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ABSTRACT 

In this paper an analytical method for studying the free response of continuous vibrating systems with distributed 

and possibly non-proportional viscous damping is proposed. The most general case the method refers to is a piece-

wise homogeneous Euler-Bernoulli beam, with lumped elastic and inertial elements and subjected to tensile load. 

The practical application of the method to a contact wire is also presented, aiming at analysing its dynamic 

response. Contact wires are typically used in the overhead contact line of the railway electrification system but, 

despite their wide diffusion, their damping properties have not been exhaustively studied. This study aims at 

experimentally validate the analytical method to define a reliable dynamic model of overhead contact lines. 

The wire is modelled as an axially loaded homogeneous beam, with lumped elastic and inertial elements (i.e. 

droppers and clamps). A state-form expansion applied in conjunction with a transfer matrix technique is adopted 

to extract the eigenvalues and to express the eigenfunctions in analytical form. Experimental measurements have 

been carried out in the Dynamics & Identification Research Group (DIRG) laboratory of Politecnico di Torino 

considering two different damping scenarios, and the modal properties of the test bench have been extracted by 

using a linear subspace identification technique. The damping distribution is finally investigated starting from the 

experimental data, in order to seek for the most appropriate damping model. 

 

KEYWORDS: overhead contact line; damping distribution; non-proportional damping; stochastic subspace 

identification; analytical investigation. 

 

1. INTRODUCTION 

Contact wires are widely used in the overhead contact lines of railway electrification systems, and typically consist 

of long and flexible copper cables, with a particular cross section to allow the connection with the droppers. An 

extensive literature has been produced about the characterization of contact wires and overhead contact lines. 

Indeed, tests on the field are quite difficult to be performed and a proper model is fundamental in order to correctly 

simulate the dynamic evolution of the system. In [1] general indications about the modeling of an overhead contact 

line are presented, and a comparison between a string model and a Euler-Bernoulli beam model is carried out. The 

latter proved to be more effective, even because its dispersive wave characteristics better represents the behavior 

of the contact wire [2]. In [3] an analytical study on the effects of a moving force, representing the pantograph, has 

been conducted adopting a beam model. In spite of the high number of studies on the dynamics of contact wires, 

their damping properties have been not exhaustively investigated. Overhead contact lines are usually considered 
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low-damped systems, and in many cases damping is suggested to be negligible at all [4]. This is a gross 

approximation that can lead to unreliable results, especially when adopting a finite element model [5]. In particular, 

the influence of damping has been studied in [6, 7], showing its considerable effects on the quality of the current 

collection for high speed trains. Recently, a benchmark has been proposed [8] to model the pantograph-catenary 

interaction. Proportional structural damping is considered in this study with coefficients 𝛼 = 0.0125 𝑠−1, 𝛽 =

10−4 𝑠 obtained from measurements on the Italian high-speed catenary. In [9] the identification of damping of 

Norwegian overhead contact lines has been performed under different operational conditions. In [10] experimental 

measurements of the damping ratios have been conducted, leading to define a range from 0.01 to 0.04.  

In this paper, a twofold purpose is chased: presenting an analytical method for better investigating the damping 

distribution and using experimental measurements to validate the predictions of the model. 

The presented method can generally handle several kinds of continuous vibrating systems with either proportional 

and non-proportional damping. It is based on [11, 12], and uses a partition of the continuous system in 

homogeneous substructures (or segments) in conjunction with a transfer matrix technique. In the particular case 

of overhead contact lines, each section corresponds to the distance between two consecutive droppers, the latter 

being modeled as lumped elastic elements. A key feature of overhead contact lines is the tensile force acting on 

both contact wire and messenger wire, thus the reference method is here extended to account for an axial load 

across the segments of the considered structure. The proposed approach leads to an easy implementation and 

presents a high computational efficiency, due to the invariance of the matrix dimensions with respect to the number 

of segments considered. Experimental measurements have also been performed at the DIRG laboratory of the 

Politecnico di Torino considering two different damping scenarios. A linear subspace identification technique [13 

- 15] is used to extract the modal parameters from the acquired data, and a model updating process is implemented 

to find the best-fit between experimental results and analytical predictions. The damping distribution is finally 

analyzed combining information from both the experimental outcomes and the presented analytic model. 

 

2. MODAL ANALYSIS OF CONTINUOUS SYSTEMS WITH VISCOUS GENERALIZED DAMPING 

AND TENSILE FORCE 

The dynamic behavior of a continuous system with viscous generalized damping can be described, recalling [11], 

by the following equation of motion: 
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𝑀 [
𝜕2

𝜕𝑡2
𝑤(𝐱, 𝑡)] + 𝐶 [

𝜕

𝜕𝑡
𝑤(𝐱, 𝑡)] + 𝐾[𝑤(𝐱, 𝑡)] = 𝑓(𝐱, 𝑡),  𝐱 ∈ 𝒟 (1) 

Where M, C, K, are linear homogeneous differential operators and are referred to as mass, damping and stiffness 

operator respectively, f is the external force density, w and x are the displacement and the spatial coordinate in a 

domain of extension 𝒟, and t is time.  

The differential eigenvalue problem associated with eq. 1 has been already solved in [11] considering a piece-wise 

constant Euler-Bernoulli beam with both internal and external damping distribution. In this case, the mass and the 

stiffness operator are: 

𝑀 = 𝑚(𝑥),  𝐾 =
𝜕2

𝜕𝑥2
[𝑘(𝑥)

𝜕2

𝜕𝑥2
] (2) 

Where 𝑚(𝑥) is the mass per unit length of the beam and 𝑘(𝑥) = 𝐸𝐼(𝑥) is the bending stiffness, E being the 

Young’s Modulus and I the area moment of inertia.  

The damping operator can be a general external distributed viscous damping function 𝐶 = 𝑐𝑒𝑥(𝑥) or can be 

expressed according to the Kelvin-Voigt model [16] as: 

𝐶 =
𝜕2

𝜕𝑥2
[𝑐𝑖𝑛(𝑥)

𝜕2

𝜕𝑥2
] (3) 

In particular, damping is said to be proportional when the damping operator can be expressed as a linear 

combination of the mass operator and the stiffness operator. 

According to the equations above, considering both an external and an internal damping distribution, the equation 

of a Euler-Bernoulli beam in bending vibration under a distributed transverse force is obtained.  

𝑚(𝑥)
𝜕2𝑤

𝜕𝑡2
+ 𝑐𝑒𝑥(𝑥)

𝜕𝑤

𝜕𝑡
+
𝜕2

𝜕𝑥2
[𝑐𝑖𝑛(𝑥)

𝜕2

𝜕𝑥2
(
𝜕𝑤

𝜕𝑡
)] +

𝜕2

𝜕𝑥2
[𝑘(𝑥)

𝜕2𝑤

𝜕𝑥2
] = 𝑓 (4) 

Where 𝑓 = 𝑓(𝑥, 𝑡) is the transverse force and 𝑤 = 𝑤(𝑥, 𝑡) is the transverse displacement. If a tensile load is 

applied to the beam, the equation is modified in this paper to include the axial force T (positive in tension), as 

follows:  

𝑚(𝑥)
𝜕2𝑤

𝜕𝑡2
+ 𝑐𝑒𝑥(𝑥)

𝜕𝑤

𝜕𝑡
+
𝜕2

𝜕𝑥2
[𝑐𝑖𝑛
𝑘 (𝑥)

𝜕2

𝜕𝑥2
(
𝜕𝑤

𝜕𝑡
)] − 𝑐𝑖𝑛

𝑇
𝜕2

𝜕𝑥2
(
𝜕𝑤

𝜕𝑡
) +

𝜕2

𝜕𝑥2
[𝑘(𝑥)

𝜕2𝑤

𝜕𝑥2
] − T

𝜕2𝑤

𝜕𝑥2

= 𝑓(𝑥, 𝑡) 

(5) 
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The internal damping distribution is now described by two coefficients,  𝑐𝑖𝑛
𝑘  and 𝑐𝑖𝑛

𝑇 , as an extension of the Kelvin-

Voigt model (eq. 3) to the axially loaded case. Two boundary conditions must be satisfied at x=0 and x=L, with L 

being the length of the beam.  

 

 The differential eigenvalue problem 

If no external force is present, eq. 5 reduces to: 

𝑚(𝑥)
𝜕2𝑤

𝜕𝑡2
+ 𝑐𝑒𝑥(𝑥)

𝜕𝑤

𝜕𝑡
+
𝜕2

𝜕𝑥2
[𝑐𝑖𝑛
𝑘 (𝑥)

𝜕2

𝜕𝑥2
(
𝜕𝑤

𝜕𝑡
)]−𝑐𝑖𝑛

𝑇
𝜕2

𝜕𝑥2
(
𝜕𝑤

𝜕𝑡
) +

𝜕2

𝜕𝑥2
[𝑘(𝑥)

𝜕2𝑤

𝜕𝑥2
] − T

𝜕2𝑤

𝜕𝑥2
= 0 (6) 

The solution is sought by separating the variables in the form: 

𝑤(𝑥, 𝑡) = 𝜙(𝑥)𝑞(𝑡),  𝑞(𝑡) = 𝑞0𝑒
𝑠𝑡 (7) 

Where the constant s has to be determined so that the boundary conditions are satisfied. 

The beam is divided in N segments of length Δ𝑥𝑝 = 𝑥𝑝 − 𝑥𝑝−1 (where x0=0 and xN=L) in which 

𝑚(𝑥), 𝑐𝑒𝑥(𝑥), 𝑐𝑖𝑛
𝑘 (𝑥) and 𝑘(𝑥) are assumed to be constant. The coefficient 𝑐𝑖𝑛

𝑇  is constant along the all beam, as 𝑇 

is constant. Eq. 6 is separated in N equations that can be written in the form: 

𝜙𝑝
IV = −

𝑚𝑝𝑠
2 + 𝑐𝑒𝑥,𝑝𝑠

𝑘𝑝 + 𝑐𝑖𝑛,𝑝
𝑘 𝑠

𝜙𝑝 +
𝑇 + 𝑐𝑖𝑛

𝑇 𝑠

𝑘𝑝 + 𝑐𝑖𝑛,𝑝
𝑘 𝑠

𝜙𝑝
II = −𝜎𝑝𝜙𝑝 + 𝛾𝑝𝜙𝑝

II (8) 

The problem is solved adopting the state-form, and a state vector 𝐲(𝑥) is defined as follows: 

𝐲(𝑥) = [𝜙𝐼𝐼𝐼(𝑥) 𝜙𝐼𝐼(𝑥) 𝜙𝐼(𝑥) 𝜙(𝑥)]T (9) 

Eq. 8 then becomes: 

𝐲p
I (𝑥) = 𝐒p𝐲p(𝑥) (10) 

Where 𝐒p is the companion matrix: 

𝐒p = [

0 𝛾𝑝 0 −𝜎𝑝
1 0 0 0
0 1 0 0
0 0 1 0

] (11) 

The four eigenvalues of the companion matrix are: 

𝜆𝑝1,2 = ±
√
𝛾𝑝 + √𝛾𝑝

2 − 4𝜎𝑝

2
,   𝜆𝑝3,4 = ±

√
𝛾𝑝 − √𝛾𝑝

2 − 4𝜎𝑝

2
 (12) 

While the pth segment eigenvectors matrix 𝚽𝑝 is: 
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𝚽𝑝 =

[
 
 
 
 
𝜆𝑝1
3 𝜆𝑝2

3 𝜆𝑝3
3 𝜆𝑝4

3

𝜆𝑝1
2 𝜆𝑝2

2 𝜆𝑝3
2 𝜆𝑝4

2

𝜆𝑝1 𝜆𝑝2 𝜆𝑝3 𝜆𝑝4
1 1 1 1 ]

 
 
 
 

 (13) 

Finally, the solution to eq. 10 can be written in the form: 

𝐲p(𝑥) = 𝚽𝑝𝑒
𝚲𝑝𝑥𝐜p (14) 

Where 𝚲𝑝 is the eigenvalues matrix of the pth segment and 𝐜p is the constants vector. The solution 𝐲p(𝑥) is valid 

when 𝑥 ∈ [𝑥𝑝−1, 𝑥𝑝], thus the constants vector of the pth segment can be calculated knowing 𝐲p(𝑥𝑝−1). 

 

 The boundary conditions 

According to Ref. [11], the boundary conditions at the ends of the beam can be written in the form: 

𝐁e0𝐲1(0) = 𝟎 

𝐁eL𝐲N(𝐿) = 𝟎 

(15) 

Where 𝐁e0 and 𝐁eL are two matrices depending on the kind of constraints. For a clamped end, a pinned end, and 

a free end, those matrices are simply: 

𝐁e = [
0 0 1 0
0 0 0 1

] ,  𝐁e = [
0 1 0 0
0 0 0 1

] ,  𝐁e = [
1 0 0 0
0 1 0 0

] 

(16) 

Clamped                               Pinned                                     Free 

Moreover, boundary constraints must be imposed at the interface between two consecutive segments as follows: 

𝐲p(𝑥𝑝−1) = 𝐁p−1𝐲p−1(𝑥𝑝−1),  𝑝 = 2,… ,𝑁 (17) 

Where 𝐁p−1 is a matrix obtained imposing the continuity of displacements, rotation, moment and shear at each 

interface and can be written in the following form: 

𝐁p−1 =

[
 
 
 
𝑏𝑝
−1𝑏𝑝−1 0 0 −𝑏𝑝

−1𝑟𝑝−1
𝑤

0 𝑏𝑝
−1𝑏𝑝−1 −𝑏𝑝

−1𝑟𝑝−1
𝜃 0

0 0 1 0
0 0 0 1 ]

 
 
 

 (18) 

Where 𝑏𝑝 and 𝑏𝑝−1 depend on internal stiffness and damping, i.e.: 

𝑏𝑝 = 𝑐𝑖𝑛,𝑝
𝑘 𝑠 + 𝑘𝑝   (19) 

While 𝑟𝑤 and 𝑟𝜃  depend on external constraints. If in 𝑥𝑝−1 there are external constraints, such as lumped inertia, 

damping or stiffness elements, then: 
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𝑟𝑤 = 𝑀𝑤𝑠
2 + 𝐶𝑤𝑠 + 𝐾𝑤 

𝑟𝜃 = 𝐾𝜃  

(20) 

Where 𝑀𝑤, 𝐶𝑤, 𝐾𝑤 represent a lumped mass, a lumped damper and a lumped stiffness respectively, while 𝐾𝜃  is a 

lumped rotational stiffness. It is worth noticing that these elements can represent the droppers (with their clamps) 

of the overhead contact line. 

Taking into account the boundary conditions, eq. 14 can be written as: 

𝐲p(𝑥) = 𝚽𝑝𝑒
𝚲𝑝(𝑥𝑝−𝑥𝑝−1)𝚽𝑝

−1𝐁p−1𝐲p−1(𝑥𝑝−1) (21) 

With 𝐁0 = 𝐈 and 𝚽𝑝
−1 can be obtained by: 

𝚽𝑝
−1 =

1

2𝜆𝑝1𝜆𝑝2(𝜆𝑝1
2 − 𝜆𝑝2

2 )

[
 
 
 
 
𝜆𝑝2 𝜆𝑝1𝜆𝑝2 −𝜆𝑝2

3 −𝜆𝑝1𝜆𝑝2
3

−𝜆𝑝1 −𝜆𝑝1𝜆𝑝2 𝜆𝑝1
3 𝜆𝑝1

3 𝜆𝑝2
𝜆𝑝2 𝜆𝑝1𝜆𝑝2 𝜆𝑝2

3 −𝜆𝑝1𝜆𝑝2
3

𝜆𝑝1 −𝜆𝑝1𝜆𝑝2 −𝜆𝑝1
3 𝜆𝑝1

3 𝜆𝑝2 ]
 
 
 
 

 (22) 

Moreover, eq. 21 yields: 

𝐲p(𝑥) =∏[𝚽𝑖𝑒
𝚲𝑖(𝑥𝑖−𝑥𝑖−1)𝚽𝑖

−1𝐁i−1]𝐲1(0)

1

𝑖=𝑝

= 𝚷𝑝(𝑥𝑝)𝐲1(0),  𝑝 = 1,… ,𝑁 (23) 

The matrix 𝚷𝑝 is a transfer matrix, which allows eq. 15 to be written as: 

{
𝐁e0𝚽1𝐜1 = 0

𝐁eL𝚷N(𝐿)𝚽1𝐜1 = 0
  or  𝚯𝐜1 = 𝟎  (24) 

Eq. 24 has non-trivial solutions only if the determinant of the coefficient matrix is zero: 

det(𝚯(𝑠𝑛)) = 0,  𝑛 = 1, 2, … (25) 

Where 𝑛 is the mode number. The solutions to the last equation are also the solutions to the eigenvalue problem 

related to eq. 6, and if the system is underdamped they form an infinite set of complex conjugate pairs 𝑠𝑛 , 𝑠𝑛
∗  of 

discrete values, with 𝑠𝑛 = −𝜁𝑛𝜔𝑛 + 𝑖𝜔𝑛√1 − 𝜁𝑛
2. The following relations provide the modal frequencies and the 

modal damping factors respectively: 

ω𝑛 = |𝑠𝑛|,  𝜁𝑛 = −
ℜ[𝑠𝑛]

|𝑠𝑛|
 (26) 

Recalling that 𝚯 is a 4x4 complex matrix, the solutions to the eigenvalue problem det(𝚯) = 0 can be found using 

an appropriate root-finding algorithm that works in the complex domain. Alternatively, the complex function can 

be split into its real and imaginary parts, so that the root-finding problem reduces to: 
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𝚿(𝚯(𝑠𝑛))𝛓(𝑠𝑛) = 𝟎 (27) 

Where: 

𝚿 = [ℜ[det(𝚯)]  ℑ[det(𝚯)]],  𝛓 = [ℜ[𝑠𝑛] ℑ[𝑠𝑛]]
T
 (28) 

It is worth noticing that 𝑠𝑛 is imaginary in the undamped case, leading to an easy root-finding problem in one 

variable. The undamped solutions therefore can be taken as a starting point in eq. 27, for instance applying the 

Newton method [17]. If 𝛓0 is the starting point and 𝐉 is the Jacobian matrix (2x2) of the function 𝚿, the iterative 

process can be written as: 

𝛓𝑘 = 𝝇𝑘−1 − 𝐉k−1
−1 𝚿k−1,  𝑘 = 1,2, … (29) 

The iterations proceed until |𝛓𝑘∗ − 𝛓𝑘∗−1| < 𝜀, with 𝜀 desired tolerance, yielding 𝑠𝑛 = ς𝑘∗(1) + 𝑖ς𝑘∗(2). 

 

3. THE EXPERIMENTAL SETUP 

Experiments have been carried out using a 30 m long railway contact wire in order to both test the method and 

analyze the damping distribution of the system in several operational conditions. The experimental setup is shown 

in Fig. 1.  

 

Fig. 1: The experimental setup. 

 

The tensile force is applied to the wire by means of the tensioning device shown in Fig. 2, which is based on a 

simple screw-nut mechanism. A load cell is used to measure the applied tension and a thrust bearing on each end 

is used to assure that no torsion is transferred to the wire. The adopted system of reference is shown in Fig. 2 and 

the properties of the adopted contact wire are summarized in Table 1. 
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Fig. 2: a) Scheme of the tensioning device and section of the contact wire. b) Photo of the test bench. 

 

Properties of the contact wire [18] 

Material Cu-ETP 

Section (mm2) 100 

Mass per unit length (kg/m) 0.889 

Young’s Modulus (GPa) 120 

Distance between the supports (m)  30.7 

Table 1: Properties of the contact wire 

 

 

 Contact wire without lumped elements 

The first experimental setup consists of a simple contact wire under axial load, and it is aimed to characterize its 

damping properties. All the following tests are performed applying an impulse load along the z-axis and recording 

the accelerations of four different points on the wire along the three directions. The position of the accelerometers 

is reported in Table 2. The acquisition time is set to 300 𝑠 for all the tests to ensure that a sufficient number of 

oscillations are recorded for the low-frequency modes. Furthermore, different levels of tension are considered 

according to Table 3.  
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Accelerometer n° 1 2 3 4 

Position (m) 1.5 9 17 27 

Table 2: Position of the accelerometers measured from the left end (case without lumped elements). 

 

 

Test Tensile load 𝑇 (kN) Sampling frequency 𝑓𝑠  (Hz) Acquisition time 𝑡 (s) 

1  5.17 ± 6 10−3 81.92 300 

2  10.95 ± 3 10−2 81.92 300 

3  16.24 ± 7 10−2 81.92 300 

Table 3: Tests performed on the contact wire. The tensile load is written as mean value ± variation. 

 

Because of the considerable length of the wire, vibrations occur on both the z-axis and the y-axis when applying 

an impulse load along the z-axis. Furthermore, the section of the wire is not axisymmetric; thus the bending natural 

frequencies along the two axes are slightly different. Fig. 3 shows the power spectral density of the acceleration 

recorded by the z-channel and the y-channel of the second accelerometer during Test 3. The zoomed area clearly 

shows two very close peaks, one mainly present on the z-axis and the other on the y-axis. These twin modes are 

very frequent in this kind of systems and must be correctly recognized in order to extract the modal parameters of 

interest, which in this case are related to the z-axis only (the flexural displacement is called 𝑤 in eq. 1).  

 

Fig. 3: Power spectral density of the acceleration recorded by the second accelerometer during the test 3. 

Solid blue line: z-axis. Dashed red line: y-axis. 
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 System identification 

A linear subspace identification technique [13] is used to extract the modal parameters from the described system, 

considering the output-only case. The accelerations recorded along the x-axis are discarded; thus a total of 8 

channels (4 along the z-axis and 4 along the y-axis) are taken into account for each test. The identified poles are 

collected for each model order of the method, and stability is checked by setting thresholds for frequencies, 

damping ratios and mode shapes [15]. The stabilization diagram related to Test 1 is reported in Fig. 4. Because of 

the high number of modes present in the frequency range of interest 0-40 Hz, it is compulsory to select the model 

order carefully, and therefore the modal parameters, for each physical mode. Two different criteria for order 

selection are compared to obtain the best possible results:  

C1. The model order for each mode is selected according to the value of the damping ratio that is the median 

value of the damping ratios related to that mode.  

C2. The model order for each mode is selected comparing the MACs between the mode shapes related to that 

mode and considering the order that achieves the best MACs. 

Furthermore, the main direction of each mode shape is evaluated, in order to discard the modes related to the y-

axis. Table 4 summarizes the identified modes according to the two criteria for Test 1. 

 

Fig. 4: Stabilization diagram for Test 1. Stabilization thresholds for natural frequency, damping ratio and 

MAC are 0.5%, 10% and 99.5%, respectively. Grey dot: new (not stable) pole. Blue plus: pole stable in 

frequency. Red square: pole stable in frequency and MAC (Modal Assurance Criterion). Green cross: pole 

stable in frequency, MAC and damping. 
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Frequency, 𝑓𝑒𝑥𝑝 (Hz) Damping ratio, 𝜁𝑒𝑥𝑝 (%) 

C1 C2 C1 C2 

1.528 1.524 0.697 0.561 

2.565 2.565 0.012 0.013 

3.854 3.854 0.033 0.033 

5.097 5.097 0.037 0.033 

5.137 5.137 0.019 0.020 

6.424 6.424 0.024 0.025 

7.717 7.714 0.055 0.068 

8.944 8.943 0.046 0.030 

9.020 9.020 0.050 0.050 

10.318 10.313 0.057 0.079 

11.532 11.533 0.023 0.025 

11.633 11.633 0.038 0.041 

12.941 12.942 0.022 0.016 

14.288 14.286 0.030 0.052 

15.462 15.462 0.029 0.025 

15.623 15.623 0.029 0.031 

16.976 16.977 0.021 0.026 

18.326 18.330 0.022 0.028 

19.487 19.489 0.039 0.030 

19.683 19.690 0.027 0.028 

20.835 20.825 0.076 0.108 

21.040 21.039 0.049 0.038 

22.195 22.196 0.047 0.049 

22.474 22.474 0.023 0.019 

23.680 23.678 0.040 0.042 

24.947 24.946 0.021 0.021 

25.242 25.243 0.145 0.141 

26.570 26.587 0.093 0.073 

27.507 27.507 0.124 0.127 

28.216 28.218 0.028 0.026 

29.207 29.213 0.050 0.049 

29.681 29.681 0.037 0.038 

30.659 30.654 0.034 0.030 

31.185 31.184 0.052 0.054 

32.139 32.138 0.015 0.005 

32.702 32.700 0.021 0.020 

33.589 33.591 0.030 0.029 

34.205 34.203 0.052 0.049 

35.104 35.104 0.017 0.016 

35.756 35.755 0.025 0.019 

36.600 36.600 0.026 0.026 

37.315 37.323 0.026 0.061 

38.897 38.899 0.026 0.022 

Table 4: Identified modes for Test 1. Italics red color highlights modes related to the y-axis. C1 and C2 are 

the two different criteria. 
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The MACs between C1 and C2 are computed to verify that each identified mode shape is the same for the different 

criteria. The best order for each mode is then chosen according to C1.  

The identified bending frequencies can be compared with the analytical bending frequencies of a simply-supported 

beam, obtained using eq. 30 [3] or computed with the presented method in the simple case of no lumped elements. 

𝑓𝑎,𝑗 =
𝑗

2𝐿
√
𝑇

𝑚
+ (

𝑗𝜋

𝐿
)
2 𝐸𝐼

𝑚
 ,  𝑗 = 1, 2, 3, … (30) 

A model updating process is therefore implemented in order to refine the parameters and obtain the best-fit results.  

 

 Damping distribution and model updating 

An analysis of the damping distribution on the contact wire can be based on the identified poles to find a model 

that properly fits the experimental results. The simplest and most common damping distribution is the proportional 

damping, based on the hypothesis that damping can be expressed as a linear combination of the mass distribution 

and the stiffness distribution. With eq. 5, this hypothesis can be written as: 

𝑐𝑒𝑥(𝑥) = 𝛼 𝑚(𝑥),  𝑐𝑖𝑛
𝑘 (𝑥) = 𝛽 𝑘(𝑥),  𝑐𝑖𝑛

𝑇 = 𝛽 𝑇 𝛼, 𝛽 ∈ ℝ+ (31) 

If such a model is adopted, experimental frequencies and damping ratios listed in Table 4 are the (undamped) 

natural frequencies and corresponding damping ratios, and their correlation is given by eq. 32, where 𝜔𝑒𝑥𝑝 =

2𝜋𝑓𝑒𝑥𝑝. The two coefficients 𝛼 and 𝛽 can be obtained solving eq. 32 in a least-square sense, starting from 

experimental data.  

𝜁𝑒𝑥𝑝,𝑟 =
𝛼

2

1

𝜔𝑒𝑥𝑝,𝑟
+
𝛽

2
𝜔𝑒𝑥𝑝,𝑟 ,  𝑟 = 1,2, … , 𝑁 (32) 

Fig. 5 compares the experimental damping ratios with the proportional damping model for each level of tension. 

A good match is obtained for the three tests, though some experimental values are not well caught by the assumed 

damping model. This happens especially for the first identified mode, whose difference with respect to the 

predicted value is significant for all the tests, apparently in a non-systematic way. This is perhaps due to the very 

low damping of the system, which makes the damping identification difficult especially for the lower frequencies.  

Starting from the experimental results, a deeper analysis is conducted to update the parameters used in the 

presented method. The updating process is carried out taking into account both natural frequencies and damping 

ratios, and the chosen parameters to be updated are:  
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- Length of the wire, 𝐿: the chosen initial value for the length of the wire is the distance between the 

supports. However, the effective length of the flexural vibrations may be different due to the definition 

of the boundary conditions.  

- Young’s modulus, 𝐸: the chosen initial value is the nominal value according to [18]. 

- Linear density, 𝑚: the chosen initial value is the nominal value according to [18]. 

- Measured axial force, 𝑇: its limits are reported in Table 3.  

- Proportional damping coefficients 𝛼 and 𝛽: the chosen initial values are obtained from the experimental 

system identification. 

A multi-objective cost function that minimize the weighted RMSE (Root Mean Square Error) between analytic 

and experimental poles for each test is assembled, weighting the modes decreasingly from lower to higher 

according to eq. 33, where 𝜇𝑖 are the weights. A genetic algorithm [19] is used to find the best set of parameters.  

{
 
 
 

 
 
 
min√∑𝜇𝑖(ℜ[𝑠𝑒𝑥𝑝,𝑖] − ℜ[𝑠𝑚𝑜𝑑,𝑖])

2
𝑛

𝑖=1

,  ∑𝜇𝑖

𝑛

𝑖=1

= 1

min√∑𝜇𝑖(ℑ[𝑠𝑒𝑥𝑝,𝑖] − ℑ[𝑠𝑚𝑜𝑑,𝑖])
2

𝑛

𝑖=1

,  ∑𝜇𝑖

𝑛

𝑖=1

= 1

 (33) 

The results of the updating process are listed in Table 5, while Fig. 6 and Fig. 7 show the experimental frequencies 

and the identified poles respectively, compared with the outcomes of the presented method for the three tests. It 

can be seen that the updating process improves the correspondence between analytic and experimental results. In 

particular, the average error on the poles of the three tests decreases from 2.9% to 1.6%. It is important to highlight 

that the model relies on some assumptions that may be not respected in real measurements, in particular: 

- The wire is considered simply supported, whilst the real boundary conditions are certainly different; 

- The model is linear, while there may be some source of nonlinearities in the experimental setup. 
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Fig. 5: Proportional damping model best fit. Black dot: experimental damping ratio. Green line: fitted results 

(least-square). a) Test 1, 𝛼=0.0562, 𝛽=2 10-6. b) Test 2, 𝛼=0.0391, 𝛽=4 10-6. c) Test 3, 𝛼=0.0315, 𝛽=2 10-6. 

 

  Original parameter Updated parameter 

Common 

parameters 

Length of the contact wire (m) 30.70 30.57 

Young’s Modulus (GPa) 120 121 

Linear density (kg/m) 0.889 0.866 

Test 1 

Tension (kN) 5.17 ± 6∙10-3 5.17 

𝛼 0.0562 0.0536 

𝛽 2∙10-6 3∙10-6 

Test 2 

Tension (kN) 10.95 ± 3 10-2 10.97 

𝛼 0.0391 0.0378 

𝛽 4∙10-6 5∙10-6 

Test 3 

Tension (kN) 16.24 ± 7∙10-2 16.26 

𝛼 0.0315 0.0272 

𝛽 2∙10-6 2∙10-6 

Table 5: Model updated parameters for Test 1, 2, 3. 
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Fig. 6: Natural frequencies of the system. Black dot: experimental frequency. Dashed blue line: percentage 

difference between analytic and experimental frequencies before the update. Blue line: percentage difference 

between analytic and experimental frequencies after the update. a) Test 1. b) Test 2. c) Test 3. 

 

Fig. 7: Poles of the system. Black dot: identified experimental pole. Dashed blue line: percentage difference 

between analytic and experimental poles before the update. Blue line: percentage difference between 

analytic and experimental poles after the update. a) Test 1. b) Test 2. c) Test 3. 
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The final results show that a good representation of the real damping distribution is obtained by using a coefficient 

𝛼 in the range 0.06-0.02 when the axial force is between 5-16 kN respectively, while the coefficient 𝛽 is in the 

order of 10-6. It is worth noticing that these values are in the same range of those presented in the other previously 

mentioned studies [6-10], even though they are related to different catenary systems and obtained with different 

methods. In particular, a key issue related to the damping distribution is the propagation of waves across the 

overhead contact line, which is certainly different for different systems. The moving load exerted by the 

pantograph causes dispersive waves to travel along the catenary system, with lots of reflections due to droppers, 

clamps, suspensions. This generally may result in an amplification of the vibrations, as well as the stress acting on 

the wires [20]. Nevertheless, it is difficult to clearly describe the wave reflection phenomenon in such complex 

systems, especially when dealing with experimental measurements. Therefore, it is not straightforward to link the 

effects of wave reflections on the damping distribution in the considered system with the phenomena occurring in 

complete overhead contact lines. A representation of wave propagation in the considered setup is reported in the 

following section (Fig. 10).  

The proposed practical application is well described by a proportional damping distribution in the frequency range 

of interest, but the presented method, as well as the optimization procedure adopted, is still valid even in the case 

of a non-proportional distribution. The latter case, involving again the considered contact wire, is discussed in the 

following section. 

 

 Contact wire with a lumped damper 

A second series of experiments is performed on the same system of Fig. 1 with the addition of a lumped commercial 

damper, to test the capability of the model to handle a non-proportional damping distribution. The damper used in 

these tests has been chosen for its easy availability and high damping properties, which ensure a significant non-

proportionality of the damping distribution. Realistically, the use of specifically designed damping elements in 

overhead contact lines has been studied in the recent years to improve the current collection quality. For instance, 

in [21] damper hangers are added to a PHC catenary equipment to increase the train velocity on the Hokuriku 

Shinkansen line.  

A representation of the test rig is reported in Fig. 8a, while a picture of the damper is shown in Fig. 8b. The position 

of the damper is 𝐿𝑤 = 9 m from the left-hand side. 
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Fig. 8: a) Scheme of the second test bench. b) Photo of the damper, at Lw=9 m. 

 

All the tests are performed applying an impulse load along the z-axis and recording the accelerations of five 

different points, as reported in Table 6. One level of tension is considered according to Table 7.  

 

Accelerometer n° 1 2 3 4 5 

Position (m) 1.5 9 13 17 22 

Table 6: Position of the accelerometers measured from the left end (case with lumped elements). 

 

 

Test Tensile load 𝑇 (kN) Sampling frequency 𝑓𝑠  (Hz) Acquisition time 𝑡 (s) 

4  14.83 ± 1 ∙ 10−2 81.92 300 

Table 7: Test performed on the contact wire with a lumped damper. The tensile load is written as mean value 

± variation. 

 

The configuration shown in Fig. 8 can be seen as a two-segments system having the same transversal section; 

thus, the equation of motion can be written as follows: 

𝑚
𝜕2𝑤

𝜕𝑡2
+ 𝑐𝑒𝑥,𝑝

𝜕𝑤

𝜕𝑡
+ 𝑐𝑖𝑛,𝑝

𝑘
𝜕4

𝜕𝑥4
(
𝜕𝑤

𝜕𝑡
) − 𝑐𝑖𝑛,𝑝

𝑇
𝜕2

𝜕𝑥2
(
𝜕𝑤

𝜕𝑡
) + 𝑘

𝜕4𝑤

𝜕𝑥4
− 𝑇

𝜕2𝑤

𝜕𝑥2
= 𝑓(𝑥, 𝑡) 𝑝 = 1,2 (34) 
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The connection between the two segments is given by the physical damper and is represented by a lumped mass 

𝑀𝑤, a lumped stiffness 𝐾𝑤 and a lumped damping 𝐶𝑤, as shown in Fig. 9.  

 

Fig. 9: Modelling of the lumped damper. 

 

The introduction of a damping device deeply changes the dynamics of the considered system. A preliminary test 

with a high sampling frequency (102.4 kHz) is conducted to highlight the transversal wave propagation due to an 

impulse load applied at 29 m from the left-hand side. A comparison in terms of displacements is reported in Fig. 

10: waves propagate from one end to the other when the damper is not present, while a discontinuity is clearly 

visible when the damper is mounted. This results in a very low excitation on the first accelerometer, positioned at 

1.5 m, as the two parts of the contact wire are almost uncoupled.  

 

Fig. 10: Contour plot of the displacements measured along the contact wire. Red dashed line: position of an 

accelerometer. Black dashed-dotted line: position of the damper. a) Case without the damper. b) Case with 

the damper. 
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 System identification  

A linear subspace identification technique [13] is used also in this case to extract the modal parameters from the 

described system. The system identification procedure is the same of paragraph 3.1.1, as well as the criteria adopted 

to select the order of each mode. However, the MACX [22] is used instead of the MAC, to account for the non-

proportional damping distribution. The stabilization diagram is depicted in Fig. 11, while the identified parameters 

according to the criteria C1 and C2 (see paragraph 3.1.1) are listed in Table 8. The modes related to the y-axis are 

discarded and the MACXs between C1 and C2 are computed to verify that each identified mode is the same for 

the different criteria. The best order for each mode is then chosen according to C1.  

 

Fig. 11: Stabilization diagram for Test 4. Stabilization thresholds for natural frequency, damping ratio and 

MAC are 0.5%, 10% and 99.5%, respectively. Grey dot: new (not stable) pole. Blue plus: pole stable in 

frequency. Red square: pole stable in frequency and MACX. Green cross: pole stable in frequency, MACX 

and damping. 
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Frequency, 𝑓𝑒𝑥𝑝 (Hz) Damping ratio, 𝜁𝑒𝑥𝑝 (%) 

C1 C2 C1 C2 

2.478 2.475 1.410 1.442 

3.108 3.108 0.276 0.269 

4.551 4.551 1.393 1.405 

6.363 6.363 0.150 0.148 

6.511 6.511 0.197 0.199 

7.443 7.443 0.454 0.468 

8.647 8.647 0.265 0.262 

9.312 9.312 0.208 0.201 

10.673 10.673 0.320 0.323 

12.404 12.403 0.077 0.071 

12.921 12.921 0.104 0.104 

14.852 14.852 0.287 0.289 

15.571 15.569 0.163 0.148 

Table 8: Identified modes for Test 4. Italics red color highlights modes related to the y-axis. C1 and C2 are 

the two different criteria. 

 

 Study on the root locus 

An effective way to study the sensitivity of the model to each lumped parameter is to track the root locus as the 

selected parameter evolves, as shown in [11]. Fig. 12 shows the locus of the first 4 poles when the value of the 

lumped damping 𝐶𝑤 increases from 0 Ns/m to 105 Ns/m: a fixed value for 𝐾𝑤 is adopted and no lumped mass is 

considered. Each pole evolves in the complex plane and asymptotically tends to the “uncoupled” configuration 

(for high values of 𝐶𝑤), defined as the configuration in which the damper acts like a fixed point. The black dashed 

lines represent the imaginary part of the poles in this configuration. It is also worth noticing a “jump” between the 

second and the third mode, so that their final configuration is reversed with respect to the starting position. 
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Fig. 12: Locus of the first four poles for increasing values of the lumped damping. Black dashed lines: 

imaginary part of the poles in the “uncoupled” configuration. 

 

A more comprehensive picture can be obtained considering also several levels for the stiffness 𝐾𝑤, as in Fig. 13, 

showing the locus of the second pole split in its real and imaginary parts. The different lines correspond to different 

values of 𝐾𝑤 and are plotted with different colors. The considered values are 5 N/mm, 10 N/mm, 50 N/mm, and 

100 N/mm. 
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Fig. 13: Root locus of the second pole for increasing values of the lumped damping 𝐶𝑤 and for several values 

of the lumped stiffness 𝐾𝑤: 5 N/mm (blue), 10 N/mm (red), 50 N/mm (green), 100 N/mm (orange). a) Real 

part of the pole. b) Imaginary part of the pole. Dashed black lines: identified real and imaginary parts. 

 

Jumps are observed for low values of 𝐾𝑤 as in Fig. 12, while the transition is smoother for higher values. Moreover, 

the root locus seems to be independent from the value of 𝐾𝑤 for high values of 𝐶𝑤, i.e. as 𝐶𝑤 → +∞. It is obvious 

that the value of 𝐶𝑤 would also become negligible as 𝐾𝑤 → +∞, because the uncoupled configuration would be 

reached. Recalling that the aim of this test is to find the values of the lumped coefficients that minimize the distance 

between experimental and analytic poles, it is clear from Fig. 13 that the solution may generally not be unique, 

and it should be sought in a feasible range for 𝐾𝑤 and 𝐶𝑤. Furthermore, the model updating is conducted on all the 

identified poles together, thus Fig. 14 shows the tracking of the seven considered poles, selecting again several 

values of 𝐾𝑤 and increasing 𝐶𝑤 from 0 Ns/m to 105 Ns/m. Each value of the lumped stiffness corresponds to a 

specific color, while the black crosses represent the experimentally identified poles. 
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Fig. 14: Root locus of the first seven poles for increasing values of the lumped damping 𝐶𝑤 and for several 

values of the lumped stiffness 𝐾𝑤: 5 N/mm (blue), 10 N/mm (red), 50 N/mm (green), 100 N/mm (orange). 

Black crosses: identified poles. 

 

A model updating procedure is finally implemented in the following section to find the best-fit between 

experimental poles and analytic ones.  

 

 Damping distribution and model updating 

Starting from the experimental results, a deeper analysis is conducted to update the parameters used in the 

presented method. The model updating uses the same tools as in paragraph 3.1.2, and the parameters to be updated 

are: the tensile force 𝑇, the position of the damper 𝐿𝑤, the lumped damping 𝐶𝑤, the lumped stiffness 𝐾𝑤, the 

lumped mass 𝑀𝑤, the damping coefficients 𝑐𝑒𝑥,𝑝, 𝑐𝑖𝑛,𝑝
𝑘 , 𝑐𝑖𝑛,𝑝

𝑇  with 𝑝 = 1, 2. The starting values for the damping 

coefficients are obtained performing a prior experimental measurement removing the damper and maintaining the 

same level of tensile force, and are listed in Table 9. In this case a proportional distribution is obtained, thus the 

damping coefficients are related to 𝛼 and 𝛽 according to eq. 31. The feasible range for the lumped stiffness and 

damping is chosen considering the experimental identification conducted in [23] on a similar device, and taking 

the linearized values there obtained as starting points. The other common parameters are selected from the already 
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updated values listed in Table 5. The results of the model updating are listed in Table 9, while a comparison 

between experimental and analytic poles is reported both in Table 10 and Fig. 15. 

 

  Original parameter Updated parameter 

Position of the damper (m) 9 8.9 

Tension (kN) 14.83 ± 0.11 14.93 

Lumped damping 𝐶𝑤 (Ns/m) 2∙103 (1) 7∙103 

Lumped mass 𝑀𝑤 (kg) - 0.4 

Lumped stiffness 𝐾𝑤 (N/m) 50∙103 (1) 87∙103 

Damping coefficient 𝑐𝑒𝑥,1 (Ns/m2) 7∙10-2 (2) 5∙10-2 

Damping coefficient 𝑐𝑖𝑛,1
𝑘  (Nsm2) 5∙10-4 (2) 3∙10-5 

Damping coefficient 𝑐𝑖𝑛,1
𝑇  (Ns) 9∙10-2 (2) 8∙10-6 

Damping coefficient 𝑐𝑒𝑥,2 (Ns/m2) 7∙10-2 (2) 4∙10-2 

Damping coefficient 𝑐𝑖𝑛,2
𝑘  (Nsm2) 5∙10-4 (2) 8∙10-6 

Damping coefficient 𝑐𝑖𝑛,2
𝑇  (Ns) 9∙10-2 (2) 6∙10-6 

Table 9: Model updated parameters for Test 4. The values marked with (1) are obtained from [23]. The 

values marked with (2) are obtained from a prior experimental identification without the damper. 
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Fig. 15: Poles of the system for Test 4. Black dot: identified experimental pole. Continue green line: 

analytic poles. Dashed blue line: percentage difference between analytic and experimental poles. 

 

 

Mode number Experimental pole Analytic pole (after the optimization) 

1 −0.054 + 19.529𝑖 −0.072 + 19.142𝑖 

2 −0.060 + 39.985𝑖 −0.092 + 38.352𝑖 

3 −0.212 + 46.769𝑖 −0.228 + 46.059𝑖 

4 −0.122 + 58.510𝑖 −0.107 + 57.568𝑖 

5 −0.060 + 77.934𝑖 −0.112 + 76.804𝑖 

6 −0.268 + 93.320𝑖 −0.249 + 92.301𝑖 

7 −0.159 + 97.836𝑖 −0.147 + 96.083𝑖 

Table 10: Experimental and analytic poles for Test 4. 

 

A good agreement is achieved between analytic and experimental poles also in this case. In particular, all the first 

seven modes are well identified and modelled, though some distinct differences are present between some of the 

poles. These errors between measurements and predictions are very likely to be associated with two key factors: 

- Uncertainties in the identification process, as the correct identification of the damping is generally critical; 

- The adoption of a linear model for the damper, which may not be the best one.  
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A detailed characterization of the damper is not the object of this study, because it would certainly require nonlinear 

tools ([15, 23]). Instead, the focus of this test is on the capability of the proposed method to handle highly non-

proportional damping distributions.  

 

4. CONCLUSIONS 

The paper proposes a method to characterize the dynamic properties of a railway contact wire, and experimental 

tests have been performed both to validate the model and to estimate the damping distribution of the system. Two 

experimental setups are presented with a proportional and a non-proportional damping distribution respectively. 

The final results show that a good representation of the real damping distribution is obtained in both cases, and 

some useful indications on the damping properties of the contact wire are provided as well. The proportional 

damping model better fits the experimental measurements when no external damping elements are present, with 

coefficient 𝛼 in the range 0.06-0.02 when the axial force is between 5-16 kN respectively, and coefficient 𝛽 in the 

order of 10-6. Further investigations should be conducted considering more levels of tension, in order to estimate 

a relation between the axial force and the proportional damping parameters. If external lumped dampers are added, 

the damping distribution dramatically changes and the proportional model cannot be adopted. The resulting 

damping distribution is of course related to the characteristics of the lumped damper. It is worth highlighting that 

the results presented in this study may not be extended to the entire catenary system, in which several other 

components are present. The purpose of this study is to characterize the contact wire, considered the most important 

part of the overhead contact line. More realistic tests involving droppers and clamps should be performed, in order 

to verify how the damping distribution of the overhead contact line is influenced by those elements. 
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FIGURE CAPTIONS 

Fig. 1: The experimental setup. 

Fig. 2: a) Scheme of the tensioning device and section of the contact wire. b) Photo of the test bench. 

Fig. 3: Power spectral density of the acceleration recorded by the second accelerometer during the test 3. Solid 

blue line: z-axis. Dashed red line: y-axis. 

Fig. 4: Stabilization diagram for Test 1. Stabilization thresholds for natural frequency, damping ratio and MAC 

are 0.5%, 10% and 99.5%, respectively. Grey dot: new (not stable) pole. Blue plus: pole stable in frequency. Red 

square: pole stable in frequency and MAC (Modal Assurance Criterion). Green cross: pole stable in frequency, 

MAC and damping. 

Fig. 5: Proportional damping model best fit. Black dot: experimental damping ratio. Green line: fitted results (least-

square). a) Test 1, 𝛼=0.0562, 𝛽=2 10-6. b) Test 2, 𝛼=0.0391, 𝛽=4 10-6. c) Test 3, 𝛼=0.0315, 𝛽=2 10-6. 

Fig. 6: Natural frequencies of the system. Black dot: experimental frequency. Dashed blue line: percentage 

difference between analytic and experimental frequencies before the update. Blue line: percentage difference 

between analytic and experimental frequencies after the update. a) Test 1. b) Test 2. c) Test 3. 

Fig. 7: Poles of the system. Black dot: identified experimental pole. Dashed blue line: percentage difference 

between analytic and experimental poles before the update. Blue line: percentage difference between analytic and 

experimental poles after the update. a) Test 1. b) Test 2. c) Test 3. 

Fig. 8: a) Scheme of the second test bench. b) Photo of the damper, at Lw=9 m. 

Fig. 9: Modelling of the lumped damper. 

Fig. 10: Contour plot of the displacements measured along the contact wire. Red dashed line: position of an 

accelerometer. Black dashed-dotted line: position of the damper. a) Case without the damper. b) Case with the 

damper. 

Fig. 11: Stabilization diagram for Test 4. Stabilization thresholds for natural frequency, damping ratio and MAC 

are 0.5%, 10% and 99.5%, respectively. Grey dot: new (not stable) pole. Blue plus: pole stable in frequency. Red 

square: pole stable in frequency and MACX. Green cross: pole stable in frequency, MACX and damping. 

Fig. 12: Locus of the first four poles for increasing values of the lumped damping. Black dashed lines: imaginary 

part of the poles in the “uncoupled” configuration. 
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Fig. 13: Root locus of the second pole for increasing values of the lumped damping 𝐶𝑤 and for several values of 

the lumped stiffness 𝐾𝑤: 5 N/mm (blue), 10 N/mm (red), 50 N/mm (green), 100 N/mm (orange). a) Real part of 

the pole. b) Imaginary part of the pole. Dashed black lines: identified real and imaginary parts. 

Fig. 14: Root locus of the first seven poles for increasing values of the lumped damping 𝐶𝑤 and for several values 

of the lumped stiffness 𝐾𝑤: 5 N/mm (blue), 10 N/mm (red), 50 N/mm (green), 100 N/mm (orange). Black crosses: 

identified poles. 

Fig. 15: Poles of the system for Test 4. Black dot: identified experimental pole. Continue green line: analytic poles. 

Dashed blue line: percentage difference between analytic and experimental poles. 
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TABLES 

Table 1: Properties of the contact wire 

Table 2: Position of the accelerometers measured from the left end (case without lumped elements). 

Table 3: Tests performed on the contact wire. The tensile load is written as mean value ± variation. 

Table 4: Identified modes for Test 1. Italics red color highlights modes related to the y-axis. C1 and C2 are the two 

different criteria. 

Table 5: Model updated parameters for Test 1, 2, 3. 

Table 6: Position of the accelerometers measured from the left end (case with lumped elements). 

Table 7: Test performed on the contact wire with a lumped damper. The tensile load is written as mean value ± 

variation. 

Table 8: Identified modes for Test 4. Italics red color highlights modes related to the y-axis. C1 and C2 are the two 

different criteria. 

Table 9: Model updated parameters for Test 4. The values marked with (1) are obtained from [23]. The values 

marked with (2) are obtained from a prior experimental identification without the damper. 

Table 10: Experimental and analytic poles for Test 4. 

 

 

 


