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Fusion of partial orderings for decision problems in 

Quality Management 

Franceschini, F.
 
 and Maisano, D.A. 

Dept. of Management and Production Engineering, Politecnico di Torino, Turin, Italy 

 

ABSTRACT 

Purpose – In a rather common problem for the Quality Management field, (i) a set of judges 

express their individual (subjective) judgments about a specific attribute, which is related to 

some objects of interest, and (ii) these judgments have to be fused into a collective one. This 

paper develops a new technique where individual judgments – which are expressed in the 

form of partial preference orderings, including the more/less preferred objects only – are 

fused into a collective judgment, which is expressed in the form of a ratio scaling of the 

objects of interest. An application example concerning the design of a civilian aircraft seat is 

presented. 

Design/methodology/approach – The proposed technique borrows the architecture and the 

underlying postulates from the Thurstone’s Law of Comparative Judgment (LCJ), adopting a 

more user-friendly response mode, which is based on (partial) preference orderings instead of 

paired-comparison relationships. By aggregating and processing these orderings, an 

overdefined system of equations can be constructed and solved through the Generalized Least 

Squares method. Apart from a ratio scaling of the objects of interest, this approach makes it 

possible to estimate the relevant uncertainty, by propagating the uncertainty of input data. 

Findings – Preliminary results show the effectiveness of the proposed technique, even when 

preference orderings are rather “incomplete”, i.e., they include a relatively limited number of 

objects, with respect to those available.  

Research limitations/implications – Thanks to the relatively simple and practical response 

mode, the proposed technique is applicable to a variety of practical contexts, such as 

telephone and street interviews. Although preliminary results are promising, the technique 

will be tested in a more organic way, considering several factors (e.g., number of judges, 

number of objects, degree of completeness of preference orderings, degree of agreement of 

judges, etc.). 
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Originality/value – Even though the scientific literature includes many techniques that are 

inspired by the LCJ, the proposed one is characterized by two important novelties: (i) it is 

based on a more user-friendly response mode and (ii) it allows to obtain a ratio scaling of 

objects with a relevant uncertainty estimation.  

Paper type: Research paper 

Keywords: Group decision making, Law of comparative judgment, Partial preference 

ordering, Generalized least squares 

INTRODUCTION 

A problem that is rather common to several scientific field is articulated as follows (Keeney 

and Raiffa, 1993; Franceschini et al., 2007; Coaley, 2014):  

 a set of objects (o1, o2, …) should be compared on the basis of the degree of a specific 

attribute; 

 a set of judges (j1, j2, …) individually express their subjective judgments on these objects; 

 these judgments should be fused into a single collective judgment, which is usually 

expressed in the form of a scaling, i.e., assignment of numbers to the objects, according to 

a conventional rule/method (De Vellis, 2016). 

With reference to the Quality Management field, possible examples of this problem are: (i) 

fusing judgments related to the customer satisfaction of set of competing products, or (ii) 

fusing judgments by reliability/maintenance engineers on the severity of potential process 

failures, etc.. 

Figure 1 shows a pedagogical representation of the problem of interest, in which four final 

consumers (i.e., judges) have to express their judgments on the taste (i.e., attribute) of three 

types of candies (i.e., objects). It general, judges may refrain from judging part of the objects, 

when lacking adequate knowledge of them (e.g., see judgments with “???”). 

The scientific literature encompasses a plurality of fusion techniques, which differ from each 

other for at least three features: (i) the response mode for collecting subjective judgments; (ii) 

the underlying rationale of the fusion technique, and (iii) the form of the resulting collective 

judgment. For an exhaustive discussion of the existing techniques in various fields (e.g., 

Quality Management, Multi-Criteria Decision Making, etc.), we refer the reader to the vast 

literature and reviews (Coaley, 2014; De Vellis, 2016). 
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Regardless of the peculiarities of the individual fusion techniques, a key element for their 

success is the simplicity of response mode (Franceschini et al., 2007; Harzing et al., 2009). 

For example, various studies show that comparative judgments of objects (e.g., “oi is 

more/less preferred than oj”) are simpler and more reliable than judgments in absolute terms 

(e.g., “the degree of the attribute of oi is low/intermediate/high”) (Harzing et al., 2009; 

Edwards, 1957). 

 

o1 

o2 

o3 

j1 

 

j2 

 

j3 

 

j4 

 

(i) Objects of interest (o1 to o3), 
 with a certain attribute 

 

(ii) Subjective judgements by 
several judges (j1 to j4) 

(iii) Collective judgement of the objects 
(e.g., scaling) 

o1 
o2 
o3 

o1 
o2  ??? 
o3 

o1  ??? 
o2 
o3 

o1 
o2 
o3  ??? 

o2 o1 o3 

degree of the attribute  

fusion 
technique 

response 
mode 

 

Figure 1 – Pedagogical representation of the problem of interest. 

 

As to the typology of collective judgments, we note that they are often treated as if they were 

defined on a ratio scale – i.e., a scale with non-arbitrary zero and meaningful distance – even 

when they actually are not; e.g., rankings or ordinal-scale values of the objects are often 

improperly “promoted” to ratio-scale values, in the moment in which they are combined with 

other indicators through weighted sums, geometric averages, or – more in general – statistics 

that are permissible to ratio-scale values only (Roberts, 1979). 

In a recent paper, the authors have developed a technique, denominated “ZM-technique”, that 

combines the Thurstone’s Law of Comparative Judgment (LCJ) (Thurstone, 1927; Edwards, 

1957) with a response mode based on preference orderings (Franceschini and Maisano, 2018). 

The resulting collective judgment is expressed in the form of a ratio scaling, which can be 

constructed without any conceptually prohibited “promotion”. An important requirement of 

the ZM-technique is that, apart from “regular” objects (i.e., o1, o2, …, on), preference 

orderings also include two “dummy” or “anchor” objects: i.e., oZ, which corresponds to the 

absence of the attribute of interest, and oM, which corresponds to the maximum-imaginable 

degree of the attribute (Franceschini and Maisano, 2018). 
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The ZM-technique requires judges to formulate linear preference orderings, i.e., orderings 

including all (regular and dummy) objects, according to a hierarchical sequence with 

relationships of strict preference (“>”) and/or indifference (“~”) (Nederpelt and Kamareddine, 

2004). This is certainly a limitation, as it makes the response mode unsuitable for some 

practical contexts where ranking a number of objects can be problematic. It has also been 

observed that, when formulating preference orderings, judges tend to focus on the more/less 

preferred objects, providing more reliable judgments about them, to the detriment of the 

remaining objects (Lagerspetz, 2016; Harzing et al., 2009). Another limitation of the ZM-

technique – and the traditional LCJ too (Montag, 2006) – is the impossibility to estimate the 

uncertainty related to the resulting scaling of objects. 

The above considerations raise the following research question: “How could the ZM-

technique be modified so as to (1) make the response more user-friendly and reliable and (2) 

determine a (statistically sound) estimate of the uncertainty related to the solution?”. 

The aim of this paper is to address the previous research question, proposing a new technique 

that overcomes the limitations of the ZM-technique while preserving the basic principles. The 

new technique replaces linear preference orderings with “incomplete” orderings, which are 

focussed exclusively on the more/less preferred objects. Borrowing the language from 

Mathematics’ Order Theory, these other orderings can be classified as partial, i.e., apart from 

strict preference and indifference relationships, they may also contain incomparability 

relationships among (some of) the objects (Nederpelt and Kamareddine, 2004). 

The rest of the paper is organized into five sections. Section “Background information” 

briefly recalls the LCJ and ZM-technique. Section “Methodology” illustrates the new 

technique, which includes the construction of an overdetermined system of equations and its 

solution through the Generalized Least Squares (GLS) method (Kariya and Kurata, 2004). 

This technique also allows to estimate the uncertainty related to the solution, “propagating” 

the uncertainty of input data. Section “Application example” applies the new technique to a 

real-life example, concerning the design of a civilian aircraft seat. Section “Conclusions” 

summarizes the original contributions of this paper and its practical implications, limitations 

and suggestions for future research. Further information on the GLS method is contained in 

the appendix. 
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BACKGROUND INFORMATION 

This section “prepares the field” to better understand the proposed technique and is organized 

in two subsections, which respectively recall the LCJ and the ZM-technique. 

Thurstone’s LCJ 

Thurstone (1927) postulated the existence of a psychological continuum, i.e., an abstract and 

unknown unidimensional scale, in which objects are positioned depending on the degree of a 

certain attribute – i.e., a specific feature of the objects, which evokes a subjective response in 

each judge. The position of a generic i-th object (oi) is postulated to be distributed normally, 

in order to reflect the intrinsic judge-to-judge variability: oi ~ N(xi, i
2
), where xi and i

2
 are 

the unknown mean value and variance related to the degree of the attribute of that object. 

Considering two generic objects, oi and oj, it can be asserted that: 

oi – oj ~ N(xi – xj, i
2 

+ j
2 
– 2·ij·i·j),  (1) 

where ij is the Pearson coefficient, denoting the correlation between the positioning of 

objects oi and oj. The probability that the position of oi in the psychological continuum is 

higher than that of oj can be expressed as: 

pij = P(oi – oj > 0) = 1 – 

 


















jiijji

ji xx

 2

0

22

,  (2) 

 being the cumulative distribution function of the standard normal distribution z ~ N(0, 1). 

The LCJ (case V) includes the following additional simplifying assumptions (Thurstone, 

1927; Edwards, 1957): i
2
 = 2 i , jiij , ,  , and   112 2   . Eq. 2 can therefore 

be expressed as: 

pij = P(oi – oj > 0) = 1 – [-(xi – xj)].  (3) 

Although pij is unknown, it can be estimated using the information contained in a set of 

(subjective) judgments by a number (m) of judges (Thurstone, 1927). Precisely, each judge 

expresses his/her judgment for each paired comparison (i.e., ji, ), through relationships of 

strict preference (e.g., “oi > oj” or “oi < oj”) or indifference (e.g., “o1 ~ o2”). Then, for each 

judge who prefers oi to oj, a frequency indicator fij is incremented by one unit. In the case the 

two objects are considered indifferent, fij is conventionally incremented by 0.5, so that: 

fij = mij – fji, (4) 
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mij being the total number of judges who express their judgment for the i,j-th paired 

comparison. In general, mij ≤ m since judges may sometimes refrain from expressing their 

judgments on some of the possible paired comparisons. We remark that the condition in Eq. 4 

is a sine qua non for the application of the LCJ (Thurstone, 1927).  

The observed proportion of judges that prefer oi to oj can be used to estimate the unknown 

probability pij: 

ij

ij

ij
m

f
p ˆ . (5) 

Of course, the relationship of complementarity jiij pp ˆ1ˆ   holds.  

Returning to Eq. 3, it can be expressed as: 

ijp̂ = 1 – [-(xi – xj)], (6) 

from which: 

xi – xj = -
-1

(1 – ijp̂ ). (7) 

In general, objects are judged differently by judges; however, if all judges express the same 

judgment, the model is no more viable ( ijp̂  values of 1.00 and 0.00 would correspond to 

- )ˆ1(1

ijp
 values of  ). A simplified approach for tackling this problem is associating 

values of ijp̂ ≥ 0.977 with -
-1

(1 – 0.977) = 1.995 and values of ijp̂ ≤ 0.023 with -
-1

(1 –

 0.023) = -1.995. More sophisticated solutions to deal with this issue have been proposed 

(Edwards, 1957). 

Extending the reasoning to all possible paired comparisons for which mij  ≥ 1 (i.e., at least one 

judge expresses his/her own judgment), the relevant ijp̂  values can be determined and the 

following system of equations can be constructed: 

 








 





1:,0ˆ11

ijijji mjipxx . (8) 

Since, the rank of the system is lower than the number (n) of unknowns of the problem (i.e., 

x1, x2, …, xn) – and the system itself would be indeterminate (Thurstone, 1927) – the 

following conventional condition is introduced: 
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



n

i

ix
1

0 . (9) 

Eqs. 8 and 9 are then aggregated into a new system, which is over-determined (i.e., it has rank 

n while the total number of equations (q) is higher than n) and linear with respect to the 

unknowns:  

 
































n

i

i

ijijji

x

mjipxx

1

1

0

1:,0ˆ1





. (10) 

This system can be expressed in matrix form as: 

  0BXA 













],0[0
1

qhbxa h

n

k

khk





, (11) 

X = [x1, x2, …, xn]
T
 1 nR  being the column vector containing the unknowns of the problem, 

ahk being a generic element of matrix A nqR  , and bh being a generic element of vector 

B 1 nR . For details on the construction of A and B, see (Gulliksen, 1956). 

In the case each judge expresses his/her judgment on the totality of the 2/)2(2  nnCn

 

paired comparisons, the system in Eq. 10 is “complete” – i.e., with q = 12 
nC  equations – and 

can be solved in a closed form as (Thurstone, 1927): 

  jpx
m

i

ijj 




1

1 ˆ1ˆ . (12) 

The LCJ unfortunately has some limitations, including the following ones: 

1. The response mode is relatively tedious for judges; 

2. The LCJ results into an interval scaling, i.e., objects are defined on a scale with meaningful 

distance but arbitrary zero point (Thurstone, 1927; Roberts, 1979); 

3. The solution can be determined only when the system of equations is “complete”; 

4. No uncertainty estimation is provided. 

 



Proceedings of the 3rd ICQEM Conference, Barcelona, Spain, 2018 

 

 

133 

ZM-method 

This technique has been proposed to overcome some of the limitations of the LCJ 

(Franceschini and Maisano, 2018). A significant drawback of the LCJ response mode is that 

paired comparisons can be tedious and complex to manage, due to the fact that much 

repetitious information is required from judges. This problem can be overcome asking each 

judge to formulate a preference ordering, i.e., a sequence of objects in order of preference 

(more preferred ones in the top positions and less preferred ones in the bottom ones). 

Apart from regular objects (o1, o2, …, on), judges should include two dummy objects in their 

orderings: one (oZ) corresponding to the absence of the attribute of interest and one (oM) 

corresponding to the maximum-imaginable degree of the attribute, consistently with the 

current technological and socio-economic context (Franceschini and Maisano, 2018). When 

dealing with these special objects, two important requirements should be considered by 

judges: 

1. oZ should be positioned at the bottom of a preference ordering, i.e., there should not be any 

other object with preference lower than oZ. In the case the attribute of another object is 

judged to be absent, that object will be considered indifferent to oZ and positioned at the 

same hierarchical level. 

2. oM should be positioned at the top of a preference orderings, i.e., there should not be any 

other object with preference higher than oM. In the case the attribute of another object is 

judged to be the maximum-imaginable, that object will be considered indifferent to oM and 

positioned at the same hierarchical level. 

Next, the preference orderings of judges can be turned into paired-comparison data (e.g., the 

four-object ordering (o3 ~ o1) > o2 > o4 is turned into the 64

2 C  paired-comparison 

relationships: “o1>o2”, “o1~o3”, “o1>o4”, “o2<o3”, “o2>o4”, and “o3>o4”; it can be noticed that 

this response mode forces judges to be transitive (e.g., if “o1>o2” and “o2>o4”, then “o1>o4”). 

Next, the traditional LCJ can be applied to the resulting paired-comparison data and a scaling 

(x) of the objects can be determined (Eq. 12). Through the following transformation, the 

resulting scaling (x) is transformed into a new one (y), which is defined in the conventional 

range [0, 100]: 

  i
x̂x̂

x̂x̂ˆŷŷ
ZM

Zi
ii 




 100X , (13) 
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where: Zx̂  and Mx̂  are the scale values of oZ and oM, resulting from the LCJ; ix̂  is the scale 

value of a generic i-th object, resulting from the LCJ; iŷ  is the scale value of a generic i-th 

object in the new scale y. This transformation can also be expressed in vector form as: 

      Tˆŷˆŷˆˆˆ ...,, 21 XXXYY  , (14) 

being Ŷ  a column vector whose components result from a system of n decoupled equations. 

Since scale y “inherits” the interval property from scale x and has a conventional zero point 

that corresponds to the absence of the attribute (i.e., Zŷ ), it can be reasonably considered as a 

ratio scale, without any conceptually prohibited “promotion”. We note that the two dummy 

objects, oZ and oM, are used to “anchor” the x scale to the y scale (Paruolo et al., 2013). 

Although the ZM-technique simplifies the response mode and allows to obtain a ratio scaling, 

it still does not solve other relevant limitations of the traditional LCJ: 

 The procedure is not applicable to the system in Eq. 10 when it is not “complete” (i.e., 

there is at least one (i, j) paired comparison for which mij = 0). 

 It does not contemplate neither the variability of ijp̂  values, which are actually treated as 

deterministic parameters (not probabilistic ones), nor the “propagation” of this variability 

on the X̂  solution (and therefore on the “transformed” solution, Ŷ ). 

In fact, since fij is determined considering a sample of mij paired comparisons (as illustrated in 

section “Thurstone’s LCJ”), it will be distributed binomially; ijp̂  is the best estimator of pij, 

according to the information available. In formal terms: 

)]ˆ1(ˆ,ˆ[~ 2

ijijijfijijfij ppmpmBf
ijij

  , (15) 

In the hypothesis that 5ˆ  ijij pm , when 5.0ˆ0  ijp , or   5ˆ1  ijij pm , when 

1ˆ5.0  ijp , the following approximations can be reasonably introduced (Ross, 2014):  











 
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. (16) 

It is worth remarking that, even when all judges express their judgments for all the possible 

paired comparisons (i.e., jimmij , ), the variance of pij may change from one paired 

comparison to one other, as it also depends on the relevant ijp̂  value.  
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METHODOLOGY 

Response-mode simplification 

Although the formulation of preference orderings is less tedious and complex to manage than 

the direct formulation of paired-comparison relationships, it still may be problematic for some 

practical situations, e.g., asking judges to rank more than a handful of objects during a 

telephone or street interview may put a very high demand on their cognitive abilities (Harzing 

et al., 2009; Lenartowicz and Roth, 2001).  

To further simplify the response mode, judges could formulate “incomplete” orderings of the 

more and/or less preferred objects only, neglecting the remaining ones. These orderings can 

be decomposed into three blocks: (i) a block including the top objects (i.e., the more preferred 

ones, plus oM), (ii) a block including the bottom objects (i.e., the less preferred ones, plus oZ), 

and (iii) a block including the intermediate objects. Surely the objects in the intermediate 

block will not be comparable to each other (i.e., it cannot be asserted that one object is 

more/less/equally preferred to one other), but their hierarchical level will be (1) lower than 

that of the objects in the top block and (2) higher than that of the objects in the bottom block. 

The resulting preference orderings can be classified as partial since – apart from the 

relationships of strict preference and indifference – they may also contain incomparability 

relationships among pairs of objects (Nederpelt and Kamareddine, 2004). Figure 2(a) contains 

a fictitious partial ordering of n = 10 (regular and dummy) objects, which is divided into the 

three afore-described blocks. 

Any generic partial ordering can be translated into paired-comparison relationships. Among 

the 4510

2 nC  possible paired-comparison relationships in the example in Figure 2(b), thirty-

nine are of strict preference (“>” or “<”) or indifference (“~”), while the remaining six are of 

incomparability (“||”) and concern exclusively the elements in the intermediate block (o5, o6, 

o7, o8). We note that the objects in the top and bottom blocks are mutually ordered and 

translated into paired-comparison relationships of strict preference and indifference. An even 

more simplified response mode could be that one in which each judge merely identifies the 

more or less preferred objects, without ordering them; this other form of judgment can be 

translated into a partial ordering too, which also includes mutual relationships of 

incomparability among the objects in the top and bottom blocks. 
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(a) Partial preference ordering (b) Paired-comparison relationships 

 oZ oM o1 o2 o3 o4 o5 o6 o7 o8 

oZ - < < < < < < < < < 

oM  - ~ > > > > > > > 

o1   - > > > > > > > 

o2    - < > < < < < 

o3     - > > > > > 

o4      - < < < < 

o5       - || || || 

o6        - || || 

o7         - || 

o8          - 

 

(oM ~ o1) > o3 > {o5 || o6 || o7 || o8} > o2 > o4 > oZ (analytic form) 

 

(graphic form) oM, o1 

o3 

o6 o5 o8 o7 

o2 

o4 

oZ 

top block 

 

bottom block 

 

intermediate block 

 

Possible relationships: 

 “>” and “<” →  strict preference; 

 “~”  →  indifference; 

 “||”  →  incomparibility. 

 

Figure 2 – (a) Example of partial preference ordering with corresponding top, intermediate 

and bottom blocks; (b) the partial ordering is turned into paired-comparison relationships. 

 

Returning to the general problem, all the (partial) preference orderings that have been 

formulated by m judges can be translated into a number of paired-comparison relationships. 

For each paired comparison, there will therefore be mij “usable” relationships for determining 

ijp̂ . In fact, the (mij) relationships that contribute to the estimate of pij values are those of 

strict preference and indifference, while the remaining (m – mij) relationships of 

incomparability do not contribute to this estimate; regarding the example in Figure 2, 

mij = 45 – 6 = 39. In the case mij = 0, pij cannot be estimated.  

GLS solution 

In general, the system in Eq. 10 will not necessarily be “complete”, as the number of 

equations (q) could be lower than 12 
nC  (i.e., for any paired comparison with mij = 0, no 

equation can be formulated) and therefore cannot be solved through the LCJ. 

The literature dealt with the problem of solving such “incomplete” systems through the 

Ordinary Least Squares (OLS) method. For example, Gulliksen (1956) discusses some 

approximate numerical methods for the OLS solution formula to Eq. 11 (Kariya and Kurata, 

2004; Ross, 2014): 

  BAAAX 
 TT 1ˆ . (17) 
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Also, it can be demonstrated that, in the case in which the equation system is “complete”, the 

LCJ solution coincides with the OLS one – i.e., that one minimizing the sum of the squared 

residuals related to the equations in Eq. 11 (Gulliksen, 1956): 

  
 









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q

h

h

n

k

khk bxa
1

2

1

, (18) 

n being the number of elements in X̂ , and q being the total number of equations available. In 

general, the OLS solution is possible even for “incomplete” systems, as long as q ≥ n; this 

condition is easily met in practice (Gulliksen, 1956).  

Even though the OLS method provides an effective solution to the problem of interest, it does 

not provide any practical estimate of the uncertainty associated with the elements of X̂ . In 

fact, although it is possible to calculate the covariance matrix of X̂  as: 

  1
 AAX

T , (19) 

it is of no practical use for this specific problem, as the uncertainties of the X̂  elements are 

identical and not affected by the real uncertainty of input data (i.e., ijp̂  values, see section 

“ZM-method”) (Gulliksen, 1956). This limitation can be overcome using the Generalized 

Least Squares (GLS) method, which is more articulated than the OLS method as it includes 

several additional steps (see the qualitative representation in Figure 3). 

The idea of applying the GLS to the problem of interest in the “incomplete” case had already 

been advanced several decades ago by Arbuckle and Nugent (1973), who contemplated this 

and other goodness-of-fit criteria, such as maximum likelihood. These techniques, however, 

have not been applied extensively, probably due to some computational constraints that are 

nowadays overcome. Additionally, the GLS solution proposed by Arbuckle and Nugent 

(1973) was combined with a “classic” response mode, based on the direct formulation of 

paired-comparison relationships. 
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Input 1: Observed proportions 
ijp̂ . Input 2: Variances related to 

ijp̂  values. 

Formulation of a system of (linear) equations. 

Determination of X̂ . 

Weighting of the previous equations, considering 

the uncertainties of input variables. 

End. 

 

Estimation of the X̂  uncertainty, 

propagating the uncertainty of input data. 

Output 1: Determination of Ŷ   

(ratio scaling). 

Output 2: Estimation of the Ŷ  uncertainty, 

propagating the uncertainty of X̂ . 

 

 

1. 

2. 

3. 

4. 

5. 

6. 

OLS and GLS 

GLS only 

Key: 

 

Figure 3 – Flow chart representing the main steps of the OLS and GLS solution to the 

problem of interest; it can be noticed that the GLS solution includes several additional steps 

(see dashed blocks) with respect to the OLS one. 
 

From a technical point of view, the GLS method allows obtaining a solution that minimizes 

the weighted sum of the squared residuals related to the equations in Eq. 11, i.e.:  
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in which weights (wh) take into account the uncertainty in the ijp̂  values. It can be 

demonstrated that, for a generic equation related to a generic ij-th paired comparison: 
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 (Arbuckle and Nugent, 1973).  

Next, weights are aggregated into a (squared) matrix W, whose construction is illustrated in 

the “Appendix” section, and X can be estimated as: 

  BWAAWAX 
 TT 1ˆ . (21) 

Combining Eqs. 21 and 14, the final (ratio) scaling Ŷ  can be obtained as: 

])[(ˆ]ˆ[ˆˆ 1 BWAAWAYXYY   TT . (22) 

Next, the uncertainty related to the elements in  Tyy ,ˆ,ˆˆ
21Y 1 nR  can be determined by 

applying the relationship: 

TT

XXY JAWAJ ˆ
1

ˆ ])[(Σ   . (23) 
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where 
X

J ˆ
)1()1(  qqR  is a Jacobian matrix containing the partial derivatives related to the 

equations of the system in Eq. 14, with respect to the elements of X̂ . Assuming that the pi,j 

and iŷ  values are approximately normally distributed, a 95% confidence interval related to 

each iŷ  value can be computed as: 

iyUy
ii yiyi  ˆˆ 2ˆˆ  , (24) 

iyU ˆ  being the so-called expanded uncertainty of iŷ  with a coverage factor k = 2 and 

),(,ˆ iiyi Y  (JCGM 100:2008, 2008).  

APPLICATION EXAMPLE 

The proposed technique is applied to the design of a civilian aircraft seat. The goal is to 

prioritize the customer requirements (CRs) in Table 1 (i.e., objects), according to their 

importance (i.e., attribute) for m = 20 regular air passengers (i.e., judges).  

Table 2 contains m “complete” linear orderings by judges, assuming that they have no 

difficulty in managing both the regular and dummy objects. These orderings are then 

translated into a number of paired-comparison relationships (i.e., 6612

2 C  for each 

preference ordering, resulting in total 66·20 =1320 paired-comparison relationships) and the 

LCJ is applied, producing the scaling in Table 5(a) (see also the graphical representation in 

Figure 5). These results are already referred to the conventional scale (y), which is included in 

the range [0, 100]. 

Table 1 – List of the major CRs related to an aircraft seat, from the perspective of passengers. 

Abbr. Description 

o1 Comfortable (does not give you back ache) 

o2 Enough leg room 

o3 Comfortable when you recline 

o4 Does not hit person behind when you recline 

o5 Comfortable seat belt 

o6 Seat belt feels safe 

o7 Arm rests not too narrow 

o8 Arm rest folds right away 

o9 Does not make you sweat 

o10 Does not soak up a spilt drink 

o11 Hole in tray for coffee cup 

o12 Magazines can be easily removed from rack 
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Table 2 – Linear (or “complete”) preference orderings used in the application example. 

Judges Linear preference orderings 

j1 oM > (o1 ~ o2) > (o5 ~ o6 ~ o7) > o3 > o4 > (o10 ~ o8) > (o11 ~ o9) > (oZ ~ o12) 

j2 (o1 ~ o5 ~ o7 ~ oM) > (o9 ~ o6) > (o2 ~ o11 ~ o8) > (o4 ~ o12 ~ o10) > o3 > oZ 

j3 (o1 ~ oM) > (o3 ~ o2) > (o6 ~ o5) > o7 > (o8 ~ o9 ~ o4) > (o11 ~ o12 ~ oZ ~ o10) 

j4 (o1 ~ o2 ~ o7 ~ oM) > (o3 ~ o5) > o6 > (o8 ~ o9 ~ o10) > (o11 ~ o12) > o4 > oZ 

j5 (o1 ~ o2 ~ o5 ~ oM) > (o3 ~ o6 ~ o9 ~ o4) > (o7 ~ o8) > (o11 ~ o12 ~ oZ ~ o10) 

j6 oM > (o1 ~ o5 ~ o6) > o7 > (o2 ~ o9 ~ o3) > (o11 ~ o8) > (o4 ~ o10) > (oZ ~ o12) 

j7 (o2 ~ o7 ~ oM) > o1 > (o5 ~ o8 ~ o6) > (o9 ~ o10 ~ o3) > o4 > (o12 ~ oZ ~ o11) 

j8 (o1 ~ o5 ~ oM) > (o6 ~ o7 ~ o9 ~ o12 ~ o2) > (o8 ~ o11) > (o3 ~ o4) > (oZ ~ o10) 

j9 (o1 ~ o4 ~ oM) > (o5 ~ o7 ~ o9) > o2 > o6 > (o10 ~ o8) > (o11 ~ o12 ~ o3) > oZ 

j10 (o2 ~ o5 ~ o6 ~ oM) > o7 > o1 > o3 > o11 > o9 > (o8 ~ o10) > (o12 ~ oZ ~ o4) 

j11 (o1 ~ oM) > (o6 ~ o2) > (o7 ~ o5) > o3 > o4 > o9 > o11 > o12 > (o10 ~ oZ ~ o8) 

j12 (o2 ~ o7 ~ oM) > o1 > (o9 ~ o3) > (o8 ~ o6 ~ o4) > o5 > (o11 ~ o12 ~ oZ ~ o10) 

j13 (o1 ~ o2 ~ o5 ~ o8 ~ oM) > (o7 ~ o3 ~ o6) > (o9 ~ o11 ~ o4) > (o12 ~ oZ ~ o10) 

j14 (o2 ~ o5 ~ o6 ~ oM) > o1 > o3 > o9 > o7 > o4 > (o10 ~ o11) > (o12 ~ oZ ~ o8) 

j15 (o2 ~ o6 ~ o7 ~ oM) > o1 > o9 > o8 > (o11 ~ o12 ~ o5) > o3 > o4 > (oZ ~ o10) 

j16 (o1 ~ oM) > (o2 ~ o6) > o7 > o9 > o5 > (o4 ~ o8) > o11 > o3 > (o12 ~ oZ ~ o10) 

j17 (o1 ~ o2 ~ oM) > (o7 ~ o5) > (o8 ~ o9 ~ o10 ~ o4) > (o6 ~ o11 ~ o12) > (oZ ~ o3) 

j18 (o1 ~ o2 ~ o3 ~ oM) > o9 > (o7 ~ o8 ~ o4 ~ o5) > o10 > (o11 ~ o6) > (oZ ~ o12) 

j19 (o1 ~ o2 ~ o6 ~ o9 ~ oM) > (o3 ~ o7 ~ o4 ~ o5) > o8 > o11 > (o12 ~ o10) > oZ 

j20 oM > (o1 ~ o6) > o7 > (o5 ~ o9 ~ o2) > (o3 ~ o11 ~ o8) > (o4 ~ o12) > o10 > oZ 

Total no. of usable paired-comparison relationships: 1320 of 1320; 

o1 to o12 are the regular objects, while oZ to oM are the dummy objects; 

“>” and “~” respectively depict the strict preference and indifference relationships; 

(oi ~ oj ~ …) is a generic block containing indifferent objects. 

 

Table 5(a) also shows that, consistently with the considerations in section “Methodology”, the 

results of the LCJ are identical to those obtained by applying the OLS method to the same 

orderings. On the other hand, the application of the GLS method produces a very close – 

although non-identical – result. The difference stems from the fact that – unlike LCJ and OLS 

– the GLS takes into account the uncertainties related to ijp̂  values. The GLS solution is 

therefore superior from both a conceptual and practical point of view. 

To study the effectiveness of the GLS in the presence of partial orderings, we have 

intentionally “degraded” the linear orderings in Table 2, replacing some of the relationships of 

strict preference (“>” and “<”) and indifference (“~”), with incomparability relationships 

(“||”). Precisely, two types of partial orderings have been generated according to the following 

“degradation criteria” (see also the example in Figure 4): 

Type-t&b preference orderings, in which the relationships between the t more preferred (top) 

objects – and any other tied object – and those between the b less preferred (bottom) 

objects – and any other tied object – have been preserved (“t&b” stands for “top and 

bottom”). The remaining objects are allocated at an intermediate hierarchical level, which 

is certainly lower than the top block and higher than the bottom block. 

Type-t preference orderings, in which the relationships between the t more preferred (top) 

objects – and any other tied object – have been preserved. The remaining objects are 
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allocated at a lower hierarchical level, with mutual relationships of incomparability. In this 

case, the bottom block is empty.  

(graphic form) 

(oM~o1)>(o2~o3)>(o5~o6)>o7> 

(o4~o8~o9)>(o10~o11~o12~oZ) 

oM, o1 

o2, o3 
 

o7 
 

o4, o8, o9 
 

o10, o11, o12, oZ 
 

o5, o6 
 

(analytic form) 

 

(a) Linear preference ordering 

o6 o5 
o8 o7 o10 o9 o12 o11 oZ 

o4 o3 o2 

(c) Type-t (partial) preference ordering 

top  

block 

 

oM, o1 

interm. 

block 

 
(oM~o1)>{o2||o3||o4||o5||o6||o7||o8||o9||o10||o11||o12||oZ} (analytic form) 

 

(graphic form) 

(b) Type-t&b (partial) preference ordering 

o10, o11, o12, oZ 
 

o4 o3 o6 o5 o8 o7 o9 o2 

oM, o1 top  

block 

 

interm. 

block 

 

bottom 

block 

 
(oM~o1)>{o2||o3||o4||o5||o6||o7||o8||o9}>(o10~o11~o12~oZ) (analytic form) 

 

(graphic form) 

 

Figure 4 – Example of degradation of the linear preference ordering by j5 (see Table 5) into a 

type-t&b and type-t partial preference ordering. In this case, t = b = 1. 

 

Table 3 and Table 4 report the resulting type-t&b and type-t  orderings, which are obtained by 

degrading the linear orderings in Table 2. In this case, the “level of degradation” is significant 

since t = b = 1; as a rough indicator of this level, we can consider the portion of usable paired-

comparison relationships that can be obtained from the resulting partial preference orderings: 

i.e., 1150 out of 1320 for type-t&b orderings and 726 out of 1320 for type-t orderings. 

Table 5 and Figure 5 contain the results of the application of the LCJ, OLS and GLS (where 

applicable) to the paired-comparison relationships that result from the preference orderings in 

Table 2, Table 3 and Table 4. In all cases, the resulting (x) scaling has been turned into a (y) 

scaling, through the transformation in Eq. 13. 

The GLS results that are obtained for linear preference orderings (in Table 5(a)) can be used 

as “gold standard” to evaluate the goodness of the GLS results for degraded (partial) 

orderings. As for type-t&b (partial) orderings, results (in Table 5(b) and Figure 5) are – quite 

surprisingly – very close to those related to linear orderings, both in terms of accuracy and 

dispersion. As for type-t (partial) orderings, results (in Table 5(c) and Figure 5) worsen 

considerably, especially for the less preferred objects (see the very wide uncertainty bands). 

This is probably due by the relatively small amount of usable paired-comparison relationships 

that concern the less preferred objects. 
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Table 3 – Type-t&b (partial) preference orderings that are obtained by “degrading” the linear 

orderings in Table 2; both t and b values have been set to 1. 

Judges Type-t&b (partial) preference orderings 

j1 oM > {o1 || o2 || o5 || o6 || o7 || o3 || o4 || o10 || o8 || o11 || o9} > (oZ ~ o12) 

j2 (o1 ~ o5 ~ o7 ~ oM) > {o9 || o6 || o2 || o11 || o8 || o4 || o12 || o10 || o3} > oZ 

j3 (o1 ~ oM) > {o3 || o2 || o6 || o5 || o7 || o8 || o9 || o4} > (o11 ~ o12 ~ oZ ~ o10) 

j4 (o1 ~ o2 ~ o7 ~ oM) > {o3 || o5 || o6 || o8 || o9 || o10 || o11 || o12 || o4} > oZ 

j5 (o1 ~ o2 ~ o5 ~ oM) > {o3 || o6 || o9 || o4 || o7 || o8} > (o11 ~ o12 ~ oZ ~ o10) 

j6 oM > {o1 || o5 || o6 || o7 || o2 || o9 || o3 || o11 || o8 || o4 || o10} > (oZ ~ o12) 

j7 (o2 ~ o7 ~ oM) > {o1 || o5 || o8 || o6 || o9 || o10 || o3 || o4} > (o12 ~ oZ ~ o11) 

j8 (o1 ~ o5 ~ oM) > {o6 || o7 || o9 || o12 || o2 || o8 || o11 || o3 || o4} > (oZ ~ o10) 

j9 (o1 ~ o4 ~ oM) > {o5 || o7 || o9 || o2 || o6 || o10 || o8 || o11 || o12 || o3} > oZ 

j10 (o2 ~ o5 ~ o6 ~ oM) > {o7 || o1 || o3 || o11 || o9 || o8 || o10} > (o12 ~ oZ ~ o4) 

j11 (o1 ~ oM) > {o6 || o2 || o7 || o5 || o3 || o4 || o9 || o11 || o12} > (o10 ~ oZ ~ o8) 

j12 (o2 ~ o7 ~ oM) > {o1 || o9 || o3 || o8 || o6 || o4 || o5} > (o11 ~ o12 ~ oZ ~ o10) 

j13 (o1 ~ o2 ~ o5 ~ o8 ~ oM) > {o7 || o3 || o6 || o9 || o11 || o4} > (o12 ~ oZ ~ o10) 

j14 (o2 ~ o5 ~ o6 ~ oM) > {o1 || o3 || o9 || o7 || o4 || o10 || o11} > (o12 ~ oZ ~ o8) 

j15 (o2 ~ o6 ~ o7 ~ oM) > {o1 || o9 || o8 || o11 || o12 || o5 || o3 || o4} > (oZ ~ o10) 

j16 (o1 ~ oM) > {o2 || o6 || o7 || o9 || o5 || o4 || o8 || o11 || o3} > (o12 ~ oZ ~ o10) 

j17 (o1 ~ o2 ~ oM) > {o7 || o5 || o8 || o9 || o10 || o4 || o6 || o11 || o12} > (oZ ~ o3) 

j18 (o1 ~ o2 ~ o3 ~ oM) > {o9 || o7 || o8 || o4 || o5 || o10 || o11 || o6} > (oZ ~ o12) 

j19 (o1 ~ o2 ~ o6 ~ o9 ~ oM) > {o3 || o7 || o4 || o5 || o8 || o11 || o12 || o10} > oZ 

j20 oM > {o1 || o6 || o7 || o5 || o9 || o2 || o3 || o11 || o8 || o4 || o12 || o10} > oZ 

Total no. of usable paired-comparison relationships: 1150 of 1320; 

o1 to o12 are the regular objects, while oZ to oM are the dummy objects; 

“>”, “~” and “||” respectively depict the strict preference, indifference and incomparability relationships; 

{oi || oj || …} is a generic block containing incomparable objects; 

(oi ~ oj ~ …) is a generic block containing indifferent objects. 

 
 

Table 4 – Type-t (partial) preference orderings that are obtained by “degrading” the linear 

orderings in Table 2; t values have been set to 1. 

Judges Type-t (partial) preference orderings 

j1 oM > {o1 || o2 || o5 || o6 || o7 || o3 || o4 || o10 || o8 || o11 || o9 || oZ || o12} 

j2 (o1 ~ o5 ~ o7 ~ oM) > {o9 || o6 || o2 || o11 || o8 || o4 || o12 || o10 || o3 || oZ} 

j3 (o1 ~ oM) > {o3 || o2 || o6 || o5 || o7 || o8 || o9 || o4 || o11 || o12 || oZ || o10} 

j4 (o1 ~ o2 ~ o7 ~ oM) > {o3 || o5 || o6 || o8 || o9 || o10 || o11 || o12 || o4 || oZ} 

j5 (o1 ~ o2 ~ o5 ~ oM) > {o3 || o6 || o9 || o4 || o7 || o8 || o11 || o12 || oZ || o10} 

j6 oM > {o1 || o5 || o6 || o7 || o2 || o9 || o3 || o11 || o8 || o4 || o10 || oZ || o12} 

j7 (o2 ~ o7 ~ oM) > {o1 || o5 || o8 || o6 || o9 || o10 || o3 || o4 || o12 || oZ || o11} 

j8 (o1 ~ o5 ~ oM) > {o6 || o7 || o9 || o12 || o2 || o8 || o11 || o3 || o4 || oZ || o10} 

j9 (o1 ~ o4 ~ oM) > {o5 || o7 || o9 || o2 || o6 || o10 || o8 || o11 || o12 || o3 || oZ} 

j10 (o2 ~ o5 ~ o6 ~ oM) > {o7 || o1 || o3 || o11 || o9 || o8 || o10 || o12 || oZ || o4} 

j11 (o1 ~ oM) > {o6 || o2 || o7 || o5 || o3 || o4 || o9 || o11 || o12 || o10 || oZ || o8} 

j12 (o2 ~ o7 ~ oM) > {o1 || o9 || o3 || o8 || o6 || o4 || o5 || o11 || o12 || oZ || o10} 

j13 (o1 ~ o2 ~ o5 ~ o8 ~ oM) > {o7 || o3 || o6 || o9 || o11 || o4 || o12 || oZ || o10} 

j14 (o2 ~ o5 ~ o6 ~ oM) > {o1 || o3 || o9 || o7 || o4 || o10 || o11 || o12 || oZ || o8} 

j15 (o2 ~ o6 ~ o7 ~ oM) > {o1 || o9 || o8 || o11 || o12 || o5 || o3 || o4 || oZ || o10} 

j16 (o1 ~ oM) > {o2 || o6 || o7 || o9 || o5 || o4 || o8 || o11 || o3 || o12 || oZ || o10} 

j17 (o1 ~ o2 ~ oM) > {o7 || o5 || o8 || o9 || o10 || o4 || o6 || o11 || o12 || oZ || o3} 

j18 (o1 ~ o2 ~ o3 ~ oM) > {o9 || o7 || o8 || o4 || o5 || o10 || o11 || o6 || oZ || o12} 

j19 (o1 ~ o2 ~ o6 ~ o9 ~ oM) > {o3 || o7 || o4 || o5 || o8 || o11 || o12 || o10 || oZ} 

j20 oM > {o1 || o6 || o7 || o5 || o9 || o2 || o3 || o11 || o8 || o4 || o12 || o10 || oZ} 

Total no. of usable paired-comparison relationships: 726 of 1320; 

o1 to o12 are the regular objects, while oZ to oM are the dummy objects; 

“>”, “~” and “||” respectively depict the strict preference, indifference and incomparability 

relationships; 

{oi || oj || …} is a generic block containing incomparable objects; 

(oi ~ oj ~ …) is a generic block containing indifferent objects. 
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Table 5 – Results of the application of several techniques (i.e., LCJ, OLS and GLS) to the 

orderings in Table 2; GLS solutions are associated with relevant extended uncertainties 

(according to Eq. 24). 

Objects (a) Linear/complete orderings (b) type-t&b (partial) (b) type-t (partial) 

 LCJ=OLS GLS GLS GLS 

oZ 0.0 0.0 ±7.2 0.0 ±7.2 0.0 ±24.1 

oM 100.0 100.0 ±6.7 100.0 ±6.7 100.0 ±8.8 

o1 93.6 90.2 ±8.7 87.8 ±8.9 84.2 ±12.3 

o2 85.1 83.4 ±8.1 86.5 ±9.0 82.6 ±12.6 

o3 46.1 47.2 ±7.6 46.0 ±10.6 21.8 ±26.3 

o4 37.7 37.7 ±7.9 47.4 ±10.6 23.4 ±25.7 

o5 73.7 71.1 ±7.7 73.9 ±9.2 64.5 ±15.0 

o6 68.5 67.7 ±7.5 67.0 ±9.7 54.3 ±17.3 

o7 73.6 70.5 ±7.7 70.9 ±9.3 59.6 ±15.9 

o8 40.3 41.6 ±7.8 40.9 ±10.1 20.6 ±26.8 

o9 55.3 55.1 ±7.8 50.5 ±11.9 20.9 ±26.7 

o10 19.3 20.9 ±8.3 17.7 ±9.9 0.0 ±36.2 

o11 23.7 26.9 ±8.3 29.0 ±10.6 0.0 ±36.2 

o12 13.4 14.8 ±8.7 11.9 ±9.8 0.0 ±36.2 
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Figure 5 – Graphical representation of the results in Table 5. 

 

These preliminary results have a significant practical implication: even when adopting a 

simplified response mode like type-t&b partial orderings, relatively accurate results can be 

obtained. On the contrary, the adoption of type-t partial orderings produces acceptable results 

only for the more preferred objects. 
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CONCLUSIONS 

The proposed technique allows to fuse multiple partial preference orderings into a ratio 

scaling with a relevant uncertainty estimation. Apart from regular objects, these orderings will 

also include two dummy objects, to univocally represent the zero and the maximum-possible 

degree of the attribute on a conventional ratio scale. This technique represents an important 

improvement over the technique proposed in (Franceschini and Maisano, 2018), whose 

application is limited to linear orderings exclusively. 

From a technical point of view, the proposed technique is based on the formulation of a 

system of equations – borrowing the underlying postulates/assumptions of the LCJ – and its 

solution through the GLS method. From a practical point of view, the new response mode 

makes the technique more versatile and adaptable to a variety of contexts in which the 

concentration effort of judges cannot realistically be too high (e.g., telephone or street 

interviews). 

Based on the above considerations, the proposed technique reasonably represents an 

appropriate response to the previously formulated research question: “How could the ZM-

technique be modified, so as to (1) make the response more user-friendly and reliable and (2) 

determine a (statistically sound) estimate of the uncertainty related to the solution?”. 

Preliminary results show that the technique is largely automatable, computationally efficient 

and provides relatively accurate results, even when preference orderings are significantly 

“incomplete”. Additionally, it seems that much better results can be obtained when partial 

orderings contain both the more and the less preferred elements (i.e., type-t&b orderings). 

Regarding the future, we will test the new technique in a more organic way. Precisely, we 

plan to investigate the accuracy of the solution depending on various factors, such as (i) “level 

of degradation” of the (partial) preference orderings, (ii) number of judges, (iii) number of 

objects, (iv) degree of agreement between judges, etc. 
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APPENDIX 

This section illustrates in more detail the application of the GLS method to the problem of 

interest. From an operational point of view, the GLS requires the definition of a (squared) 

weight matrix (W), which encapsulates the uncertainty related to the equations of the system. 

A practical way to define W is to apply the Multivariate Law of Propagation of Uncertainty 

(MLPU) to the system in Eq. 10, referring to the input variables affected by uncertainty 

(Kariya and Kurata, 2004); these variables can be collected in the column vector . Precisely, 

W can be determined propagating the uncertainty of the elements in  to the equations of the 

system:  

  1
 T

 JJW , (A1) 

where J is the Jacobian matrix containing the partial derivatives of the first members of Eq. 

10, with respect to the elements in , and  is the covariance matrix of . 

By applying the GLS method to the system in Eq. 11, a final estimate of X can be obtained as 

(Kariya and Kurata, 2004): 

  BWAAWAX 
 TT 1ˆ . (A2) 

The uncertainty of the solution can be estimated through a covariance matrix X, which can 

be obtained by applying the following relationship: 

  1
 AWAX

T . (A3) 

X – unlike the homologous matrix resulting from the OLS method (in Eq. 19) – is of 

considerable practical use, since it is obtained by propagating the real uncertainty of input 

data. 

Focussing on the problem of interest, the vector containing the input variables affected by 

uncertainty is  = […, pij, …]
T
 1)1(  qR . On the other hand, the partial derivatives in the 
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Jacobian matrix J
)1()1(  qqR  can be determined in a closed form, by approximating terms 

-

1
(1 – ijp̂ ) (see Eq. 10) through the following formula ( Aludaat and Alodat, 2008): 



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from which: 
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 (A5) 

The matrix 
)1()1(  qqR  diagonally contains the variances related to the input variables, i.e., 

ijp̂  terms: 

ij

ijij

p
m

pp
ij

)ˆ1(ˆ
2


 . (A6) 

The relevant covariances can be neglected, upon the reasonable assumption that the estimates 

of different pij values are (statistically) independent from each other. 

Next, it is possible to determine the matrix W (Eq. A1) and, subsequently, X̂  (Eq. A2) with 

the relevant uncertainty (Eq. A3); this solution is defined on an interval scale (x), as illustrated 

in the “Background information” section.  

Through the transformation in Eq. 14, the x scaling can be transformed into a new one (y), 

which is included in the conventional range [0, 100]. The uncertainty related to the elements 

in  Tyy ,ˆ,ˆˆ
21Y 1 nR  can be determined by applying the relationship: 

T

XXXY JJ ˆˆ ΣΣ  , (A7) 

where 
X

J ˆ
)1()1(  qqR  is the Jacobian matrix containing the partial derivatives related to the 

equations of the system in Eq. 14, with respect to the elements of X̂  (demonstration omitted). 

 




