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ABSTRACT

Nowadays large amounts of climatology data, including daily precipitation data, are collected by means of sensors
located in different locations of the world. The data driven analysis of these large data sets by means of scalable
machine learning and data mining techniques allows extracting interesting knowledge from data, inferring interesting
patterns and correlations among sets of spatio-temporal events and characterizing them. In this paper, we describe
the PERCEIVE framework. PERCEIVE is a data-driven framework based on frequent spatio-temporal sequences
and aims at extracting frequent correlations among spatio-temporal precipitation events. It is implemented by
using R and Apache Spark, for scalability reasons, and provides also a visualization module that can be used to
intuitively show the extracted patterns. A preliminary set of experiments show the efficiency and the effectiveness
of PERCEIVE.
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INTRODUCTION

Association rules and frequent sequences are well-known descriptive pattern-based techniques (Tan et al. 2005;
Flach 2012) that have been used in many application contexts to describe and model the main characteristics of
the analyzed data (e.g., market basket data (Agrawal and Srikant 1994), census data (Appice et al. 2003), medical
data (Xiao and Chiusano 2014), biological data (Pan et al. 2003; Hasan et al. 2012)). However, to the best of our
knowledge, those two typical data mining techniques have never been used to characterize climatology data and in
particular spatio-temporal sequences of precipitation events. Many complex and precise meteorological models
have been proposed to predict precipitations and forecast precipitation and fire events. Also, data mining approaches
have been proposed to address the prediction/forecast problem (e.g. (Cheng and Wang 2008)). However, our goal is
different. Specifically, we are interested in inferring the correlations among precipitation events to describe the
analyzed events and understand whether, based on the analyzed data, some common patterns and trends can be
discovered. To address this goal we propose a framework, called PERCEIVE, based on Frequent Spatio-Temporal
Sequences (FSTSs). Frequent Spatio-Temporal Sequences are patterns representing correlations among set of events.
For instance, the sequence {(posi, heavy rain), (poss, snowstorm)}(0) — {(posa, heavy rain)}(2) represents the
following sequence of events: heavy rain in pos; and snowstorm in pos, at the same time, followed by a heavy rain
event in pos; two days after the occurrence of the first two events. These human-readable patterns can provide
interesting insights to domain experts. Specifically, the extracted set of spatio-temporal sequences can be used to
characterize precipitation events and can also be considered during the definition of new climate or meteorological
models.

Since the amount of collected data is potentially big, PERCEIVE is based on Apache Spark big data framework,
coupled with R, to extract Frequent Spatio-Temporal Sequences. Moreover, PERCEIVE displays also the extracted
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patterns on maps to facilitate domain expert analyses. Specifically, the domain expert can analyze one single pattern
(FSTS) at a time or groups of similar patterns (FSTSs) to inspect the main spatio-temporal correlations between sets
of precipitation events highlighted by PERCEIVE. PERCEIVE automatically extracts FSTSs from the precipitation
data without the human intervention, i.e., it is completely data driven during the knowledge extraction step. The
domain expert is involved only in the last phase to inspect the extracted spatio-temporal sequential patterns. Even if
we used PERCEIVE to characterize precipitation events, the proposed framework is general and can be applied to
analyze any type of spatio-temporal events.

An initial campaign of experiments, performed on real data about precipitation events in the USA, confirms that
PERCEIVE is efficient and effective in extracting interesting knowledge.

The paper is organized as follows. The frequent spatio-temporal sequence mining problem, and the related main
concepts, are introduced. Then, the PERCEIVE framework and its main components are described. Finally, the
results of a preliminary campaign of experiments are reported in the experimental section, while the last section
draws conclusions and presents future work.

FREQUENT SPATIO-TEMPORAL SEQUENCES

In the following, we report the basic definitions related to the frequent spatio-temporal sequence mining problem
and we formally define the addressed mining problem.

We initially introduce the concept of spatial event, which correlates an event type with the location in which it
occurs. Then, we define the temporal database concept and we describe how it can be used to store for each spatial
event also the information about when each spatial event occurred.

A spatial event is a pair (position, type of event) storing the information about an event type (e.g., heavy rain,
snowstorm) and the georeferenced position in which it occurs (e.g., a heavy rain event located in (Lat=42.361145,
Long=-71.057083)).

Definition 1 (Spatial event) Let P = {p, ..., p,} be a set of positions, where each position p; is a pair (latitude,
longitude). Let ET = {ety, ..., et} be a set of event types.

A spatial event se; is a pair (p;, et;), where p; € P, et; € ET.

For instance, the spatial event se = (p|, heavy rain) represents the occurrence of a heavy rain event located in py,
where py = (Lat. = 42.361145, Long. = —71.057083).

In the frequent sequence mining problem, a set of (spatial) events is referred to as a transaction. For instance, the set
{(ps, heavy rain), (p1, snowstorm), (p4, light rain)} is a transaction composed of 3 spatial events.

Definition 2 (Transaction of spatial events) Let SE = {sey, ..., se;} be a set of spatial events.

A spatial transaction tr = {sey, ..., sey} is defined as a non-empty set of spatial events se; € SE, i.e., tr C SE.

A temporal database is used to store the temporal information associated with the records stored in it. In our context,
we are interested in storing the timestamps of the sets of spatial events we are analyzing. Specifically, a temporal
database storing spatial events is defined as a set of pairs (timestamp, transaction of spatial events). Each pair is
called record and stores the set of spatial events occurred at time timestamp. In our context, we suppose that the
domain of the timestamp attribute is a finite sequence of discrete values associated with the period under analysis
(e.g., the sequence of dates in the period under analysis). Without loss of generality, we assume that the interval
between two consecutive timestamps is a fixed constant (e.g., the interval between two consecutive timestamps is
equal to one day if we are storing daily events).

Definition 3 (Temporal database of spatial events) Let T = {t1,..., 1} be a finite sequence of discrete times-
tamps, such that tjy1 = t; + At, where At is the fixed step/interval between two consecutive timestamps.

A temporal database TD = {ry,...,r,} is defined as a set of records r; = (t;,tr;), where t; € T, tr; C SE and
t; # t;,Vi # j. The i-th record r; contains the set of spatial events tr; occurred at time t;.
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Table 1. Running example temporal database storing spatial events. For the sake of clarity, in each spatial event
we report the ‘“alias” of the position instead of its (Lat., Long.) coordinates.

Timestamp ‘ Set of spatial events

04/01/2016 {(posi, heavy rain), (poss, snowstorm)}

04/02/2016 {(pos1, snowstorm), (poss, light rain), (poss, heavy rain)}
04/03/2016 | {(posi, heavy rain), (pos,, heavy rain), (poss, snowstorm), (pose, light rain)}
04/04/2016 {(poss, heavy rain)}

04/05/2016 {(posy, heavy rain), (poss, light rain)}

04/06/2016 {(pos1, heavy rain), (poss, snowstorm)}

04/07/2016 | {(posi, heavy rain), (pos,, heavy rain), (poss, snowstorm), (pose, light rain)}
04/08/2016 {(posa, heavy rain)}

04/09/2016 {(posy, heavy rain)}

Note that, according to Definition 3, each timestamp appears at most one time in the temporal database and the
record associated with it contains all the spatial events occurred in that specific timestamp (i.e., we cannot have
events occurred at the same time in different records).

Table 1 reports a running example temporal database T Dexampie storing the information about daily sets of spatial
events (i.e., At is set to 1 day and each timestamp in 7 is a date). The first record of 7D xqmpie means that a heavy
rain event and a snowstorm event occurred in positions pos; and pos3 on April 1, 2016, respectively. Note that a
different number of events can occur in each timestamp (e.g., two events occurred on April 1, 2016 while three
events occurred in April 2, 2016) and the same event type can be associated with many positions at the same time
(e.g., heavy rain occurred in position pos; and pos; on April 3, 2016).

In our context, we are interested in identifying frequent sequences of sets of spatial events. Specifically, a sequence
s is an ordered list of transactions of spatial events {try,...,tr,}. Each transaction fr; in a sequence s is also
characterized by the time distance/interval from the first transaction of events tr| in s. For instance, the sequence
s1 = {(posy1, heavy rain), (poss, snowstorm)}(0) — {(posa, heavy rain)}(2) represents the following sequence of
events: heavy rain in pos; and snowstorm in poss at the same time, followed by a heavy rain event in pos, two days
after the occurrence of the first two events. The sequence s occurs three times in the running example database
(see Table 1). The first occurrence of s; is associated with the 1st and 3rd record of the running example, the second
occurrence is associated with the 3rd and 5th record, while the third occurrence is supported by the 6th and 8th
record. Hence, the frequency of s; in the running example database is three.

Definition 4 (Sequence of spatial events) A sequence of spatial events s is defined as tri(6t)) — try(6t) —
. = try(6ty), where tr; is a transaction of spatial events and 6t; is the time distance/interval of those events from
the first event(s) of the sequence (i.e., the events in tr).

Note that each sequence represents a set of spatial events and the relative distance/interval between them instead
of the information about the absolute time when the sequence of events occurred. The main motivation of this
definition is that we are not interested in identifying one single occurrence of a set of events. Instead, we are
interested in learning patterns which occur periodically and characterize the relative temporal distance between
spatial events. This type of patterns could be useful to develop a system for future event prediction, even if this is
not the main goal of this paper.

The support of a sequence represents the frequency of the sequence in the temporal database, i.e., the number of
times the sequence occurs in the temporal database. This measure is used to estimate the “statistical relevance"
of the sequence. Specifically, the higher the support value, the higher the probability that the extracted sequence
models a real characteristic of the analyzed data.

Definition 5 (Support of a sequence of spatial events) The absolute support (sup) of an arbitrary sequence s in
the temporal database T D is defined as the number of occurrences of s in T D.

For instance, the support of the sequence {(posi, heavy rain), (poss, snowstorm)}(0) — {(posy, heavy rain)}(2)
in the running database is three because it occurs in the combinations of records {1st, 3rd}, {3rd, 5th}, and {6th,
8th} (see Table 1), while the support of the sequence {(poss, heavy rain)}(0) — {(poss, heavy rain)}(1) —
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Figure 1. Architecture of the PERCEIVE framework

{(posa, heavy rain), (poss, light rain)}(2) is one, because only the triplet of records {3rd, 4th, 5th} of the running
example database matches/supports that sequence.

Another measure of interest is the confidence measure, which is usually used to assess the ability of the sequence to
predict future events. The confidence of a sequence s represents the conditional probability of having the last set
of events (transaction of events) of s given the first ¢ — 1 sets of events of s (i.e., it estimates the probability of
occurrence of the last set of events given the occurrence of the antecedent events). For this reason, in the following
we will use the term “antecedent” to refer to the first g — 1 sets of events of s and “consequent” to refer to the last
sets of events of s (i.e., try).

Definition 6 (Confidence of a sequence of spatial events) The confidence (conf) of a sequence s = tri(6t)) —
try(6ty) — ... — try(0ty) is defined as

sup(lrl(étl) — tr(6h) > ... > trq(étq))

sup(trl (61)) = tr(dh) > ... — trq_](6tq_1))

For instance, conf({(posl, heavy rain), (poss, snowstorm)}(0) — {(posy, heavy rain)}(Z)) is 0.75 (i.e., 75%)

because {(posy, heavy rain), (poss, snowstorm)} occurs four times in the running example database but only in
three cases the spatial event {(pos,, heavy rain)} occurs two days after the first two events.

Frequent spatio-temporal sequence mining problem. Given a temporal database of spatial events, a minimum
support threshold minsup, and a minimum confidence threshold mincon f, the frequent spatio-temporal sequence
mining problem consists in extracting all the spatio-temporal sequences with a support value greater than or
equal to minsup and a confidence value greater than or equal to minconf. These sequences are referred as
“Frequent Spatio-Temporal Sequences (FSTSs)” in the following. This set of mined sequences can be used to
model/characterize the analyzed events.

FRAMEWORK

This section describes the Sequence-based Precipitation Data Characterization and Visualization (PERCEIVE)
framework we designed to analyze the spatio-temporal correlation among precipitations. In this paper, we focus
our analysis only on precipitations. However, the proposed framework can be effectively used to characterize and
visualize also other types of spatial events (e.g. fires, traffic jams).

The architecture of PERCEIVE is reported in Figure 1 and its main building blocks are described in the following.

Data Preprocessing. Initially, PERCEIVE collects and preprocesses the data about the precipitations in order to
obtain data consistent with the spatio-temporal data format defined in Definition 3. Specifically, the data about the
precipitations are collected by means of several sensors located on the areas under observation. Each sensor collects
a set of readings that must be collected and merged with the readings of the other sensors. Moreover, the readings
are continuous values. Since we are interested in analyzing sequences of spatial events, we must map these values
to events. We perform this operation by applying a threshold called minprec. Specifically, for each pair (sensor,
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date) we analyze the daily precipitation, in tenths of mm per day. If the daily precipitation associated with a pair
(sensor, date) is greater than or equal to minprec, we decide that a “relevant” precipitation event happened and
hence a “spatio-temporal” event occurred in (sensor, date). We decided to use PERCEIVE to perform a daily-based
analysis. Hence, the preprocessing step generates one record for each date of the period under analysis and the set
of spatial-events (“relevant” precipitations) occurring in each date. However, a different time granularity can be set.

The data preprocessing step has been implemented by using an SQL Server database to store and query the data and
a program written in R.

Spatio-Temporal Sequence Mining. After the input data collection and preprocessing step, PERCEIVE mines
the frequent spatio-temporal sequences characterized by a support and confidence greater than or equal to the user
defined thresholds minsup and minconf, respectively. Moreover, PERCEIVE prunes the sequences containing
events for which the distance is less than mindistance km because they are usually considered irrelevant or trivial
correlations in the precipitation analysis domain. We set mindistance to 50 km in all our experiments. The mined
sequences characterize, by means of human-readable sequences, the correlations among the precipitations of the
areas under analysis. This automatic data-driven approach allows extracting/inferring knowledge from the input
data without the intervention of domain experts. The extracted sequences can be manually analyzed to understand
what the correlations about precipitation events are and how they move from one area to another.

Several algorithms can be used to mine frequent sequences (e.g. (Zaki 2001; Zaki 2000; Wang and Han 2004)).
However, a specific solution is needed to mine spatio-temporal sequences. Similarly to the solution exploited by
Bruno and Garza in (Bruno and Garza 2010) to mine temporal sequences, we use a windowing transformation and a
frequent itemset mining algorithm to extract frequent spatio-temporal sequences. The windowing transformation
creates a set of “macro” records, each one representing the events occurred in a specific date and the events occurred
in the w following dates. As described in (Bruno and Garza 2010), an itemset mining algorithm can then be applied
on the transformed data to efficiently mine frequent temporal sequences. Since our input data are spatial events, the
output of this process is a set of frequent spatio-temporal sequences. To implement a scalable solution, PERCEIVE
exploits the Apache Spark (Zaharia et al. 2010) implementation of the FP-growth itemset mining algorithm (Han
et al. 2000) coupled with a windowing function written in Java.

Sequence Aggregation. To provide a better characterization of the correlations among precipitation events,
PERCEIVE applies two aggregation (clustering) procedures on the mined frequent sequences with the aim of (i)
grouping sequences characterized by the same consequent (i.e. sequences for which the last spatio-temporal event
is the same) and (ii) grouping sequences characterized by the same consequent and similar antecedents (i.e., FSTSs
with at least minoverlap% spatio-temporal events in common in their antecedent and exactly the same consequent)
to reduce the redundancy related to similar sequences. Aggregation step (i) allows obtaining a global view of the
different preconditions of events that are correlated with precipitation events in a specific position of interest. For
instance, suppose that only the following two sequences are characterize by position poss as consequent:

s1 = {(posy, precipitation)}(0) — {(poss, precipitation)}(1)

5o = {(poss, precipitation)}(0) — {(poss, precipitation)}(1)

Aggregation step (i) groups them together proving the global information that, based on the rules inferred from the
data, the precipitations in position poss happens frequently when the day before a precipitation occurred in position
OS] O pos3.

Aggregation step (ii) is used to merge rules characterized by the same consequent and similar antecedents. It allows
achieving two goals: redundancy removal (each set of similar sequences is merged in one group and hence domain
experts analyze one group instead of many singular sequences) and spatio-temporal trend confirmation, supported
by slightly different sequences.

This component has been implemented in R (R Core Team 2018).

Sequence Visualization. To facilitate the exploration of the knowledge represented by FSTSs, the mined sequences
are visualized on a map. The visualization component allows domain experts to analyze the direction of the
spatio-temporal correlations and the time intervals between the precipitation events represented by the extracted
sequences. PERCEIVE can visualize either one single sequence or one “group” of aggregated sequences at a time.

Also, the visualization part has been implemented by using the R software.
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Figure 2. Oregon precipitations: Examples of mined FSTSs

PRELIMINARY EXPERIMENTAL EVALUATION

We performed a set of experiments by using the real GHCN-Daily dataset (Menne, Durre, Korzeniewski, et al. n.d.).
Specifically, we focused our analyses on the precipitation information available in the downloaded data to assess the
quality and the quantity of the frequent spatio-temporal sequences (FSTSs) extracted by using PERCEIVE. We have
performed an initial qualitative analysis of the extracted FSTSs, supported also by the visualization component.
Then, quantitative analyses have been performed to understand the characteristics of the mined FSTSs in terms of
support and confidence.

Dataset. We used the precipitation data related to the Oregon country to perform our experiments. The used
data (Menne, Durre, Korzeniewski, et al. n.d.), which are provided by the NOAA National Climatic Data Center,
were collected by means of 1652 sensors located in Oregon. The data set contains the historical daily precipitation
information for each sensor. We considered the precipitation data from 2014 to 2016. A detailed description of the
collected data is reported in (Menne, Durre, Vose, et al. 2012).

Qualitative analysis and data visualization

We performed an initial set of experiments by considering the precipitations of year 2016. We set minprec to 300
tenths of mm per day (i.e., a daily precipitation event is considered only if the measured daily precipitation is greater
than 300 tenths of mm), minsup to 5% (i.e., only the sequences that occurred at least in 5% of analyzed data is
mined), and minconf to 75%.

PERCEIVE has automatically mined a set of FSTSs representing interesting frequent correlations among sets of
precipitation events in different areas of Oregon. Specifically, 2,417 FSTSs have been automatically extracted.
Figure 2 reports two representative examples of the mined FSTSs on a geographical map. The blue points are
related to the antecedent items/events while the orange one represents the consequent one (i.e., the last event of the
sequence). Both FSTSs are characterized by a confidence equal to 100%. It means that, according to the analyzed
historical data, if precipitations are happening in the blue points after one day a precipitation will happen in the
location associated with the orange point. The graphical representation FSTSs allows to easily analyze the mined
sequences and hence the represented correlations among spatio-temporal events.

Since some FSTSs are similar, to easy the manually inspection the mined FSTSs by means of the domain expert, the
last component of PERCEIVE group together similar FSTSs to provide a more compact information to the end
user. For instance, in this case, by using the first aggregation step, which aggregates FSTSs characterized by the
same consequent, 32 aggregations/groups are generated, which are two orders of magnitude less than the number of
mined FSTSs, and 113 groups are obtained by applying approach (ii), which generates groups of FSTSs that are
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Figure 3. Distribution of the number of FSTSs with respect to their confidence value

characterized by the same consequent and similar antecedents. This means that 113 “trends” are identified (one
for each group identified by the second aggregation procedure). The domain expert can analyze one group at a
time instead of one single FSTS at a time reducing the time needed to inspect the mined sequences. Moreover,
the presence of groups of similar FSTSs, emitted by the second aggregation procedure, can be considered as a
reinforcement of the strength of single FSTSs (i.e., the higher the number of FSTSs in a group, the higher the
probability that the represented “trend/correlation” among the involved spatio-temporal events is relevant).

We performed a similar set of experiments by considering the precipitations occurred in 2014 and 2015, respectively.
Many of the mined FSTSs are similar to the ones mined by considering year 2016. Hence, the correlations among
precipitation events seem to be, on the average, independent of the considered year. They are probably related
to the geological characteristics of the areas under analysis and the impact that they have on the wind direction
and the cloud movement. One of the most interesting features of PERCEIVE is that all the correlations between
precipitations among different areas have been mined automatically without the intervention of domain experts,
who however are extremely useful to inspect and validate the mined patterns.

Quantitative analysis

In the previous section we already reported some quantitative information about the number of mined FSTSs. In
this section we analyze the distribution of the number of mined FSTSs with respect to their confidence value, to
understand if the mined sequences can potentially be used for predictive purposes. Figure 3 reports the cumulative
number of mined FSTSs with respect to their confidence value. Specifically, each point (confidence, cumulative
number of FSTSs) of the reported curve corresponds to the number of FSTSs with a confidence value greater than
or equal to confidence.

The achieved results confirm that many of the mined FSTSs are characterized by a high confidence value and
specifically 382 of them have a confidence equal to 100%. Hence, a large part of the mined FSTSs are characterized
by a potential high prediction quality. Then, they have been aggregated in 114 groups of similar FSTSs, which
means that in 2016, in the Oregon State, 114 different sets of FSTSs having confidence equal to 100% have been
found. In order to confirm the affordability of the system, other tests for other years (2014 and 2015) have been
performed, showing similar results as in 2016.

CONCLUSIONS

In this paper we proposed PERCEIVE. To the best of our knowledge, PERCEIVE is the first data-driven framework
that characterizes spatio-temporal precipitation events by using frequent spatio-temporal sequences. The preliminary
performed experiments show the ability of PERCEIVE to automatically mine recurrent spatio-temporal patterns.
Further experiments, which will involve also domain experts for the validation step, will be performed by considering
different countries and other types of spatio-temporal events. The potential correlation with the geographical
characteristics of the considered areas will also be investigated. The exploitation of the extracted FSTSs for the
precipitation prediction problem will be investigated and a prediction algorithm based on FSTSs will be designed as
well. Finally, an improvement of the visualization module will be performed, in order to better distinguish event
typologies and magnitudes.
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