the probability distribution P(T ) that can
be obtained by fixing ⟨ST ⟩ and varying the extrinsic noise by changing the variance
of the distribution P(ST ). We also show the probability distribution obtained with
pure intrinsic noise: the addition of some extrinsic noise increases the variance of the
distribution. As can be seen, the distribution can either have a single mode (peaked
on T = 0 or on a finite value of T ) or two modes (a repressed one, peaked close to
T = 0 and an unrepressed one). The repressed peak is due to the absorbing border
in T = 0: all the values of ST that bring the system below threshold contribute to
populate the repressed peak, regardless of their actual value. On the contrary, values
of ST that bring the system beyond threshold populate the entire range of values of
T but, being the values around ⟨ST ⟩ more probable, they accumulate and form the
unrepressed peak.

The possibility to obtain bimodality at the population level is an important feature
of this minimal model, which combines a simple sequestration interaction between
two molecular species and an extrinsic source of noise in terms of a fluctuating
parameter. The bimodal shape of the distribution can be enhanced or disrupted both
by an increase or decrease of each variable that we mentioned above. Nevertheless,
we can point out the presence of some privileged directions of variation that lead
to an increase of the range of values of the parameters in which bimodality is



3.2 Minimal model with extrinsic noise 37

Bimodality region <S
T
>=30

20 30 40 50 60 70
TT

0.1

0.2

0.3

0.4

e
x
tr

in
si

c 
n
o
is

e
 (

C
V

)

Kd=0.1

Kd=0.2

Kd=0.4

Fig. 3.4 Contour plot of bimodality as a function of TT and noise intensity, for different
dissociation constants K. ST = 30. Adapted from [9].

found. In particular, we focus on the values of TT for which we can find bimodal
distributions for a given configuration of the parameters. The contour plot in figure
3.4 represents the region of bimodality as a function of TT and noise intensity for
different dissociation constants K. As we can see, as noise increases, the range
of values of TT allowing for bimodality increases and shifts towards higher values.
Moreover, at a fixed noise level, the range of bimodality can be slightly increased
by decreasing the dissociation rate. Summarizing, bimodality is favored by a high
extrinsic noise and a strong interaction strength.

In biology, bimodal distributions are a common outcome of gene expression data,
ranging from cell differentiation to cancer [49–54]. A high variability among cells,
channeled by threshold mechanisms, may be useful to achieve different phenotypes,
but it should as well be kept under control if these phenotypes refer to disease states.

We here showed that the combination of a threshold-like response produced
by the sequestration mechanism and some normally-distributed extrinsic noise is a
simple and robust mechanism to achieve bimodality at the population level, i.e. in an
ensemble of systems that are identical with exception for the fluctuating parameter.
The sequestration mechanism acts as an inbuilt noise filter, coherently shaping the
resulting distribution without the need of further regulatory mechanisms.
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Fig. 3.5 ⟨T ⟩ as a function of TT for ⟨ST ⟩= 30 and different noise levels, K = 0.2. Adapted
from [9].

We now turn our attention towards the effects of extrinsic noise on the target
T . The introduction of extrinsic noise has a disruptive effect on the threshold: as
the noise increases, the threshold becomes less steep. We underline that, since ST

is a fluctuating parameter, the position of the threshold is not well defined. As we
wrote above, each element of the population has its own constant value of ST and,
consequently, its own theoretical threshold, defined by TT = ST . For this reason,
each time we will mention the threshold in a system with extrinsic noise, we will
refer to the one defined by the mean of the distribution of ST , namely TT = ⟨ST ⟩.

Figure 3.5 shows the mean of T , ⟨T ⟩, for different values of ⟨ST ⟩ and different
levels of noise. The curves with extrinsic noise are always located above their
reference curve with intrinsic noise only. This is due to the fact that the system has
the above mentioned absorbing border in T = 0. Increasing TT , the distribution shifts
towards higher values of T , loses the repressed peak and takes a symmetrical shape
with the same mean of the case with pure intrinsic noise.

3.2.4 Extrinsic noise shapes the correlation between T and S

In the model of molecular sequestration with pure intrinsic noise, the correlation
between the target and the sequester is trivially equal to 1. When the amount of free
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molecules T increases by 1 due to the dissociation of a complex, the same happens
to S, and when T decreases by 1 due to a binding reaction, again the same happens to
S. The introduction of extrinsic noise in the system breaks this argument and results
in a non trivial correlation between T and S.

We measure the correlation in terms of the Pearson correlation coefficient, which
is defined as:

ρ ≡ ρT,S =
σT S

σT σS
, (3.25)

where σT S is the covariance between T and S and σT , σS the standard deviations
of the distributions P(T ) and P(S) respectively.

To confirm what written above, we find that, without extrinsic noise on ST , since
the system is described by a single variable, σT S = σ2

T = σ2
S and the correlation is

always equal to 1.

When adding extrinsic noise to the system, we can use the law of total probability
to write the expectation values. The covariance can then be written as:

σT S =
∞

∑
ST=0

⟨T S|ST ⟩P(ST )−
∞

∑
ST=0

⟨T |ST ⟩P(ST )
∞

∑
ST=0

⟨S|ST ⟩P(ST ) . (3.26)

From the conservation laws (eqs. 3.2 and 3.3) we have that S = ST −TT +T ,
then:

∞

∑
ST=0

⟨T S|ST ⟩P(ST ) =
∞

∑
ST=0

⟨T (ST −TT +T )|ST ⟩P(ST ) = ⟨T ST ⟩−TT ⟨T ⟩+ ⟨T 2⟩ ,

and:

∞

∑
ST=0

⟨S|ST ⟩P(ST ) = ⟨ST ⟩−TT + ⟨T ⟩ .

Combining these two expressions, we obtain:
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σT S = ⟨T ST ⟩−TT ⟨T ⟩+ ⟨T 2⟩−⟨T ⟩⟨ST ⟩+TT ⟨T ⟩−⟨T ⟩2 = σ
2
T +σT ST . (3.27)

In the same way, the variance of S is:

σ
2
S =

∞

∑
ST=0

⟨S2|ST ⟩P(ST )−

(
∞

∑
ST=0

⟨S|ST ⟩P(ST )

)2

,

again, through the conservation laws:

∞

∑
ST=0

⟨S2|ST ⟩P(ST ) =
∞

∑
ST=0

⟨(ST −TT +T )2|ST ⟩P(ST ) =

= ⟨S2
T ⟩+T 2

T −2TT ⟨ST ⟩+ ⟨T 2⟩+2⟨T ST ⟩−2TT ⟨T ⟩ ,

and:

(
∞

∑
ST=0

⟨S|ST ⟩P(ST )

)2

=

(
∞

∑
ST=0

⟨(ST −TT +T )|ST ⟩P(ST )

)2

=

= ⟨ST ⟩2 +T 2
T −2TT ⟨ST ⟩+ ⟨T ⟩2 +2⟨T ⟩⟨ST ⟩−2TT ⟨T ⟩ .

Combining the two expressions we obtain:

σ
2
S = σ

2
ST
+σ

2
T +2σT ST . (3.28)

We can now finally write the expression for the Pearson correlation coefficient:

ρ =
σT S

σT σS
=

σ2
T +σT ST

σ2
T

√
σ2

ST
+σ2

T +2σT ST

. (3.29)

The extrinsic noise is able to shape the correlation profile between T and S,
eventually inducing a significant anticorrelation in proximity to the threshold. This
effect is also tuned by the value of the dissociation constant Kd .
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3.3 Effect of other kinds of extrinsic noise

So far, we studied the effects of a normally distributed extrinsic noise on the total
amount of sequester. Here, we turn our attention to different extrinsic noise distri-
butions. In particular, we investigate the effects of a fluctuating ST with a uniform
distribution P(ST ) defined on the interval ST min ≤ ST ≤ ST max:

P(ST ) =
1

ST max −ST min +1
. (3.30)

Mean and variance of the discrete uniform distribution are defined as:

⟨ST ⟩=
ST max −ST min

2
, (3.31)

⟨S2
T ⟩−⟨ST ⟩2 =

(ST max −ST min +1)2 −1
12

. (3.32)

As described in the previous section for an ST with a Gaussian distribution,
we derive the free target probability distribution as a weighted superposition of
conditional probabilities that are solution of the master equation (eq. 3.7):

P(T ) =
∞

∑
ST=0

P(T |ST )P(ST ) . (3.33)

In Fig. 3.6 we present some examples of P(T ) originated from sequester proba-
bility distributions with mean and variance comparable to the ones of Fig. 3.3.

A uniform extrinsic noise is not able to induce bimodal distributions of the
target. Systems that pick a value of ST below threshold are concentrated by the
threshold response into a repressed peak with value of T close to 0. Differently
than the Gaussian case, the expressed peak, which corresponded to the peak of the
distribution of ST , cannot be obtained in the uniform case. Indeed, each value of ST

has the same probability and the threshold response does not have any effect in the
expressed regime. As a result, the free target probability distribution presents a flat
plateau corresponding to the expressed regime.



42 Extrinsic noise induces bimodal distributions in miRNA-regulated genes

0 10 20 30 40

T

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

P
(T

)

<S
T
>=30 T

T
=40 Kd=0.1

S
Tmin

=21 S
Tmax

=39 ~ σST
=5

S
Tmin

=16 S
Tmax

=44 ~ σST
=8

S
Tmin

=7 S
Tmax

=53 ~ σST
=13

Fig. 3.6 Examples of probability distribution of T in presence of extrinsic noise with uniform
distribution. Bimodal distributions cannot be obtained with this kind of extrinsic noise.
Adapted from [9]

In order to obtain bimodal distributions of the free target amount, the extrinsic
noise must have a peaked distribution, sufficiently broad to sample both below and
above threshold.

3.4 A model of miRNA-regulated gene: RNA and pro-
tein

In the previous sections we studied a minimal model of molecular sequestration,
analyzing the effects of the introduction of an external source of noise and show-
ing that bimodal distributions can be achieved. The purpose was to give some
insights about systems based on molecular sequestration through a toy model under
analytic control. An example of a system based on molecular sequestration is the
miRNA-mediated gene regulation, as discussed in chapter 2. We here introduce a
more realistic stochastic model that describes this process and analyze its features
in presence of extrinsic noise, using both analytic approximations and numerical
simulations.
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Fig. 3.7 MiRNA-target interaction network. The miRNA and the target mRNA are transcribed
from independent genes with rate kS and kR respectively and degrade with rate gS and gR. The
interaction is governed by the effective parameter g. The target mRNA is always degraded
after binding, while the miRNA can be recycled with probability 1−α . Free mRNAs are
translated with rate kP into proteins which can in turn degrade with rate gP. Adapted from
[10].

The model that we consider is the one introduced by Bosia et al. in [7] and
discussed in section 2.2.4, with only one miRNA and one target. We here recall the
details of this model and then derive the approximated analytic solution.

We consider the case of one miRNA that regulates one target, but the results
can be easily generalized to the case of multiple miRNAs and targets. The circuit
representing the model is depicted in figure 3.7. The molecular species involved are
miRNAs (S), target messenger RNAs (R) and proteins (P), product of the translation
of the target mRNAs. MiRNAs and mRNAs are transcribed from independent genes.
For simplicity we neglect all the intermediate reactions leading to the synthesis of
mRNAs and miRNAs, and assume that they are produced at constant rates kR and kS

respectively. MiRNAs and mRNAs can also be degraded by the action of specialized
enzymes. Hereby, we assume these reactions to be governed by mass-action law
with rates gS and gR. The molecular reactions associated to these processes are:

/0
kR−⇀↽−
gR

R , /0
kS−⇀↽−
gS

S . (3.34)

MiRNAs act as post-transcriptional regulators by binding the target mRNAs in a
complex RS that can be subsequently degraded. The interaction between miRNAs
and mRNAs is quantified by the effective parameter g. This parameter accounts for
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the strength of the miRNA-target coupling and for the complex degradation rate.
From a biochemical point of view, this parameter depends on the number of miRNA
binding sites present on the target molecule [4]. The formation of a miRNA-mRNA
complex then reads:

R+S
g−→ RS . (3.35)

While mRNAs are assumed to be always degraded as a consequence of seques-
tration, miRNAs can be recycled with probability 1−α , also called catalyticity, in
the following way:

RS 1−α−→ S . (3.36)

Whenever the mRNAs are not bound to miRNAs, they can be translated by ribo-
somes into proteins with translation rate kP and, as assumed for the other molecular
species, proteins can be as well degraded by mass-action kinetics with rate gP, i.e.:

R
kP−→ R+P , P

gP−→ /0 . (3.37)

The behavior of this effective model of miRNA regulation can be analyzed
through different analytic approximations. In the following sections we will discuss
the various approaches on the basis of the results of previous works [4, 7].

3.4.1 Mean field description

The most immediate way to analyze this model is to neglect its intrinsic stochastic
nature and develop a macroscopic description. In order to do that, we write the rate
equations for the concentrations of the molecular species involved:
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d[R]
dt

= kR −gR[R]−g [R] [S] , (3.38)

d[S]
dt

= kS −gS[S]−α g [R] [S] , (3.39)

d[P]
dt

= kP[R]−gP[P] . (3.40)

The set of differential equations above describes the process of miRNA-mediated
gene regulation deterministically. As done before, we are here interested in studying
the long term behavior of the system. Differently from the minimal model of
molecular sequestration, detailed balance does not hold for this system, for this
reason, when the amount of free molecules of the three species does not change over
time, we do not consider the system at equilibrium, but at the steady state. At the
steady state, the system of equations can be easily solved obtaining the following
expressions:

[R] =
−gR gS +α gkR −gkS +A

2α ggR
, (3.41)

[S] =
−gRgS −α gkR +gkS +A

2ggS
, (3.42)

[P] =
kP[−gR gS +α gkR −gkS +A]

2α ggR gP
, (3.43)

with A defined as:

A =
√

4α ggRgSkR +(−gRgS +α gkR −gkS)2 .

The state of the proteins is uniquely determined by the state of the mRNAs,
indeed [P] = kP

gP
[R].

Figure 3.8 shows the behavior of the concentration of mRNAs, miRNAs and
proteins as a function of the target transcription rate kR. We can see the clear
threshold-like profile of the curves, already discussed in section 3.1.1, with the
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Fig. 3.8 Concentration of (A) R, (B) S and (C) P as a function of the transcription rate kR for
different values of g.

threshold that becomes steeper as the interaction strength g increases. The position
of the theoretical threshold can be found by taking the limit of strong miRNA-
mRNA coupling (limg→∞) in the equations for the concentrations. In this limit, the
expression for [R] becomes:

[R] =
kR

gR
− kS

α gR
. (3.44)

The above expression is negative for kR < kS
α

, but being [R] a concentration of
molecules, we assume it to be identically equal to zero in this regime. Indeed, since
this approach is completely deterministic, when the target transcription rate is smaller
than kS

α
, all the molecules of R are bound to S molecules and the concentration of

their free amount is zero. This result locates the threshold at the equimolarity point
α kR = kS, where the amount of free molecules of R and S are both equal to zero.

3.4.2 Approximate analytic solution: gaussian approximation
and system size expansion

The model of miRNA regulation is much more complex than the toy model that
we used to understand the main features of molecular sequestration. A complete
description of this system would imply the analytic solution of the following mas-
ter equation, describing the dynamics of the probability of finding R free mRNA
molecules, S free miRNA molecules and P proteins at time t:
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dP(R,S,P, t)
dt

= kR

[
P(R−1,S,P, t)−P(R,S,P, t)

]
+

gR

Vcell

[
(R+1)P(R+1,S,P, t)−RP(R,S,P, t)

]
+

kS

[
P(R,S−1,P, t)−P(R,S,P, t)

]
+

gS

Vcell

[
(S+1)P(R,S+1,P, t)−SP(R,S,P, t)

]
+

kPR
Vcell

[
P(R,S,P−1, t)−P(R,S,P, t)

]
+

gP

Vcell

[
(P+1)P(R,S,P+1, t)−PP(R,S,P, t)

]
+

gα

V 2
cell

[
(S+1)(R+1)P(R+1,S+1,P, t)−SRP(R,S,P, t)

]
+

g(1−α)S
V 2

cell

[
(R+1)P(R+1,S,P, t)−RP(R,S,P, t)

]
. (3.45)

The rates have been rescaled due to the fact that the variables are now numbers of
molecules instead of concentrations. Indeed, we have R = [R]Vcell , S = [S]Vcell and
P = [P]Vcell , where Vcell is the volume of the cell in which the process takes place.

We mentioned before that detailed balance does not hold for this network. One
could think that an analytic solution of the master equation could be obtained by
introducing the moment generating function and solving the resulting system of
partial differential equations. Unfortunately this approach is not feasible, even at the
steady state. Each moment computed through the generating function depends on
higher order ones and the system of partial differential equations is not closed. An
analytic approximation is then needed, together with numerical simulations of the
network to check the results.

Among the possible methods, we mention the Gaussian approximation [7] and the
van Kampen’s system-size expansion [121]. The first approach consists in assuming
that the joint probability P(R,S,P) describing the system is a multivariate Gaussian.
This distribution has the property that all the moments with order higher then the
second can be written in terms of the first and the second. This allows the system of
partial differential equations to be closed and solved analytically, reconstructing the
approximate joint probability distribution. The van Kampen’s system-size expansion
represents a different approach to obtain an approximate solution of the master



48 Extrinsic noise induces bimodal distributions in miRNA-regulated genes

equation. In the following we will describe in detail this method and present its
analytic predictions for the model under study.

The idea below the van Kampen’s expansion is that the variables describing a
stochastic system can be split into two contributions: the one describing the average
behavior and the one describing fluctuations, small compared to the first one. In order
to perform a power series expansion, we must select a small parameter to use in it,
which has to be related to the size of fluctuations. Following van Kampen’s notation
we name the expansion parameter Ω and assume that it represents the size of the
system, so that when Ω is large relative fluctuations are small. In order to present
the van Kampen’s approach step by step, we will accurately follow the notation and
description developed by Elf and Ehrenberg in [128].

We consider a multidimensional system of size Ω composed of N different
molecular species interacting through M chemical reactions. The state of the system
is defined by the vector X , which contains the numbers of molecules of the different
species. The corresponding molecular concentrations are defined by the vector x = X

Ω

and spacial homogeneity by fast diffusion is assumed. The chemical master equation
describing the time evolution of the probability distribution P(X , t) can be written as:

dP(X , t)
dt

= Ω

M

∑
j=1

(
N

∏
i=1

E−Si j −1

)
f j(x,Ω)P(X , t) , (3.46)

where f j(x,Ω) are the transition rates. Si j is the N ×M stoichiometric matrix
whose elements indicate how many molecules of species i are added or subtracted
from the system in reaction j. E−Si j is a step operator defined as E−Si jg(X1, ...,XN) =

g(X1, ...,Xi −Si j, ...XN).

The assumption at the basis of the approximation is introduced by the following
change of variables:

Xi ≡ Ωφi +Ω
1/2

ξi , (3.47)

where φi is the macroscopic (deterministic) concentration of species i and ξi is a
new random variable describing the contribution of fluctuations around the mean,
whose width is assumed to be of order Ω 1/2.
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As a consequence of the change of variable, eq. (3.47), P(X , t) is substituted by
Π(ξ , t), the probability distribution describing the state of the system in terms of the
new random variable, which is defined as:

P(X , t) = P(Ωφ +Ω
1/2

ξ , t) = Π(ξ , t) . (3.48)

The master equation (3.46) has now to be written in terms of the probability
distribution Π(ξ , t). Starting from the left-hand side and neglecting the arguments
of the distributions for a lighter notation we have:

∂P
∂ t

=
∂Π

∂ t
+

N

∑
i=1

∂ξi

∂ t
∂Π

∂ξi
=

∂Π

∂ t
−Ω

1/2
N

∑
i=1

∂φi

∂ t
∂Π

∂ξi
, (3.49)

where the differentiation has been made keeping constant the number of molecules,
then ∂Xi

∂ t = 0 which implies ∂ξi
∂ t =−Ω 1/2 ∂φi

∂ t .

To deal with the right-hand side of the master equation, we perform a Taylor
expansion of the transition rates and the step operator:

f j(x) = f j(φ +Ω
−1/2

ξ ) = f j(φ)+Ω
−1/2

N

∑
i=1

∂ f j(φ)

∂φi
ξi +O(Ω−1) , (3.50)

N

∏
i=1

E−Si j = 1−Ω
−1/2

N

∑
i=1

Si j
∂

∂ξi
+

1
2

Ω
−1

N

∑
i=1

N

∑
k=1

Si jSk j
∂ 2

∂ξi∂ξk
+O(Ω−3/2) .

(3.51)

The master equation can then be written for the new variables by inserting
equations (3.47), (3.49), (3.50) and (3.51) in eq. (3.46), obtaining:



50 Extrinsic noise induces bimodal distributions in miRNA-regulated genes

∂Π(ξ , t)
∂ t

−Ω
1/2

N

∑
i=1

∂φi

∂ t
∂Π(ξ , t)

∂ξi
=

Ω

M

∑
j=1

(
Ω

−1/2
N

∑
i=1

Si j
∂

∂ξi
+

1
2

Ω
−1

N

∑
i=1

N

∑
k=1

Si jSk j
∂ 2

∂ξi∂ξk
+O(Ω−3/2)

)
·

·

(
f j(φ)+Ω

−1/2
N

∑
i=1

∂ f j(φ)

∂φi
ξi +O(Ω−1)

)
Π(ξ , t) . (3.52)

By collecting and equating all terms of order Ω 1/2 we find:

N

∑
i=1

∂φi

∂ t
∂Π(ξ , t)

∂ξi
=

N

∑
i=1

M

∑
j=1

Si f f j(φ)
∂Π(ξ , t)

∂ξi
. (3.53)

The above equation is satisfied, meaning that the terms of order Ω 1/2 cancel,
since

∂φi

∂ t
=

M

∑
j=1

Si f f j(φ) (3.54)

is the macroscopic equation that φi is assumed to follow.

Finally, by collecting and equating all terms of order Ω 0 we obtain:

∂Π(ξ , t)
∂ t

=
M

∑
j=1

(
−∑

i,k
Si j

∂ f j(φ)

∂φk

∂ (ξkΠ(ξ , t))
∂ξi

+
1
2

f j(φ)∑
i,k

Si jSk j
∂ 2Π(ξ , t)

∂ξi∂ξk

)
.

(3.55)

We can write the above expression in a more compact form which clearly shows
that we are dealing with a linear Fokker-Planck equation:

∂Π(ξ , t)
∂ t

=−∑
i,k

Aik
∂ (ξkΠ(ξ , t))

∂ξi
+

1
2 ∑

i,k
[BBT ]ik

∂ 2Π(ξ , t)
∂ξi∂ξk

, (3.56)

where Aik = ∑
M
j=1 Si j

∂ f j(φ)
∂φk

and [BBT ]ik = ∑
M
j=1 Si jSk j f j(φ).
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The stationary solution of the linear Fokker-Planck equation is known [129, 130]
and corresponds to a multivariate Gaussian:

Π(ξ ) =
(
(2π)N/2

√
detΞ

)−1
exp(−ξ

T
Ξξ/2) , (3.57)

with zero mean and covariance matrix Ξ = ⟨ξ ξ T ⟩ given by the Lyapunov equa-
tion:

AΞ+ΞAT +BBT = 0 . (3.58)

The van Kampen’s system-size expansion is also called Linear Noise Approxima-
tion, because only terms of order Ω 0 are taken into account to compute the behavior
of fluctuations.

We can now apply this formalism to our model in order to find an approximate
solution to the master equation (3.45). Defining nX the vector describing the state of
the system in terms of the number of molecules of the three species, nX = (R,S,P),
and ρX the corresponding vector of the concentrations, ρX = ([R], [S], [P]), we can
write the assumption of the van Kampen’s expansion as:

nX =VcellρX +V 1/2
cell ξX , (3.59)

where ξX is the new random variable describing fluctuations. We now implement
in the master equation (3.45) the change of variable, eq. (3.59) and follow the
steps described above. At the leading order we recover the deterministic equations
(3.38), (3.39) and (3.40). At the next-to-leading order we obtain the linear Fokker-
Planck equation, whose steady-state solution is a trivariate normal distribution. The
Lyapunov equation, eq. (3.58), corresponds to the following system of equations:

0 = kr −2gr⟨ξ 2
R⟩+gr[R]−2αg[R]⟨ξSξR⟩−2αg[S]⟨ξ 2

R⟩+
αg[R][S]−2(1−α)g[S]⟨ξ 2

R⟩+(1−α)g[R][S]−2(1−α)g[R]⟨ξSξR⟩ ,
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0 = ks −2gs⟨ξ 2
S ⟩+gs[S]−2αg[R]⟨ξ 2

S ⟩−2αg[S]⟨ξSξR⟩+αg[R][S] ,

0 = kp[R]−2gp⟨ξ 2
P⟩+gp[P]+2kp⟨ξPξR⟩ ,

0 =−gr⟨ξSξR⟩−gs⟨ξSξR⟩−αg[R]⟨ξ 2
S ⟩−αg[S]⟨ξSξR⟩−

αg[R]⟨ξSξR⟩−αg[S]⟨ξ 2
R⟩+[R][S]αg− (1−α)g[S]⟨ξSξR⟩− (1−α)g[R]⟨ξ 2

S ⟩ ,

0 =−gP⟨ξPξR⟩+ kP⟨ξ 2
R⟩−αg[R]⟨ξPξS⟩−αg[S]⟨ξPξR⟩−

(1−α)g[S]⟨ξPξR⟩− (1−α)g[R]⟨ξPξS⟩−gr⟨ξPξR⟩ ,

0 =−gP⟨ξPξS⟩−gs⟨ξPξS⟩+ kP⟨ξSξR⟩−αg[R]⟨ξPξS⟩−αg[S]⟨ξPξR⟩ .

By including the deterministic equations (3.38), (3.39) and (3.40), the above
system of equations can be solved, obtaining the covariance matrix and then the
probability distribution P(R,S,P) which is the approximate solution of the master
equation (3.45).

3.4.3 Numerical simulations through the Gillespie’s algorithm

In order to check the validity of the approximation, we need to have access to the
real probability distribution that describes the system. This can be done with the
help of numerical simulations.

The algorithm that we will use to reconstruct the probability distribution is the
one introduced by Gillespie [131, 132] and named Stochastic Simulation Algorithm
(SSA). In its direct form (the one that we will use for all the simulations present in
this thesis), the SSA simulates the stochastic time evolution of a system of interacting
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chemical species, described by the process X(t), generating “exact numerical realiza-
tions of the process” [133]. In the SSA all the reactions that happen in a certain time
interval are described, leading to the explicit simulation of the Markovian random
walk in the space of the chemical species. In this sense the SSA is equivalent to the
master equation. As a consequence, the probability distribution obtained from an
ensemble of many trajectories generated by the SSA coincides with the probability
distribution whose time evolution is described by the master equation.

Besides the molecular species that define the state of the system, the SSA, as
well as the master equation, is based on two fundamental elements: the state-change
vector and the propensity function. The state-change vector is defined as “the change
in the vector of the species’ molecular populations induced by a single occurrence
of a particular reaction” [133]. The propensity function a j(x) of reaction j is “the
function whose product with dt gives the probability that a particular reaction (in this
case reaction j) will occur in the next infinitesimal time dt” [133], given X(t) = x.
The propensity function of a given reaction is made by the product of a constant
part, the reaction constant, and the number of molecules of the species involved in
the reaction. The reaction constant corresponds to the intrinsic probability of the
reaction and the number of molecules “weighs” this probability.

The backbone of the SSA is the Monte Carlo method. In summary, assuming a
well mixed system, the flowchart of the algorithm is the following:

1. Initialize the number of molecules of each species and the values of the reaction
constants.

2. Calculate and store the value of the propensity a j(x) of each reaction, together
with the value of a0(x), defined as the sum of all the propensities.

3. Generate two random numbers r1 and r2 from a uniform distribution in the
unit interval.

4. Use r1 and r2 to compute the interval of time τ for the next reaction to occur
and the index j of that reaction. In particular, by using the standard Monte
Carlo inversion generating method [134] we have:

τ =
1

a0(x)
ln
(

1
r1

)
, (3.60)
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Fig. 3.9 Examples of steady-state trajectories over time of the free mRNA amount.
kS = 1.2 × 10−3 nM min−1, kR = 2.7 × 10−3 nM min−1, gS = 1.2 × 10−2 min−1, gR =
2.4×10−2 min−1, g = 1.5×103 nM−1 min−1 and α = 0.5

and:

j = the smallest integer satisfying
j

∑
j′=1

a j′(x)> r2a0(x) . (3.61)

5. Increase time by τ and update the numbers of molecules according to the
state-change vector of the reaction that occurred.

6. Repeat from step 2 or end the simulation.

Since we are interested in the steady-state distribution, we will end each run of the
SSA only when the system reaches thermalization.

As an example, in figure 3.9 we show some steady-state trajectories of the number
of free mRNAs.

The probability distributions obtained through the SSA can be compared to the
analytic approximation and can be used to compute mean values and size of the
fluctuations of the species of the network, see Fig. 3.10. As can be seen in figure,
both the mean and the coefficient of variations are well approximated by the van
Kampen’s expansion. In addition to the threshold behavior of the mean, we can
see a local maximum of the coefficient of variations in proximity of the threshold.
This aspect, already discussed in section 2.2.4, is related to the fact that around
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<R> CVR

A B

Fig. 3.10 Mean and coefficient of variation of the mRNA as a function of kR. Solid lines
approximate solution, dots numerical simulations.

the equimolarity point, i.e. the threshold, the system is ultrasensitive, then a small
fluctuation in the relative amount of mRNAs and miRNAs can be amplified in a big
fold-change.

3.5 MiRNA-target interaction model with extrinsic
noise

So far we presented a model of miRNA-mediated gene regulation and analyzed it
through analytic approximations and numerical simulations. In this system the only
source of stochasticity was intrinsic, due to the inherent randomness of molecular
reactions. As it was done for the minimal model of molecular sequestration, our
goal is now to investigate the effects on the system of an additional source of noise.
This extrinsic noise will be introduced by letting the value of one parameter fluctuate
across a population of identical cells. We will then recover the full probability
distribution of the system by applying the law of total probability and compare it to
the exact one as obtained from the SSA.

3.5.1 Law of total probability on the approximate analytic solu-
tion

In order to study the potential consequences of environmental fluctuations, we
introduce an extrinsic source of noise in terms of a fluctuating miRNA transcription
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Fig. 3.11 Comparison between the bimodal mRNA noisy distribution and the weighted
superposition of distributions obtained without noise for different miRNA transcription rates.
The black line is the result of the weighted superposition of the distributions represented in
the main plot, which are obtained through numerical simulations. Adapted from [10].

rate kS. The network that describes the model is represented in figure 3.7. Following
the approach used for the minimal model of molecular sequestration, we assume this
parameter to be picked from a normal distribution defined for positive values of kS:

P(kS) =
1√

2πσ2
kS

e
− (kS−⟨kS⟩)

2

2σ2
kS , (3.62)

where ⟨kS⟩ and σ2
kS

are respectively the mean and variance of kS. The intensity
of the extrinsic noise is governed by the value of the variance of the distribution and
can be quantified in terms of the coefficient of variations: CV = σkS/⟨kS⟩ .

The master equation (3.45) that we introduced for the model with pure intrinsic
noise does not hold anymore in presence of a fluctuating parameter. Moreover,
these fluctuations on kS do not allow to write a similar equation for this system in a
simple way. However, as proposed in [127] and previously described for the minimal
model, the probability distribution of the full system in presence of extrinsic noise,
P(R,S,P), can be written as a weighted superposition of conditional probabilities by
using the law of total probability, see Fig. 3.11:



3.5 MiRNA-target interaction model with extrinsic noise 57

P(R,S,P) =
∫

P(kS)P(R,S,P|kS)dkS , (3.63)

where P(kS) is the Gaussian distribution of kS and P(R,S,P|kS) is the conditional
probability of observing a certain configuration of the system, given a specific value
of kS. This conditional probability can be obtained as solution of the master equation
(3.45) for any given kS. We can therefore apply again the van Kampen’s system-size
expansion on the master equation and obtain all the moments of the distribution.
These moments are functions of the fluctuating parameter kS and the full solution
can be obtained by averaging the result over all the values of kS as in equation (3.63).

3.5.2 Gillespie’s simulations with extrinsic noise

The approximate analytic solution of the master equation in presence of extrinsic
noise, as obtained from eq. (3.63), can be compared to the exact one making use of
numerical simulations. The fluctuating miRNA transcription rate kS is inserted in
the framework of the SSA previously described, by picking a value for kS from the
distribution, eq. (3.62), at the beginning of each run of the algorithm. The picked
value of kS is kept constant throughout the realization of the algorithm, simulating
the behavior of a cell belonging to a population in which the distribution of kS is
given by eq. (3.62).

Since the mRNA transcription rate kR is fixed, the fact that the system explores
different values of kS means that it can experience both the repressed state, below
threshold, and the unrepressed state, above threshold. In the repressed state, the
number of free mRNA molecules is close to zero, because the total amount of
miRNAs is bigger than the total amount of mRNAs. In the unrepressed state, the
total amount of mRNAs is bigger than that of miRNAs and their mean amount
increases linearly with the transcription rate kR. Due to the absorbing border created
by the threshold, all the values of kS that bring the system below threshold contribute
to the formation of a peak around zero in the resulting distribution of free mRNA.
Conversely, values of kS that lead the system to the unrepressed state, result in
amounts of free mRNAs that generate the unrepressed peak. The position of the
unrepressed peak is directly linked to the mean of the miRNA transcription rate
ditribution. Indeed, being ⟨kS⟩ the most likely value of kS, it is mapped in the most
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Fig. 3.12 Examples of free mRNA distribution for different values of kR. From (A) to (C):
kR = 3.1× 10−3 nM min−1, 4.0× 10−3 nM min−1, 4.8× 10−3 nM min−1. Solid red lines
correspond to the analytic approximation, solid black lines are numerical simulations. [10].

likely number of free mRNAs of the unrepressed region. The combination of this
point with the absorbing border in zero creates the basis of bimodality.

As discussed for the minimal model, we can find configurations of the parameters
in which the repressed and unrepressed peak are separated. In figure 3.12 we show
some examples of free mRNA distributions obtained through numerical simulations
and compare them to the approximate analytic solution. As can be seen, for these
values of the parameters, the analytic solution approximates quite well the exact one,
even in case of bimodal distribution. Our approximate analytic approach can then
be used to have insights on the shape of the free mRNA distribution in presence of
extrinsic noise, nonetheless numerical simulations are needed in order to check the
results.

The kind of bimodality described above arises at the population level, due to
a parameter (ks) whose value fluctuates across an ensemble of otherwise identical
systems. Nevertheless, numerical simulations showed that a bimodal mRNA distribu-
tion can appear also in absence of extrinsic noise. This bimodality at the single-cell
level originates when the system is very close to a steep threshold, meaning that the
miRNA-mRNA interaction strength g must be high. In proximity of a steep threshold
the system is ultrasensitive. In these conditions, even a small intrinsic fluctuation
can make the system jump from the repressed to the unrepressed state and vice
versa. This happens continuously over time in each identical system and can give
rise to bimodal distributions. Our approximate analytic approach cannot reproduce
bimodal distributions in case of pure intrinsic noise. Indeed, the outcome of the
van Kampen’s expansion is always a Gaussian distribution, which is by definition
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Fig. 3.13 Free mRNA molecules amount as a function of the transcription rate kR for different
noise levels.

unimodal. In order to investigate bimodal distributions at the single-cell level in this
system, numerical simulations are essential.

We will discuss in more detail the differences between bimodality at the pop-
ulation and single-cell level in the following sections, where we will point out the
duality between the miRNA-target interaction strength and the extrinsic noise.

To conclude, we now mention the effect of extrinsic noise on the mean values.
Exactly as we discussed in section 3.2.3 for the minimal model, the threshold
becomes smoother as extrinsic noise increases. Moreover, the mean in presence of
extrinsic noise is always higher than the pure intrinsic noise case, see fig. 3.13.

3.6 Discussion of the results

In previous sections we introduced a model of miRNA-mediated gene regulation
composed of one miRNA and one target. We proposed an approximate solution of
the system’s master equation based on the van Kampen’s system-size expansion and
used the Stochastic Simulation Algorithm to have access to the exact solution. We
then turned our attention towards the effects of the addition of some extrinsic noise, in
terms of a fluctuating miRNA transcription rate. We derived an approximate solution
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by exploiting the law of total probability and checked the results through numerical
simulations. As a result of this analysis, we showed that mRNA bimodal distributions
can appear, both at a population and single-cell level. In the following we will
discuss in detail the features of these different bimodal distributions, analyzing the
role played by the parameters of the model. We will then examine how the shape of
the mRNA distribution influences the distribution of proteins. The considerations
that we will present are based on what we published in [10].

3.6.1 Single-cell vs population-induced bimodality

The understanding of the underlying mechanisms that allow cell diversity and vari-
ability is of fundamental importance to increase our knowledge about phenomena
like cell fate determination, differentiation, organism development and related dis-
eases. MiRNAs are known to be strongly involved in developmental mechanisms
[76, 135–137] and can play an important role in controlling cell variability. We here
discuss the details of the appearance of bimodality in the expression distribution of a
gene controlled by a miRNA.

As presented in previous sections, the molecular sequestration mechanism acting
between miRNAs and target mRNAs, gives rise to non-trivial threshold effects in
condition of quasi equimolarity between the two molecular species. Keeping fixed
the mRNA transcription rate to some value k∗R, the threshold value of the miRNA
transcription rate kS is defined by: k∗S = αk∗R.

If miRNAs are produced at a rate above threshold, kS > k∗S, the system becomes
enriched in miRNAs, which tend to bind most of the available mRNA molecules,
therefore preventing their translation. In this condition, from the point of view of
the mRNA, the system can be considered below threshold, in the above mentioned
repressed state. When the miRNA transcription rate is below its threshold value,
kS < k∗S, the system is enriched in target mRNAs. This condition corresponds to the
unrepressed state of the system, where the mean amount of free mRNA molecules
increases linearly with their transcription rate kR. The steepness of the threshold-like
transition between the repressed and unrepressed state gets stronger as the miRNA-
target coupling g increases. In proximity to the threshold, the intrinsic stochasticity
of chemical reactions makes the system switch randomly between the repressed and
unrepressed state. This stochastic switching can give rise to bimodal distributions



3.6 Discussion of the results 61

15 25 35
time [hours]

20

60

100
fr

e
e
 m

R
N

A
 m

o
le

cu
le

s 
a
m

o
u
n

t

A Examples of trajectories without extrinsic noise

B Examples of trajectories with extrinsic noise

15 25 35
time [hours]

0

100

200

fr
e
e
 m

R
N

A
 m

o
le

cu
le

s 
a
m

o
u
n

t

0
2

0
4

0
6

0
8

0
1

0
0

0

0
.0

0
5

0
.0

1

0
.0

1
5

0
.0

2

0
.0

2
5

0
.0

3

Fig. 3.14 Examples of trajectories and corresponding distribution. (A) Strong miRNA-target
coupling, no extrinsic noise. (B) Weak miRNA-target coupling, extrinsic noise. Adapted
from [10].

of the amount of free target. However, the presence of bimodality is confined to
a very narrow range of values of the mRNA transcription rate kR and requires a
high interaction strength. In figure 3.14 (A) we show an example of this kind of
bimodal distribution, together with some steady-state trajectories in which jumps
between the repressed and unrepressed state can be recognized. This bimodality is a
characteristic of each cell in which the miRNA network is present. Indeed, every
single cell can switch from the repressed to the unrepressed state, provided that the
interaction strength between miRNA and target is high enough.

When some extrinsic noise is added to the system, the value of the miRNA
transcription rate kS is different from cell to cell and is described by a Gaussian
distribution centered in ⟨kS⟩. The value of ⟨kS⟩ sets the position of the threshold in
the space of the mRNA transcription rates, indeed k∗R = ⟨kS⟩/α . Given the mean
⟨kS⟩ and standard deviation σkS of the miRNA transcription rate distribution P(kS),
following the scheme depicted in figure 3.15, we can describe the extrinsic-noise
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Fig. 3.15 Extrinsic-noise-induced bimodality. (A) Qualitative representation of the distribu-
tion of the miRNA transcription rate kS. The black vertical line indicates the value of the
miRNA transcription rate kS = αkR for different values of the target transcription rate kR

. The distributions represent the different regions labeled from 1 to 5 shown in (B). The
region of the distribution contributing to the repressed state is colored in orange. (B) Free
mRNA molecules amount as a function of the target transcription rate kR . Solid lines are
analytic predictions while blue squares correspond to numerical simulations. (C) Free mRNA
molecules distributions corresponding to the regions in (B). Solid black lines correspond to
numerical simulations while solid red lines are analytic predictions. The repressed region is
coloured in orange. Adapted from [10].
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Fig. 3.16 Phase diagram that identifies the bimodality region as a function of the transcription
rate kR and of the level of extrinsic noise for different values of g. Adapted from [10].

scenario as follows. When the target transcription rate kR is well below its threshold
value, kR ≪ k∗R, most of the miRNA transcription rates drawn from P(kS) will bring
the system to the repressed state, where the target molecules are all bound to miRNAs
and their free amount is close to zero. For values of kR closer to the threshold, the
miRNA transcription rates extracted from the left-tail of the distribution will result in
some unbound targets. Above the threshold, as kR > k∗R, the majority of the drawn kS

will lead to the unrepressed state while the right tail of the distribution will sample
from the repressed region. This heterogeneity of the miRNA transcription rates,
leading some cells to be in the repressed state and others in the unrepressed one,
is the key to obtain bimodal distributions at the population level. In figure 3.14
(B) an example of this population-induced bimodality is shown, together with three
representative steady-state trajectories. The yellow one corresponds to a kS that holds
the system in the repressed state, the red to a kS that allows some unbound mRNA
molecules and the orange to a kS, close to the threshold value, that lets the system
jump between the repressed and unrepressed state.

By analyzing the effect of different levels of extrinsic noise, we found that,
increasing the intensity of noise (i.e. increasing σkS), the range of values of the
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mRNA transcription rate for which bimodality is present gets wider. This effect is
illustrated in figure 3.16, where the bimodality region of the distribution is shown
as a function of the mRNA transcription rate kR and the extrinsic noise level, for
different miRNA-target coupling strengths. In addition to that, we found that also
the separation between the two peaks of the distributions increases with the noise
intensity.

An important take-home message of this analysis is that, differently from the
pure intrinsic noise case, a fine tuning of the target transcription rate is no longer
necessary in order to obtain bimodal expression distributions in a population of cells.
Indeed, in figure 3.16 we can see that, even in case of a high kR, there could be a
non-negligible fraction of the randomly picked kS that leads the system to the bound
state, building the repressed peak of the bimodal distribution.

Finally, we want to notice how the distributions in figure 3.15 (C), obtained
through numerical simulations, are well approximated by the solution of the system-
size expansion. This proves the goodness of this approximation for the extrinsic noise
case, anyhow numerical simulations are always mandatory to verify the analytic
predictions.

3.6.2 Interplay between coupling strength and extrinsic noise

In the previous section we showed that the existence of a bimodal distribution is
enhanced by extrinsic noise, as the range of bimodality, in terms of the values of kR,
increases with the noise intensity. Figure 3.16 takes into account different values of
the miRNA-target interaction strength g. Focusing on the x axis of this figure, which
describes the pure intrinsic noise case, we see that only high interaction strengths
give rise to bimodality and its range of existence gets wider as the coupling increases.
This behavior is maintained also in presence of extrinsic noise.

Both the interaction strength g and the extrinsic noise affect the range of values
of kR in which bimodality is present. Nonetheless, we know that the coupling acts
at a single-cell level, while the extrinsic noise induces a population effect. From
now on, we will neglect the differences of the underlying mechanisms and we will
focus only on the resulting distribution of free mRNAs that can be measured across a
population of cells. From this point of view, the interaction strength and the extrinsic
noise can be seen as different “handles” to control the same phenomenon.
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Fig. 3.17 Interplay between interaction strength and extrinsic noise. Target mRNA probability
distributions obtained from numerical simulations. Solid black line: unimodal reference case
with low g and no extrinsic noise. Blue: no extrinsic noise, high g. Orange: extrinsic noise,
low g. Adapted from [10].

In order to investigate this possible duality between the two quantities, we ran
numerical simulations aimed at finding whether it is possible to obtain rather the
same bimodal distribution acting on just one handle. As shown in Figure 3.17, this is
the case. Indeed, let’s consider first a reference case with pure intrinsic noise and low
miRNA-target coupling (black line). Starting from this reference condition, we see
that similar bimodal distributions can be obtained either by increasing the coupling
between miRNA and mRNA (blue histogram) or by introducing a stronger extrinsic
noise (orange histogram).

In conclusion, our results show that the miRNA-mRNA coupling and the extrinsic
noise act at a similar level with respect to bimodality. In fact, a higher level of
extrinsic noise can compensate for a weak coupling in order to obtain bimodal
expression distributions and, consequently, two different phenotypes.
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Fig. 3.18 Protein stability alters the shape of the distribution. Free mRNA distributions are
represented in orange, while protein distributions corresponding to different levels of protein
stability are represented in blue. Fast proteins distributions are obtained for a protein half
life comparable to the mRNA one; in this condition the state of the protein is copying the
mRNA one and the distributions almost coincide. Slow protein distributions are obtained for
a protein half life up to 10 times longer than the mRNA one; as a consequence of the higher
protein stability different outcomes can be achieved, depending on the level of extrinsic
noise, the miRNA-target interaction strength and the closeness to the threshold (kR). Starting
with a well defined bimodal distribution (A1) and (B1), for a fixed level of extrinsic noise,
the repressed peak can be buffered (A2) or not (B2) depending on the value of k R . If the
initial distribution is unimodal repressed (C1), for a given range of parameters, it can be
converted into a unimodal unrepressed (C3), crossing a bimodal state (C2), by increasing the
protein stability. Adapted from [10].
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3.6.3 Bimodality on proteins

So far we analyzed in detail the features of the free mRNA distribution, focusing
our study on bimodality. Our model of miRNA-mediated gene regulation is built to
include also the dynamics of the proteins translated from the mRNAs. In this section,
we will follow the analysis performed on the mRNAs, in order to characterize the
shape of the protein distributions. Particular attention will be paid on the role of time
scales.

From a deterministic perspective we know that the mean amount of proteins
is proportional to the mean amount of free mRNAs, in particular we have [P] =
kP/gP[R]. The behavior of the distribution is controlled by the degree of separation
between the time scale of the mRNA and protein dynamics. The parameters that
can be used to evaluate the separation between the time scales are the mRNA and
protein degradation rates, gR and gP, since they control the stability of the respective
molecules. When the proteins’ dynamics is fast, at least comparable to the one of the
mRNAs, gP ≃ gR, their distribution follows closely the shape of the mRNA one. As
the proteins’ dynamics gets slower, gP < gR, the intrinsic fluctuations of the mRNA
tend to be filtered out and this leads to narrower protein distributions. In the limit of
time-scale separation, gP ≪ gR, proteins “see” only the mean value of free mRNAs
and the protein distribution is a Poissonian with mean ⟨P⟩= kP/gPVcell[R].

This effect acts at a single-cell level, but it affects also the shape of the protein
distribution in presence of extrinsic noise. Indeed, for any miRNA transcription
rate kS, the associated protein distribution gets narrower as the protein dynamics
gets slower. As a consequence, also the protein distribution in presence of extrinsic
noise concentrates around its mean. This behavior can have opposite effects on the
shape of the protein distribution, when the mRNA one is bimodal or in proximity to
bimodality.

When the target distribution is bimodal, a slower proteins dynamics will make
the protein distribution more peaked around its mean, favoring in this way the
unrepressed peak, which is located close to the mean. This can lead the protein
distribution to a complete loss of the repressed peak and, consequently, of its bimodal
shape. The result can then be a unimodal protein distribution associated to a bimodal
mRNA one. In other cases, protein bimodality can resist to the noise reduction
induced by the slower dynamics. Indeed, as we wrote above, this is a single-cell
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mechanism and, for strongly bimodal target distributions, it is not necessarily able to
compensate the effects of the extrinsic noise.

When the mRNAs present a repressed unimodal distribution, the noise reduction
due to a slower proteins dynamics can induce the rise of a second, unrepressed, peak.
This would imply a bimodal protein distribution associated to a unimodal repressed
mRNA one. Finally, even slower proteins dynamics can make the unrepressed peak
overcome the repressed one, leading a unimodal unrepressed protein distribution in
presence of a unimodal repressed mRNA one.

Some examples of the conditions described above are reported in figure 3.18.
The consequence of these results is that a slower protein dynamics, favoring the
expression in proximity to the mean, can produce completely different effects on the
shape of the protein distribution. The occurrence of a specific condition depends on
the interplay among the extrinsic noise level, the miRNA-mRNA interaction strength
and the transcription and degradation rates. Despite that, the fact that in a population
of cells the protein distribution can present a completely different shape with respect
to the mRNA, can have interesting biological implications from the point of view of
the coexistence of two phenotypes at the protein and mRNA level.

3.6.4 Bimodality in endogenous conditions: fold repression and
time-varying extrinsic noise

One my wonder whether the results presented above hold in endogenous conditions.
In order to make a first check, we can focus on two important quantities: the number
of molecules and the fold repression. If the magnitude of these two quantities is
comparable to the one observed in experiments, we can conclude that the phenomena
described in our analysis are likely to be observed in nature.

In the experimental framework [4, 8], fold repression is measured as the ratio
between the unregulated and the regulated level of expression of the miRNA target. It
is then a quantity that takes into account only mean expression levels and indicates the
average level of repression with respect to the case without regulation (constitutive
expression).

As it can be observed in Fig. 3.19, the fold-repression profile is significantly
sensitive to offsets in the data. Indeed, if the offset is zero or close to zero (panel (A)),
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Fig. 3.19 The role of the offset. (A) Example of two average mRNA profiles, for a regulated
(orange) and an unregulated (blue) mRNA. (B) Same profile as panel A but with the curves
shifted upwards by an arbitrary offset of 10 mRNA molecules. (C) Fold repression (ratio of
blue to orange curve from panel A) without the offset. (D) Fold repression (ratio of blue to
orange curve from panel B) with the offset. (E) Comparison of the plots of fold repression
with offset (from panel D) and without offset (from panel C). Adapted from [10].
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for low values of constitutive expression, the fold repression, i.e. the ratio between
the blue and the orange line in the plot, is high and then monotonically decreases
(panel (C)). With an initial offset (panel (B)), the fold repression is equal to 1 in the
beginning, then shows a maximum in proximity to the threshold and finally tends to
a constant value (panel (D)). The two profiles, then, differ strongly, as shown in the
comparison given in panel (E). The mechanism generating the profile is the same but
the fold repression is an observable strongly affected by the free mRNA offset, which
in fluorescence reporter experiments, is not a clearly controlled quantity. Since our
model has no offset, the fold repression we measured should be taken as an upper
bound to the ones normally obtained in experiments.

Figure 3.20 shows the bimodality region (red lines) for two sets of parameters,
plotted against the mean amount of free mRNAs and proteins (Fig. 3.20A,C) and
against the fold repression (Fig. 3.20B,D). As can be observed, in the bimodality
region the mean values of free mRNAs are of the order of hundreds in Fig. 3.20A
and of the order of tens in Fig. 3.20C and the fold repression ranges between 2 and
10. The amount of free miRNAs in this regime is of the order of tens, while its total
amount (measured as the ratio between its transcription and degradation rates) is
within 250 molecules per cell. These values are in agreement with experimental
results in literature [138, 139] and suggest that titration interactions and extrinsic
noise may play a role in inducing bimodal distributions also in endogenous regimes.

Another important aspect that has to be taken into account in order to check the
validity of our theoretical predictions concerning bimodality, is the time scale of
the reactions involved in the system. All the analysis described in previous sections
was performed treating the extrinsic noise as a static quantity. Indeed, the miRNA
trascription rate kS was picked randomly from a Gaussian distribution for each
realization of the system and its value was not allowed to vary in time. This approach
is supposed to well approximate the case in which fluctuations of the value of kS

have a time scale much longer than the ones of the other reactions of the system.
In endogenous conditions this is not necessarily the case, since changes of gene
expression may happen on time scales of minutes or hours. Moreover, the time scale
of the fluctuations of kS should not be longer than the one set by the process of cell
division. In the following, we will address these points and justify the use of our
model to investigate the variability induced by cell cycle in the context of miRNA
regulation.
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Fig. 3.20 Mean molecules amounts and fold repression. (A,C) Mean mRNA free amount
(R) and protein amount (P) for two different sets of parameters, as a function of mRNA
transcription rate and extrinsic noise level. The red line indicates the bimodality region.
(B,D) Fold repression, i.e. ratio between the unregulated and regulated expression level,
as a function of mRNA transcription rate and extrinsic noise level. The red line indicates
the bimodality region. Mean values and fold repression are computed through the analytic
approximation, while the bimodality region is obtained from numerical simulations. The
set of parameters of panels (C) and (D) resembles an endogenous scenario, where the mean
values of free mRNAs are of order of tens and the fold repression ranges between 2 and 6.
Adapted from [10]
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Fig. 3.21 Bimodality appearance in presence of time-dependent extrinsic noise. Solid cyan
lines represent free mRNA molecules distributions with a time-dependent extrinsic noise on
the miRNA transcription rate kS. The transcription rate is coupled to a birth and death process
with finite pool N = 100. The steady-state distribution of kS is a nearly Gaussian distribution
with mean kS = 1.2× 10−3 nM min−1 and standard deviation σ = 2.4× 10−4 nM min−1.
The time scale of this process is tuned by changing the values of the birth and death rates,
keeping their ratio fixed. The time scales of the fluctuations of the miRNA transcription rate,
from left to right are: 8.3×10−2 min, 0.83 min, 21 min, 83 min and 830 min. The green
histogram in the leftmost plot represents the free mRNA molecules distribution in absence
of extrinsic noise. The orange histogram in the rightmost plot represents the free mRNA
molecules distribution with static extrinsic noise introduced as described in the main text;
the kS distribution used in this case is a Gaussian with mean kS = 1.2×10−3 nM min−1 and
standard deviation σ = 2.4×10−4 nM min−1. All the free mRNA molecules distributions
are obtained from numerical simulations. Adapted from [10].



3.6 Discussion of the results 73

We first consider the constraints set by cell division on the degradation rates
of the system. If we assume a doubling time of 24 hours, this implies a typical
corresponding degradation rate of the order of ln(2)/(24∗60)∼ 4.8×10−4 min−1.
The degradation rates we have used in the case studies, as reported in the legend of
the figures, vary between 1.2× 10−2 min−1 and 2.4× 10−2 min−1 for most cases
and, when investigating slow protein dynamics, are pushed to 2.4× 10−3 min−1.
These degradations are at least one order of magnitude faster then the lower bound
set by cell division, which is then, clearly, not a concern for our results.

In order to investigate the effects of extrinsic-noise temporal fluctuations, we
first need to evaluate the typical time scales of the reactions involved in the system.
One can estimate these time scales by looking at the rate equation and inserting the
steady state concentrations. The rate at which one observes an appreciable change in
a concentration is then obtained by dividing the propensities by the concentrations
and the typical time scale is just its inverse. We chose a set of parameters for which
bimodality was observed in case of static extrinsic noise, in particular the parameters
used in Fig. 3.18A. In this case, the solution of the rate equation gives an mRNA
concentration of [R] = 0.03 nM and a miRNA concentration of [S] = 6.6×10−4 nM.
Note that these are just indicative values and differ slightly from the averages
stemming from the numerical simulations with extrinsic noise. For the case of
the miRNA-target interaction, we evaluated the time scales related to a change of
concentration of both the miRNA and the mRNA. The values of the time scales are
reported in Table 3.1.

To study the dynamic noise case, we performed Gillespie simulations allowing
the transcription rate of the microRNA to fluctuate in time. We realised a dynamically
fluctuating microRNA transcription rate via a birth and death process with finite pool
N = 100. This is done via the auxiliary variable X that obeys the master equation:

dP(X)

dt
= kX(N−X +1)P(X −1)+gX(X +1)P(X +1)− [kX(N−X)+gX X ]P(X),

(3.64)

which has a binomial steady-state distribution with average 20 and standard
deviation 4, closely resembling to a Gaussian. The rate kS is obtained by multiplying
X ∗6×10−5 nM min−1 and has a steady-state distribution that closely approximates
a Gaussian distribution with mean ⟨kS⟩= 1.2×10−3 nM min−1 and standard devi-
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reaction time scale (min)
kR 10
gR 42
kS 0.5
gS 83

g (mRNA) 13
g (miRNA) 0.3

kP 42
gP 42
kX 8.3×10−2 − 830
gX 8.3×10−2 − 830

cell division 1440
Table 3.1 Time scales of all reactions involved in the network. Each reaction is identified by
its corresponding rate.

ation σkS = 2.4×10−4 nM min−1, i.e. the same distribution from which we drew
the rates in the static case. As discussed for the other reactions, the time scales of
the extrinsic fluctuations can be estimated by dividing the average amount of the
auxiliary species by the average propensities of birth and death at the steady state.
This identifies a typical time scale on which the abundance of the auxiliary species X
varies appreciably, τ = 1

gX
= <X>

(N−<X>)kx
. Keeping the ratio kX/gX = 0.25 nM fixed

and varying kX and gX we can explore different time scales (τ) of the fluctuations
of the microRNA transcription rates. To probe regimes in which these fluctuations
are faster, comparable and slower than the typical time scales of the reactions we
let τ take values of 8.3×10−2 min, 0.83 min, 21 min, 83 min and 830 min, see Fig.
3.21. These should be compared with the typical time scales of the various reactions
at play in the system that are presented in Table 3.1. In case of fast dynamic noise
(τ = 8.3× 10−2 min) the extrinsic fluctuations are averaged out and the resulting
distribution coincides with the one with pure intrinsic noise. Conversely, with slow
dynamic noise (τ = 830 min) the resulting distributions are practically indistinguish-
able from the static extrinsic noise case treated in the previous sections. This time
scale is comparable to (shorter than) 24 hours (1440 min). Then, we expect the
results obtained for static noise to be relevant for settings in which the extrinsic
noise is caused by variations along the cell cycle, in cells dividing every 24 hours.
For intermediate time scales bimodality is modulated by the frequency of extrinsic
fluctuations.
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3.7 Implications and conclusions

In this long chapter we described the core of our work about the appearance of
bimodal distributions, induced by extrinsic noise, in circuits based on the mechanism
of molecular sequestration. We first introduced a minimal model composed of two
molecular species that bind and unbind with constant rates. In this framework we
were able to derive the analytic solution of the master equation and we showed that a
normally distributed extrinsic source of noise, in terms of a fluctuating total amount
of molecules of one species, can induce bimodal distributions. We then moved to
a more complex model that describes the most important reactions involved in the
process of miRNA-mediated gene regulation. We studied this system through an
approximate analytic approach, based on the van Kampen’s system-size expansion,
and numerical simulations that implemented the Stochastic Simulation Algorithm.
From this analysis we were able to characterize the rise of bimodal distributions,
that in this system can appear also in absence of extrinsic noise. In particular, we
highlighted the difference between single-cell bimodality and population bimodality
induced by the extrinsic noise. The first one appears only in case of strong miRNA-
mRNA coupling for a small range of the parameters, while the second one can
appear also for small couplings in a wide range of values of the mRNA transcription
rate. We then discussed the role played by the protein dynamics in reshaping, at the
protein level, the associated distribution of mRNAs and showed that our results can
be relevant in endogenous conditions.

In conclusion, if the goal of a biological system is to achieve two differentially
expressed phenotypes across a population of identical cells, the combination of a
mechanism inducing a threshold-like response, with some heterogeneity produced by
extrinsic noise, can be an efficient strategy. Given the strong involvement of miRNAs
in the process of cell differentiation and their ability to induce threshold responses,
we can think that a similar mechanism could be involved. In our model, the source
of extrinsic noise was a fluctuating miRNA transcription rate, but similar results are
expected in case of fluctuations affecting the target. From an experimental perspec-
tive, it would be interesting to investigate networks related to cell differentiation that
involve miRNAs, trying to find out whether their genes can be more transcriptionally
noisy across cells than other classes of genes.



Chapter 4

Competition for the same sequester:
crosstalk and correlations

In the previous chapter we analyzed the mechanism of molecular sequestration,
focusing on its ability to give rise to bimodal distributions in combination to a
source of extrinsic noise. We studied a minimal model composed of two molecular
species that bind and form a complex which can then dissociate. Afterwards, we
introduced a more complex model, based on molecular sequestration, describing
the network of interactions involving a miRNA that regulates one target. Both the
models involved only two molecular species: a sequester and a target. In this chapter
we will extend this analysis to a system of two targets competing for the binding
to the same sequester. Following the outline of the previous chapter, we will first
extend the minimal model with the addition of one target species, then we will study
a model of miRNA-mediated gene regulation with two genes competing for the same
miRNA. Both the models will be studied in presence and absence of a Gaussian
source of extrinsic noise. The analytic control on the minimal model will allow us to
study in detail the behavior of the correlations induced by the competition between
the targets. Furthermore, the model of miRNA-target interaction will give us insights
on how bimodal distributions can be tuned by the crosstalk between the targets.

Part of the results discussed in this chapter have already been published in [9]
and [10].
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4.1 Minimal model of competition for the same se-
quester

As a first step towards the study of the implications of the competition between two
targets for the same sequester, we will here introduce a minimal model of competition
for a limiting resource that will be completely characterized analytically.

The model is composed of two molecular species, T1 and T2, that compete for
binding to a third one, the sequester S. The species T1 binds S with rate k1

+, forming
a complex T1S that dissociates with rate k1

−. The species T2 in turn binds S with rate
k2
+ and forms a complex T2S that dissociates with rate k2

−.

The reactions that define the model are then:

T1 +S
k1
+
⇌
k1
−

T1S , (4.1)

T2 +S
k2
+
⇌
k2
−

T2S . (4.2)

As done previously, the total amount of molecules of each species (T1T , T2T and
ST ) is assumed to be constant. This leads to the following conservation laws:

T1T = T1 +T1S = const , (4.3)

T2T = T2 +T2S = const , (4.4)

ST = S+T1S+T2S = const . (4.5)

As a consequence of the conservation laws, the number of independent variables
of the system is limited to 2 instead of 5. In the following, we will use T1 and S in
order to describe the system. Indeed, the number of free molecules of the species
T2 is obtained as T2 = T2T −ST +S+T1T −T1, while the number of complexes is
obtained inverting the conservation laws.
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In the following section we will present the exact analytic solution of the master
equation associated to this system.

4.1.1 Stochastic approach with analytic solution

As in the case with a single target, stochastic fluctuations play an important role in
this system. In order to analytically investigate the behavior of these fluctuations and
of the correlation between the targets, we need to adopt a stochastic approach.

The master equation that describes the time evolution of the probability distribu-
tion of observing T1 and S free molecules at time t is:

dP(T1,S, t)
dt

= (T1S+1)k1
−P(T1 −1,S−1)+(T1 +1)(S+1)k1

+P(T1 +1,S+1)+

+(T2S+1)k2
−P(T1,S−1)+(T2 +1)(S+1)k2

+P(T1,S+1)+

− (T1Sk1
−+T1Sk1

++T2Sk2
−+T2Sk2

+)P(T1,S) . (4.6)

By exploiting the conservation laws, eqs. (4.3), (4.4) and (4.5), we can write it in
terms of T1 and S only:

dP(T1,S, t)
dt

= (R1T −T1 +1)k1
−P(T1 −1,S−1)+(T1 +1)(S+1)k1

+P(T1 +1,S+1)+

+(ST −S−T1T +T1 +1)k2
−P(T1,S−1)+

+(T2T −ST +S+T1T −T1 +1)(S+1)k2
+P(T,S+1)+

− [(T1T −T1)k1
−+T1Sk1

++(ST −S−T1T +T1)k2
−+

+(T2T −ST +S+T1T −T1)Sk2
+]P(T1,S) . (4.7)

For this circuit of interactions detailed balance holds. Indeed, by considering
a closed loop that links together four different states of the system we see that the
clockwise product of the transition probabilities is equal to the counterclockwise
one:
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k1
−(T1T −T1)k2

+(S+2)(T2T −ST +S+T1T −T1 +1)
k2
+(S+1)(T2T −ST +S+T1T −T1 +1)k1

−(T1T −T1)
·

·
k1
+(T1 +1)(S+1)k2

−(ST −S−T1T +T1)

k2
−(ST −S−T1T +T1)k1

+(T1 +1)(S+2)
= 1 .

Given detailed balance, each reaction is balanced by its reverse one, then the
following relations hold:

k1
−(T1T −T1)P(T1,S) = k1

+(T1 +1)(S+1)P(T1 +1,S+1) , (4.8)

k2
−(ST −T1T −S+T1)P(T1,S) = k2

+(S+1)(T1T +T2T −ST +S−T1+1)P(T1,S+1) .
(4.9)

Dividing eq. (4.9) by P(T1) we obtain a recursive relation for the probability
of observing S free molecules conditioned on having a generic number T1 of free
molecules:

P(S+1|T1) =
k2
−

k2
+

ST −T1T −S+T1

(S+1)(T1T +T2T −ST +S−T1 +1)
P(S|T1) . (4.10)

In this system, the minimal number of free molecules of S can either be Smin = 0
if ST ≤ T1T −T1 +T2T , or Smin = ST −T1T +T1 −T2T when ST > T1T −T1 +T2T .
In the latter case, even if all T2 molecules are bound, there is a finite number of
free S molecules. Eq. (4.10) can be used to recursively write the expression of the
conditional probability P(S|T1) starting from the probability P(Smin|T1):

P(S|T1) =

(
k2
−

k2
+

)S−Smin (ST −T1T +T1 −Smin)!
(ST −T1T +T1 −S)!

Smin!
S!

·

· (Smin +T1T +T2T −ST −T1)!
(S+T1T +T2T −ST −T1)!

P(Smin|T1) . (4.11)

We can now write the first relation of detailed balance (eq. 4.8) in terms of the
conditional probability P(S|T1) :
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k1
−(T1T −T1)P(S|T1)P(T1) = k1

+(T1 +1)(S+1)P(S+1|T1 +1)P(T1 +1) . (4.12)

Defining Smin ≡ S∗min +T1 and inserting the expression of the conditional proba-
bility in equation 4.12, the resulting relation can be made explicit for the marginal
probability P(R1 +1) thus obtaining:

P(T1 +1) =
k1
−

k1
+

T1T −T1

(T1 +1)(S∗min +T1 +1)
P(S∗min +T1|T1)

P(S∗min +T1 +1|T1 +1)
P(T1) . (4.13)

By iterating eq. (4.13), we can write the analytic expression of the marginal
probability P(T1):

P(T1)=

(
k1
−

k1
+

)T1−T1min (T1T −T1min)!T1min!(S∗min +T1min)!
(T1T −T1)!T1!(S∗min +T1)!

P(S∗min +T1min|T1min)

P(S∗min +T1|T1)
P(T1min),

(4.14)

where P(T1min) is the probability of having the minimal number allowed of free
T1. T1min is defined by the total amount of S and T1. The two possible cases can be
either T1min = 0 when ST ≥ T1T , which means that in principle all the molecules of
T1 can be bound to molecules of S, or T1min = T1T −ST when ST < T1T , meaning that
even if all the molecules of S are bound to molecules of T1, T1min molecules are free.
When T1min > 0 we have that S∗min +T1min = ST −T1T −T2T +T1T −ST = −T2T ≤
0, then the conditional probability at the numerator in eq. (4.14) is P(0|T1min).
Conversely, if T1min = 0, the conditional probability can be either P(0|T1min) or
P(S∗min|T1min), depending on the sign of S∗min.

The probability P(T1,S) can be reconstructed by using the definition of joint
probability P(T1,S) = P(S|T1)P(T1), which leads to the following expression:

P(T1,S)=
(

k1
−

k1
+

)T1(k2
−

k2
+

)S−T1 P(T1min,S∗min +T1min)

(ST −T1T +T1 −S)!S!(T1T +T2T −ST −T1 +S)!(T1T −T1)!T1!
,

(4.15)
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with P(T1min,S∗min +T1min) given by the normalization of the probability distribu-
tion:

P(T1min,S∗min +T1min) =
T1T

∑
T1=T1min

ST

∑
S=S∗min+T1min

(
k1
+

k1
−

)T1(k2
+

k2
−

)S−T1

(ST −T1T +T1 −S)!S!·

· (T1T +T2T −ST −T1 +S)!(T1T −T1)!T1! . (4.16)

Also for the joint probability, if T1min > 0, then S∗min +T1min ≡ 0, while when
T1min = 0, the value of S∗min is given by its definition S∗min ≡ ST −T1T −T2T , being
zero when the result is negative.

The solution of the master equation that we have obtained, eq. (4.15), can be
written in terms of T1 and T2 by implementing the substitution S = T2 +T1 −T2T −
T1T +ST :

P(T1,T2) =
(K1)

T1 (K2)
T2

N

(T1T
T1

)(T2T
T2

)
[ST +T1 +T2 −T1T −T2T ]!

, (4.17)

where we introduced the dissociation constants: K1 ≡
k1
−

k1
+

, K2 ≡
k2
−

k2
+

. The normal-
ization factor N is given by:

N =
T2T

∑
T2=max(0,T2T−ST )

T1T

∑
T1=max(0,T2T+T1T−ST−T2)

(K1)
T1 (K2)

T2
(T1T

T1

)(T2T
T2

)
[ST +T1 +T2 −T1T −T2T ]!

. (4.18)

The minimal values that T1 and T2 can assume in the joint probability P(T1,T2)

are defined by the total amount of sequester ST : T1min = max(0,T1T − ST ) and
T2min = max(0,T2T −ST ). Nonetheless, when the number of free molecules of one
of the two targets, for example T1, is chosen, the range of values that T2 can assume
is limited by the fact that there are only ST −T1T +T1 molecules of the sequester
S available for binding. In this case we have T2min = max(0,T2T +T1T −ST −T1).
Analogously, when the value of T2 is chosen, the minimal value that T1 can assume
is: T1min = max(0,T2T +T1T −ST −T2).
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Fig. 4.1 Mean amount of free targets. (A) Mean number of molecules of target T1 as a
function of T1T . (B) Mean number of molecules of target T2 as a function of T1T . ST = 30
T2T = 14.

In the following sections, the probability distribution, eq. (4.17), will be used to
analyze the stochastic properties of the system.

4.1.2 Threshold and crosstalk

The analytic solution of the master equation, eq. (4.17), can be used to investigate
the properties of the minimal model.

As a first step, we can check the behavior of the mean amount of free molecules
of the two targets. As expected, the threshold-like behavior of the mean is maintained,
see figure 4.1. The position of the threshold is located at the equimolarity point
between the two targets and the sequester, i.e. when T1T +T2T = ST . The steepness
of the thresholds of the two target species and the ultrasensitivity of their response
are controlled by the value of their dissociation constants K1 and K2. The smaller
the value of the dissociation constant, the steeper the threshold. Indeed, when the
dissociation constant is small, meaning that the binding rate is way higher than the
unbinding one, the repression below threshold is strong and diminishes only after
the equimolarity point. Our minimal model reproduces the phenomenon of crosstalk
that we introduced in section 2.2.4 for a circuit of miRNA-regulated genes (ceRNA
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effect). Indeed, as can be seen in figure 4.1, the amount of free molecules of a target
whose total amount is kept constant, can be tuned by changing the total amount of
molecules of the second target. This indirect interaction is mediated by the binding
to the sequester.

In the following sections we will investigate in detail the behavior of the correla-
tion induced by this indirect interaction between the two targets.

4.2 Correlations between competitors with and with-
out extrinsic noise

The most important feature of this minimal model of molecular sequestration and
competition is the fact that it is fully under analytic control. This feature allows us
to study and characterize the coupling induced by the competition for the limiting
resource, without the need of numerical simulations. In the following sections we
will study this coupling in terms of the linear correlation and mutual information
between the two competing targets. We will show that the presence of an extrinsic
source of noise strongly influences the shape of the correlation and can lead to a
change in its sign.

4.2.1 Pearson correlation coefficient

In the previous section we showed that the competition for the common sequester
induces crosstalk between the two targets. Here, we continue the study of this
coupling by analyzing the correlation induced by this kind of interaction. For this
purpose, we first compute the Pearson correlation coefficient between the targets.
This estimator measures the linear correlation between two variables, in our case the
amounts of free molecules T1 and T2. It is defined as:

ρT1,T2 =
σT1T2

σT1σT2

, (4.19)

where σT1T2 is the covariance between T1 and T2 and σT1 , σT2 the standard
deviations of T1 and T2 respectively.
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Fig. 4.2 Pearson correlation coefficient between T1 and T2 as a function of T1T for different
values of the dissociation constants. T2T = 10 ST = 30. (A) K2 = 1.00 . (B) K1 = 1.00.
Adapted from [9].

Let us consider the case in which the total number of target molecules is bigger
than the one of the sequester. In this condition, almost all the sequesters are bound.
This means that an increase in the number of bound molecules of one target implies
a decrease of the number of bound molecules of the other target. As a consequence,
in this regime the induced correlation between the two targets is negative. The
Pearson correlation coefficient, as a function of the total amount of molecules of one
target, assumes a sigmoidal shape, ranging from 0 to an asymptotic value of negative
correlation, with the drop in proximity to the threshold, see figure 4.2. Focusing
on the profile of the Pearson correlation as a function of T1T , we observe that the
two dissociation constants have a different influence on it. Indeed, the dissociation
constant of the first target, K1, controls only the steepness of the drop: as K1 is
decreased the profile becomes steeper. Differently, the dissociation constant of the
second target, K2, sets the lower bound of the correlation. Indeed, by decreasing
K2, the asymptotic value that the correlation reaches for large values of T1T gets
closer to −1. Furthermore, as K2 is decreased, the drop becomes smoother and its
location less defined. This kind of profile is conserved upon varying the total amount
of molecules T2T of the second target. Indeed, figure 4.3 shows the contour plot of
the Pearson correlation coefficient as a function of both T1T and T2T . As can be seen,
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no local or global maxima are present and the anticorrelation between the targets
increases with their total amount, asymptotically reaching the value −1.

Let us now explore the dependence of the correlation on the two dissociation
constants, by keeping fixed the total amounts of molecules T1T and T2T . Let us focus
on the case in which the total amount of molecules of one target and its dissociation
constant are fixed (e.g. K1 and T1T fixed). By varying the dissociation constant of the
other target (in this case K2), the correlation profile can be non monotonic, displaying
a minimum, see figure 4.4 (A). We shall refer to the value of the dissociation constant
that minimizes the Pearson correlation as K2

∗. As can be seen in figure 4.4 (B), the
value of K2

∗ depends linearly on the fixed dissociation constant of the competing
target (K1) and the slope is set by the total amount of target molecules T2T . Keeping
ST fixed, the slope decreases as T2T increases and vanishes when T2T = ST . In the
regime in which T2T ≥ ST , the correlation profile is monotonic as a function of the
dissociation constant and its lowest value is reached for vanishing K2, regardless of
the value of K1. This means that the minimum of the correlation is obtained for the
highest affinity between the second target and the sequester.

Besides the slope of the linear dependence on K1 of the minimum position
K2

∗, the total amount of target molecules T2T influences also the offset. When
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T1T + T2T ≤ ST at K1 = 0, the correlation is minimized by a finite value of K2
∗.

Conversely, for T1T +T2T > ST the offset disappears and a vanishing K1 corresponds
to a vanishing K2

∗. In this region of the parameters, the minimum of the correlation
is reached for the highest affinity of both the targets. The existence of the offset in
the position of K2

∗ as a function of K1 indicates the presence of two sub-regimes
characterized by a different joint dependence on the two dissociation constants K1

and K2. What determines these regimes is the total number of target molecules
in the system T1T +T2T , compared to the total number of sequester molecules ST .
When the offset is present, for T1T +T2T ≤ ST , there are always some free molecules
of the sequester and both the targets are in the repressed state. Nonetheless, these
two targets can be correlated and their correlation presents a global minimum as a
function of the two dissociation constants, see figure 4.5 (A,B). The presence of a
global minimum for finite values of the dissociation constants justifies the existence
of the offset in the 1-dimensional plots. For systems in which the number of target
molecules is small, the global minimum can be located at relatively large values of
the dissociation constants, this meaning a condition of weak interaction between the
targets and the sequester.

As an example, let us consider again figure 4.5. In the first regime, for the case
in which T1T = T2T = 15 and ST = 30 (Fig. 4.5B), we see that the minimum of
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Fig. 4.5 Contour plot of the Pearson correlation coefficient between T1 and T2 as a function
of K1 and K2, ST = 30. (A) T1 = 15 and T2 = 14. (B) T1 = T2 = 15. (C) T1 = 15 and T2 = 16.
(D) T1 = 15 and T2 = 31. Adapted from [9].
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the correlation is present and is obtained for values of the dissociation constants
for which the average number of free target is low ⟨T1⟩ = ⟨T2⟩ ≃ 2 and ⟨S⟩ ≃ 4.
Moving into the second regime, where T1T +T2T ≥ ST (Fig. 4.5C), we see that there
is no global minimum and correlation is lower for lower values of the dissociation
constants. Nonetheless, even when the global minimum is absent, considering slices
of the contour plot (e.g. for K1 fixed) the correlation still presents a minimum
if T2T < ST . Finally, when T2T > ST , the local minimum in the 1-D plot of the
correlation as a function of K2 is lost and the minimal value of correlation is reached
for vanishing K2.

4.2.2 Mutual information

By characterizing the Pearson correlation coefficient, we limited our study to the
linear correlation between the two targets. In order to investigate more deeply
this coupling, we can compute the mutual information between them. Mutual
information (MI) is a measure of the amount of information that can be obtained on
one quantity, normally unaccessible, by measuring another quantity which is instead
experimentally accessible. Differently from the Pearson correlation coefficient, MI
is able to capture the non-linear behavior of the interaction between two correlated
quantities. It is then considered more reliable in order to infer the whole properties
of the experimentally unaccessible quantity.

MI is defined as the Kullback-Leibler divergence between the joint probability
of two random variables and the product of their marginal probabilities [140]:

I(X ,Y ) = DKL(P(x,y)||P(x)P(y)) = ∑
x,y

P(x,y) log
P(x,y)

P(x)P(y)
. (4.20)

It measures the statistical dependence of the two variables X and Y , which are
assumed to be discrete. When the logarithm to base 2 is used, MI is measured in bits.
Moreover, this quantity is symmetric and always non-negative.

Given the above definition, the MI between the free amounts of molecules T1

and T2 of the two targets is:
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Fig. 4.6 Mutual information between T1 and T2 as a function of T1T for different values of
the dissociation constants. T2T = 10 ST = 30. (A) K1 = 1.00 . (B) K2 = 1.00 . Adapted from
[9].

I(T1,T2) = ∑
T1,T2

P(T1,T2) log
P(T1,T2)

P(T1)P(T2)
, (4.21)

where P(T1,T2) is the joint probability distribution, eq. (4.17), and P(T1) =

∑T2 P(T1,T2) and P(T2) = ∑T1 P(T1,T2) the marginal ones.

As we did for the Pearson correlation coefficient, we first compute the MI, eq.
(4.21), as a function of the total amount of molecules of one of the targets, namely
T1. As can be seen in figure 4.6, the MI presents a maximum that can either be
very narrow or extremely wide, resembling a plateau, depending on the values of
the two dissociation constants. In particular, keeping K2 fixed, a decrease of K1,
meaning a stronger affinity between the first target and the sequester, favors the
rise of the peak. This maximum gets closer to the threshold value (ST −T2T ) and
narrower as the value of the dissociation constant becomes smaller. Furthermore,
the maximal value of MI slightly decreases as K1 gets smaller. On the other hand,
keeping K1 fixed, a decrease of K2 makes the peak extremely wide, moves it towards
higher values of T1T and increases the maximal value of MI. This effect is similar
to what we showed for the Pearson correlation. Indeed, in this case the dissociation
constant K2 is the main regulator of the maximal amount of information that can be
achieved, while in the Pearson case it controlled the asymptotic value of correlation.
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In addition to that, also for the MI the drop becomes smoother as K2 is decreased,
while it becomes steeper as K1 is decreased. The main qualitative difference with the
behavior of the Pearson coefficient is the presence of the local maximum. Indeed,
we can directly compare the MI to the Pearson correlation, by assuming that the joint
probability distribution is a bivariate Gaussian. In this case, all the MI is enclosed in
the correlation and the relation that connects the two quantities is:

I(X ,Y ) =−1
2

log(1−ρ
2
X ,Y ) . (4.22)

By exploiting eq. (4.22) we plotted the Pearson correlation in units of MI and
compared it to the real MI. The results are shown in figure 4.7. We can see that the
profile of the two quantities is similar, but the peak of MI is not reproduced. The
position of this peak, in terms of T1T , scales linearly with K1 and almost linearly
with the inverse of K2. Moreover, the value of this peak is almost stationary as K1 is
varied (a part from the case of very small K1), while it decreases when K2 gets bigger,
see figure 4.8. The reason of the existence of this peak can be related to the marked
non-Gaussianity of the joint target distribution after saturation (T1T +T2T > ST ). In
this region the distribution gets strongly peaked, a scenario which has been related
to instances of MI lower than the one predicted by Gaussian approximations [141].

As an additional comparison between the quantities, in figure 4.9 we show the
contour plots representing the value of MI and correlation (in MI units) as a function
of the total amount of both the targets. In this 2-D case, no global or local maxima
are found, neither for the correlation, nor for the mutual information. Nonetheless,
we can recover the 1-D non-monotonic behavior of the MI by taking “slices” of the
contour plot with T2T fixed.

So far, we investigated the behavior of the MI as a function of the total amount
of molecules of the two targets. In the following, we will focus our attention on its
dependence on the value of the dissociation constants, keeping T1T and T2T fixed.
As in the case of the Pearson correlation, by keeping fixed one of the dissociation
constants (e.g. K1) and varying the other one (here K2) , the MI presents a maximum
for a finite value of K2, named K2

∗ (it was a minimum for the correlation). With
respect to the Pearson, the minum K2

∗ scaled linearly with the dissociation constant
K1. In this case, there is a nonlinear dependence for small values of K1, and a linear
dependence as K1 increases, see figure 4.10. The values of K2 corresponding to the
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Fig. 4.7 Comparison between the Mutual Information (MI), blue line, and the Pearson
correlation coefficient, orange line, (converted in MI units through eq. (4.22)). T2T = 10
ST = 30.
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maximum of MI and to the minimum of correlation are then different. This means
that the regions of optimal coupling identified by the two quantities are not exactly
the same. In addition to this difference, we notice that, in the mutual information
case, K1

∗ does not vanish when T1T > ST , as can be see in the contour plots of figure
4.11.

In conclusion, we showed that there are some important differences between
Pearson correlation and MI, even though the general behavior is quite similar. In
the following section, regarding the role of extrinsic noise, we will mainly focus on
the Pearson correlation coefficient. Nonetheless, we will show that in this case, the
difference between the two quantities is almost negligible.

4.2.3 Extrinsic noise and its effects on correlation

So far, we studied a minimal model composed of two target species that compete
for the same sequester. In this model the only source of noise was the one due
to the intrinsic fluctuations of the system. In this section, we investigate the role
played in this model by an extrinsic source of noise. In order to add this extrinsic
noise to the system, we follow the same approach introduced in section 3.2.2 for
the case with one target. In particular, we assume the total amount of sequester to
be described by the probability distribution P(ST ). This distribution is a discrete
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Gaussian defined as the discrete Gaussian kernel presented in section 3.2.1. Given
the steady-state solution of the master equation for a fixed ST , eq. (4.17), the full
solution in presence of extrinsic noise on the value of ST is obtained by using the law
of total probability. The probability distribution P(T1,T2) in presence of extrinsic
noise is then the superposition of single probability distributions obtained for a given
value of ST weighted by the probability of picking that value of ST :

P(T1,T2) =
∞

∑
ST=0

P(T1,T2|ST )P(ST ) . (4.23)

The conditional probability P(T1,T2|ST ) is the solution of the master equation
obtained for a constant ST , eq. (4.17). Given that ST ranges from 0 to infinity, in
presence of extrinsic noise, the minimal value of T1 and T2 is always 0 and the
distribution P(T1,T2) is then defined in the space 0 ≤ T1 ≤ T1T , 0 ≤ T2 ≤ T2T .

As a first result, we recover the smoothing of the threshold-like behavior of the
means already discussed in section 3.2.3.

The main goal of this analysis is the study of the correlation between the targets:
fluctuations in the total amount of sequester molecules positively correlate them.
Indeed, in systems that picked a low (high) value of ST , both the targets will tend
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to have more (fewer) free molecules. Such positive correlation counterbalances
the negative one induced by the competition and discussed in the previous section.
The negative interference between these two opposite sources of correlation can
lead to almost uncorrelated systems. Nonetheless, these two conflicting sources of
correlation have a different dependence on the dissociation constants and the total
abundances of targets. As a consequence, it is possible to identify regions of the
parameters space in which they are positively or negatively correlated. In particular,
following figure 4.12 (B), we can see that small extrinsic fluctuations reduce the
level of anticorrelation induced by the competition. If the extrinsic noise is increased,
the positive correlation can counterbalance the negative one, resulting in a global
correlation close to zero. Finally, a further increase of the extrinsic fluctuations leads
to a positive global correlation, with a maximum around the threshold point.

This behavior suggests that competition can be an effective way to obtain positive
correlation between the targets when the common resource is fluctuating.

Figure 4.13 shows that the MI and the Pearson correlation coefficient have almost
the same profile in presence of extrinsic noise. As a consequence, the discussion
above is valid also in case the MI is used to measure the coupling between the targets.

The presence of extrinsic noise influences not only the behavior of the corre-
lations, but also the shape of the probability distribution. Indeed, as discussed for
the case with one target, extrinsic fluctuations in the amount of the sequester can
give rise to bimodal distributions of the targets. Bimodality can be found in the joint
distribution P(T1,T2), but it is more common in the marginal probabilities, P(T1) and
P(T2). Figure 4.14 shows some examples of bimodality, both in the joint probability
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and in the marginals. The presence of bimodality in the marginal probabilities of the
two targets can be tuned by changing their total amount.

Figure 4.15 represents a phase diagram that indicates the regions of bimodality
of the two marginals for different levels of extrinsic noise and with K1 = K2. The in-
teresting aspect is that the crosstalk between the competitors allows bimdality on one
target to be tuned by the total amount of molecules of the other target. Furthermore,
there are regions in which both the marginal probabilities are bimodal, regions with
only one bimodal distributions and regions in which both the distributions are uni-
modal. The interplay between the competitors plays then a crucial role in stabilizing
specific phenotypes. We will study this effect in more detail in the following sections
for the model of miRNA-mediated regulation with two target genes competing for
the same miRNA.

4.3 Model of competition between two mRNAs tar-
geted by the same miRNA

In the previous section we studied a minimal model in which two target species
compete for the same sequester. We exploited the complete analytic control to
investigate the behavior of the correlations and the shape of the distribution, both
in presence and absence of extrinsic fluctuations in the amount of sequester. We
showed that the competition negatively correlates the targets, while fluctuations of
the sequester positively correlate them. Furthermore, we pointed out that, in presence
of extrinsic noise, the crosstalk between the targets is able to tune the shape of the
distribution, from unimodal to bimodal and vice versa. In this section we will define
a model of miRNA-mediated regulation similar to the one described in section 3.4,
but with the addition of a second target species competing for the same miRNA. We
will study this system through analytic approximations and numerical simulations,
focusing on the role of the interplay between competition and extrinsic noise in
stabilizing different phenotypes.
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Fig. 4.16 MiRNA-target interaction network with two competing targets. The miRNA and the
target mRNAs are transcribed from independent genes with rate kS, kR1 and kR2 respectively
and degrade with rate gS, gR1 and gR2 . The interaction is governed by the effective parameter
g. The target mRNAs are always degraded after binding, while the miRNA can be recycled
with probability 1−α . Free mRNAs are translated with rate kP1 and kP2 into proteins which
can in turn degrade with rate gP1 and gP2 . Adapted from [10].

4.3.1 Introduction to the model and approximate analytic solu-
tion

The stochastic model of miRNA-mediated regulation that we here describe, corre-
sponds the one already introduced by Bosia et al. in [7] and discussed in section
2.2.4, with only one miRNA and two target genes.

The circuit representing the model is depicted in figure 4.16. The molecular
species involved are miRNAs (S), two different messenger RNAs (R1 and R2) and
proteins (P1 and P2), product of the translation of the two target mRNAs. MiRNAs
and the target mRNAs are transcribed from independent genes. For simplicity we
neglect all the intermediate reactions leading to the synthesis of mRNAs and miRNAs.
We then assume that they are produced at constant rates: kR1 and kR2 for the first and
second target respectively, and kS for the miRNA. MiRNAs and mRNAs can also be
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degraded with rates gS for the miRNA and gR1 and gR2 for the target mRNAs. The
reactions associated to these processes are:

/0
kR1−−⇀↽−−
gR1

R1 , /0
kR2−−⇀↽−−
gR2

R2 , /0
kS−⇀↽−
gS

S . (4.24)

MiRNAs bind the target mRNAs forming a complex that can be subsequently
degraded. This complex is assumed to reach equilibrium faster than the other species,
then the interaction between the miRNA and the first and second target mRNA is
quantified by the effective parameters g1 and g2 respectively. The strength of the
miRNA-target coupling, in terms of the association and dissociation rates, together
with the complex degradation rate, are contained in these parameters. The formation
of the miRNA-mRNA complexes then reads:

R1 +S
g1−→ R1S , R2 +S

g2−→ R2S . (4.25)

While mRNAs are assumed to be always degraded as a consequence of seques-
tration, miRNAs can be recycled with probability 1−α , also called catalyticity:

R1S 1−α−→ S , R2S 1−α−→ S . (4.26)

Whenever the mRNAs are not bound to miRNAs, they can be translated by
ribosomes into proteins with translation rate kP1 for the first target and kP2 for the
second one. As assumed for the other molecular species, proteins can be degraded
by mass-action kinetics with rates gP1 and gP2 . These processes read:

R1
kP1−→ R1 +P1 , R2

kP2−→ R2 +P2 . (4.27)

P1
gP1−→ /0 , P2

gP2−→ /0 . (4.28)

As done for the case of a single target, this effective model can be studied by
a deterministic approach, investigating the behavior of the concentrations of the
molecular species involved. The rate equations associated to this model are:
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d[Ri]

dt
= kRi −gRi[R]−gi [Ri] [S] , (4.29)

d[S]
dt

= kS −gS[S]−α

2

∑
i=1

gi [Ri] [S] , (4.30)

d[Pi]

dt
= kPi[Ri]−gPi[Pi] , (4.31)

where i assumes value 1 and 2. This system of equations can be easily solved at
the steady state, obtaining the concentrations of miRNA, mRNAs and proteins.

Since our goal is the study of how the shape of the probability distribution is
influenced by the competition between the targets, we need to take into account
the stochastic fluctuations of the system. The complete master equation describing
the time evolution of the probability distribution of observing n = (R1,R2,S,P1,P2)

molecules is:

dP(n, t)
dt

=
2

∑
i=1

kRi

[
P(Ri −1, t)−P(n, t)

]
+

2

∑
i=1

gRi

Vcell

[
(Ri +1)P(Ri +1, t)−Ri P(n, t)

]
+

kS

[
P(S−1, t)−P(n, t)

]
+

gS

Vcell

[
(S+1)P(S+1, t)−SP(n, t)

]
+

2

∑
i=1

kPiRi

Vcell

[
P(Pi −1, t)−P(n, t)

]
+

2

∑
i=1

gPi

Vcell

[
(Pi +1)P(Pi +1, t)−Pi P(n, t)

]
+

2

∑
i=1

giα

V 2
cell

[
(S+1)(Ri +1)P(Ri +1,S+1, t)−SRi P(n, t)

]
+

2

∑
i=1

gi(1−α)S
V 2

cell

[
(Ri +1)P(Ri +1, t)−Ri P(n, t)

]
, (4.32)
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where the rates have been rescaled due to the fact that the variables are now
numbers of molecules instead of concentrations. Indeed, we have Ri = [Ri]Vcell ,
S = [S]Vcell and Pi = [Pi]Vcell , where Vcell is the volume of the cell in which reactions
occur.

An approximate steady-state analytic solution of the above master equation can be
obtained by using again the van Kampen’s system-size expansion described in section
3.4.2. In this way, the steady-state probability distribution P(n) is approximated by a
multivariate Gaussian. Together with the analytic approach, we performed numerical
simulations through the SSA introduced in section 3.4.3.

As a first result of this analysis, all the theoretical predictions related to the
crosstalk between targets described in section 2.2.4 are recovered. In the following
section this crosstalk will be investigated in presence of extrinsic noise.

4.3.2 Extrinsic noise: bimodality can be tuned by the interplay
between targets

As described in section 3.5.1, extrinsic noise is added to the system in terms of a
fluctuating miRNA transcription rate kS. The probability distribution of this rate,
P(kS), is the Gaussian distribution of equation (3.62), with mean ⟨kS⟩ and variance
σ2

kS
, and the level of extrinsic noise is quantified by the coefficient of variation:

CV = σkS/⟨kS⟩.

The steady-state probability distribution P(R1,R2,S,P1,P2) describing the system
with extrinsic noise is obtained by implementing the law of total probability. Indeed,
we perform a superposition of probability distributions conditioned on a fixed value
of kS, weighted by the probability P(kS):

P(R1,R2,S,P1,P2) =
∫

P(kS)P(R1,R2,S,P1,P2|kS)dkS , (4.33)

where the conditional probability distribution P(R1,R2,S,P1,P2|kS) is obtained
as solution of the master equation, eq. (4.32), for any given kS, through the van
Kampen’s approximation.

As a result of the fluctuating kS, we find that the marginal probability distributions
of the two target mRNAs (and corresponding proteins) can display two distinct
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Fig. 4.17 (A) Phase diagram that identifies the bimodality region of the marginal probability
of target R1 for a fixed level of extrinsic noise, small miRNA/target 1 interaction strength
g1 = 1.2× 102 nM−1 min−1 and different miRNA/target 2 interaction strengths g2, as a
function of the transcription rates kR1 and kR2 . (B) Phase diagram that identifies the bimodality
region of the marginal probabilities of target R1 (yellow) and R2 (light blue) for fixed values
of g1 and g2 and a fixed level of extrinsic noise, as a function of the transcription rates kR1

and kR2 . Adapted from [10].
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phenotypes. This bimodality at the population level is influenced by the relative
expression of the two targets and by the strength of their coupling with the miRNA.
In order to better characterize these trends, let us consider the phase diagram of
figure 4.17 (A). This plot shows the region of bimodality of the marginal probability
of target R1 as a function of the transcription rates kR1 and kR2 , for a fixed level of
extrinsic noise, a fixed g1 and different interaction strengths g2. For the particular
value of g1 chosen, in absence of extrinsic noise, the distribution of R1 does not
present a bimodal profile for any value of the parameters space kR1-kR2 . As can be
seen, by increasing the transcription rate kR2 , the range of bimodality of P(R1) shifts
towards lower values of the transcription rate kR1 . This trend follows the one of the
threshold point. When kR2 is increased, more miRNAs are sponged away by R2 and
a lower amount of R1 is needed to cross the threshold, whose location moves towards
a lower value of kR1 . The width of the range of bimodality of P(R1) is controlled
by the interaction strength g2 of the second target with the miRNA, with respect to
the fixed value of g1. If g2 > g1, miRNAs are sponged away with high frequency
by R2 and the net effect is the reduction of the amount of miRNAs that can bind
R1. As a consequence, the range of bimodality shifts and increases its width when
kR2 is increased. Conversely, if g2 < g1, the second target R2 interacts with lower
frequency with the miRNA, R1 is slightly derepressed and the net effect is a shrink of
the range of transcription rates kR1 for which bimodality is present, as the expression
of R2 is increased.

The emerging picture is that, for a given transcription rate kR1 , the distribution of
target R1 can be tuned from unimodal to bimodal and from unrepressed to repressed
and vice versa through the expression of target R2. Figure 4.18 presents an example
of this phenomenon and shows also the good agreement between the analytic approx-
imation and numerical simulations. The presence of extrinsic noise is fundamental,
because it allows to obtain this cross regulation effect even when the interaction
strengths are small.

This interplay between targets in presence of extrinsic noise, gives rise to a
heterogeneous scenario. Indeed, depending on the level of expression of the two
targets, their marginal distributions can be both bimodal or unimodal, but the case in
which one distribution is bimodal and the other one is unimodal is also possible, see
figure 4.17 (B). As a consequence, this phenomenon should be taken into account
when dealing with biological systems in which fine tuning or stabilization of specific
phenotypes are required.
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Fig. 4.18 Explanatory example of how it is possible to modulate target 1 distribution increas-
ing the expression of target 2 for small interaction strength between miRNA and targets. The
extrinsic noise is fixed. Adapted from [10].

4.4 Implications and conclusions

In this chapter we investigated the coupling induced by the competition between
two targets of the same sequester. By considering a minimal model under analytic
control, we studied the behavior of the correlation between the competitors in terms
of Pearson correlation coefficient and mutual information. In case of pure intrinsic
noise, we showed that the two quantities convey almost the same message, with
some slight but non-trivial differences. The Pearson coefficient highlighted the fact
that the competition between the targets induces a negative correlation between
them. Furthermore, regions of optimal anticorrelation can be found in the space
of the two dissociation constants. Extrinsic noise was then added to the system,
in terms of a fluctuating total amount of sequester molecules. In this case, we
showed that the fluctuations of the common resource induce a positive correlation
between the competitors. This positive correlation tends to counterbalance the
negative one induced by competition. As a consequence, depending on the level
of extrinsic noise, regions of positive, negative or vanishing correlation can be
identified. After the characterization of the minimal model, we turned to study
a model of miRNA-mediated regulation with two genes competing for the same
miRNA. The solution of the master equation associated to the model was obtained
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thorough an analytic approximation and numerical simulations were performed.
With this system we mainly focused on the appearance and tuning of bimodality in
the marginal probabilities of the targets, in presence of extrinsic noise. We showed
that the competition for the same miRNA allows to tune the profile of the marginal
distribution of one target by changing the expression level of the other target. This
interplay between extrinsic noise and competition leads to a level of cross regulation
between the targets that goes beyond mean values and has to be taken into account
together with the correlation counterpart. In particular, these aspects can be of
fundamental importance in the framework of miRNA-mediated regulation and cell
differentiation, when coupled to other downstream mechanisms able to stabilize the
phenotypes.



Chapter 5

Bridging the minimal model to the
miRNA-mediated regulation

In chapter 3 we introduced and studied a minimal model of molecular sequestration.
We derived the analytic solution of the corresponding master equation and discussed
the role played by the threshold response and the extrinsic noise in giving rise
to bimodal distributions. Afterwards, we studied a more complex model, based
on molecular sequestration, that described the process of miRNA-mediated gene
regulation. With this model, we characterized the presence of bimodal distributions
as a function of the parameters and in relation to some source of extrinsic noise,
obtaining interesting results that could be in principle experimentally validated.

With respect to the minimal model, the one describing miRNA-mediated gene
regulation took into account also the processes of production and spontaneous
degradation of the species involved, relaxing then the constraint on the conservation
of the total number of molecules. In this chapter we will briefly analyze some slightly
modified variations of the minimal model, in order to build the bridge towards the
model of miRNA-mediated gene regulation. The addition of some elements that
make the minimal model more similar to the complete one, will lead to non-trivial
results, like the disappearance of the threshold behavior.
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5.1 Stochastic approach to the model with produc-
tion and degradation of T

In order to better understand the role of fluctuations originated by the processes
of production and degradation, we modify the minimal model allowing only one
species (T ) to be produced and degraded, respectively with rate kT and gT , while
keeping constant the total amount of molecules of the other species. The reactions
that define the model are:

T +S
k+
⇌
k−

T S , (5.1)

/0
kT
⇌
gT

T , (5.2)

ST = S+T S = cost . (5.3)

In this model only one conservation law is present, as a consequence the corre-
sponding master equation has two variables and reads:

dP(T,S)
dt

= kT P(T −1,S)+gT (T +1)P(T +1,S)+

+ k+(T +1)(S+1)P(T +1,S+1)+ k−(T S+1)P(T −1,S−1)+

− [kT +gT T + k+T S+ k−T S]P(T,S) . (5.4)

By exploiting the conservation law, eq. (5.3), the master equation can be written
in terms of T and S only:

dP(T,S)
dt

= kT P(T −1,S)+gT (T +1)P(T +1,S)+

+ k+(T +1)(S+1)P(T +1,S+1)+ k−(ST −S+1)P(T −1,S−1)+

− [kT +gT T + k+T S+ k−(ST −S)]P(T,S) . (5.5)
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In this network of interactions detailed balance holds. Indeed, let’s consider a
closed loop that links together four different states of the system: the clockwise
product of the transition probabilities is equal to the counterclockwise one, then no
probability flows are present at the steady state:

k−(ST −S+1)kT k+(T +1)SgT T
kT k−(ST −S+1)gT (T +1)k+T S

= 1 .

Detailed balance implies that each reaction is balanced by its reverse one, then
the following relations hold:

kT P(T −1,S) = gT T P(T,S) , (5.6)

k−(ST −S+1)P(T −1,S−1) = k+T SP(T,S) . (5.7)

By summing equation (5.6) over all possible values of S we obtain a relation that
can be used to recursively write the marginal probabilities for T :

ST

∑
S=0

kT P(T −1,S) =
ST

∑
S=0

gT T P(T,S) ,

P(T ) =
kT

gT

1
T

P(T −1) . (5.8)

Then:

P(1) =
kT

gT
P(0) ,

P(2) =
kT

gT

1
2

P(1) ,

...

P(T ) =
kT

gT

1
T

P(T −1) .
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Which leads to:

P(T ) =
(

kT

gT

)T 1
T !

P(0) . (5.9)

P(0) is given by the normalization of the probability distribution and exploiting
the power series expansion of the exponential ex = ∑

∞
n=0 xn/n! it can be written as:

P(0) =
1

∑
∞
T=0

(
kT
gT

)R
1

T !

= e−
kT
gT .

The marginal probability of R assumes then the Poisson form:

P(T ) =
(

kT

gT

)T 1
T !

e−
kT
gT . (5.10)

At the steady state the dynamics of the species T is simply governed by the
birth and death process, the binding and unbinding with S have no influence and the
average value of T is simply < T >= kT/gT .

By using equation (5.6) to obtain the expression for T P(T,S) and substituting it
in equation (5.7) we obtain:

P(T −1,S) =
(

gT k−
kT k+

)
ST −S+1

S
P(T −1,S−1) . (5.11)

Through this relation, keeping R fixed, we can write:

P(T,1) =

(
gT k−
kT k+

)
ST P(T,0) ,

P(T,2) =

(
gT k−
kT k+

)
ST −1

2
P(T,1) .,

...

P(T,S) =

(
gT k−
kT k+

)
ST −S+1

S
P(T,S−1) .

Which, recursively on S, leads to:
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P(T,S) =
(

gT k−
kT k+

)S ST !
S!(ST −S)!

P(T,0) =
(

gT k−
kT k+

)S(ST

S

)
P(T,0) . (5.12)

By dividing equation (5.12) by the marginal probability P(T ), we obtain the
conditional probability of S given T :

P(S|T ) =
(

gT k−
kT k+

)S(ST

S

)
P(0|T ) . (5.13)

As a conditional probability, P(S|T ) satisfies the normalization condition ∑
ST
S=0 P(S|T )=

1. By exploiting the binomial identity (a+b)n = ∑
n
k=0
(n

k

)
an−kbk, we can write the

explicit expression for P(0|T ):

P(0|T ) =
ST

∑
S=0

(
ST

S

)
1ST−S

(
gT k−
kT k+

)S

=

(
gT k−
kT k+

+1
)ST

. (5.14)

The explicit expression of the conditional probability is then:

P(S|T ) =
(

gT k−
kT k+

)S(ST

S

)(
gT k−
kT k+

+1
)−ST

=

=

(
k−

⟨T ⟩k+

)S(ST

S

)(
k−

⟨T ⟩k+
+1
)−ST

. (5.15)

The joint probability P(R,S) can be recovered by multiplying the conditional
probability P(S|R) and the marginal probability P(R), eventually obtaining:

P(T,S) = P(S|T )P(T ) =
(

gT k−
kT k+

)S(ST

S

)(
gT k−
kT k+

+1
)−ST

(
kT

gT

)T 1
T !

e−
kT
gT =

=

(
k−

⟨T ⟩k+

)S(ST

S

)(
k−

⟨T ⟩k+
+1
)−ST

⟨T ⟩T 1
T !

e−⟨T ⟩ . (5.16)

This is the solution of the master equation, eq. (5.5). As can be seen, the
conditional probability P(S|T ) depends on the average value of T only and then
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coincides with the marginal probability P(S). The joint probability is equal to the
product of the marginal probabilities, T and S are therefore independent variables
at the steady state. The coupling caused by the titrative interaction is found in
the dependence on ⟨T ⟩ of P(S). In conclusion, for this system the threshold-like
behavior of the mean of T is completely disrupted, as it increases linearly with kT

(⟨T ⟩ = kT/gT ). In conclusion, this minimal model extended with the addition of
stochastic production and degradation of one species cannot be considered a step
forward towards the complete model of miRNA-target interaction.

5.2 Mean field

The above result showed that the connection between the minimal model and the
model of miRNA-mediated gene regulation is not trivial. In order to have a quick
insight on the behavior of the mean of T , we will here perform a mean field analysis
over a series of slightly modified variations of the minimal model.

5.2.1 Model with production and degradation of one species

We here report the steady state mean field solution of the minimal model in which
one species is produced and degraded.

The rate equations for the concentrations of T and S are:

d[T ]
dt

= kT −gT [T ]− k+[T ][S]+ k−[T S] , (5.17)

d[S]
dt

=−k+[T ][S]+ k−[T S] . (5.18)

Exploiting the only conservation law that holds in this system ([ST ] = [S]+ [T S]),
at the steady state, equation (5.17) gives:

[S] =
[ST ]k−

k−+[T ]k+
. (5.19)

Substituting equation (5.19) in (5.18), after some algebra we obtain:
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[T ]2 − k+kT − k−gT

k+gT
[T ]− k−kT

k+gT
= 0 . (5.20)

The only acceptable solution of (5.20) is:

2[T ] =
k+kT − k−gT

k+gT
+

√(
k+kT − k−gT

k+gT

)2

+4
k−kT

k+gT
. (5.21)

Which can be simplified, obtaining the result expected from the solution of the
master equation, eq. (5.5):

[T ] =
kT

gT
. (5.22)

5.2.2 Model with production and degradation of both the species

We here check the effect of having both the species produced and degraded.

The rate equations for the concentrations of T , S and T S are:

d[T ]
dt

= kT −gT [T ]− k+[T ][S]+ k−[T S] , (5.23)

d[S]
dt

= kS −gS[S]− k+[T ][S]+ k−[T S] , (5.24)

d[T S]
dt

= k+[T ][S]− k−[T S] . (5.25)

Equation (5.25) can be easily solved at the steady state as a function of [T ][S]:

[T S] =
k+
k−

[T ][S] . (5.26)

The substitution of equation (5.26) in (5.23) and (5.24) decouples T and S in
both the equations, giving:

[T ] =
kT

gT
, (5.27)
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[S] =
kS

gS
, (5.28)

[T S] =
k+kT kS

k−gT gS
. (5.29)

As a result, also in this case the threshold-like behavior is disrupted.

In Buchler and Louis [1] a threshold-like behavior was found by adding to this
model the degradation of the complex T S.

5.2.3 Model with production and degradation of both the species
and instantaneous degradation of the complex

By assuming an instantaneous degradation of the complex T S, the rate equations
that describe the system are:

d[T ]
dt

= kT −gT [T ]− k+[T ][S] , (5.30)

d[S]
dt

= kS −gS[S]− k+[T ][S] . (5.31)

By imposing the steady state and solving the system of equations with respect to
[T ] we obtain:

2[T ] =
k+kT −gT gS − kSk+

k+gT
+

√(
k+kT −gT gS − kSk+

k+gT

)2

+4
kT gS

k+gT
. (5.32)

In the limit of k+ → ∞ we have:

[T ] =
kT − kS

gT
, (5.33)

which shows the presence of a threshold in correspondence of kT = kS, with [T ]
increasing linearly with kT after that point.
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5.2.4 Model with production and degradation of both the species
and instantaneous degradation of the molecule of T in the
complex

In this variation of the model we assume that both the species are produced and
degraded and that the molecule of T is instantaneously degraded after binding in the
complex. Molecules of S are instead completely recycled (catalytic reaction). The
rate equations are:

d[T ]
dt

= kT −gT [T ]− k+[T ][S] , (5.34)

d[S]
dt

= kS −gS[S] . (5.35)

By solving the system at the steady state we obtain:

[S] =
kS

gS
, (5.36)

[T ] =
kT gS

gT gS + k+kS
. (5.37)

Despite the degradation of the T molecule, the complete catalyticity of the
reaction prevents the arising of a threshold-like behavior.

5.2.5 Model with production and spontaneous and binding-induced
degradation of T

We here assume that the species T is produced and degraded, both spontaneously
and induced by the binding with S. The total amount of molecules of S is fixed,
giving the conservation law [ST ] = [S]+ [T S].

If the degradation of T is instantaneous upon binding with S, the concentration
[S] is always equal to [ST ] and the system is described by a single rate equation for
[T ]:
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d[T ]
dt

= kT −gT [T ]− k+[T ][ST ] . (5.38)

Which at the steady state gives:

[T ] =
kT

gT + k+ST
. (5.39)

Therefore, there is no threshold-like behavior in case of instantaneous degradation
of T in the complex.

If the degradation of T in the complex is not instantaneous, but happens with a
finite rate g, the system is described by the equations:

d[T ]
dt

= kT −gT [T ]− k+[T ][S]+ k−[T S] , (5.40)

d[S]
dt

=−k+[T ][S]+ k−[T S]+g[T S] . (5.41)

By imposing the steady state and solving the system with respect to [T ] we
obtain:

2[T ] =
k+kT − k−gT −ggT − k+ST g

k+gT
+

√(
k+kT − k−gT −ggT − k+ST g

k+gT

)2

+4
kT (k−+g)

k+gT
.

(5.42)

This system was already solved by Mukherj and coworkers [4] who demonstrated
the presence of the threshold in kT = g

gT
ST .

5.2.6 Conclusions

In conclusion, if production and spontaneous degradation are present, the degradation
of the complex is essential to obtain a threshold response. Indeed, the threshold-like
behavior is restored either in case of degradation of the entire complex or in case of
not instantaneous degradation of T in the complex with total recycle of S.



Chapter 6

Experimental analysis

So far, we presented the results of our theoretical study regarding the steady state of
systems governed by the mechanism of molecular sequestration. The biological moti-
vation of this analysis was a better understanding of the process of miRNA-mediated
gene regulation. On this basis, we first performed a study aimed at characterizing
the appearance of two differentially expressed phenotypes in relation to the presence
of some extrinsic source of noise. We considered a minimal model under analytic
control, then a more complex model of miRNA-target interaction, both with just one
sequester species (miRNA) and one target species (mRNA). We demonstrated that
bimodal distributions of the target are enhanced by a source of extrinsic noise on
the sequester. In particular, we showed that the extrinsic noise can compensate for a
low miRNA-mRNA coupling in order to obtain differentially expressed phenotypes
across a population of cells.

In addition to this study, we investigated the crosstalk and correlations induced
by the competition between two targets of the same sequester, both in presence and
absence of extrinsic noise. We again performed this analysis first in a minimal model
with two molecular species that bind to the same sequester, then in the model of
miRNA-target interaction with two different mRNAs that are regulated by the same
miRNA. The minimal model allowed us to compute analytically the steady-state
correlation between the targets and characterize its behavior as a function of the
parameters. We showed that the competition for the common resource induces a
negative correlation between the targets, while fluctuations of the amount of sequester
positively correlate them. Finally, in the model of miRNA-mediated regulation, we
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described the role played by the crosstalk between the targets in stabilizing or
preventing bimodal phenotypes.

Keeping in mind the biological motivation of the study, these theoretical results
suggest some experimental strategies that can be useful to better understand how
miRNAs influence cell-to-cell variability and how they can couple their target genes.
In the following sections, we will present two experiments that we designed in order
to investigate the subjects mentioned above. These experiments have been performed
in a wet cell biology lab and the preliminary results obtained will be described in the
following sections as well.

6.1 Flow cytometry experiments on bimodality and
cell cycle with preliminary results

This first experiment is aimed at exploring in vitro the role played by the extrinsic
noise in the rise of bimodal distributions of miRNA targets. It is based on the
study of the expression distributions of a synthetic target of a miRNA that is in turn
endogenous of the cell line used. The heterogeneity of the cells with respect to cell
cycle is assumed as an extrinsic source of noise and measurements are performed
at the cytofluorimeter. In the following sections, we will describe in detail the idea
and motivation behind this experiment, we will illustrate the experimental setup and
finally present preliminary data, together with some open questions.

6.1.1 State of the art

The theoretical study that we developed characterizes the presence of bimodal
distributions in the free amount of a miRNA target. This study was inspired by the
work by Bosia and coworkers [8], in which the presence of bimodal distributions
was shown in vitro in a synthetic circuit made of two exogenous genes coding
for fluorescent proteins, engineered to be targets of an endogenous miRNA. The
experimental setup of this work was already presented in section 2.2.5 and we refer
to it for a detailed description. Nevertheless, in the following we will briefly review
it, in order to present more clearly the state of the art about miRNA targets bimodal
distributions.
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The main goal of the experiment was not to investigate the presence of differ-
entially expressed phenotypes, but to characterize the behavior of crosstalk and
correlations originated by the competition for the same miRNA. For this purpose,
two bidirectional plasmids were built, each of which coding for two different fluo-
rescent proteins. One of the two genes present on each plasmid was engineered in
order to contain on its 3’UTR a fixed number (1, 4 or 7) of miRNA binding sites for
the miRNA miR-20a. The other gene was left unchanged. The number of miRNA
binding sites modulates the miRNA-target interaction strength. The 16 possible
combinations of the two plasmids, including the case with 0 binding sites, were
used to probe different crosstalk conditions between the two artificial targets. The
plasmids were cotransfected in mammalian cells (HEK 293) which endogenously
express the miRNA miR-20a. At the steady state, single-cell measurements of the
expression of the two targets across the entire population were performed through
flow cytometry. In addition, the constitutive expression of each target gene was
monitored by measuring the expression of the second gene of each plasmid, the one
not regulated by the miRNA. As a result of these measurements, the expression dis-
tributions of the two targets, for a given constitutive expression, were reconstructed.
This technique allowed to discover the presence of bimodal distributions in certain
ranges of constitutive expression. The presence of bimodality was characterized in
relation to the intensity of the interaction strengths of the two targets. In particular,
in a fixed range of constitutive expression above threshold, it was shown that an
increase of the number of miRNA binding sites, i.e. of the interaction strength,
induces the rise of a bimodal distribution. Moreover, it was observed that an indirect
decrease of the coupling through a stronger competitor, disrupts bimodality.

These observations suggest a possible way to verify the role played by the
extrinsic noise in this system. The point is to identify this source of extrinsic noise
and find a way to modulate it. The cotransfection experiments described above were
performed in a population of identical cells. Nonetheless, each cell during its life
undergoes a series of different phases (named G0, G1, S, G2, M), namely the cell
cycle, that lead to cell division. During the cell cylce, the cell increases its size
and the number of organelles (like ribosomes), duplicates the chromosomes and the
expression of many of its genes is modulated.

In the experiment described above, the cells were heterogeneous with respect
to the cell cycle. Moreover, the miRNA miR-20a that binds the synthetic target,
is known to be related to cell cycle [142–145] and, consequently, we expect its
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expression to vary over time. We here propose that such heterogeneity of the
population can represent a source of extrinsic noise for the system, since the level
of transcription of the miRNA will vary from cell to cell across the population. In
section 3.6.4, we showed that our theoretical results are consistent with extrinsic
fluctuation with a time scale comparable to the one of the cell cycle. Following this
idea, we need a way to modify the intensity of the extrinsic noise, in order to check
the predictions of our model. Presumably, we cannot increase the level of extrinsic
noise due to cell cycle, but we can decrease it in a rather simple way. Indeed, the
different phases can be monitored experimentally using cell-cycle markers, which
are fluorescent dyes that bind the DNA. The fluorescence of the dye indicates
the amount of DNA present in the cell, which is in turn related to the cell cycle.
Then, by measuring the fluorescence emission, the cell-cycle phase of each cell can
be determined. Given the assumption that the extrinsic noise originates from the
heterogeneity of the population, binning the cells according to their phase should
result in a reduction of the noise intensity.

In our experiment we will focus on just one target of miR-20a and we will then
use a single bidirectional plasmid. The population of cells will be transfected with
the synthetic target and its expression will be measured in single cells, at the steady
state, through flow cytometry, adding at that moment also the cell-cycle marker. The
experiment will be repeated with different numbers of miRNA binding sites on the
target. Finally, the distributions obtained from the heterogeneous population will be
compared to the distributions of sub-populations composed of cells belonging to the
same phase and the results will be compared to the predictions of the model.

In the following section we will describe in detail the experimental setup e present
some preliminary data.

6.1.2 Experimental setup

The bidirectional plasmid used in these experiments is the one developed by Mukherji
and coworkers in [4] and it is represented in figure 6.1. The plasmid hosts two genes
coding for fluorescent proteins that can be transcribed with the same probability due
to the bidirectional promoter. One gene codes for the fluorescent protein mCherry,
the other one for the enhanced yellow fluorescent protein (eYFP). The 3’UTR of the
gene coding for mCherry is engineered to host a fixed number (0, 1, 4, 7) of miRNA
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A

Fig. 6.1 Two-color fluorescent reporter system used in [8]. Bidirectional plasmid coding for
mCherry and eYFP. The mCherry gene is engineered to contain a fixed number N of binding
sites for the miRNA mir-20 on its 3’UTR. Adapted from [8].

binding sites for the miRNA miR-20a. The gene coding for eYFP is left without any
miRNA binding site and is used as control to monitor the constitutive expression of
the target, i.e. the expression in absence of regulation.

The bidirectional plasmid is transfected in epithelial cells from human kidney em-
bryo (HEK 293), which endogenously express the miRNA miR-20a. Transfections
are performed using the Effectene Transfection Reagent (QIAGEN).

Steady-state measurements of target expression across the population of cells are
performed 48 hours after transfection at the flow cytometer. Through this technique
the fluorescence of each single cell, both in the mCherry and eYFP channel, is
measured. The fluorescence intensity in the mCherry channel is a proxy for the
expression of the target, while the one in the eYFP channel is a proxy for the
constitutive expression.

Constitutive expression indicates the transcriptional activity of the system and
is proportional to the number of plasmids that enter each cell during transfection.
Indeed, more plasmids will correspond to a higher number of mRNAs transcribed
from the target and control gene.

At the moment of transfection we do not have any control on the number of
plasmids that enter the cells. However, this fact is an advantage, since it allows
us to investigate a wide range of values of transcriptional activity. The level of
transcriptional activity can be considered as a proxy for the target transcription rate,
kR in the model.

Immediately before performing measurements at the flow cytometer, cells are
stained with the DNA marker, in order to monitor their cell cycle phase. The marker
used is Hoechst 33342, a blue fluorescent dye used to stain DNA in living cells. The
emission spectrum of Hoechst does not interfere with the one of mCherry or eYFP
and its fluorescence intensity can be measured simultaneously to the one of the two
fluorescent proteins.
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After the measurement at the flow cytometer, the data collected for each cell are
then the fluorescence intensity in the mCherry, eYFP and Hoechst channels, together
with quantities related to the cell size and granularity. The latter measurements are
needed in order to discriminate alive cells from dead cells and debris.

In order to estimate the background fluorescence intensity in each channel, the
measurements described above have to be performed also with non-transfected cells.

Raw data are processed with the Matlab software (MathWorks, MA, USA),
subtracting background intensities and sorting cells according to their eYFP intensity
level.

6.1.3 Preliminary data

We here present some preliminary results that show how cell cycle influences the
expression distribution of the miRNA target.

We first show how different phases of the cell cycle can be discriminated by
using the DNA marker. The distribution across the entire cell population of the
fluorescence intensity (arbitrary units) in the Hoechst channel is reported in figure
6.2. Cells in phase G2 have approximately twice the amount of DNA of cells in
phase G0/G1. Looking at the distribution of the Hoechst, we can indeed notice two
peaks, one located at a value of intensity that is approximately two times bigger than
the one of the other peak. These two maxima correspond to cells in phase G0/G1 and
G2, while the region between them is populated by cells in phase S. The difference
in the relative abundance of cells in the three regions is due to the different amount
of time that the cells spend in each phase of the cycle. By sorting the cells according
to their fluorescence intensity in the Hoechst channel, we can select sub-populations
belonging to the desired phase. We will use this technique to study the effect of the
variability induced by cell cycle in the regulation of the exogenous target of miR-20a.

As an additional observation, we mention that a rough distinction between cells
in phase G0/G1 and cells in phase G2 can be obtained by discriminating them
according to their size. Indeed, selecting cells with small sizes is approximately
equivalent to select cells in G0/G1, while selecting bigger cells, is approximately
equivalent to select cells in G2, see figure 6.3.
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Fig. 6.2 Hoechst DNA stain to identify the cell cycle phases.

Fig. 6.3 Hoechst DNA stain histogram with small and big cells.
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Fig. 6.4 No miRNA binding sites. Scatter plots of the fluorescence intensity in the eYFP and
mChery channels, each dot is a cell. Cells are sorted according to their phase of the cycle.

The first experimental observation that can be made on the basis of our pre-
liminary data, is that the cell cycle does not influence the transcriptional activity
of the plasmid. The scatter plots in figure 6.4, where each dot is a cell, are the
result of fluorescence measurements performed on cells transfected with the plasmid
containing no miRNA binding sites on the mCherry gene. The y-axis indicates
the fluorescence of the target mCherry, while the x-axis indicates the one of the
control eYFP, proxy for the transcriptional activity of the construct. The left-most
plot in figure is obtained from the entire population, while the others are the result
of sub-populations homogeneous with respect to the phase of the cell cycle. As can
be seen, there is a linear dependence between mCherry and eYFP. This is expected,
since the miRNA does not regulate mCherry in this construct. In addition to that, we
see that this linear dependence is the same, regardless of the phase of the cell cycle
considered. This fact indicates that the expression of the construct is independent
from the cell cycle. As a consequence, in case of mCherry regulated by the miRNA,
differences among the phases should be attributed to the variability of the miRNA
expression along the cell cycle.

The scatter plots corresponding to the experiments in which the transfected
construct has 1, 4 or 7 miRNA binding sites on the mCherry gene, are shown in
figure 6.5. From these results we observe that the expression of miR-20a changes
with the cell cycle progression. For a given transcriptional activity (i.e. a given eYFP
level) the intensity of mCherry changes both depending on the miRNA repression
strenght (i.e. the number of miRNA binding sites present on the construct) and on
the cell cycle phase. Since we showed that the transfected plasmids do not change
expression with the cell cycle progression, the variability in mCherry expression
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Fig. 6.5 1, 4 and 7 miRNA binding sites. Scatter plots of the fluorescence intensity in the
eYFP and mChery channels, each dot is a cell. Cells are sorted according to their phase of
the cycle.

observed for the different cell cycle phases is the fingerprint of a variation in the
miR-20a expression.

As can be seen in the scatter plots of the entire population, the regulation operated
by the miRNA can induce bimodal expression distributions of the target, for a wide
range of transcriptional activity. As expected, this effect is more evident in case
of higher repression strength, i.e. 4 or 7 binding sites. In these conditions we can
discriminate a repressed peak, whose mean value seems to follow a threshold-like
behavior as a function of the transcriptional activity, and an unrepressed peak, whose
mean value is essentially linear as a function of the transcriptional activity. The cell
cycle influences the shape of the expression distributions. Indeed, in the scatter plots
corresponding to sub-populations homogeneous with respect to the phase of the
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cycle, the distribution is clearly different from the one of the whole population. In
particular, we see that by sorting according to the phase of the cycle, we can roughly
select cells belonging mostly to one of the peaks of the population distribution. This
seems more evident for cells in phase G0/G1.

The distribution observed in the sub-populations, could be the result of the noise
reduction due to the homogeneity with respect to the phase of the cell cycle. Our
model predicts the shrinking of the range of bimodality as extrinsic noise is decreased,
eventually leading to the disappearance of the bimodal shape. Nonetheless, these
results require further analysis and some open questions still remain. In the following
section we will discuss these aspects.

6.1.4 Open questions

In the previous section we presented our preliminary results and proposed that they
can be in agreement with our model of noise-induced bimodality. The experiments
should be repeated and a more accurate analysis has to be performed. This will
involve in particular the characterization of the range of bimodality as a function
of the noise level (i.e. in the entire population or in sub-populations) and of the
repression strength, in terms of the number of miRNA binding sites.

The most important open question regards the shape of the distribution of the
miRNA miR-20a. We already showed that the expression of miR-20a changes with
the progression of cell cycle and that the range of bimodality of the target can be
controlled by sorting cells accordingly. In order to state that this is due to a noise
reduction in the expression of the miRNA, we should show that the distribution of the
miRNA transcription rates does not correlate with that of the target. If this were the
case, the selection of a specific phase of the cycle would correspond to the selection
of a specific level of expression of the miRNA. Consequently, the modulation of
bimodality would be caused not by a change in the extrinsic noise, but simply by a
change in the mean miRNA expression level.

MiRNA quantification in single cells is not an easy task, nonetheless in the
last few years, some assays have been developed to detect miRNAs in single cells
through flow cytometry [146–148]. These assays are based on Fluorescence in situ
Hybridization (FISH), a technique that allows to label with fluorescent probes specific
DNA or RNA sequences. FISH is combined to the technology called branched-DNA
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amplification, which exploits a Pre-amplifier molecule to achieve thousands-fold
amplification of the detection signal, allowing it to be detected with a flow cytometer.

In principle, we could use this kind of assay to indirectly measure the quantity
of miR-20a molecules in each single cell, reconstructing the expression distribution
across the population. Nevertheless, the compatibility of this technique with the
already used fluorescent proteins and in particular with the DNA marker, is still to
be evaluated.

As a further development of this work, we could introduce the study of the
role played by the mCherry protein stability in shaping the expression distribution.
In our model we showed that the time scale of the protein dynamics, controlled
by the degradation rate gP, can have a strong influence in the final shape of the
protein distribution. Indeed, we presented some examples in which a bimodal protein
distribution corresponded to a monomodal distribution for the mRNA and vice versa.
The fluorescent proteins that we use in our experiments are extremely stable, their
half-life is of the order of days. This means that the corresponding gP is very small
and that mRNA fluctuations are very likely buffered away (the protein dynamics
“sees” only the average mRNA amount). In order to investigate regimes in which
protein turnover is faster, destabilized forms of the fluorescent proteins have to be
used. These proteins have a much shorted half-life, which makes mRNA fluctuations
not negligible. The comparison of the results obtained with this proteins to the ones
obtained with their stable forms, could be an important element for the validation of
the model.

6.2 Single-cell tracking in time with fluorescence mi-
croscopy

The goal of the second experiment is to investigate the behavior of the correlation
between two miRNA targets beyond the steady state. Experiments performed at the
flow cytometer return a snapshot of the population of cells at a given time instant,
which is assumed to be at the steady state. This technique allows to simultaneously
study hundreds of thousands of cells, but it does not provide any information on the
time behavior of the system. In order to investigate this aspect, different experimental
methods should be used, at the cost of a smaller number of cells that can be measured.
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In the following sections we will describe an experimental approach based on
fluorescence time-lapse microscopy that will allow us to study temporal correlations
between two exogenous miRNA targets in single cells.

6.2.1 State of the art and idea of experiment

Most of the dynamics of a system of genes competing for binding to a common
miRNA has not been investigated yet, neither experimentally, nor theoretically. Some
theoretical results about response times to an external perturbation were obtained by
Bosia et al. in [7]. In this work, response times are defined as the time needed by the
system to reach half of the way between the initial and final steady state. Through
the numerical integration of the deterministic set of equations associated to a system
of N targets competing for the same miRNA, the authors studied the response time
of one target of the pool (T1), in reaction to the sudden over-expression or knock-out
of another target (T2). They found that, as a function of the transcription rate of T1,
the response time to the over-expression presented a maximum in proximity to the
threshold, while the response time to the knock-out presented a minimum. These are
interesting results and an experimental validation would be important.

Another point regarding the dynamics of the system, consists in the possible
synchronization of the fluctuations in proximity to the threshold. Indeed, it was
shown theoretically in [7] and experimentally in [8], that a system of two targets
competing for one miRNA presents a maximum both of noise and correlation in
proximity to the threshold at the steady state. This fact suggests that, in these
conditions, the stochastic fluctuations of the amount of mRNA molecules of the two
targets could be synchronized in time. This scenario is extremely interesting, since
it could shed a different light on the role that miRNAs can have in physiological
conditions. For instance, synchronized fluctuations could be very helpful in case of
two target genes coding for proteins that have to interact making a dimer.

Both these challenging topics, related to the dynamics of the system, can be
studied in vitro with the help of synthetic miRNA targets, by following their ex-
pression over time in single cells. For this purpose, we will use two bidirectional
plasmids, similar to the ones used in [8], each of which coding for two fluorescent
proteins. One gene of each plasmid will be engineered to contain 1, 4 or 7 binding
sites for the miRNA miR-20a, the other one will be left as control. The two synthetic
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targets will be transfected in HEK 293 cells, which endogenously express miR-20a.
These are epithelial cells that live in adhesion to the Petri dish, forming tissue-like
structures. Transfected cells will be then followed over time by using a fluorescence
microscope able to discriminate the emission spectra of the four fluorescent proteins.
Time-lapse movies of a fraction of the population of plated cells will be recorded
in each fluorescence channel. By analyzing these movies in order to track each cell
from one frame to the following one, single-cell fluorescence trajectories over time
in the four channels can be reconstructed. These trajectories will be used to study
both the synchronization of fluctuations and the response times, by performing ad
hoc stimulation experiments.

As mentioned in section 3.6.3, in order to be able to follow the mRNA fluctua-
tions, the half-life of the fluorescent proteins should be short, comparable to the one
of the mRNAs, to avoid accumulation and noise buffering. For this reason, in these
experiments the use of destabilized fluorescent proteins will be essential.

In the following section a detailed description of the experimental setup for the
two kind of experiment will be provided.

6.2.2 Experimental setup

Two different bidirectional plasmids are used in this experiment. Their structure is
the same as those described in section 2.2.5. Each plasmid hosts two genes coding
for fluorescent proteins that can be transcribed with the same probability due to the
bidirectional promoter. The 3’UTR of one gene in each plasmid is engineered to
host a fixed number (0, 1, 4, 7) of miRNA binding sites for the miRNA miR-20a,
while, as above, the other one is left as control, to monitor the transcriptional activity
of the construct. A scheme of the plasmids is reported in figure 6.6.

The four fluorescent proteins have to be chosen according to two requirements:
their half-life has to be short and they must have emission spectra that can be
clearly discriminated. The first requirement is necessary in order to be able to
follow fluctuations of the amount of target mRNA transcribed and to consequently
make meaningful considerations about the synchronization of the correlation. The
second requirement is essential to limit the phenomenon of spillover, which can be a
significant issue, since we deal with four different fluorescent proteins. Fluorescence
measurements are obtained by exciting fluorescent proteins with light, from a UV
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A

B

Fig. 6.6 Example of 4-color fluorescent reporter system. The plasmids in figure are the ones
used in [8]. Adapted from [8].

lamp or laser, that has a wavelength close to the peak of the excitation spectrum
of the protein. As a consequence of excitation, the fluorescent protein emits light
according to an emission spectrum which is specific of each protein. Excitation and
emission spectra of different fluorescent proteins can overlap. This means that, by
exciting one protein, another one can result partially excited, consequently emitting
light in its emission spectrum. If the emission spectra partially overlap, the light
collected in one channel (i.e. in the range of wavelengths in which we assume to
collect the fluorescent light of one protein) can be composed also by some light
emitted by another protein. This phenomenon, the so called spillover, is extremely
detrimental in our experiments. Indeed, due to the overlap of the spectra, fluctuations
in the expression of the protein of interest can be completely masked by fluctuations
of another fluorescent protein. Usually, a compensation matrix is computed in order
to distinguish the real signal from the spilled one. Nonetheless, this approach is
not efficient to distinguish intensity fluctuations. The only way to face this problem
consists then in selecting fluorescent proteins with emission or excitation spectra
with minimal overlap. In addition to this strategy, an accurate tuning of the width
and position of the collection channels is crucial when allowed by the instrument
used for the measurements.

As already described above, the two bidirectional plasmids are transfected in
HEK 293 cells, which endogenously express miR-20a. Transfections are performed
using the Effectene Transfection Reagent (QIAGEN). As described for previous
experiments, at the moment of transfection we do not have any control on the number
of plasmids that enter the cells and this allows us to investigate a wide range of
values of transcriptional activity.
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Fig. 6.7 HEK 293 cells transfected with the fluorescent reporter of figure 6.6.

Fluorescence measurements of the transfected cells are performed at a confocal
microscope (Leica TCS SP5), leaving the pinhole full open, in order to collect most
of the fluorescence light coming from the cell. This microscope has 5 different
lasers and allows to tune the light collection channels. The setup of the microscope
includes an incubator with controlled temperature and carbon dioxide, which allows
to keep cells in physiological conditions while measurements are performed.

Measurements consist in pictures, collecting the fluorescent light in each of the
four channels, performed on the same sub-population of the plated cells every 2-5
minutes for several hours. An example is reported in figure 6.7. The fluorescent
protein used in this experiment have a nuclear tag, so that they are actively transported
to the nucleus, where they accumulate, making easier the localization of the cells.

The number of cells that can be analyzed with this technique is orders of mag-
nitude smaller than the one obtained from a flow cytometer. Indeed, by using the
moving plate of the microscope, which automatically select different fields of the
population of cells, we can follow up to order 103 cells. Nonetheless, this number is
sufficient to obtain statistically significant results.
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The time-lapse movies are processed with the Matlab software (MathWorks, MA,
USA). First, cells are localized in each picture through a segmentation algorithm,
then each cell is tracked from one frame to the following one by minimizing the
distance from the last known position. Further details on the image processing
analysis are reported in the following section. As a result of this analysis, single-cell
fluorescence trajectories over time in the four channels are reconstructed. These
trajectories can be used to study temporal correlations between the two exogenous
targets of the miRNA. Moreover, thorough this approach we can study not only the
steady state, but also the transient that, after transfection, leads to the steady state.

The technique described above is at the basis also of the experiments aimed at
studying the response times of the system to external perturbations. In particular, we
study the response times of the system as a consequence of a sudden switch on or
off of one of the two exogenous targets. The switch can be obtained by using a so
called TET-ON or TET-OFF system. In both the systems, a tetracycline-inducible
promoter (like pTet) is inserted upstream the gene coding for one of the two targets.
The second component of the TET system, different between ON and OFF, consists
in a gene coding for a tetracycline-controlled transactivator (rtTA for the ON system,
tTA for the OFF system). Tetracycline is an antibiotic used in this system as external
stimulus to induce or block the expression of a gene controlled by the TET-inducible
promoter. When the rtTA transactivator is bound to a tetracycline molecule, it can
bind the inducible promoter, activating the expression of the gene. On the contrary,
the tTA transactivator can bind the promoter and induce the expression of the gene,
only if it not bound to a tetracycline molecule. As a result, in a TET-ON system,
tetracycline activates the expression of the inducible gene, while in a TET-OFF
system it blocks the expression. In our experiments we use this system to switch
on or off the expression of one of the targets. In particular, for this purpose, we
exploit two different HEK 293 cell lines, namely HEK 293 TET-ON and HEK 293
TET-OFF, that are engineered in order to endogenously express the corresponding
transactivator gene.

Finally, in the experiments described above, the influence of cell cycle can be
monitored by staining cells with the Hoechst DNA marker. In this case, the choice
of the fluorescent proteins should be made taking into account also the excitation
and emission spectra of the markers.
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6.2.3 Data analysis: image processing and preliminary results

As described in the previous section, the raw data of these experiments are time-lapse
movies of a 2-dimensional layer of cells in four fluorescence channels. The analysis
of these data, whose aim is to obtain single-cell fluorescence trajectories over time,
consists in two main steps: image segmentation and cell tracking. Image segmen-
tation allows to detect each single cell in one frame, while tracking is necessary to
recognize and follow the cells from one frame to the other. The analysis that we will
describe is performed with the Matlab software (MathWorks, MA, USA), in addition
with the Image Processing Toolbox and the Bio-formats Toolbox [149].

Image segmentation, i.e. the recognition of objects of interest inside an image,
is an extremely well studied topic and segmentation algorithms are embedded in
many types of commercial and open source software. Nonetheless, the structure of a
segmentation algorithm, as well as the values of the parameters used, are extremely
sensitive to the specific problem under study. For this reason, we decided to develop
a custom segmentation algorithm optimized for our data, exploiting the library
of image processing functions already contained in the Matlab Image Processing
Toolbox.

Raw data are saved in the .li f Leica proprietary format, in order to open them in
Matlab, the “bfopen” function of the Bio-formats Toolbox is used.

The fluorescence intensity of the target proteins can be very low, due to the repres-
sion operated by the miRNA. For this reason, the idea is to perform the segmentation
on the image obtained by combining the two control channels, reconstructing a mask
that can be then used to analyze the fluorescence in the channels of the targets.

As a first step, the contrast of the images in the control channels is adjusted
according to fixed parameters, then thresholding is performed, in order to eliminate
pixels belonging to the background. The result of thresholding is a binary image
in which background pixels have value 0 and foreground pixels have value 1. The
threshold value for this operation is estimated by measuring the average intensity of
a region of the image in which no cells are present, this value is defined for the first
frame and is kept constant throughout the analysis of the movie.

The two binary images obtained from the two control channels are then summed
using an AND gate. The resulting binary image has then pixels with value 1 only
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where both the control channels presented a signal above threshold. This image will
be used to create the mask to identify each cell in the frame.

In order to eliminate noisy pixels and to smooth the borders of the objects, a
Gaussian smoothing is performed on the combined image. The resulting image is
not binary anymore, another thresholding is then needed to restore its binary form.

In order to move towards the most important step of this segmentation process,
the Euclidean distance transform of the last image is computed. Result of this
operation is a new image in which to each pixel with value 1 in the input image is
assigned a number that is the distance between that pixel and the nearest pixel with
value 0.

The distance transform is used as input image of the Watershed transform. This
operation treats the input image as a surface with high and low elevations and
identifies and labels catchment basins. In this way, pixels of the image belonging to
the different cells are correctly labeled, but some artifacts, like very small objects,
still remain.

In order to eliminate very small unwanted objects and to regularize the borders,
a morphological opening is performed on the image resulting from the Watershed
transform. Morphological opening consists in an erosion of the foreground objects
of an image, followed by a dilation. Both erosion and dilation are performed with the
same structuring element. In this way, small objects that disappear after the erosion
step cannot be recovered by the dilation step and are eliminated from the image.

Finally, slightly bigger objects that remain after the opening operation but are
not cells, are eliminated by performing a thresholding on the size of the identified
objects. The value of the threshold is manually tuned.

The objects of the final image are labeled again, obtaining the mask that identifies
pixels belonging to each cell of the original image, see Fig. 6.8.

The fluorescence intensity of each object identified by the mask is computed,
in each channel, by taking the average of the values of the pixels that compose the
object. Background intensity is also monitored and its average value is subtracted to
the value computed for each object.

So far, we described the workflow to identify cells and measure their average fluo-
rescence intensity in each frame of the movie. To reconstruct single-cell fluorescence
trajectories, we must be able to recognize cells from one frame to the other. Since
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Fig. 6.8 Example of cell segmentation. Different colors have no specific meaning.
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Fig. 6.9 Example of single-cell fluorescence trajectory over time in the four channels.

the duration of the time-lapse movies can be up to 48 hours, it is very likely that
some cells divide into two daughter cells during the time of the measurement. For
this reason, the tracking procedure is performed backward in time. This trick makes
it easier to deal with cell divisions, in fact, when such event occurs, the trajectory of
one of the two cells simply stops.

Tracking of the identified cells from one frame to the other is performed by
minimizing the distance of the centroids. The procedure to track cells from frame A
to frame B is the following.

1. The position of the centroid of each cell identified in frame A is computed.
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2. The position of the centroid of each cell identified in frame B is computed.

3. The size of the area in which the change of position of the cell is searched,
is defined on the basis of a trial-and-error analysis performed in phase of
optimization of the algorithm.

4. Each cell identified in frame B is associated to the cell of frame A that mini-
mizes the distance of their centroids, in the limits of the search area. Once a
match is found, the cell of frame B receives the same label of the corresponding
cell of frame A.

5. The position of cells of frame A that do not have any correspondence with
cells of frame B is recorded and stored in a vector, together with their label.

6. A second research step is performed for cells of frame B for which a corre-
spondence with frame A was not found. For each of these cells, the search
is performed on the position of the cells that disappeared in previous frames,
which is recorded in the vector of step 5. If a match is found, the cell receives
the label of the previously disappeared cell. Otherwise, a new label is assigned
to the cell.

Following this procedure, single-cell fluorescence trajectories can be reconstructed.
Some examples are reported in figure 6.9. These trajectories are obtained from
experiments in which the plasmids are the ones used by Bosia et al. in [8].

The core of these single-cell tracking experiments is still to be performed, but
the analysis tools are ready to be employed.

6.2.4 Spin-off: tracking vesicle trafficking and counting cells

The analysis setup developed for these experiments was successfully applied, with
appropriate modifications, in two different experimental projects, in which image
analysis played an important role. In the following, we will briefly describe the
contribute given by our analysis in these two contexts.

The first project [56] regards the study of vesicle trafficking in mammalian
cells. In particular, the aim of the experiment was to unravel how the protein Rab11
controls transport of recycling cargo from early endosomes to the endocytic recycling
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compartment. The analysis was performed by using a novel genetically-encoded
FRET biosensor for Rab11. FRET stands for Fluorescence Resonance Energy
Transfer or Förster Resonance Energy Transfer. This phenomenon involves two
light-sensitive molecules (two fluorescent proteins fused with Rab11, in case of
the biosensor): a donor and an acceptor, with the emission spectrum of the donor
sufficiently overlapping with the excitation one of the acceptor. If the two molecules
are sufficiently close one to the other, when the donor is in its excited state, it can
transfer energy to the acceptor, exciting it and making it emit fluorescence light.
This effect is extremely sensitive to the distance between donor and acceptor, indeed,
its efficiency is inversely proportional to the sixth power of this distance. For this
reason, FRET is used in biosensors to detect small changes of the configuration
of molecules due to structural modifications. In the biosensor designed for these
experiments, when the Rab11 protein is in its inactive form, the two fluorescent
proteins are relatively far one from the other, this leading to a low FRET emission.
When Rab11 is activated, the two fluorescent proteins get closer and FRET emission
increases. This property is used to monitor Rab11 activity during vesicle trafficking,
by performing time-lapse movies measuring the fluorescence emission of the two
proteins alone, together with the FRET emission. In order to analyze these data,
vesicles were segmented and tracked from frame to frame, obtaining FRET emission
trajectories over time. These trajectories were used to analyze the temporal behavior
of Rab11 activation at the single-vesicle level. This analysis was performed by
adapting to this context the segmentation and tracking algorithm described in the
previous section.

The second project [57] concerns the quantitative physiology of cancer cells. In
particular, it’s aim is the identification of connections between cancer cell physiology,
cell growth and internal partitioning of resources inside the cell. In this framework,
experiments were conducted in order to obtain complete growth curves of populations
of human leukemia cells (Jurkat). The idea behind these experiments is that a
variation of the cells’ growth rate in the exponential phase could correspond to a
reorganization of the cell proteome. In order to obtain the growth curves and estimate
the growth rate, the population of cells should be counted every day for several days,
until the growth medium is saturated and the system reaches its carrying capacity.
Cell counting was performed by taking a homogeneous sample of the cell population
and inserting it in a micro-chamber with fixed, known volume. Then, bright-field
pictures of portions of the chamber were taken at the microscope. By counting the
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number of cells present inside a known area of each picture, the concentration of the
population of cells can be estimated. This counting was performed by adapting the
segmentation algorithm described above, in order to work with bright-field images
instead of fluorescence images. This procedure resulted quite efficient, leading to an
error comparable to the one obtained counting cells by hand.
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Appendix A

Bimodality amplitude

Throughout this work, we addressed bimodality as a binary quantity, i.e. presence of
two distinct peaks in the distribution. However, how probability distributions change
shape during the unimodal-bimodal transition is also an interesting point. To give an
insight into this aspect, we computed the bimodality amplitude [150], a coefficient
that allows to quantify the level of bimodality of the distribution. This quantity is
defined as follows:

AB =
A1 −Aan

A1
(A.1)

where A1 is the amplitude of the smallest peak, while Aan is amplitude of the
local minimum between the two peaks. The bimodality amplitude is by definition
smaller than 1: the higher the values, the more separated the maxima. To study
how this coefficient varies as a function of the extrinsic noise in the system and
the target transcription rate, we first sampled several different targets’ probability
distributions. By interpolating these distributions with built-in functions in Matlab,
we extracted the positions of the maxima and minima as well as their frequency
which allowed us to compute the bimodality amplitude. The resulting phase diagram
is shown is Fig. A.1. Bimodal distributions appear for a very well-defined range
of parameters in agreement with what found in Fig. 3.16. The transition from
unimodal to bimodal appears to be peaked around some particular values of the noise
coefficient of variation and the target transcription rate, suggesting the existence of
optimal values for these parameters. However, it would be even more interesting to
study in the future how smoothly bimodal distributions appear in this parameters’
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space and whether this observed peak could really be an optimal point for cell
variability.
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Fig. A.1 Bimodality amplitude phase diagram. Phase diagram of the bimodality amplitude of
the mRNA distribution as a function of the mRNA transcription rate kR and of the extrinsic
noise level. The parameters here used coincide with the ones of figure 3.16. Target mRNA
transcription rate is one of the control parameters and ranges from kR = 2.6×10−3 nM min−1

to kR = 5.1× 10−3 nM min−1. Extrinsic noise is tuned by varying the standard deviation
of the distribution with mean kS = 1.2×10−3 nM min−1 from which miRNA transcription
rates are picked. The standard deviation ranges from σ = 0 nM min−1 (no extrinsic noise)
to σ = 3.6×10−4 nM min−1. This phase diagram was obtained by interpolating the single
distributions obtained from numerical simulations. The green line represents the separation
between bimodal and unimodal regions as shown in Fig. 3.16. Adapted from [10].



Appendix B

Role of extrinsic noise in competitive
inhibition kinetics

In previous chapters we introduced and discussed a minimal model of molecular
titration and studied its connections to miRNA regulation in relation to the presence
of some extrinsic noise. In this chapter we will briefly analyze the implications of
the titration mechanism in a different context. Indeed, we will study a simple model
of enzymatic kinetics, called competitive inhibition, in which enzyme activation
is added to the sequestration mechanism. As a result, we will show that all the
predictions derived from the minimal model still hold also for this system. This
suggests that our results could be significant for different biological processes.

B.1 Bimodal distributions in competitive inhibition
kinetics

Competitive inhibition kinetics is a process based on the interaction between an
enzyme and its inhibitor. The inhibitor plays the role of the sequester and the enzyme
is the target. A free molecule of target, TF , can bind to a substrate (which is
assumed to be at fixed concentration) and form the active enzyme TA from which the
product is made. The activation of the target occurs with a rate that depends on the
intrinsic activation rate k f and on the concentration of substrate cS . The active target
molecule, T A , can be deactivated with rate kr becoming TF . The free molecule of
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Fig. B.1 Extrinsic noise effects on competitive inhibition kinetics. (A) ⟨TA⟩ (solid lines) and
⟨T S⟩ (dashed lines) vs TT for different levels of extrinsic noise. The black curve is the pure
intrinsic noise case, while the other three correspond to a standard deviation of the Gaussian
distribution of ST equal to 5 (red), 8 (green) and 13 (yellow). (B) Examples of probability
distribution of TA (solid lines) and T S (dashed lines) in presence of extrinsic noise. (C,D)
Plots of the bimodality region of the marginal distributions of TA (c) and T S (d) for different
values of Kd as a function of TT and extrinsic noise. Bimodal distributions are present for
parameters inside the areas delimited by the plotted lines. Kd assumes the values: 0.02 (light
blue), 0.04 (green), 0.08 (blue) and 0.10 (black). The size of the step along TT is ∆TT = 1,
while the size of the step for the extrinsic noise level is ∆σT = 0.25 (∆CV = 8 ·10−3). For
each point defined by these steps, the distribution P(T ) was computed analytically and the
number of its maxima was evaluated. Note that the step-like features in the plot are due to
the discreteness of TT . Adapted from [9]
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target can also be bound by a molecule of sequester, S, forming the inactive complex
T S with rate k+ . The complex can in turn dissociate with rate k− , returning a free
molecule of target and one of sequester. The reaction network is then:

TF +S
k+
⇌
k−

T S (B.1)

Substrate+TF
k f cs
⇌
kr

TA → Product+TF (B.2)

We consider the case in which both substrate and product concentrations are large
so that their fluctuations are negligible and focus on the stochastic dynamics of the
enzyme (target) and the inhibitor (sequester). In addition to the reactions above,
we assume that the total amounts of target and sequester molecules are conserved,
defining then the following conservation laws:

TT = TF +TA +T S = const , (B.3)

ST = S+T S = const . (B.4)

As a consequence of the conservation laws, the number of free stochastic variables
for this system is reduced to 2. Here, we focus on the active enzyme TA from which
the product is formed and the inactive complex T S. For the sake of clarity we
consider the case of quasi-equilibrium dynamics in which the product formation
reaction is much slower than the others. The master equation describing the time
evolution of the probability observing TA and T S molecules is:

dP(TA,T S, t)
dt

= k f cs(TT −TA +1−T S)P(TA −1,T S, t)+ kr(TA +1)P(TA +1,T S, t)+

+ k+(TT −TA −T S+1)(ST −T S+1)P(TA,T S−1, t)+ k−(T S+1)P(TA,T S+1, t)+

− [k f cs(TT −TA −T S)+ krTA + k+(TT −TA −T S)(ST −T S)+ k−T S]P(TA,T S, t) .

(B.5)

The analytic steady-state solution of the master equation can be written recalling
the grand canonical distribution for ideal particle mixtures [121] and reads:
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P(TA,T S) =
1
N
(Kd)−T S

(
k f cs

kr

)TA 1
T S!(ST −T S)!TA!(TT −TA −T S)!

, (B.6)

where Kd = k−/k+ is the dissociation constant and

N =
min(TT ,ST )

∑
T S=0

TT−T S

∑
TA=0

1
N
(Kd)−T S

(
k f cs

kr

)TA 1
T S!(ST −T S)!TA!(TT −TA −T S)!

,

(B.7)

is the normalization factor.

Eq. B.6 corresponds to the steady-state solution of the model for the case with
pure intrinsic noise. However, also in this case we are interested in investigating
the effects of some extrinsic noise on the sequester. To do that, we again assume
that the total amount of sequester molecules is a fluctuating quantity described
by a discretised Gaussian distribution P(ST ). The analytic equilibrium solution in
presence of extrinsic noise is obtained as a weighted superposition of conditional
probabilities:

P(TA,T S) =
∞

∑
ST=0

P(TA,T S|ST )P(ST ) , (B.8)

where P(TA,T S|ST ) are solutions of the master equation (B.5) with a given value
of ST .

Having access to the analytic equilibrium solution for this system, we can first
study the average behaviour of TA and T S. In Fig. B.1A the means of TA and T S
are plotted as a function of TT for different levels of extrinsic noise. Both quantities
present the threshold-like profile typical of molecular sequestration. The mean of TA

displays a profile similar to the one of the minimal model, with a linear increase after
the threshold, where TT equals ST . Differently, the mean of T S increases linearly
until the threshold and then converges to a finite value which is set by the total
amount of sequester molecules ST . For both the quantities, an increase of the level of
extrinsic noise leads to a smoothing of the threshold behaviour, exactly as observed
in the minimal model. One of the main results of the analysis of the minimal model
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is the possibility of observing bimodal distributions induced by extrinsic noise. As
can be observed in Fig. B.1B, this property is conserved also in this model of
enzymatic kinetic. Indeed, we find that both the inhibited complex (sequester-target)
and the target bound to the substrate can display bimodal distributions. However,
it is important to note that, due to the presence of an additional chemical reaction,
with its inherent stochasticity, the probability distributions are smoother with respect
to the minimal model. As a consequence, stronger affinities (lower dissociation
constants) are required to ensure robust bimodal phenotypes, especially for the
active enzyme. In analogy with the minimal model, the distributions can be tuned
from being bimodal to unimodal and vice versa by modulating the level of extrinsic
noise. Finally, the effects of the extrinsic noise level and on the dissociation constant
(Kd = k−/k+) on bimodality are in qualitative agreement with the minimal model.
Indeed, for both TA and T S, as extrinsic noise is increased, the range of bimodality
over the values of TT becomes wider. Similarly, a low value of the dissociation
constant, i.e. a steeper threshold, favours the presence of bimodality (Fig. B.1C-D).
Altogether, these results confirm the validity of the predictions based on the analysis
of the minimal model and show that extrinsic-noise-induced bimodal distributions
can play a role also in these enzymatic reactions governed by competitive inhibition.

B.2 Correlations

In previous chapters, by extending the minimal model with the addition of a second
target of the same sequester, we showed how extrinsic noise can induce positive
correlation between the two targets, contrasting the negative one induced by com-
petition. In order to verify this prediction in the model of competitive inhibition,
we add a second enzyme that can be activated by binding to a substrate and that is
sequestered by the same inhibitor of the previous one. For simplicity, we assume that
the two enzymes bind to the same substrate. The reaction network for this extended
model is:
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Fig. B.2 Correlations for competitive inhibition. (A) Pure intrinsic noise case: contour plot
of the Pearson correlation between the active enzymes T1A and T2A as a function of the total
number of enzymes T1T and T2T . (B) Extrinsic noise: contour plot of the Pearson correlation
between T1A and T2A as a function of T1T and T2T . (C) Correlation between the active targets
as a function of T1T for different levels of extrinsic noise. The blue line on the bottom
corresponds to the pure intrinsic noise case, for the other lines σST assumes the values: 2, 4,
6, 8, 10, 12. Adapted from [9].
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T1F +S
k1
+
⇌
k1
−

T1S ,

Substrate+T1F

k1
f cs

⇌
k1

r

T1A → Product+T1F ,

T2F +S
k2
+
⇌
k2
−

T2S ,

Substrate+T2F

k2
f cs

⇌
k2

r

T2A → Product+T2F .

As in the other models, we assume that the total amounts of sequester and targets
molecules are conserved, obtaining the following conservation laws:

T1T = T1F +T1A +T1S = const , (B.9)

T2T = T2F +T2A +T2S = const , (B.10)

ST = S+T1S+T2S = const . (B.11)

These conservation laws reduce the number of free variables to 4: from now on
we will focus on active targets and complexes. To use a lighter notation, we define the
probability of observing n = (nT1A,nT2A ,nT1S,nT2S)≡ (T1A,T2A,T1S,T2S) molecules
at time t as: P(n, t) ≡ P(T1A,T2A,T1S,T2S, t). The master equation describing the
time evolution of this probability distribution reads:
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dP(n, t)
dt

= k1
f cs(T1T −T1A +1−T1S)P(nT1A −1, t)+ k1

r (T1A +1)P(nT1A +1, t)+

+ k1
+(T1T −T1A −T1S+1)(ST −T1S−T2S+1)P(nT1S −1, t)+ k1

−(T1S+1)P(nT1S +1, t)+

− [k1
f cs(T1T −T1A −T1S)+ k1

r T1A + k1
+(T1T −T1A −T1S)(ST −T1S−T2S)+ k1

−T1S]P(n, t)+

+ k2
f cs(T2T −T2A +1−T2S)P(nT2A −1, t)+ k2

r (T2A +1)P(nT2A +1, t)+

+ k2
+(T2T −T2A −T2S+1)(ST −T1S−T2S+1)P(nT2S −1, t)+ k2

−(T2S+1)P(nT2S +1, t)+

− [k2
f cs(T2T −T2A −T2S)+ k2

r T2A + k2
+(T2T −T2A −T2S)(ST −T1S−T2S)+ k2

−T2S]P(n, t) .

(B.12)

The analytic steady-state solution of the master equation above is [121]:

P(T1A,T2A,T1S,T2S)=
1
N

(
k1

f cs

k1
r

)T1A
(

k2
f cs

k2
r

)T2A

(Kd
1 )

−T1S(Kd
2 )

−T2S

T1S!T2S!(ST −T1S−T2S)!T1A!(T1T −T1A −T1S)!T2A!(T2T −T2A −T2S)!
,

(B.13)

with Kd
1 = k1

−/k1
+, Kd

2 = k2
−/k2

+ and

N =
min(T1T ,ST )

∑
T1S=0

min(T2T ,ST−T1S)

∑
T2S=0

T1T−T1S

∑
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T2T−T2S

∑
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(
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f cs

k1
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)T1A
(

k2
f cs
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)T2A

· (B.14)

·
(Kd

1 )
−T1S(Kd

2 )
−T2S

T1S!T2S!(ST −T1S−T2S)!T1A!(T1T −T1A −T1S)!T2A!(T2T −T2A −T2S)!
.

(B.15)

Finally, given the analytic solution of the master equation for the case with pure
intrinsic noise, the full probability distribution in presence of extrinsic noise can be
obtained in the usual way as a weighted superposition of conditional probabilities:

P(T1A,T2A,T1S,T2S) =
∞

∑
ST=0

P(T1A,T2A,T1S,T2S|ST )P(ST ) . (B.16)
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Given these analytic solutions, we can first focus on the correlations that are
induced on the active enzymes by the competition for binding to the inhibitor. In
the absence of extrinsic noise, the two enzymes result to be negatively correlated,
especially in proximity to the threshold (see Fig. B.2A). The activation reaction
introduces an additional source of stochasticity. As a consequence, the correlations
between the active enzymes (T1a and T2a) are generally lower than the ones between
the sequestered, inactive enzymes (T1S and T2S) and of the ones of the minimal
model. This additional layer of stochasticity also affects the profile of the Pearson
correlation coefficient, which now displays a minimum around the threshold instead
of the plateau shown for the minimal model. This can be intuitively understood
considering the fact that, in the minimal model, the plateau arose because the stan-
dard deviation of the targets roughly followed the behaviour of the covariance. The
additional stochasticity related to the activation dynamics is not affected much by
the sequestration dynamics, thus the standard deviation keeps growing with the total
number of targets not compensating the slow-down of the covariance, giving rise to
the minimum.
We can now focus on the effect on correlation of extrinsic fluctuations of the number
of sequester molecules. As in the minimal model, such fluctuations induce pos-
itive correlations between the active target, especially around the threshold (see
Fig. B.2B,C) and the considerations made for the minimal model hold also in this
case. Again, since the interaction with the sequester is diluted by the presence of an
additional stochastic reaction, the correlation tends to be generally lower.
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