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Abstract

A computationally efficient framework has been developed for the elastoplastic analysis of compact and thin-

walled structures using a combination of global-local techniques and refined beam models. The theory of the

Carrera Unified Formulation (CUF) and its application to physically nonlinear problems are discussed. Higher-

order models derived using Taylor and Lagrange expansions have been used to model the structure, and the

elastoplastic behavior is described by a von Mises constitutive model with isotropic work hardening. Compar-

isons are made between classical and higher-order models regarding the deformations in the nonlinear regime,

which highlight the capabilities of the latter in accurately predicting the elastoplastic behavior. The concept of

global-local analysis is introduced, and two versions are presented - the first where physical nonlinearity is con-

sidered for both the global and local analyses, and the second where nonlinearity is considered only for the local

analysis. The second version results in reasonably accurate results compared to a full 3D finite element analysis,

with a twofold reduction in the number of degrees of freedom.
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1 Introduction

Metallic structures are ubiquitous in various fields of engineering, and it is thus important to understand their

mechanical behavior to optimize the design and predict failure. These structures typically undergo plastic defor-

mation when loaded past the yield point, which necessitates a nonlinear analysis to determine the elastoplastic

behavior. Numerical simulation is an important tool for such an analysis and is usually performed within the

framework of the Finite Element Method. However, accurate stress fields are required when nonlinearities are

involved, which often means that a 3D finite element analysis has to be performed. Such 3D simulations can be

computationally very expensive, especially for the case of complex slender structures such as thin-walled beams.

Significant efforts have therefore been exerted over the past few decades to find suitable alternatives to full 3D

analysis. A starting point to achieve this is using analytical models, whereby intensive numerical computations

can be avoided. An analytical formulation for inelastic beams was proposed by Timoshenko and Gere [1], whose

validity was limited to doubly symmetric cross-sections and neglected shear deformations. An analytical solu-

tion to the elastoplastic bending of beams was reported by Štok, for the case of rectangular cross-sections [2].

The limitations of such models restrict their use as a general design tool. Numerical tools thus become essential

for the nonlinear analysis of structures. Some of the simplest numerical approaches include the plastic hinge

method where plasticity is assumed to be concentrated at a particular point [3], [4], [5].

A practical approach to numerically investigate elastoplastic behavior is to use 1D (beam) or 2D (plate/shell)

finite elements, with enriched kinematics to better describe the deformation of the 3D structure. For instance,

Prokić used warping functions to describe the out-of-plane deformations in thin-walled beams [6]. Some recent

developments in FEM for thin-walled beams include the generalized beam theory (GBT), where cross-sectional

deformation modes are computed to describe the deformed configuration. Elastoplasticity models developed

using this formulation were successful in detecting localized plasticity and cross-sectional distortion in thin-

walled structures without significant computational effort [7–10].

An approach to further reduce the computational cost associated with a nonlinear FE analysis is the use

of global-local techniques. In general, such a procedure consists of the analysis of the coarsely meshed global

structure, followed by the analysis over a finely discretized area of interest. The global solution is applied to

the local domain as boundary conditions to drive the local analysis. Global-local techniques have frequently

been used in the past decades for a refined linear structural analysis, when computing power was significantly

expensive [11–14]. The use of such techniques to computationally intensive nonlinear analyses is a natural

progression, leading to several researchers proposing various global-local methods to solve nonlinear problems.

Noor applied the global-local methodology to investigate the nonlinear and post-buckling response of composite

panels [15]. Duarte et al. developed a generalized finite element method based on global-local enrichment

functions and applied it to investigate problems with confined plasticity [16, 17]. Gendre et al. presented a

nonintrusive global-local technique for structural problems with local plasticity, using an iterative technique

similar to [12], resulting in an exact structural re-analysis [18].



The objective of the current work is to predict the elastoplastic behavior of slender structures in a computa-

tionally efficient manner, by using a combination of the CUF and the global-local technique. In CUF, expansion

functions are used across the beam cross-section to enrich the kinematics of the beam element, which results

in 3D-like solutions at a reduced computational cost [19]. It, therefore, constitutes a suitable framework to

perform nonlinear analyses. CUF has been recently extended to solve problems related to geometrical nonlin-

earity [20, 21], and physical nonlinearity [22]. The current work extends the previous work on elastoplasticity

by incorporating global-local techniques within CUF to carry out a refined analysis in the plastic zone.

The paper is organized as follows: a brief overview of CUF is given in Section 2. The concept of global-local

analysis and its implementation in the CUF framework has been explained in Section 3. Some numerical results

have been presented in Section 4 to validate and demonstrate the capabilities of CUF in performing nonlinear

analyses. Conclusions are drawn and presented in Section 5. The Appendix provides further details on the

nonlinear implementation.

2 The Carrera Unified Formulation

The CUF is a unified framework which can be used to develop refined beam and shell/plate elements based on

advanced structural theories. It uses expansion functions, Fτ , to enhance the displacements field, and hence to

improve the kinematics of the FE model. For instance, the displacement field of a beam model, as shown in

Fig. 1 can be described in CUF:

u = Fτ (x, z)uτ (y), τ = 1, 2, . . .M (1)

z

y

x

Figure 1: An arbitrary beam element aligned with the CUF Cartesian reference system

Where Fτ (x, z) is the expansion function across the cross-section, uτ is the generalized displacement vector,

and M is the number of terms in the expansion function. The choice of Fτ and M are arbitrary and can be

given as a user input. Two classes of expansion functions have been used for the current work, and are briefly

described below.

Taylor Expansion (TE)

In this class of expansion functions, Taylor polynomials of the kind xizi are used as the expansion function

Fτ , over the cross-section. The order of the polynomial is denoted by N and is specified by the user. As an

example, the second-order TE (N = 2, TE2), containing 18 terms, is given below,



ux = ux1 + xux2 + zux3 + x2ux4 + xzux5 + z2ux6

uy = uy1 + xuy2 + zuy3 + x2uy4 + xzuy5 + z2uy6

uz = uz1 + xuz2 + zuz3 + x2uz4 + xzuz5 + z2uz6

(2)

Classical beam theories such as Euler-Bernoulli Beam Theory (EBBT) and Timoshenko Beam Theory (TBT)

can be obtained as special cases of the TE. In such a formulation, the unknown degrees of freedom are the

displacements and their derivatives until the N th order. A detailed explanation of the TE in CUF can be found

in [23].

Lagrange Expansion (LE)

In this type of expansion, the cross-section is discretized using finite elements whose nodal interpolation

functions are Lagrange polynomials. In such a formulation, the unknown degrees of freedom are purely the

displacements in the spatial coordinates, and no rotations are involved. As an example, the displacement field

of the 9-node bi-quadratic Lagrange element (L9) is given as

ux =

9∑
i=1

Fi(x, z) · uxi
(y)

uy =

9∑
i=1

Fi(x, z) · uyi(y)

uz =

9∑
i=1

Fi(x, z) · uzi(y)

(3)

Where uxi
, uyi , uzi and Fi are the nodal translational degrees of freedom and Lagrange interpolation function

of the ith node, respectively. Multiple LE elements can be used to locally refined the displacement field. A

detailed explanation of the LE in CUF can be found in [24].

Finite Element Formulation

The stress and strain tensors are represented in vector notation as follows:

σ = {σxx, σyy, σzz, σxy, σxz, σyz}

ε = {εxx, εyy, εzz, εxy, εxz, εyz}
(4)

Where ε is the geometrically linear strain tensor. The linear strain-displacement relation is then given by

ε = D · u (5)

Where D is the linear differentiation operator expressed as
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The elastoplastic stress-strain relation is given by

σ = Ccep : εe (6)

Where Ccep is the consistent elastoplastic tangent material matrix, and εe is the elastic component of the

strain tensor ε. Further details of the theory of elastoplasticity theory and its implementation in the form of

the von Mises constitutive model has been given in the Appendix.

The beam is discretized along the axial direction with standard beam elements, using the nodal shape

functions Ni, resulting in the following displacement field:

u(x, y, z) = Fτ (x, z)Ni(y)uτi (7)

Based on the principle of virtual displacements,

δLint = δLext (8)

where δLint is the virtual variation of the internal strain energy, and is given by

δLint =

∫
V

δεT : σ (9)

δLext is the virtual variation of the work due to external loading, and is denoted by

δLext = FsNjδu
T
sjP (10)

where P is the external force vector. The virtual variation of the internal strain energy can be formulated using

Eq. 6, 7 and 9, which results in the following equation for the stiffness matrix:

δLint = δuTsjk
tan
ijτsuτi (11)



where,

ktanijτs =

∫
l

∫
Ω

DT (Ni(y)Fτ (x, z))CcepD(Nj(y)Fs(x, z)) dΩ dl (12)

The term ktanijτs is the nonlinear Fundamental Nucleus (FN), and is a 3x3 matrix. Assembling the FNs calculated

by looping through the indexes {i, j, τ, s} results in the element stiffness matrix. The reader is directed to [19]

for a further understanding of the concept of the fundamental nucleus and its role in CUF.

3 Global-Local Analysis

The global-Local technique is used to analyze a complex structure in a computationally economical manner.

Two distinct finite element models are considered in such a procedure: a coarsely discretized global model

representing the entire structure, and a finely discretized local model representing the area of interest within

the global structure. These regions are generally stress concentrators such as holes, cut-outs, sharp angles,

etc. The solution of the global model is used as an input to the analysis of the local model, either in the form

of mechanical boundary conditions (forces are prescribed), or geometrical ones (displacements are prescribed).

These boundary conditions are prescribed at the interface between the local and global regions. A refined

analysis can thus be carried out over the region of interest without requiring a fine discretization over the entire

structure. It is noted that the global and local analyses are distinct from each other, resulting in a 2-step

procedure that occurs sequentially. A schematic representation of a general global-local technique has been

shown in Fig. 2. In the figure, part (a) represents the physical structure with applied boundary conditions.

Part (b) of the figure shows the coarsely meshed global model with the local region (area of interest) highlighted.

The finely meshed local model is shown in part (c).

Figure 2: A schematic representation of the general global-local analysis procedure. (a) Physical structure with the
applied boundary conditions, (b) the coarsely discretized global model, and (c) the finely discretized local region.

In the current work, the finite element model for the local region has been developed and analyzed in the

CUF framework. A schematic representation of the global-local procedure in CUF has been shown in Fig. 3.

The refinement is thus based on higher-order models, as opposed to using a very fine mesh. The 1D CUF model

(for the local region) makes use of LE across the cross-section, since such an expansion has pure displacement

unknowns, without involving higher-order derivatives as DOFs. Due to this, nodal displacements from the

(coarse) global 3D mesh can be directly prescribed on to the local CUF model, as shown in Fig. 3, without the



need for ad hoc transformations of the global solution.
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Figure 3: A schematic representation of the application of global displacements as boundary conditions on the CUF
local model

Two variants of the global-local procedure have been presented, and are as follows:

1. Nonlinear Global - Nonlinear Local Analysis: In this case, a (physical) nonlinear analysis is carried out

on the global model, and the results are used as boundary conditions in a (physical) nonlinear analysis of

the local model. The global analysis is performed using a commercial software, ABAQUS, while the local

analysis is done in CUF.

2. Linear Elastic Global Analysis - Nonlinear Local Analysis: In this case, a linear-elastic analysis is carried

out on the global model, while a (physical) nonlinear analysis is performed on the local model. Both

analyses are performed in the framework of CUF.

The use of ABAQUS in the first variant of the global-local procedure is to demonstrate the capability of

CUF in interfacing with commercial FEA software. The objective of the second version listed above is to avoid

nonlinear analyses wherever possible, and hence to reduce the amount of computational effort.

4 Numerical Examples

4.1 Cantilever beam under pure bending

This example serves to showcase the capabilities of the current implementation of the von Mises model in

CUF. The structure is a cantilever beam with a square cross-section, clamped at one end and subjected to a

prescribed displacement at the free end. A schematic representation of the structure is shown in Fig. 4. An

isotropic material, i.e. steel, was considered with the following material properties: Young’s Modulus E = 210.0

GPa, Poisson’s ratio ν = 0.3, and the yield stress σy0 = 210.0 MPa. Perfect plasticity was assumed, resulting

in a hardening modulus H = 0. The prescribed displacement at the free tip is uz = -0.1 m.

The structure was analyzed in the framework of CUF using classical theories such as EBBT and TBT, as

well as higher-order models based on TE and LE. Two cross-section discretizations were considered for the case



L = 1.0 m

uz

w = 0.02 m

h = 0.02 m

z

Figure 4: A schematic representation of the cantilever beam with the applied boundary conditions

of LE: 4L9 and 9L9, resulting in a 2x2 and 3x3 expansion element configuration respectively. A full 3D analysis

was performed in ABAQUS, which serves to validate the results of the current work. The equilibrium path

calculated according to various beam theories is plotted in Fig. 5. The vertical displacement uz at the point

x = 0.0, z = 0.0 and along the beam axis is plotted in Fig. 6. The axial stress σyy through the thickness of

the beam at x = 0.0, y = 0.016 m, i.e., the center of the plastic region, is plotted in Fig. 7. A summary of the

above analyses is presented in Table 1, which shows the vertical displacements at the point [x = 0.0, y = L/2, z

= 0.0] as determined by various structural theories, along with the corresponding computational cost regarding

the DOFs. Based on the above results, the following comments can be made:

1. Classical theories such as EBBT and TBT are unable to accurately capture the behavior of the structure

as the material goes into the plastic regime. On the other hand, higher-order theories based on TE and

LE can give better predictions of the nonlinear behavior. In fact, the axial stress along the cross-section

presents a local nonlinear distribution that cannot be retrieved by low order models. This is consistent

with the results reported by [22].

2. The use of higher-order elements within the framework of CUF leads to results which are in close agree-

ments with a full 3D FEM solutions, yet requires over two orders of magnitude fewer DOFs. Such a

physically nonlinear framework is thus very computationally efficient when compared to traditional solid

FEA.

3. The use of TE (of order N) implies that a N th order polynomial is used as the interpolation function

across the entire cross-section. On the other hand, the Lagrange polynomials used in LE interpolate only

across the domain of the particular expansion element. Better accuracy can, therefore, be obtained by

the use of LE, due to the possibility of locally refining the cross-section discretization by the addition of

Lagrange elements. This can be seen in Fig. 7, where the use of 9L9 elements gives better results than

either 4L9 elements or TE (N = 3).

4.2 Bimetallic cantilever beam

The next example is similar to the previous case, with the exception that the beam is now multi-layered, with

different material properties assigned to each layer. The upper half of the beam is made of aluminum, while

the lower half is made of steel. A schematic representation of the structure is shown in Fig. 8 and the material
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Figure 5: Equilibrium path of the cantilever beam according to various beam models
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Figure 6: Vertical displacement uz along the axis of the cantilever beam, at x = 0.0, z = 0.0, uz = −0.05 m
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Figure 7: Axial stress σyy through the thickness of the cantilever beam, at x = 0.0, y = 0.016, uz = −0.05 m

DOF uz (mm)

Reference

ABAQUS - 3D Brick 694,023 -16.21

Current Analysis - CUF

10 B4

LE - 4 L9 2325 -16.09

LE - 9 L9 4557 -16.06

20 B4

LE - 4 L9 4575 -16.17

LE - 9 L9 8967 -16.18

30 B4

LE - 4 L9 6825 -16.18

LE - 9 L9 13,377 -16.20

40 B4

EBBT 363 -15.64

TBT 605 -15.64

TE - 1 1089 -15.65

TE - 3 3630 -16.27

LE - 4 L9 9075 -16.21

LE - 9 L9 17,787 -16.21

Table 1: Vertical displacements uz at the point (0.0, 0.5, 0.0) of the cantilever beam, as calculated by various structural
theories, uz = −0.05 m



properties are listed in Table 2. Perfect plasticity was assumed for both materials, resulting in a hardening

modulus H = 0.

L = 1.0 m w = 0.02 m

h = 0.02 m

y

z

Figure 8: A schematic representation of the bimetallic cantilever beam with the applied boundary conditions

Property Aluminium Steel

Young’s Modulus E 70.0 GPa 210.0 GPa

Poisson’s Ratio ν 0.3 0.3

Initial yield stress σy0 110.0 MPa 210.0 MPa

Table 2: Material properties considered for the bimetallic cantilever beam

As before, the numerical analysis was performed using various structural theories within the framework of

CUF, along with a full 3D analysis in ABAQUS for validation. The results of the numerical analyses shown

hereinafter correspond to the application of 50% of the prescribed displacements, at which point the structure is

well into the plastic regime. The vertical displacement uz at x = 0.0, z = 0.0 and along the beam axis is plotted

in Fig. 9. The axial stress σyy along the axis and at the top and bottom surfaces of the beam are plotted in

Fig. 10. The axial stress through the thickness of the beam at x = 0.0 and y = 0.025 m, i.e., the center of

the plastic zone, is plotted in Fig. 11. Table 3 summarizes the numerical results along with the computational

costs regarding the DOFs. Some comments can be made based on the above results,

1. The presence of two material layers results in a complex stress distribution through the thickness of the

beam. From Fig. 11, it can be clearly observed that the use of a refined cross-section mesh via 12 L9

elements leads to a very accurate solution, compared to a coarser 4 L9 mesh, or the use of a third-order

polynomial in the case of TE.

2. The use of low order models affect the accuracy of results globally, independently of the presence of

plasticity.
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Figure 9: Vertical displacement along the axis (y) of the bimetallic cantilever beam at the point x = 0.0, z = 0.0

DOF uz (mm)

Reference

ABAQUS - 3D Brick 694,023 -36.56

CUF - 40B4

EBBT 363 -31.79

TBT 605 -31.79

TE - 1 1089 -31.83

TE - 3 3630 -36.78

LE - 4L9 9075 -36.24

LE - 12L9 22,869 -36.57

Table 3: Vertical displacements uz at the midspan of the bimetallic cantilever beam, as calculated by various structural
theories



0.0 0.1 0.2 0.3 0.4 0.5

-100

0

100

200

300

400
σ

y
y
 
(M

P
a

)

y (m)

ABQ 3D

EBBT

TBT

TE 1

TE 3

LE - 4L9

LE - 12L9

(a) At the top surface

0.0 0.1 0.2 0.3 0.4 0.5

-600

-400

-200

0

200

σ
y
y
 (M

P
a

)

y (m)

ABQ 3D

EBBT

TBT

TE 1

TE 3

LE - 4L9

LE - 12L9

(b) At the bottom surface

Figure 10: Axial stress σyy along the axis of the bimetallic cantilever beam. (a) At the top surface (x = 0.0, z = 0.01),
and (b) at the bottom surface (x = 0.0, z = -0.01)
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Figure 11: Axial stress σyy through the thickness (z) of the bimetallic cantilever beam, at the point x = 0.0, y = 0.025

4.3 Nonlinear Global - Nonlinear Local Analysis of a cantilever beam

The numerical example of 4.1 was considered once again for the current example, except that it is now analyzed

using the technique of Global-Local Analysis. The geometry and material properties remain the same, and an

initial analysis is performed in a commercial FEA software, ABAQUS, considering a coarse mesh with material

nonlinearities enabled. This initial ‘global’ analysis serves to identify the plastic zone which can then be isolated

as the local region, and also provides the displacement BC for the local region via the nodal displacements

obtained as a result of the global analysis. The contour plot of the equivalent plastic strains as obtained by the

global analysis is shown in Fig. 12, and the resulting local region is highlighted in the schematic representation

of the full structure, as shown in Fig. 13.

(Avg: 75%)
PEEQ

+0.000e+00
+8.585e-05
+1.717e-04
+2.575e-04
+3.434e-04
+4.292e-04
+5.151e-04
+6.009e-04
+6.868e-04
+7.726e-04
+8.585e-04
+9.443e-04
+1.030e-03

Figure 12: Contour plot of the equivalent plastic strain, obtained from the global analysis of the full structure

L = 1.0 m

y

z

Figure 13: A schematic representation of the global cantilever beam with the local region highlighted



The results obtained using the global-local procedure were compared to those obtained using a monolithic

analysis (based on various structural theories) over the entire global structure. All the results were validated

via a refined mesh 3D analysis in ABAQUS. The vertical displacement uz at x = 0.0, z = 0.0 and along the

beam axis is plotted in Fig. 14, while the axial stress σyy through the thickness of the beam at x = 0.0, y =

0.016, which is the center of the plastic zone, is plotted in Fig. 15. Table 4 summarizes the results obtained

via the different approaches, as well as the associated computational cost regarding the DOFs. Based on these

results, a few comments can be made,

1. The global-local procedure provides results which are in close agreement with the reference 3D solution

and requires fewer DOFs than either the ABAQUS 3D or the global CUF 1D models.

2. It can be seen in Table 4 that the global ABAQUS analysis over a coarse mesh fails to accurately predict

the stress fields, while those obtained from the local CUF analysis (using a 20B4/9L9 discretization) are

in close agreement with both the reference 3D and the global CUF (40B4/9L9) results. This motivates the

use of a global-local procedure as a computationally efficient alternative to a monolithic global analysis

(in either ABAQUS or CUF), which requires a highly refined mesh.
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Figure 14: Vertical displacements along the axis of the local region, at the point x = 0.0, z = 0.0 (cantilever beam)

4.4 Nonlinear Global - Nonlinear Local Analysis of a Z-section beam

The current example was taken from [22] and is a suitable case to highlight the efficiency of global-local

techniques in obtaining accurate 3D-like solutions at a reduced computational cost. The structure consists

of a Z-section beam clamped at both ends and subjected to a pressure loading p = 0.5 MPa at the top and

bottom flanges. A piece-wise linear hardening was considered by specifying a set of stress-strain points, which
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Figure 15: Axial stress through the thickness (z) of the beam in the local region, at the point x = 0.0, y = 0.016
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DOF uz (mm) σyy (MPa)

y = 0.1 y = 0.5 x = 0.0, y = 0.1, z = 0.01

Reference

ABAQUS - 3D Brick 694,023 -0.86 -16.21 214.4

CUF - 40B4

EBBT 363 -0.73 -15.64 353.05

TBT 605 -0.73 -15.64 353.05

TE - 1 1089 -0.73 -15.65 352.68

TE - 3 3630 -0.87 -16.27 217.39

LE - 4L9 9075 -0.83 -16.21 215.59

LE - 9L9 17,787 -0.86 -16.21 216.3

Global-Local Analysis

Global - ABAQUS 6840 -0.86 -16.25 236.6

Local - CUF (20B4/9L9) 8967 -0.89 – 216.1

Table 4: Numerical results calculated according to various structural theories and analysis strategies (cantilever beam)



are listed in Table 5. A schematic representation of the structure, along with the applied boundary conditions,

is shown in Fig. 16. The figure also shows the 20L9 cross-section discretization used in the case of LE.

L = 1000
y

27.0

122.0

1.5

p

Figure 16: Schematic representation of the Z-section beam geometry, along with applied boundary conditions (dimen-
sions in mm). The 20L9 cross-section discretization is illustrated.

Stress [MPa] 300 320 340 355 375 390 410 430 450 470 484
Plastic Strain 0.000 0.0002 0.00047 0.0012 0.0045 0.01036 0.0213 0.0344 0.0513 0.0800 0.147

Table 5: Piece-wise linear hardening data for the material used in the Z-section beam

An initial analysis (considering nonlinearities) was performed in ABAQUS 3D using a coarse mesh, to

determine the plastic zone (area of interest) and hence to extract the nodal displacements at the boundary

of this region, which would constitute the boundary conditions for the local analysis. A contour plot of the

equivalent plastic strains is shown in Fig. 17, where the plastic zone can be clearly observed. Due to the

symmetry of the structure, only one end of the beam is considered (where a plastic zone occurs) as the local

region. Therefore, a segment of the beam corresponding to the range y = [0.0, 200.0] was considered for the

local analysis.

(Avg: 75%)
PEEQ

+0.000e+00
+2.302e-03
+4.605e-03
+6.907e-03
+9.209e-03
+1.151e-02
+1.381e-02
+1.612e-02
+1.842e-02
+2.072e-02
+2.302e-02
+2.533e-02
+2.763e-02

Figure 17: Contour plot of the equivalent plastic strains as reported by the initial global analysis in ABAQUS 3D



The results of the local analysis in CUF are shown along with a reference 3D solution obtained from

ABAQUS, as well as a global solution obtained from CUF. It is noted that the same number of finite elements

(20B4) and expansion elements (20L9) were used in both the CUF local model and the CUF global model

(which is solely used for comparison). In the current case, only CUF structural theories considering an LE were

considered. The displacement component ux at the point A [x = 13.5, z = 61.0], plotted along the span of the

local region, is shown in Fig. 18. The axial stress at the point B [x = -0.75, z = 61.0] along the local region

axis is plotted in Fig. 19. A summary of the analyses comparing the numerical results and the computational

costs is given in Table 6. Some comments can be made based on the above results,

1. The global-local approach results in a more accurate solution over the domain of the plastic zone when

compared to a full CUF analysis, the number of DOFs remaining same. In both cases, the CUF analyses

require one order of magnitude fewer DOFs than that required for the full 3D finite element analysis.

2. CUF beam models are capable of handling thin-walled beams, and of accurately identifying the plastic

zones within the structure. This is consistent with the results of [22].

3. Performing a nonlinear analysis of the local model based on input from a nonlinear global analysis leads

to a solution which is in good agreement with that of the reference 3D fine mesh analysis.
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Figure 18: Horizontal displacement ux at point A, along the span of the local region (Z-section beam)

DOF ux (mm)

Global ABAQUS 3D 697,392 6.43

Global CUF - 20B4/20L9 22509 6.15

Global-Local Analysis

Global - ABAQUS 22059 6.29

Local CUF - 20B4/20L9 22509 6.39

Table 6: Comparison of the horizontal displacements ux at the point A and y = 0.1 m, determined using global analyses
in CUF and ABAQUS, as well as the global-local technique (Z-section beam)
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Figure 19: Axial stress σyy at point B, along the span of the local region (Z-section beam)

4.5 Linear Global - Nonlinear Local Analysis of a cantilever beam

This variation of the global-local procedure involves carrying out a linear elastic analysis over the global structure

and using the linear global solutions as the boundary conditions for a local, nonlinear, analysis. Such a process

is motivated by the fact that there exist certain cases where the nonlinearity is localized to a small zone within

the global structure and does not significantly affect the global response. In such cases, the use of linear global

solutions as boundary conditions does not cause remarkable changes to the stress fields in the local analysis.

In the current example, the linear global - nonlinear local analysis was carried out in the framework of CUF,

unlike the previous version of global-local analysis, where the global analysis was performed in ABAQUS and

was nonlinear.

The cantilever beam of Section 4.1 was considered for the current analysis procedure. The extent of the

plastic zone was determined by examining the magnitude of the von Mises stress σvm as reported by the linear

global analysis. This can be easily done by introducing a parameter termed as the ‘plasticity index’, PI , which

is defined as the ratio of the von Mises stress to the initial yield stress, σy0, as given by the equation:

PI =
σvm
σy0

(13)

In the current example of the cantilever beam under pure bending, the maximum stresses occur at the top

and bottom surfaces of the beam, and it is thus reasonable to expect the plastic zone to initiate at these surfaces,

near the root of the beam. Therefore, the von Mises stress at the top surface of the beam (x = 0.0, z = 0.01)

was considered for the computation of the plasticity index according to Eq.13, and is shown in Fig. 20. As

can be seen from the figure, the index PI ≥ 1 for the range y = [0.0, 0.36]. This determines the approximate

extent of the plastic zone, and hence the local region was considered to be the span extending till y = 0.4 m.



In general, the plasticity index can be computed for the entire structure and visualized using contour plots to

determine the nonlinear zones, when the region of maximum stresses in the structure is not obvious.
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Figure 20: Plasticity index calculated along the length of the global model, at x = 0.0, z = 0.01

The nonlinear analysis of the local region was performed using 20B4 elements along the beam axis and

9L9 across the cross-section. The results of the local analysis are shown along with those of global CUF

analyses (both linear elastic and with plasticity), along with a reference 3D nonlinear solution obtained using

ABAQUS. The suffixes (EL) and (PL) indicate a linear elastic and nonlinear analysis, respectively. The vertical

displacement uz at the point x = 0.0, z = 0.0 and along the beam axis is plotted in Fig. 21. The axial stress

σyy along the axis at the point x = 0.0, z = 0.01 is plotted in Fig. 22. The corresponding value through the

thickness of the beam at the point x = 0.0, y = 0.016, which is the center of the plastic zone, is plotted in

Fig. 23. The results of the numerical analyses along with the computational costs are given in Table 7. Some

observations can be made based on the above results:

1. Using the solution of a linear elastic global analysis as boundary conditions for a nonlinear local analysis

is sufficient to obtain reasonably accurate displacement profiles and stress fields in the local region corre-

sponding to the plastic zone. This is an important observation since the inference is that the nonlinear

analysis needs to be performed only in the required region, with a significant reduction of computational

cost.

2. The global-local technique requires fewer DOFs than a monolithic CUF analysis, for the same accuracy

in the results.

3. It can be seen that the local solution differs from the reference solution near the global-local interface.

This is because linear elastic displacements were imposed on the interface. One way of solving this issue

could be through an iterative approach where the nonlinear local results are inserted back into the linear



global analysis until convergence is achieved.

4. The plasticity index, PI , is a suitable parameter to identify the plastic zone from the linear elastic global

solution and can be useful in minimizing the domain of the nonlinear problem, making the overall analysis

computationally efficient.
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Figure 21: Vertical displacement uz along the axis of the local region, at x = 0.0, z = 0.0 (cantilever beam)
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Figure 22: Axial stress σyy along the axis of the local region, at x = 0.0, z = 0.01 (cantilever beam)

5 Conclusion

A computationally efficient framework has been developed to solve problems of elastoplasticity in metallic

structures, by a combination of global-local techniques and refined structural models available in CUF. The von



-300 -150 0 150 300

-0.010

-0.005

0.000

0.005

0.010

z
 (

m
)

σ
yy

(MPa)

REF ABAQUS 3D

GLB CUF 9L9, PL

GLB CUF 9L9, EL

GLB/LOC 9L9, EL/PL

Figure 23: Axial stress σyy through the thickness of the local region, at x = 0.0, y = 0.016 (cantilever beam)

DOF uz (mm) σyy (MPa)

Global ABAQUS 3D (PL) 694,023 -0.86 214.4

Global CUF - 40B4/9L9 (PL) 17,787 -0.86 216.3

Global-Local Analysis

Global CUF - 10B4/9L9 (EL) 4557 -0.70 265.48

Local CUF - 20B4/9L9 (PL) 8967 -0.87 214.9

Table 7: Summary of the numerical results obtained using a linear elastic global model and a nonlinear local model

Mises constitutive law was used within an incremental finite element framework to predict nonlinear behavior

of compact and thin-walled beams in the plastic regime, restricting the problem to infinitesimal strain theory,

i.e., assuming geometrical linearity. The numerical investigations were carried out using both classical and

various types of higher-order beam theories, and the results were validated via a 3D analysis in commercial

software, ABAQUS. Two types of global-local techniques were presented, where – (a) both the global and local

analyses are nonlinear, and (b) the global analysis is linear elastic, while the refined local analysis is nonlinear.

The aim of the latter version of the global-local technique is to minimize the region of the structure where a

computationally intensive nonlinear analysis is carried out. The local region, i.e., the plastic zone, is identified

by defining a parameter termed the Plasticity Index PI . The results show that

1. Twofold reductions of the degrees of freedom are achievable compared to solid elements.

2. The use of a global linear solution does not affect the accuracy of the results significantly as soon as the

plastic zone is limited in space.

3. The use of refined models is mandatory to capture the locally nonlinear distributions of stress along the

cross-section due to plasticity and inhomogeneous material characteristics.

Future works shall include geometric nonlinearities and variable kinematics models to improve the compu-

tational efficiency of the analysis.
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Appendix

The von Mises model for elastoplasticity

This section elaborates on the nonlinear framework used in the present work. The implementation is based on

[25], and a description of the various terms may be found in the appendix of [22]. The von Mises constitutive



law with linear isotropic hardening is described by the following set of equations:

σ = C : εe

f(σ, σy) =
√

3J2(S(σ))− σy(α)

ε̇p = γ̇N = γ̇
∂f

∂σ

α = ε̇
p

=

√
2

3
‖ε̇p‖ = γ̇

(14)

where f(σ, σy) is the yield function, N =
√

3
2

S
‖S‖ is the plastic flow vector and α is the hardening parameter.

Eq. (A1.c) describes the associative flow rule used in the constitutive model.

The above set of differential equations is discretized using a Backward (implicit) Euler scheme, to obtain

a set of algebraic difference equations. This can be used to formulate the discrete elastic predictor/plastic

corrector two-step numerical algorithm based on the concept of return mapping, as shown in Fig 24. In this

numerical scheme, given the solution at the time step tn and the strain increment ∆ε, the solution at the next

time increment tn+1 can be found by applying the following procedure:

1. Predictor - Elastic Trial Step

The trial strains are given by:

εe trialn+1 = εen + ∆ε

εp trialn+1 = εpn

(15)

The trial stresses can be calculated as:

σtrialn+1 = C : εe trialn+1 (16)

The trial yield function, f trialn+1 (σtrialn+1 ), is calculated and the step is said to be elastic if it lies within the

yield surface. The solution at tn+1 is then updated with the trial values. Plasticity occurs in the case when

f trialn+1 ≥ 0, and the plastic corrector step is then initiated in the form of a return-map algorithm.

2. Corrector - The return map algorithm

The set of algebraic equations to be solved for the plastic case are:

εen+1 = εe trialn+1 −∆γ

√
3

2

Sn+1

‖Sn+1‖

αn+1 = αn + ∆γ√
3J2(Sn+1)− σy(αn+1) = 0

(17)

Eqs. 17 (a−c) are in general nonlinear but can be reduced to a single nonlinear equation due to the cylindrical
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Figure 24: Return map algorithm for the von Mises constitutive model. (a) for the case of perfect plasticity, and (b)
for the case of linear isotropic hardening.

nature of the von Mises yield surface, which results in a radial return mapping. The resulting equation is given

by

f̃(∆γ) = qtrialn+1 − 3G∆γ − σy(αn + ∆γ) = 0 (18)

Where qtrialn+1 is the trial von Mises stress. Eq.18 can be solved using a second Newton-Raphson scheme for

each iteration of the global Newton-Raphson loops, to compute the value of the plastic multiplier, ∆γ. Once

the incremental plastic multiplier has been determined, the stress and strain values can be updated as follows:

Sn+1 = Strialn+1

[
1− ∆γ3G

qtrialn+1

]
σn+1 = Sn+1 + P trialn+1 I

εen+1 =
1

2G
Sn+1 +

1

3
εe trialv n+1 I

αn+1 = αn + ∆γ

εpn+1 = εpn + ∆γ

√
3

2

Sn+1

‖Sn+1‖

(19)

For the special case of linear isotropic hardening, Eq. 18 is linear, and hence an explicit form can be obtained

for the solution of ∆γ:

∆γ =
f trial

3G+H
(20)

In the current implementation of the model, a piece-wise linear hardening can be prescribed by providing a

set of stress-strain points past the initial yield point, as shown in Fig. 25.
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Figure 25: The stress-strain curve with piece-wise linear hardening, obtained by specifying a set of points

The consistent elastoplastic tangent operator

The consistent tangent elastoplastic operator is a fourth-order tensor that describes the elastoplastic nature of

the material and relates the current values of stress and strain such that

Ccep =
∂σn+1

∂εn+1
(21)

The consistent tangent operator for the von Mises model with linear isotropic hardening is given as:

Ccep = C− ∆γ6G2

qtrialn+1

Id + 6G2

[
∆γ

qtrialn+1

− 1

3G+H

]
Nn+1 ⊗Nn+1 (22)

Where, Id is the deviatoric projection tensor, I is the fourth-order identity tensor, and C is the linear elasticity

tensor of fourth-order.

The term Nn+1 is defined as:

Nn+1 =

√
2

3
Nn+1 =

Strialn+1

‖Strialn+1 ‖
(23)


