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Abstract In the contact of a cone with a rough plane

the mean pressure in the contact area is constant. In

particular, above a critical ratio of the opening angle

of the cone with respect to the rms gradient of sur-

face roughness, the mean pressure is the same of that

for nominally flat contact, no matter how large is the

normal load. We introduce a new variable, namely, the

local density of contact area, whose integral over the

smooth nominal contact domain gives the real contact

area. The results given by the theoretical model agree

with the numerical simulations of the same problem

presented in the paper.

Keywords Contact mechanics · Contact area ·
Numerical analysis · Analytical model

1 Introduction

Indentation techniques are useful to measure the elas-

tic properties of solids from large to very small volumes,

the latter case being particularly useful for thin coat-

ings, or in general heterogeneous materials (see e.g.the

review by Gibson [1]). The classical solution for fric-

tionless conical indentation was found by Love [2] and

it has been largely used [e.g., 3, 4]. Nevertheless, to the

best of the authors’ knowledge, the question of the in-

fluence of roughness on the conical tip indentation has

not been discussed.
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Recently, Pastewka and Robbins [5] have shown that

in the contact of a sphere with a rough plane there

are three regimes of behaviour. Namely, for increasing

applied normal loads the contact starts off in a regime

dominated by a single asperity, then there is a regime

of linearity between real contact area and load, where

there is no influence of the curvature of the sphere (and

hence the mean pressure is the same as in the contact of

nominally flat surfaces), and finally there is a crossover

towards the contact of the sphere on a smooth plane.

The case of a nominally flat rough contact has been

studied in depth and Persson has devised an ingenious

diffusion process solution [6], which gives an approxi-

mate expression of the real contact area ratio (A0 being

the nominal contact area) as a function of mean pres-

sure pm, which is linear at low pressures. We will not
use his solution, but an improved one:

A

A0
= erf

(√
π

2

pm
prough

)
≈ pm
prough

+O

[(
pm
prough

)3
]
. (1)

In the following, we use the full solution given by the

left relation of eq. (1), particularly because the nom-

inal contact pressure tends to very high values for a

cone, with a singularity at the apex. This is an expres-

sion similar to that of Persson’s theory (see Appendix),

where a characteristic pressure is defined as

prough = h′rmsE
∗/k (2)

and k ≈ 2 according to numerical investigations [7, 8].

Here, E∗ is the plane strain composite elastic modulus

of the materials, and h′rms =
√
〈|∇h|2〉 is the root mean

square of the areal roughness gradient. In eq. (1), miss-

ing the quadratic term, the linear term is dominant up

to area ratios of the order of 50 % or so.
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The growth of the contact area with applied pres-

surehas been demonstrated numerically [9, 10] to de-

pend not only on h′rms but also on other roughness

characteristics, notably on Nayak’s parameter. How-

ever, this was here considered not to be relevant for

a first order solution.

In the very initial stages of the loading process a

single asperity is in contact with the sphere, and the

behaviour is ruled by the asperity equivalent radius. For

increasing load, when a sufficient number of asperities

are in contact, Pastewka and Robbins suggested a sim-

plification of Persson’s solution, using as mean pressure

pm that of a Hertzian contact, i.e., pm,s = N/AHertz:

A

AHertz
= erf

(√
π

2

N/AHertz

prough

)
, (3)

where AHertz = πa2 = π
(
3NR
4E∗

)2/3
is the Hertz con-

tact area under the load N , and therefore scales as

N2/3. Here, a is the contact area radius, R is the ra-

dius of the sphere. When N/AHertz is low, this equa-

tion simply predicts linearity between real contact area

and load. The mean pressure in the rough contact in-

creases with load and hence the contact area tends

to saturate asymptotically as a pure Hertzian contact

without roughness. The crossover from the rough con-

tact into the smooth Hertzian regime is obtained in-

troducing the load Nc at which Nc/AHertz

prough
= 1 , i.e.,

Nc = π3
(
3
4

)2
(h′rms/2)

3
E∗R2.

Pastewka and Robbins found a picture which is sim-

pler than Greenwood and Tripp [11], who introduced a

distribution of asperities treated as a non-linear layer

on an elastic sphere ruled by two dimensionless param-

eters, where there is a more dominant role of the rms
amplitude of roughness, although they inevitably ne-

glected the possibility that roughness plays a significant

effect of “smearing out”the contact area.

In the present note we consider the case of a con-

ical punch indenting an elastic halfspace bounded by

a rough surface, studying the influence of the govern-

ing parameters on the evolution of the contact inter-

face by means of theoretical analyses and numerical

simulations, and we propose a simple model similar to

Pastewka and Robbins [5].

2 Contact of a cone with a rough surface

2.1 Theoretical model

The mean pressure pm,c exerted by a cone indenting a

smooth plane [2, 12, 13] is constant, independent of the

load N , as expected on similarity grounds:

pm,c = E∗ cotα/2 (4)

and the contact area increases linearly with the load,

depending on the cone semi-opening angle α and on the

elastic modulus:

Acone =
2N

E∗ cotα
. (5)

Extending the suggestion of Pastewka and Robbins

(our eq. (3)) to the case of the cone, we can write(
A

Acone

)
PR

= erf

(√
π

2

pm,c
prough

)
= erf

(√
π

2
ρc

)
, (6)

where the pressure ratio for the cone, ρc = pm,c/prough,

has been introduced. By using eqs. (2) and (4), with

k = 2, we have

ρc =
cotα

h′rms

, (7)

i.e., a constant independent of the load, determined

only by the geometry of the rough surface and of the

indenter, which assumes the role of a normalized mean

pressure.

In particular, if the semi-opening angle α is large

with respect to the roughness h′rms(incidentally, to sat-

isfy the assumptions of linear elasticity, we need large

cone opening angles), i.e., cotα � h′rms, then eq. (6)

can be linearized, and for small ρc

A ≈ ρcAcone =
2N

E∗h′rms

, (8)

so that the contact area is proportional to the load,

independent of the cone angle, and therefore pm =

prough ≈ h′rmsE
∗/2.

This is the case for a very large opening angle and

significant roughness. Viceversa, when ρc = cotα/h′rms

increases, the real contact area continues to be propor-

tional to the load, but the proportionality factor, and

hence the mean pressure, depend also on the cone open-

ing angle:

A = erf

(√
π

2

cotα

h′rms

)
2N

E∗ cotα
. (9)

If we view this from a different perspective, starting

off with the smooth case, the mean pressure increases

until it tends to the value of the nominally flat rough

contact. The main difference with respect to the spher-

ical case, is that there is no longer a further saturation

towards a smooth-contact regime, i.e., in other words,

the effect of roughness never disappears.

Moreover, we suggest a more refined analysis defin-

ing a local density of contact, γ, which varies with the

local pressure value, while Pastewka and Robbins’s ap-

proximation corresponds to assuming a constant pres-

sure. The function γ(x) is defined, at a given point x
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Fig. 1: Profile of the contact area density γ(r) induced

by a cone with semi-opening α = 80◦ against rough sur-

faces with different roughness h′rms. The corresponding

values of ρc are given in Table 1

in the nominal contact domain, as the limit of the true

contact area ratio for a disk of radius ε containing the

point, for ε→ 0.

In cases with radial symmetry it is a function of the

radius r:

γ(r) = erf

(√
π

2

p(r)

prough

)
. (10)

The normal pressure induced by a cone contacting

a smooth halfspace on a disk of radius a [see, e.g., 14,

p. 114] is

p(r) = pm,c cosh-1
(a
r

)
, 0 ≤ r ≤ a. (11)

By inserting eq. (11) into eq.(10) one obtains the con-

tact density as a function of the radius r. Figure 1

depicts the graphs of γ(r) in the contact zone of a

80◦ cone, for different values of the roughness h′rms. As

shown in the figure, the effect of increasing roughness is

to deviate more and more from uniform contact density

on the contact surface. It is interesting to note that the

shape of the curves is unaffected by the total load N ,

which influences the contact domain only by increasing

the contact radius a.

Given the expression of the density γ(r) introduced

above, the real contact area ratio can be evaluated as

its integral over the circular contact domain:

A

Acone
=

1

πa2

∫ a

0

2πrγ(r)dr

=
2

a2

∫ a

0

r erf

[√
π

2
ρc cosh-1

(a
r

)]
dr. (12)

It turns out that the integral in eq. (12) does not

depend on the contact radius a and can be numerically

integrated for any given value of ρc. Plotting the re-

sults as a function of ρc gives the continuous curve of

Figure 2, where it is compared with the approximation
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Fig. 2: Real contact area ratio vs. normalized mean

pressure, ρc for a cone. Comparison of the numerical in-

tegration of the variable contact density (eq. (12), con-

tinuous curve) with the constant density approximation

(eq. (6), dotted curve). Dots with error bars represent

mean values and standard deviations obtained with nu-

merical simulations (see sec. 2.2)

corresponding to assuming uniform pressure (eq. (6)),

similarly to what was done by Pastewka and Robbins

for the sphere, represented by a dotted line. The differ-

ence between the two curves is larger in the intermedi-

ate range of ρc and vanishes for small and large values

of the parameter.

2.2 Numerical simulations

The predictions of the rough-contact model described

above have been compared to the results obtained with

the numerical code Icarus [15, 16], applied to the simu-

lation of contact between a conical indenter and a rough

halfspace.

The code operates in an incremental-iterative way,

considering the normal interaction of two contacting

linear-elastic bodies through a grid of adjacent patches

that discretize their surfaces. It permits to consider ex-

plicitly in the calculations the real topography of the

rough surfaces at a given resolution and to evaluate the

real contact area by counting the number np of patches

where a local normal compressive force is exchanged be-

tween the bodies at an assigned approach. Rough sur-

faces can be generated, by means of several algorithms,

with assigned roughness parameters as, in particular,

the root mean square of the surface slopes, h′rms.

In general, recent approaches for roughness use self-

affine fractal surfaces with power law PSD A|q|−2(1+H)

for wavevectors qr < |q| < qs (q = 2π/λ) with roll off

to a constant for q0 < |q| < qr (generally limited to

x = q0/qr = 1/4 or 1/2) and zero otherwise. The gen-

eral definition of the (even order) moments is reduced

into the following form if the power spectrum density
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(PSD), C(q), is axisymmetric (e.g., the rough surface is

isotropic):

mn =mn0 =

∫ qs

q0

∫ 2π

0

[q cos(θ)]
n
C(q)q dq dθ

=T (n)

∫ qs

q0

C (q) qn+1dq

=AT (n) qn−2Hr

(
1− xn+2

n+ 2
+
ζn−2H − 1

n− 2H

)
, (13)

where T (n) = 2π, π, 3/4π (n = 0, 2, 4), and we have in-

troduced the “magnification” ζ = qs/qr � 1, typically.

Hence, knowing that hrms =
√
m0, and h′rms =

√
2m2,

from the ratio of m0 and m2 we have, approximately:

hrms

h′rms

≈
√
m0√
2m2

=

√
q−2Hr

(
1−x2

2 + ζ−2H−1
−2H

)
√
q2−2Hr

(
1−x4

4 + ζ2−2H−1
2−2H

)
≈ ζH

qs

√√√√ 1−x2

2 + 1
2H

1
2−2H

. (14)

In our case, we do not use roll-off to the constant,

but purely power-law (although this is known to intro-

duce less gaussian heigths distribution), which means

x = 1, and

hrms ≈ h′rms

√
1−H
H

ζH

qs
, (15)

which permits to estimate the rms amplitudes for given

h′rms, H, ζ, qs.

In all the simulations presented here, the rough sur-

faces were generated on a grid of 512 × 512 square

patches, each with side δ. This length represents the

resolution of the simulation, i.e., the size of the small-

est observable surface feature. The height of the patches

were generated by means of a spectral synthesis algo-

rithm [17], according to the roughness model of a self-

affine surface with long distance rolloff and short dis-

tance cutoff wavelengths [18]. In order to obtain results

comparable to the analytical findings reported in sec

2.1, we choose to generate families of surfaces with as-

signed h′rms values. The Hurst exponent of the surfaces

was 0.8, the small and large wavelength were 4δ and

512δ, respectively. The corresponding roughness hrms

can be estimated by using eq. (15).

We studied the contact of a single cone indenting the

surface with an imposed approach such that the contact

domain was completely included within the surface. Un-

der this assumption there is no need of considering a pe-

riodic arrangement of multiple adjacent surface patches

to enlarge the possible contact region.

The spectral properties of the generated surfaces

were verified a posteriori according to the methods de-

scribed by Jacobs et al [19]. Figure 3 shows an example

of the typical distributions of slopes, heights and cur-

vatures, and the power density spectrum of a generated

surface.
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Fig. 3: Typical distribution of roughness quantities for

a generated surface (h′rms = 0.16). (a) slope, (b) height,

(c) curvature, and (d) power density spectrum. Two-

dimensional power-spectral density C iso(q) evaluated

according to [19]. All values are normalized by using

the grid spacing δ

For each value of the imposed displacement of the

cone, the contact domain, i.e., the set of surface patches

where compressive forces are exchanged between the

contacting bodies, was determined. The total normal

load N and the local forces at the contacting surface

patches were calculated as well.

As an example, considering the case α = 80◦, Fig-

ure 4 shows the calculated contact domains, at approx-

imately the same load N for the smooth case and five

rough surfaces differing only in the h′rms value. Each

contact patch is coloured according to the value of the

local compressive force.

The value of the real contact area ratio given by

an Icarus simulation refers to a particular realization of

the rough surface, which can be thought of as a random

extraction from a population of surfaces with the same
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(a) (b)

(c) (d)

(e) (f)

Fig. 4: Contact domains for a conical indenter with

semi-opening α = 80◦, at the same load N and different

increasing values of the halfspace roughness ((a) smooth

surface; (b)-(f): h′rms = 0.01, 0.02, 0.04, 0.08, 0.16, re-

spectively). The side of the boundary square corre-

sponds to 512δ. The circle depicts the contact area of

the smooth surface

roughness h′rms. In order to investigate the influence of

the statistical variability of the surface topography on

the numerical results, we simulated the contact of a

conical punch with α = 80◦ with ten surfaces for each

given h′rms. In particular, to examine the difference be-

tween the two analytical expressions for A/Acone given

by eq. (6) and eq. (12), the surfaces were generated

for h′rms=0.01, 0.02, 0.04, 0.08 and 0.16, corresponding

roughly to the range of ρc from 1 to 18, i.e., in the inter-

val of their maximum discrepancy, as shown in Figure

2.

The main results obtained from the simulations are

the histories of the load N and of the contact area A for
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Fig. 5: Contact area vs. load curves for different val-

ues of surface roughness h′rms((a) smooth surface; (b)-

(f): h′rms = 0.01, 0.02, 0.04, 0.08, 0.16, respectively). The

thick solid line depicts the theoretical behaviour of a

smooth surface, while the dashed line corresponds to

the values calculated according to eq. (12)

each value of the imposed approach w. Figure 5 shows,

for all the values of the roughness used in the sim-

ulations, the curves representing the non-dimensional

contact area A/δ2 as a function of the imposed ap-

proach w, for all the simulated surfaces (thin lines),

together with the smooth-contact theoretical solution

(thick solid line), i.e., using δ2 as a normalizing factor:

Acone

δ2
=

2N

E∗δ2 cotα
. (16)

In Figure 6 we present the calculated relations be-

tween the load N and the approach w. The thick line

is the graph of the theoretical response for a smooth
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Fig. 6: Load vs. approach curves for different values

of surface roughness h′rms((a) smooth surface; (b)-(f):

h′rms = 0.01, 0.02, 0.04, 0.08, 0.16, respectively). The

thick line depicts the theoretical curve for a smooth

surface

contact, i.e., in non-dimensional form:

N

E∗δ2
=

2w2

πδ2 cotα
. (17)

To evaluate the real contact area ratio A/Acone for

a given condition, both A and Acone must be calcu-

lated at the same load N . Finding the smooth contact

area Acone as a function of load N is a trivial task: at

any given approach a load N and a number of contact

patches np are evaluated, so that Acone ≈ npδ
2. Icarus

simulations for the case of the smooth surface agree

with this result to within 0.5 % when np is greater than

about 1000.
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Fig. 7: Real contact area ratio A/Acone for a 80◦ cone on

a surface with h′rms = 0.08 vs. the normalized force N∗.

Mean value (continuous line) and standard deviation

(dotted lines) obtained from a sample of 10 random

rough surfaces

Calculating a representative value of A for a sample

of rough surfaces under a given load N is a little more

involved. Since the simulations of indentation proceed

by increasing the approach in discrete steps, the value of

the force obtained for different surfaces under the same

approach is not, in general, the same. For the surfaces

of a sample with the same h′rms the analyses were car-

ried out determining, for each one of them, the histories

of load N and number of contacts np up to the limit

allowed by Icarus code, which depends on the size of

the available computer memory. Then, a reference load,

Nref, was determined as the minimum of the maximum

loads. Afterwards, for each surface, the values of np
corresponding to Nref were calculated by interpolation,

determining the mean µnp
and the standard deviation

σnp for any group of surfaces with the same h′rms. Also,

the minimum value of np for the sample, denoted by
np,ref, was evaluated.

The results obtained with the procedure described

above can be considered converged values, as shown in

Figure 7 by the graphs of A/Acone plotted as a function

of the non-dimensional load N∗ obtained dividing the

calculated load by a normalizing load evaluated as the

product of the theoretical mean pressure for the smooth

cone pm,c and the area of a contact patch, δ2:

N∗ =
2N

δ2E∗ cotα
. (18)

It can be noted that, with this position, in the case of

smooth contact one has N∗ = np (i.e. the load is mea-

sured by the number of contact patches), irrespective

of the cone semi-opening angle α. In Figure 7, as an

example, the results for the case h′rms = 0.08 are pre-

sented, showing qualitatively the stability of the cal-

culated mean value and standard deviation, when the

number of contacts is sufficiently large.
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Table 1: Influence of the roughness parameter h′rms on

the real contact area ratio at fixed normal load N . Com-

parison of Icarus output with the results of numerical

integration of eq. (12). np,ref is the minimum number of

contacting patches among the surfaces of the sample,

corresponding to the load Nref

h′rms h̄rms/δ ρc np,ref A/Acone A/Acone Relative
Icarus eq. (12) error

0.00 — — 37 164 1.000 1.000 —
0.01 0.16 17.63 37 364 1.002±0.009 0.998 0.4 %
0.02 0.32 8.82 37 470 1.001±0.017 0.992 0.9 %
0.04 0.64 4.41 37 211 0.985±0.031 0.969 1.7 %
0.08 1.29 2.20 35 152 0.909±0.045 0.894 1.7 %
0.16 2.57 1.10 30 031 0.724±0.044 0.719 0.7 %

The results in terms of number of contacts np,ref and

area ratio A/Acone are summarized in Table 1, where

the output of the numerical simulations are compared

with the values obtained through numerical integration

of eq. (12). The graphical representation of these data

is shown in Figure 2 along with the results of the theo-

retical model presented in sec. 2.1. The average values

of the heights for each family of surfaces, h̄rms, agree

with the theoretical predictions of eq. (15) to within

4 %.

3 Discussion

The results obtained by means of the numerical model

of the discretized contact problem, and the integration

of the proposed analytical expression of the contact area

ratio (eq. (12)) are in good agreement for all the possi-

ble values of the normalized pressure ρc, which is, ac-

cording to eq. (7), a purely geometric parameter, inde-

pendent of the load. Assuming the averaged outputs of

the numerical simulations as reference values, the rela-

tive error of the solution obtained with our theoretical

model is less than 2 % in all the investigated range of

roughness, as reported in Table 1.

The influence of the introduction in the theoretical

model of a variable density of contact, γ, as opposed

to the constant-value assumption, can be observed in

Figure 2. Consideration of the pointwise variability of

the contact density gives a much better agreement than

the assumption of constant density related to the mean

contact pressure by eq. (6), particularly in the interme-

diate range of normalized mean pressure. For all the

values of h′rms investigated, the theoretical prediction

of the contact area ratio differs less than one standard

deviation from the mean value obtained with the nu-

merical simulations.

Observation of the load vs. approach curves depicted

in Figure 6 suggests that differences in roughness hrms

affect the response of the surfaces belonging to a family

generated with the same h′rms. When the approach w

increases, the numerically calculated load N tends to

the theoretical solution of the smooth surface, for all

the values of h′rms. In the initial phase of contact, when

w is small, the difference between the numerical and

the theoretical solution can be ascribed to the discrete

nature of the contact numerical model, whose resolu-

tion is dictated by the chosen grid step δ. Furthermore,

the scatter of the load vs. approach w curves increases

for increasing h′rms. Examination of the results obtained

from all the surfaces in a family shows that there is a

correlation between hrms and the value of N induced

by a certain w. For example, in the case of h′rms = 0.16,

where h̄rms = 2.57 δ (Figure 6f), the lower and upper

curves correspond to the minimum (hrms = 1.83 δ) and

maximum (hrms = 3.91 δ), respectively. These differ-

ences in the load vs. approach response should affect

the contact stiffness, but this aspect of the problem

that would require a specific statistical analysis has not

been pursued in this study.

4 Conclusions

In the paper, we presented the study of the contact

between a conical frictionless punch and an isotropic

linear-elastic halfspace bounded by a rough self-affine

surface, under normal load. The focus of the analysis

was on the determination of the true contact area ratio.

We assumed pressure and true contact area related

by Persson’s type of area - load relationship, with asymp-
totic saturation of the contact area for increasing pres-

sure. In particular, these laws can be expressed by means

of a constitutive parameter, i.e., a normalizing pressure

depending on the equivalent elastic modulus and the

rms slope, h′rms of the surface. Moreover, the pressure

ratio, ρc, given by the ratio between the cotangent of

the cone angle and the rms slope is introduced as the

parameter that characterizes a given cone-surface con-

figuration.

The mean contact pressure for a smooth conical

punch does not depend on the load, but only on the

cone opening angle and the equivalent elastic modu-

lus. When roughness is present, a first approximation

is to consider Persson’s law valid for the entire contact,

using the mean pressure as a load factor, as proposed

by Pastewka and Robbins for the spherical contact, ob-

taining the expression of eq. (6).

A more refined expression is obtained considering

Persson’s law to hold locally, leading to a pointwise lo-

cal contact area density, (eq. (10)). Numerical integra-
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tion of this function leads to an improved evaluation of

the true contact area ratio.

Discrete numerical simulations show a good agree-

ment with the predictions of the variable density theo-

retical model, whilst the mean pressure approximation

gives poor results, overestimating the contact area ratio

in the intermediate range.

The results obtained with the discrete numerical

contact model show that, similarly to the smooth case,

the contact area is proportional to the load, with a coef-

ficient of proportionality decreasing for increasing sur-

face roughness.

It has not escaped our notice that the proposed def-

inition of a local contact area density, although applied

here to a particular contact problem, suggests a possible

generalization to other configurations.
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Appendix

The expression of local contact area density, which in radi-
ally symmetrical cases has the form of eq. (10), can be derived
from the procedure of integration in the pressure domain de-
scribed by Manners and Greenwood [20], obtaining an expres-
sion similar to the one presented in the paper, differing only
in the choice of a constitutive parameter, i.e., the normalizing
pressure.

Let us introduce the following notation:

– FP (p) = Prob(P < p), the cumulative distribution func-
tion of the smooth pressure distribution;

– fP (p) = dFP (p)
dp

, the corresponding probability density

function;

– V = 1
4
E∗2h′rms

2, the variance of the contact pressure
needed to close all the gaps between the surfaces. This ex-
pression pertains to a 2D isotropic surface h(x, y), where
the orthogonal components of the slope ∂h/∂x and ∂h/∂y
are uncorrelated, and similarly the pressures needed to
squeeze flat the surface. While the variance of full con-
tact pressure for a 1D profile is V = 1

4
E∗2σ2

m, where
σ2
m = m2 is the variance of profile slopes, for a 2D surface
V = 1

4
E∗2 2σ2

m = 1
2
E∗2σ2

m = 1
2
E∗2m2 = 1

4
E∗2h′rms

2,

where h′rms is the root mean square of the “areal rough-
ness gradient”: h′rms =

√
〈|∇h|2〉 =

√
2m2 =

√
2σ2
m.

The expression of the contact area ratio given in [20] is

A

Acone
=

∫ ∞
0

fP (p) erf

(
p
√

2V

)
dp. (19)

In radial symmetrical cases, when the radial profile of the
pressure is monotone, there is a one-to-one correspondence
between the pressure p and the radius r, so that a change of

variable can be made, giving

A

Acone
=

∫ 0

a

fP (p(r)) erf

(
p(r)
√

2V

)
dp

dr
dr

=

∫ 0

a

dFP (r)

dr

dr

dp
erf

(
p(r)
√

2V

)
dp

dr
dr

=

∫ 0

a

dFP (r)

dr
erf

(
p(r)
√

2V

)
dr.

Now, due to radial symmetry, for the conical indenter

FP (r) = 1− r2/a2, so that dFP (r)
dr

= −2r
a2 . Transforming fur-

ther the one-dimensional integral into a surface integral by
introducing the azimuth angle φ, we have

A

Acone
=

1

πa2

∫ 2π

0

∫ a

0

r erf

(
p(r)
√

2V

)
drdφ

=
1

πa2

∫ a

0

2πr erf

(
p(r)
√

2V

)
dr.

Comparison between this expression and eq. (12) gives the
local contact area density as:

γ(r) = erf

(
p(r)
√

2V

)
.

Our definition of the local contact density (eq. (10)) is
slightly different, due to a different choice of the normal-
izing pressure for the argument of the error function, i.e.,
pPR = 2 prough/

√
π (as proposed by Pastewka and Robbins

[5]), instead of pMG =
√

2V , used by Manners and Greenwood
[20].

According to eq. (2), we have

pPR =
2
√
π

E∗h′rms

k

and, by using the expression of V given above:

pMG =
E∗h′rms√

2
,

so that, letting k = 2, we have pMG =
√
π/2 pPR.

As apparent from this discussion, the definition of a local
contact density leads to results coincident with those given
by the integration in the pressure domain. The validity of this
approach does not depend on the normalizing pressure. The
choice of a certain normalizing pressure amounts to a consti-
tutive assumption about the response of the rough interface
to the value assumed by the normal pressure at a point of the
contact domain.

The choice of a normalizing pressure different from the
results of Persson’s theory is adopted in order to get the cor-
rect linear trend, as numerically observed, in the linear range
of the erf function. Since the latter covers a quite extensive
region (up to contact area fraction almost of 50%), we think
it is important to make this modification. However, there is
more ground to this correction, since even in the case of large
area fractions, there are various authors who have commented
that Persson’s solution may underestimate the contact area,
and this comes also from a simple asperity model.

It can be shown (Greenwood, personal communication)
that eq. (19) can be evaluated in quadrature as

A

Acone
= 2

∫ ∞
0

sinh q

cosh3 q
erf

(
q
pm,c√

2V

)
dq,

which can be transformed, after substitution of pMG with
pPR, into the form obtained in the paper, given by eq. (12).
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