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Abstract

As more and more powerful integrated circuits are appearing on the market, more
and more applications, with very different requirements and workloads, are making
use of the available computing power. This thesis is in particular devoted to High-
Performance Computing applications, where those trends are carried to the extreme.
In this domain, the primary aspects to be taken into consideration are (1) performance
(by definition) and (2) energy consumption (since operational costs dominate over
procurement costs). These requirements can be satisfied more easily by deploying
heterogeneous platforms, which include CPUs, GPUs and FPGAs to provide a broad
range of performance and energy-per-operation choices. In particular, as we will see,
FPGAs clearly dominate both CPUs and GPUs in terms of energy, and can provide
comparable performance.

An important aspect of this trend is of course design technology, because these
applications were traditionally programmed in high-level languages, while FPGAs
required low-level RTL design. The OpenCL(Open Computing Language) developed
by the Khronos group enables developers to program CPU, GPU and recently FPGAs
using functionally portable (but sadly not performance portable) source code which
creates new possibilities and challenges both for research and industry 1.

FPGAs have been always used for mid-size designs and ASIC prototyping thanks
to their energy efficient and flexible hardware architecture, but their usage requires
hardware design knowledge and laborious design cycles. Several approaches are
developed and deployed to address this issue and shorten the gap between software
and hardware in FPGA design flow, in order to enable FPGAs to capture a larger
portion of the hardware acceleration market in datacenters. Moreover, FPGAs usage
in data-centers is growing already, regardless of and in addition to their use as

1Both Intel and Xilinx provide software development kit(SDK) to support high level synthesis
using the OpenCL programming language
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computational accelerators, because they can be used as high performance, low
power and secure switches inside data-centers.

High-Level Synthesis (HLS) is the methodology that enables designers to map
their applications on FPGAs (and ASICs). It synthesizes parallel hardware from a
model originally written C-based programming languages .e.g. C/C++, SystemC
and OpenCL. Design space exploration of the variety of implementations that can be
obtained from this C model is possible through wide range of optimization techniques
and directives, e.g. to pipeline loops and partition memories into multiple banks,
which guide RTL generation toward application dependent hardware and benefit
designers from flexible parallel architecture of FPGAs.

Model Based Design (MBD) is a high-level and visual process used to generate
implementations that solve mathematical problems through a verified set of IP-blocks.
MBD enables developers with different expertise, e.g. control theory, embedded
software development, and hardware design to share a common design framework
and contribute to a shared design using the same tool. Simulink, developed by
Matlab, is a model based design tool for simulation and development of complex
dynamical systems. Moreover, Simulink embedded code generators can produce
verified C/C++ and HDL code from the graphical model. This code can be used
to program micro-controllers and FPGAs. This PhD thesis work presents a study
using automatic code generator of Simulink to target Xilinx FPGAs using both HDL
and C/C++ code to demonstrate capabilities and challenges of high-level synthesis
process. To do so, firstly, digital signal processing unit of a real-time radar application
is developed using Simulink blocks. Secondly, generated C based model was used for
high level synthesis process and finally the implementation cost of HLS is compared
to traditional HDL synthesis using Xilinx tool chain.

Alternative to model based design approach, this work also presents an anal-
ysis on FPGA programming via high-level synthesis techniques for computation-
ally intensive algorithms and demonstrates the importance of HLS by comparing
performance-per-watt of GPUs(NVIDIA) and FPGAs(Xilinx) manufactured in the
same node running standard OpenCL benchmarks. We conclude that generation of
high quality RTL from OpenCL model requires stronger hardware background with
respect to the MBD approach, however, the availability of a fast and broad design
space exploration ability and portability of the OpenCL code, e.g. to CPUs and
GPUs, motivates FPGA industry leaders to provide users with OpenCL software
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development environment which promises FPGA programming in CPU/GPU-like
fashion. Our experiments, through extensive design space exploration(DSE), suggest
that FPGAs have higher performance-per-watt with respect to two high-end GPUs
manufactured in the same technology(28 nm). Moreover, FPGAs with more available
resources and using a more modern process (20 nm) can outperform the tested GPUs
while consuming much less power at the cost of more expensive devices.
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Chapter 1

FPGA - Field Programmable Gate
Arrays

Field programmable arrays(FPGA) consists of arrays of gates that can be pro-
grammed and reconfigured by a designer. Hardware description languages (VHDL/Ver-
ilog) are widely used to model a design in a bit and cycle accurate way and map
them to FPGA via various available synthesis tools to generate functionally ver-
ified bit-stream in an automated flow[1, 2]. Although, multiple companies share
FPGA’s market, but Intel(after acquisition of Altera in 2016) and Xilinx are two
major competitors. Even though Intel cannot be underestimated especially when it
comes to their technology and capital, this work focuses on Xilinx tools and tech-
nology. Xilinx is the market leaders of FPGAs with 18-months technology lead. Its
products are aimed to meet requirements of various workloads coming from different
domains[3, 4], figure 1.2 suggests that more than 50% of FPGA market belongs to
Xilinx programmable platforms.

Figure 1.1 28 nm Xilinx Virtex7 FPGA
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Figure 1.2 Major share holders of FPGA market

As technology world is shifting toward a huge ramp driven by 5G communi-
cation, Artificial intelligence(AI) and Internet of Things(IoT), the demand of high
performance computing and efficient-energy solutions are growing and this makes
FPGA more suitable to be used as the core of embedded electronic systems. However,
complexity of FPGA is growing day by day, but FPGAs development environment
improvement in recent years made developers to consider them as a cost optimized
and high performance devices, Figures 1.3 and 1.4 demonstrate increasing growth of
FPGA deployment in USA and Asian pacific markets, overall annual market value
of FPGA is estimated around 7 billion USD by the end of 2022 [5–7].

Figure 1.3 U.S. FPGA Market by application, 2014-2024(USD Bilion)
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Figure 1.4 Asian Pacific FPGA Market by application, 2014-2024 (USD Bilion)

Moreover, previously most of the traffics in the INTERNET were between client
and data-centers which is known as north-south traffic in data-center terminology,
nowadays, 80 percent of the total traffic belongs to east-west traffic which is the
internal communications within a data-center [8], figure 1.5 shows top view of data
center architecture. This fact increases FPGA deployment in data centers mainly
because of the FPGAs flexibility that can be configured as high-performance switches
inside data centers structures without outside standards concern coming from client
side[9].
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Figure 1.5 Top view of Data center

In the rest of this chapter, FPGAs are discussed both from hardware and software
perspective which are fundamentals to understand and perform successful software
and hardware co-design targeting FPGAs.

1.1 An example of a modern FPGA-based platform

FPGAs, like any other integrated circuit, are mounted on boards (and often racks of
boards) to create a complete electronic system. To give an idea of the power and pos-
sibilities of modern FPGA-based platforms, we will consider a very recent example
board, shown in figure 1.6. HTG-9200 from HiTech Global is powered by the latest
generation Xilinx Virtex Ultrascale+(16nm) FPGA. This modern platform is suitable,
for example, for high performance optical networking applications since it has nine
QSFP281 ports and two separate DDR4 high-performance DRAM banks(using a
total of 10 memory chips).

1Quad Small Form-Factor Pluggable is a high-performance and low-power Ethernet connectivity
solution for data center and high performance computing. These transceivers come in various types
supporting 40 G and 100 G Ethernet.
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The HTG9200 is considerably more powerful than most FPGA boards that are
deployed today. However, it is a clear example of an ongoing trend to replace ASICs
with FPGAs for any application domain that require the latest technologies, but
cannot afford to design an ASIC due to the Non-Recurrent Engineering cost. Design
costs for the 14 nm technology node are estimated by various industry sources to
be around 300M$ per design, and mask costs are most likely comparable. This
means that several million integrated cicuits must be sold to recover the NRE costs.
For this reason, and due to the ability to upgrade the hardware in situ, FPGAs are
becoming the preferred platform for a growing number of applications, ranging from
automotive (ADAS in particular), to telecom, military, aerospace, and recently even
data centers. In the latter case, FPGAs are not competing with ASICs but with GPUs,
and can offer comparable performance at a fraction of the energy-per computation
cost, as we will show later in this thesis.

As we discussed, a key motivation of FPGAs is to keep design costs low. This
is achieved first and foremost by reducing the verification costs dramatically, since
their reprogrammability ensures that there is no need to get the first implementation
completely bug-free. Designs can be reloaded at will, and debugging on the FPGA
itself is much easier than on an ASIC.

Moreover, recent design technology advances, in particular High-Level Synthesis,
have enabled a dramatic paradigm shift in terms of how FPGAs (and ASICs) are
designed. As we will demonstrate in this thesis, HLS tools enable the designer to
achieve high-quality implementations in a fraction of the time required by traditional
HDL-based methodologies working at the Register Transfer level. The Quality of
Results of RTL can even be surpassed by HLS-based solutions, thanks to the broader
design space (e.g. the tradeoffs between pipelining and resource consumption, or
the exploration of memory architectures) that is afforded by HLS. This motivates us
to conduct an extensive research on different FPGA programming approaches and
report our experiment results in this dissertation.
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Figure 1.6 Xilinx Ultrascale+ Platform Scheme

1.2 FPGA Architecture

FPGAs are capable to serve as an accelerator for the wide range of applications
,moreover, new technologies shape and develop FPGA platforms day by day to
meet customer and market needs. Modern FPGAs consist of millions of logic cells
and switches which are programmable. This chapter studies the key components
of FPGA chip and provide the numerical report of available resources for each
component in 7 series Xilinx FPGAs(28 nm).

1.2.1 Configurable Logic Blocks

Figure 1.7 presents top view of FPGA fabric composed of arrays of configurable
logic blocks(CLB) and switches.
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Figure 1.7 Top View of FPGA fabric architecture

CLBs are the key component in Xilinx FPGAs and each has pair of slices,
figure 1.8 shows simplified graphical presentation of one slice with 6-input look-up
tables(LUT), fast adders and registers. Logical,arithmetic,memory and shift register
functions can be implemented using these slices [10].
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Figure 1.8 Slice of CLB

1.2.2 DSP Slice

Xilinx FPGAs provide slices of DSP that are designed to implement vast number of
binary multipliers and adders used in DSP applications. Figure 1.9 provides insight
to DSP slice architecture used in 7series Xilinx FPGAs, implementation of DSP
algorithms using DSP slices enhance speed and efficiency of FPGA device within a
small size and flexible hardware [11].



1.2 FPGA Architecture 9

Figure 1.9 Slice of DSP

1.2.3 Memory Resources

Available on-chip memory is essential for high performance computing, however,
LUTs in FPGAs can be used as distributed RAM across FPGA device, but dedicated
blocks of RAM in FPGAs are the main resource of on-chip memory (fig 1.10). Dual
36 Kb block RAM can be configured as a 64K x 1 (when cascaded with an adjacent
36 Kb block RAM),32K x 1, 16K x 2, 8K x 4, 4K x 9, 2K x 18, 1K x 36, or 512 x 72
in simple dual-port mode [12].
In order to address performance and power requirement of different applications, Xil-
inx FPGAs are divided into three main families, table1.1 reports available resources
for each family member, however, they have similar architecture, but performance
and power metrics of each device is different mainly because of available resource
and external memory band-width.
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Table 1.1 7 Series FPGA Family comparison

MAXIMUM CAPABILITY ARTIX KINTEX VIRTEX
LOGIC CELLS 215K 478K 1,955K
BLOCK RAM 13 Mb 34 Mb 68 Mb
DSP SLICES 740 1,920 3,600
MEMORY INTERFACE 1,066 Mbps 1,866 Mbs 1866 Mbps

Figure 1.10 True Dual-Port Data Flows for a RAMB36

Figure 1.11 draws a comparison between three family members of Xilinx, each
can be deployed based on application requirements. VIRTEX with maximum number
of logic cells is designed for high performance applications, while ARTIX provides
users with low power devices, moreover, KINTEX devices are manufactured to offer
best performance-per-cost FPGAs to designers.
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Figure 1.11 Comparison of 7 Series FPGA

INTEL FPGA Devices

However, Xilinx FPGAs are dominant in programmable logic market, but Altera
FPGAs are also powerful devices with multiple classes that can offer costumers
various performance, power and cost solutions to addressee different applications
requirements. Additionally, reports in [13] suggest higher core performance of Intel
FPGAs with respect to Xilinx UltraScale devices manufactured in 20 nm technology
using ten different test bench targeting Intel and FPGA devices. Following lines
briefly introduce five different FPGA classes produced by Intel which are currently
closest competitor to Xilinx and may gain larger portion of FPGA market thanks to
Intel investment and support[14].

STRATIX®

The Stratix® Series of FPGAs and SoC FPGAs are designed for the most
demanding systems where performance is paramount. Stratix 10,figure 1.12 ,
is the flagship of Intel configurable device. Manufactured on Intel 14 nm Tri-
Gate technology, Stratix 10 will offer industry-leading capacity, performance, and
architectural innovation for the most challenging computing, signal-processing, and
software-defined networking applications.
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Figure 1.12 STRATIX® 10 FPGAs developed by Intel

Arria®

The Arria® Series of FPGAs and SoC FPGAs deliver a balance of performance
and power efficiency. Arria 10 FPGAs and SoC FPGAs are the latest product
within the Arria family. Arria 10 at 20 nm has a unique combination of speed,
DSP performance, capacity and power efficiency, and are the only 20 nm FPGA to
integrate an embedded processor system.

MAX®

The MAX® Series of programmable logic devices features a non-volatile ar-
chitecture and offers a low cost and low power configurable logics. MAX devices
are widely used for general-purpose and power-sensitive designs in a wide variety
of market segments to perform functions that include I/O expansion, interface
bridging, power management, and FPGA configuration control.

Cyclone®

The Cyclone® Series of FPGAs and SoC FPGAs are optimized for low-cost,
high-volume systems. Cyclone V deliver capacity, performance, and IP ideal for the
majority of embedded applications used in the industrial and automotive markets.



1.3 HDL - Hardware Description Languages 13

Enpirion®

The Enpirion® product line offers the industry’s most compact, energy-efficient,
and sophisticated DC-DC converters for meeting the power requirements of FP-
GAs. When power rails demand programmable on/off, fast transient response and
extra-low noise devices they are the winner candidate.

1.3 HDL - Hardware Description Languages

Hardware Description Language(HDL) is used to model digital electronic system,
in other words, any digital electronic component such as registers, memories and
switches can be modeled in HDL. VHDL/Verilog are common HDL languages
in industry which support designing at three main levels of abstraction, although,
designing digital electronic circuits can be done both using top-down and bottom-up
approach, but the latter method is almost obsolete because of modern digital circuit
complexity. Three different levels of HDL are shown in figure1.13 and described
below.

• Behavioral Level: enable hardware designers to model whole algorithm start-
ing from top level, each block consists of sequential function and tasks with
defined inputs and outputs. In this level designers are focused on behavior
and performance of the algorithm and only when behavioral level is verified,
designers can develop underlying digital circuits of algorithm using register
transfer level abstraction.

• Register-Transfer Level (RTL): In this level designers can model digital circuits
at resister level using cycle accurate timing. Technically, RTL code can be
used by synthesis tools in order to generate gate-level model from algorithm.

• Gate Level: The lowest level of abstraction is gate level which can be used
to implement digital algorithm on silicon after placement and routing stage
which can be done automatically by modern synthesis tools.
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(a) Behavioral Scheme

(b) RTL Scheme

(c) Gate Level Presentation

Figure 1.13 Graphical Presentation of full adder in different HDL level
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1.4 Contributions and Motivations:

The rest of this dissertation presents a study on the high-level synthesis (HLS)
methodology for high performance computing applications (HPC) using two differ-
ent approaches. To do so, firstly, this work discusses high-level synthesis, Model
Based Design (MBD) and parallel computing that helps to provide the necessary
background for analyzing the conducted experiments in this work. The main motiva-
tion behind this study relies on the importance of high performance and low power
hardware to address the ever-growing demand for energy efficient platforms. Hence,
the experiments are designed to examine Xilinx high-level synthesis tool chain in
an analytical manner using various type of C based model (e.g. C, SystemC and
OpenCL) for DSP and data base applications.

As the first stage of this PhD course, Simulink is used to develop a real-time
application of digital signal processing unit of frequency modulated continuous wave
(FMCW) radar. The top level model is used to generate functionality verified C and
HDL based model in customizable fashion. Thereupon, the Xilinx synthesis tool
chain is used to map automatic generated codes on FPGAs. Although, the results
suggest that C based FPGA programming consumes less resources for performing
the same amount of computation, performance hungry part of the DSP algorithm is
substituted with SystemC IP that can be integrated within Simulink environment and
be used to realize parallel RTL. The results of this study are discussed in more detail
in chapters three, four and [15].

The growing trend towards heterogeneous platforms is crucial to meet time
and power consumption constraints for high-performance computing applications.
The OpenCL parallel programming language and framework enable programming
CPU, GPU and recently FPGAs using the same source code. This eases software
developers to implement applications on various devices supported by heterogeneous
HPC platforms. This work presents two very different FPGA implementations of
a database join operation, one using a direct O(n2) algorithm, and the other using
a bitonic sort network to speed up the join operation. Comparison of performance
and energy consumption for both FPGA and GPUs is provided which suggests an
average of 40% performance-per-watt improvement by using an FPGA instead of a
GPU. Extensive analysis and discussions related to these experiments are presented
in chapters two, three and [16, 17]
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Even though, MBD offers faster development cycle with respect to code based
model due to early stage verification and coarse-grained subsystem integration, the
available design space is much larger in latter case thanks to low level exposure
capabilities. This leads the quest for the best implementation towards design space
exploration (DSE) analysis of OpenCL models. The proposed DSE technique,
discussed in the next chapter and demonstrated in the chapter four, offers careful
design space exploration by considering on-chip and off-chip sources of parallelism.
Additionally, power estimation based on the area utilization enables exploration of
design space at a faster pace.



Chapter 2

HLS - High Level Synthesis

Technically speaking, High Level Synthesis(HLS) is automated flow which trans-
forms C based model algorithm to register transfer level (RTL) that can be used to
program FPGAs. Current Xilinx HLS tools chain supports C/C++, systemC and
OpenCL as source code and generates high quality RTL based on design constraints
and optimization directives provided by a designer [18, 19].

2.1 State Of The Art

Design complexity of electronic devices is growing day by day and manufactur-
ing optimized hardware requires strong technology and knowledge to address the
need of wide range of computational intensive workloads such as artificial intel-
ligence(AI) and digital signal processing applications. Companies like Intel and
NVIDIA manufacture parallel fixed-architecture GPUs which can be programmed
by software developers using parallel programming languages such as OpenCL and
CUDA. Moreover, the growing trend toward hybrid platform is crucial to meet time
and power constraints of ever-evolving high performance computing applications.

Recent studies suggest that FPGAs have performance and power consumption
advantage over GPUs thanks to technology advancement in FPGA manufacturing and
development environment improvement which shortened the gap between hardware
and software layer[20, 17]. Algorithms can be developed and verified at system
level within the same frame work as CPU/GPU, this automated flow and FPGAs
inherent reconfigurable parallel architecture result in high performance and low
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power hardware which can be tuned and adopted according to design constraints
during design cycles (figure 2.1).

Figure 2.1 High level synthesis flow

High level synthesis enables designers with minimum hardware experience to
program modern FPGAs through sophisticated tool chain that supports application
development for FPGA starting from pure software level. Next section covers high
level synthesis principles and optimization techniques which are used in this work to
generate desirable RTL micro-architecture from higher abstraction layer.
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High Level Synthesis Principles:
In this part of the thesis techniques and terminologies of Xilinx tool chain are
explained using user manual and optimization instructions. The codes and fig-
ures are derived from Xilinx documentation which are prepared to introduce
their product in a most advantageous form. However, each section refer to re-
lated document, it would be helpful to mention that the information of the rest
of this section are obtained from [21–25].
Scheduling and binding are the processes at the heart of high level synthesis. The
code below is used to explain theses process [24].

int foo(char x, char a, char b, char c) {
char y;
y = x*a+b+c;
return y
}

Scheduling: Scheduling is the process that HLS decides in which clock cycle
operations should occur. This depends on the clock frequency, timing information of
the target FPGA , and any additional optimization directives.

Binding: In this stage of high level synthesis, the tool determines which hardware
resources implement each scheduled operation.

The scheduling phase section of figure 2.2 depicts this step. The multiplication
and the first addition are performed in the first clock cycle. The next clock cycle
executes the second addition. The green square in this figure indicates when an
on-chip memory is written. The maximum number of scheduled operation in one
clock cycle depends upon the clock period and the operation execution time. Faster
FPGA can complete all above computations in one clock cycle, conversely, slower
FPGAs may take more clock cycles.
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Figure 2.2 Scheduling and Binding

Specific information about FPGA target device is needed to decide which re-
source is the most optimized solution for each implementation. Multiplication and
addition can be implemented by DSP48 resource which is the high performance and
power-efficient unit in FPGA architecture [24].
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Final step of high level synthesis is extraction and implementation of control
logic and I/O ports. The simple C code below is used to clarify this process with
more details. Generated RTL by HLS runs the logics inside the loop three times,
high level synthesis tools produces a Finite State Machine (FSM) in the hardware
design to complete these operations.

void foo(int in[3], char a, char b, char c, int out[3]) {
int x,y;
for(int i = 0; i < 3; i++) {
x = in[i];
y = a*x + b + c;
out[i] = y;
}
}

Figure 2.3 illustrates final scheduled design and generated FSM by HLS which
is described below in more details.

• The C0 is the first state of FSM which is followed by C1, C2 and C3. The full
sequence of states are :C0,{C1, C2, C3} ,{C1,C2,C3},{C1,C2,C3} , C0.

• The variables only once require the addition of the b and c. This operation
pulls outside the (for-)loop and performed in the state C0. Each time the design
enters state C3 it reuses the operation result.

• The data for in is returned from the block-RAM in state C2 and stored as
variable x.

• The data from port a is read with other values to perform the calculation. The
first y output is generated and the FSM ensures that the correct address and
control signals are generated to store this value outside the block.

• The design then returns to state C1 to read the next value from the array/block-
RAM in.

• This process continues until all output is written.
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• The design then returns to state C0 to read the next values of b and c to start
the process all over again.

Figure 2.3 Control Extraction and IO port Sequencing
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2.2 High Level Synthesis and Model Based Design

Model Based Design environments (MBDEs), such as Simulink, are becoming
more widespread as they expand their capabilities of synthesizing efficient hardware
and software from high-level algorithmic models. They find applications in very
important areas such as digital signal processing (DSP), telecommunications, and
control systems. MBDEs allow modeling of complex algorithms and systems at a
very abstract level, using pre-defined primitive micro and macro blocks (e.g. adders,
multipliers, multiplexers, FIR filters, FFTs). The designer can thus focus on defining
the best algorithm without caring for tedious low level implementation details. Such
details can be introduced later in the design flow via automated model-to-model
translation, including both direct mapping and sophisticated hardware and software
synthesis algorithms, or through a user-directed refinement process.

One of the major advantages of MBD tools is that they let the designer verify
and validate abstract golden models against their design specifications. The designer
can then use these models to generate code targeting either a specific embedded
processor for software implementation, or a register transfer level (RTL) descrip-
tion for hardware synthesis. The process of generating software code or the RTL
hardware description is normally assisted by the designer by providing constraints
and directives. Algorithmic design provides a much better scope for power, area
and performance optimizations as compared to what can be achieved at lower lev-
els. MBD also greatly eases the verification task by allowing one to re-use already
verified macro blocks and more importantly by letting the designer use the same
verified golden reference model throughout the complete design, verification and
implementation flow.

State of the art MBD tools used in the industry can generate very efficient and
optimized software code for different target processors, by using information about
the target processor architecture. But hardware implementation essentially entails
the generation of a cycle accurate RTL model from very abstract block level models
that have no notion of clock cycles. Hence the set of choices is much broader, and
the normal direct translation strategy used for software implementation is likely to
fail. Current MBD tools, such as Simulink from the Mathworks, can generate a very
limited set of hardware implementations starting from a given model. In other words,
they have limited capabilities to explore the hardware design space starting from a
single model, due to reasons that are described more with detail in the next sections.
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This is particularly true in the case of complex blocks like a Fast Fourier Transform
(FFT), a Discrete Cosine Transform (DCT) or a Viterbi decoder, which are normally
represented as Simulink macro blocks.

Simulink models can be also translated to RTL description for hardware synthesis
through a tool called HDL Coder. Efficient hardware implementation starting from
an abstract model generally requires effective design space exploration (DSE) from a
single model. HDL Coder, however, has limited capabilities in this regard, especially
when it comes to complex algorithms like FFT, DCT, and Viterbi decoders. Each
HDL coder block is mapped to a few micro-architectures, e.g. fully sequential and
fully pipelined, which provide only a few design points, such as minimum area or
maximum throughput. Many of the architectural trade-offs that are essential for
optimized hardware implementation, such as independent definition or throughput
and latency, or the choice of memory parallelism and architecture, may even need to
be performed manually, by changing the source model every time. This changing of
model defies one of the main purposes of model-based design, by requiring different
models for different implementations, and hence making the design process long and
tedious.

Simulink has a rich library of components that can be used to model systems
and algorithms from many different domains. In Simulink libraries, the components
are arranged in groups known as blocksets, for example the DSP-blockset that
can be used to model DSP algorithms. Simulink libraries are extensible through a
mechanism known as S-functions. It provides a component modeling paradigm in
which the functionality (algorithm) as well as the interaction with other components
can be represented in a well-defined way. The S-functions can be written in C,
FORTRAN, or MATLAB, as required.

Simulink comes integrated with a tool called Real Time Workshop (RTW). RTW
is a set of code generators known as target language compilers (TLC) that can trans-
late a Simulink model to C/C++. Each TLC can be optimized to generate code for a
different processor or platform. Embedded Real Time (ERT) coder is one of these
TLCs, which is optimized to generate software code for embedded applications.
It can generate floating and fixed point code. Part of this work presents a study
on high level synthesis and the legacy code generated by RTW and HDL coder
which can be divided into three main sections:
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1. Modeling and validation of digital signal processing unit of specific type of
RADAR used in automotive industry via Simulink which will be described in
chapter 3.

2. Generation of SystemC-based FFT IP with fully pipelined stages to be substi-
tuted with Simulink C model. The data flow and analysis of FFT algorithms
are explained in chapter3.

3. Comparison of high level and RTL synthesis using HDL and C-based Simulink
IPs is reported in chapter 4.

Alternative to model based design approach, in the next section, new program-
ming framework is discussed that can target heterogeneous platforms equipped
with CPU, GPU and FPGA devices. OpenCL(Open Computing Language) is sup-
ported by industry leaders to program various hardware accelerators within the same
framework using close-to metal optimization options.
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2.3 High Level Synthesis and OpenCL Model

The OpenCL Programming model has been developed by the Khronos group to
overcome the hurdles of programming multi-core and heterogeneous compute plat-
forms. OpenCL enables programmers to develop both close-to-the metal and portable
software. Although, OpenCL is a high-level programming language, it provides
a low-level abstraction layer that can expose significant architectural aspects of
the target hardware, such as massive parallelism and the memory hierarchy. The
CPU/GPU based platforms generally have a fixed architecture. While this makes
programming easier and compilation times much faster, it is also a limitation because
it reduces both the energy efficiency and the on-chip ("local" in OpenCL terms)
memory access bandwidth with respect to an FPGA.

Figure 2.4 OpenCL platform and memory model

An OpenCL device consists of compute units (CU), each further divided into
processing elements (PE) as shown in Fig 2.4. Several concurrent executions of
the kernel body (called work-items) take place on multiple processing elements.
The work-items are further grouped into work-groups, which are being executed
by compute units. The memory is broadly divided into host (i.e. CPU) memory
and device (i.e. GPU or FPGA) memory. The device memory is further divided
into private memory (specific to each work-item), local mem- ory (shared by all the
work-items in a work-group) and a global/constant memory (shared by all the work-
groups). Access to global memory is the slowest (since it typically resides in external
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DRAM) while private memory is the fastest (since it is typically allocated to register
files), while local memory often resides in on-chip SRAM. Global memory however,
is the largest in size while private memory is the smallest. The OpenCL memory
model is also shown in figure 2.4. The work-items that compose an OpenCL kernel
can be executed in an out-of order manner, in order to ensure high performance on a
variety of platforms with different numbers of CUs [26]. Thus, the OpenCL standard
uses a three-level synchronization and collaboration model. The execution order of
different kernels is completely determined by the host code, either by calling them
sequentially, or by using synchronization callbacks that notify the host code when
a given kernel has completed execution. The execution of different work-groups
within a kernel is completely unsynchronized, thus they must read and write different
areas of global memory, and they cannot cooperate in any manner. Finally, the
programmer can use explicit barriers to ensure local and global memory consistency
for work-items within a work-group.A barrier represents a checkpoint within a work-
group. All the work-items belonging to that work-group must reach it before any of
them can proceed beyond it.
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2.4 Xilinx SDAccel Development Environment

The new Xilinx SDAccel™ Development Environment provides high performance
application developers the dedicated FPGA-based hardware and software tool chain.
SDAccel offers a fast, micro and macro architecture optimized compiler that makes
efficient use of on-chip FPGA resources; a well-known software-development flow
with an Eclipse™-based Integrated Design Environment (IDE) for software develop-
ment, profiling, and verification, which provides a CPU/GPU-like work environment;
and dynamic reconfigurable accelerators optimized for different high performance
applications that can be swapped in and out on the fly for a CPU/GPU-like run-time
environment[22, 27].

Figure 2.5 SDAccel CPU/GPU-Like development environment

OpenCL defines hierarchical memory model that is common between all vendors
and can be applied to all OpenCL applications. Global, local and private memories
are the main layers of this hierarchy. SDAccel maps them to the FPGA platform
as external DRAMs, BRAMs, and register. SDAccel allows even finer-grained
exploitation of the on-chip memory architecture of FPGAs by using directives
such as on-chip global memory, multiple AXI buses for kernel global arrays, and
partitioned local arrays, which enable a designer to finetune the memory architecture
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and adapt the RTL architecture to the application, rather than the application to the
GPU architecture[16].

The Xilinx® SDAccel OpenCL boards are PCIe® based accelerator cards that
plug into a standard PCIe slot in x86_64 host or server type architectures.

Figure 2.6 Programmable Device Block Diagram

The Xilinx PCIe hardware device consists of two regions, as shown in figure
2.6, the Static Region and the Programmable Region. The Static Region provides
the connectivity framework to the Programmable Region, which will execute the
hardware functions as defined in the software kernel. The diagram above is an
example of a standard partial reconfiguration hardware platform. The expanded
partial reconfiguration hardware platform would incorporate most of the static region
into the programmable region [28].

The rest of this chapter is dedicated to fundamental concepts of host , static and
programmable region of FPGA based platform and demonstrate how Xilinx FPGA
device can be programmed in CPU/GPU-like environment using SDAccel tool chain.



30 HLS - High Level Synthesis

2.4.1 Concepts of Application Host Code

In OpenCL framework, hostcode is responsible for manging the platform of acceler-
ator mainly by performing following steps:

• Platform setup

• Allocate and transfer buffers to the device

• Run accelerator

• Read buffers from device memory

OpenCL programs are normally compiled completely at runtime which are
handled by the host code APIs. Although, writing a proper host code for single or
multiple kernels which can also act as test-bench will take considerable amount of
time and programming effort, but application developers use template host codes
and apply modifications based on algorithm requirements. Our group in Politecnico
di Torino developed various design examples with different host codes for database
applications for single and multiple kernels which are documented in public github
repository and can be accessed by https://github.com/HLSpolito.

2.4.2 Static Region

In programmable device terminology, static region is containing all the necessary
logics for implementation of required interface between host, compute units and
off-chip global memory. This static region is a pre-defined base platform that can
be flashed onto an EPROM on the board. The FPGA would then be programmed
with this base platform upon power-up. As shown in Figure 2.7, communication
between DDR, host and reconfigurable OpenCL region is performed through static
region.

https://github.com/HLSpolito
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Figure 2.7 Block Diagram of Example Xilinx SDAccel Platform

2.4.3 Programmable Region

The programmable region contains the programmable section of the device that
accepts the software kernel from the SDAccel tool chain. Implementation of compu-
tation intensive part of algorithm is done by optimizing and directing synthesis flow
of OpenCL kernel using a wide range of provided directives by SDAccel. According
to SDAccel terminology, area and performance optimization of the design falls into
three main categories:

1. Host Code optimization

2. off-chip to on-chip interface optimization

3. On-chip optimization

In the following parts of this chapter, these categories are described in detail to
discuss how one OpenCL source code can be implemented on FPGA with different
power and performance characteristics using SDAccel development environment.
To achieve the highest possible performance on FPGA these optimizations are
paramount since the OpenCL standard guarantees functional portability but not
performance portability.
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Optimizing for an FPGA using the SDAccel tool chain requires the same effort
as code optimization for a CPU/GPU. The one difference in optimization for these
platforms is that in a CPU/GPU, the programmer is trying to get the best mapping of
an application onto a fixed architecture. For an FPGA, the programmer is concerned
with guiding the compiler to generate optimized compute architecture for each
accelerator (referred to as a kernel) in the application.

As specified by the OpenCL standard, any code that complies with the OpenCL
specification is functionally portable and will execute on any computing platform that
supports the standard. Therefore, any code changes are for performance optimization.
To aid the user in these optimizations, SDAccel offers performance profiling capabil-
ities integrated into the run-time. This profiling helps the user analyze the achieved
performance and pinpoint any potential bottlenecks that need to be addressed.

The SDAccel™ Environment is a complete software development environment
for creating, compiling, and optimizing OpenCL™ applications to be accelerated
on Xilinx® FPGAs. Figure 2.8 shows the recommended flow for optimizing an
application in the SDAccel Environment [22].
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Figure 2.8 SDAccel Recommended Flow

2.4.4 Off-chip to On-chip Interface Optimization

In the OpenCL™ programming model, all data are transferred from the host memory
to the global memory on the device first and then from the global memory to the
kernel for computation. The computation results are written back from the kernel
to the global memory and lastly from the global memory to the host memory. How
data can be efficiently moved around in this programming model is a key factor for
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determining strategies for kernel computation optimization, so it is recommended
to optimize the data movement in your application before taking on optimizing the
computation.

During data movement optimization, it is important to isolate data transfer code
from computation code because inefficiency in computation may cause stalls in
data movement. Xilinx recommends that you modify the host code and kernels
with data transfer code only for this optimization step. The goal is to maximize the
system level data throughput by maximizing PCIe bandwidth utilization and DDR
bandwidth utilization. It usually takes multiple iterations of running CPU emulation,
hardware emulation, as well as execution on FPGAs to achieve the goal.

Efficient data movement between the kernel running in the FPGA and external
global memory is critical to the performance of acceleration applications. There is
an inherent latency overhead to read and write data from external DDR SDRAM. A
well-designed kernel minimizes this latency impact and maximizes the usage of the
available data bandwidth provided by the acceleration platform.

SDAccel Environment includes a variety of FPGA acceleration cards with differ-
ent DDR memory configurations. The figure below shows the data path between a
kernel and one of 4 DDR channels on the XIL-ACCEL-RD-KU115 card. Each DDR
channel provides 20GB/s raw DDR bandwidth with 80GB/s total for the entire card.

Figure 2.9 Data-width Configuration of Kintex7 Card
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The width of the data path between the kernel and the memory interconnect/con-
troller can configured by the SDAccel compiler as 32, 64, 128, 256, and 512 bits
depending on the kernel argument types. For applications that require maximum
data bandwidth between the kernel and DDR memory it is recommended that global
pointers are defined explicitly as 512-bit data types.

OpenCL C specification defines vector data types that can have up to 16 elements
of the same basic C data type. Kernel arguments defined as int16, uint16, and
float16 are automatically packed by the SDAccel compiler as 512-bit interfaces
during synthesis.

Below is the code using uint16 data type that directs synthesis toward wide mem-
ory interface between kernel and off-chip global memory. A 512-bit AXI4 memory
mapped interface will be generated for these global pointers after compilation [25].

kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vadd(
const __global uint16 *in1, // Read-Only Vector 1
const __global uint16 *in2, // Read-Only Vector 2
__global uint16 *out, // Output Result
int size // Size in integer
)

{
KERNEL BODY
}
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Inferring Burst Transfer from/to Global Memory:

The most common global memories used on Xilinx® acceleration cards are
DDR3 and DDR4 SDRAMs. They are most efficient when operated in burst mode.
In addition there are overheads associated with switching between DDR read and
write. Xilinx recommends to transfer large amount of data in a single burst to achieve
the best efficiency of the memory controller and keep the compute unit inside the
FPGA device busy all the time.

The memory layout of data objects is a key factor to consider for improving the
data transfer efficiency. Considering a 4x4 matrix “a” example, conceptually it is
a two dimensional array as shown in the matrix logical layout in the Figure below.
In C/C++ programming, arrays are physically stored in row-major order that all
data within a row are stored in consecutive locations followed by the data within the
next row as shown in the matrix physical layout below. The implication is that if
your algorithm reads the data column-wise, the burst transfer will not happen as it
reads from discrete location each time. This can generally be optimized by either
transposing your data in the host code or caching multiple columns of data in the
kernel [25].

Figure 2.10 Memory Layout Matrix
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Figure 2.10 depicts physical layout of memory access pattern on FPGA device
that can be read from/to in burst fashion. Below is the code that suggests proper
coding style for performing burst read for one dimensional vectors.

kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vadd(
const __global uint16 *in1, // Read-Only Vector 1
const __global uint16 *in2, // Read-Only Vector 2
__global uint16 *out, // Output Result
int size // Size in integer
)
{
local uint16 v1_local[LOCAL_MEM_SIZE]; // Local memory to store
vector1
int size_in16 = (size-1) / VECTOR_SIZE + 1;
...
for(int i = 0; i < size_in16; i += LOCAL_MEM_SIZE)
{
...
int chunk_size = LOCAL_MEM_SIZE;
//boundary checks
if ((i + LOCAL_MEM_SIZE) > size_in16)
chunk_size = size_in16 - i;

v1_rd: __attribute__((xcl_pipeline_loop))
for (int j = 0 ; j < chunk_size; j++){
v1_local[j] = in1 [i + j];
}
...
}
}
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The Device Hardware Transaction view below shows that multiple read bursts
are sent at the kernel start and all read data come back continuously after the memory
read latency.

Figure 2.11 Device-Hardware-Transaction Timing Diagram

Using Multiple DDR Banks:

For applications demanding high bandwidth to the global memory, devices with
multiple DDR banks can be targeted so that kernels can access all available memory
banks simultaneously. For example, SDAccel™ includes platforms that support
multiple DDR banks which is supported by Xilinx® vendor extension. Creation of
multiple AXI4 interfaces are necessary to assign multiple DDR bank to each kernel
which can be done both from host code or inside OpenCL kernel. Figure 2.12 depicts
high level representation of two BANK implementation of OpenCL source code.
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Figure 2.12 Off-chip memory with two separated Banks

Figure 2.13 shows transaction of off-chip memory with on-chip AXI interface
using two separate DDR banks. Read and write operations are performed separately
and in parallel which result in improvement of overall bandwidth utilization [25].

Figure 2.13 Device Hardware Transaction
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2.4.5 On-chip optimization

Interface optimization is crucial and the first step of RTL optimization. After high
speed interface synthesis that transfer data between on-chip and off-chip section
of FPGA platform with maximum possible efficiency, data is processed on-chip in
pipelined and parallel fashion. This requires to tailor and direct compilation flow of
OpenCL and C/C++ kernel toward parallel and pipelined hardware using wide range
of provided directives by Xilinx HLS tool. Table 2.1 and Table 2.2 list array and
loop-level optimization directives in Xilinx high level synthesis tool which this work
provides overall review over them. For additional information on other optimization
techniques and how they can be implemented using Xilinx high level synthesis tools
it is suggested to refer to provided user-guide by Xilinx [22, 24].

Table 2.1 Loop Level Optimizations

Unrolling Unroll for-loops to create multiple independent operations
Merging Merge consecutive loops to reduce overall latency,
Flattening Allows nested loops to be collapsed into a single loop
Dataflow Allows sequential loops to operate concurrently
Pipelining Used to increase throughput by performing concurrent operations
Tripcount Provides user override of iteration analysis
Latency Specify a cycle latency for the loop operation

Table 2.2 Array Optimization

Resource Specify which hardware resource (RAM component) an array maps to
Map Reconfigures array dimensions
Partition Partitioned into multiple smaller arrays
Reshape Reshape an array from one with many elements to one with greater word-width
Stream Specifies that an array should be implemented as a FIFO rather than RAM.
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Unrolling Loops

By default loops are kept rolled in High-Level Synthesis. That is to say that the
loops are treated as a single entity: all operations in the loop are implemented using
the same hardware resources for iteration of the loop. Below is the code with simple
for loop that perform multiplication between array b and c and store results in array
a. Figure 2.14 shows presentation of three different hardware solutions for the same
source code [24].

Figure 2.14 Loop Unrolling

• Rolled Loop: When the loop is rolled, each iteration will be performed in
a separate clock cycle. This implementation takes four clock cycles, only
requires one multiplier and each RAM can be a single port RAM.

• Partially Unrolled Loop: In this example, the loop is partially unrolled by a
factor of 2. This implementation required two multipliers and dual-port RAMs
to support two reads or writes to each RAM in the same clock cycle. This
implementation does however only take 2 clock cycles to complete: twice the
throughput and half the latency of the rolled loop version
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• Unrolled loop: In the fully unrolled version the entire loop operation can
be performed in a single clock cycle. This implementation however requires
four multipliers. More importantly, this implementation requires the ability
to perform 4 read and 4 write operations in the same clock cycle. Since quad-
port RAMs are not common, this implementation may require the arrays be
implemented as registers rather than RAMs.

Array partitioning
The message below is the common problem when pipeline directive is used. This
issue avoid proper pipelining of generated hardware with initiation interval(II) of
one which means successive iteration of a loop can not be executed next after each
other with minimum latency [24].

@I [SCHED-61] Pipelining loop ’SUM_LOOP’.
@W [SCHED-69] Unable to schedule ’load’ operation (’mem_load_2’,
bottleneck.c:57) on array ’mem’ due to limited memory ports.
@I [SCHED-61] Pipelining result: Target II: 1, Final II: 2, Depth: 3.

Arrays access conflicts usually cause this kind of problem. Implementation of
arrays as block-RAM with maximum of two data ports can limit the throughput of a
read/write operations within the loop.

Arrays are partitioned using the ARRAY_PARTITION directives in order to in-
crease available memory port and overall bandwidth utilization.Vivado HLS enables
designers to partition on-chip memory in three different styles as shown in figure
2.15 and described below .

• Block:The original array is split into equally sized blocks of consecutive
elements of the original array.

• Cyclic:The original array is split into equally sized blocks interleaving the
elements of the original array.
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• Complete: The default operation is to split the array into its individual elements.
This corresponds to resolving a memory into registers.

Figure 2.15 Array Partitioning

Array Mapping

Small arrays in source code can be mapped into a single larger array by map
directive which usually reduces the number of required block-RAM [24].

The ARRAY_MAP directive supports two ways of mapping small arrays into a
larger one:

• Horizontal mapping: This corresponds to creating a new array by concate-
nating the original arrays. Physically, this gets implemented as a single array
with more elements. This option is useful to increase resource sharing and
minimizing power consumption.

• Vertical mapping: This corresponds to creating a new array by concatenating
the original words in the array. Physically, this gets implemented by a single
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array with a larger bit-width. This option is useful to increase memory
bandwidth.
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2.5 Design Space Exploration and HLS

It has been a long endeavor and evolution in Electronic-System-Level design industry
to generate and optimized automatic RTL from C-based description, nowadays,
generation of high quality RTL for industrial purpose is possible thanks to modern
HLS tool [29–31], more importantly, available directives such as loop unrolling,
memory partitioning and multiple instantiation of compute kernels1(multi-core)
enable designers to perform broad and in-depth design space exploration(DSE) to
realize application driven hardware. In fact, fine and coarse-grained parallelism of
generated RTL are feasible by directing the compilation flow of C-based model using
customizable optimization options provided by modern HLS tools to drive optimum
solution with highest performance-per-watt.

The rest of this work covers design space exploration of related work to ex-
plain the orientations and approaches of previous HLS based DSE. Afterwards,
the author proposes an automated DSE flow for multi core OpenCL based FPGA
implementation which provides design hints based on Xilinx HLS output.

Various DSE approaches are studied and proposed in literature. A Pre-RTL
power-performance simulator, called Aladdin, is proposed in [32] which enables
rapid design space exploration of accelerator with high accuracy in the early stage of
design. Author in [33] suggests that careful exploration of all solutions can result
in area efficiency by proper partitioning of multidimensional arrays and unrolling
nested-loops to reduce the area over head caused by bank switching. Automated DSE
flow is proposed in [31] to obtain Pareto-optimal curve (performance versus area) of
the application mapped on FPGA using HLS methodology, similarly, HLS-based
DSE approach is discussed in [34] based on user defined area and time constraint
which suggests the best RTL solution based on the design requirements. HLS enables
designer to select the bit-width of variables from behavioral description, author in
[35] describes a method to perform DSE for FPGA by controlling the amount of
resource sharing using automatic bit-width controller of HLS tool. Parallel and multi-
threaded method for finding the optimum micro-architecture for a given SystemC
model is presented in [36], the author suggests a DSE flow to minimize the size of
design for a given target latency.

1In this work, compute units in FPGA design resemble processing cores in CPU/GPU architecture
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As HLS tools are becoming more mature, the demand of C-based IPs are increas-
ing. Synthesizable C-based IPs require DSE at micro-architectural level, author in
[37, 38] presents automated flow to perform design space exploration on generated
C models from Simulink IP block sets which shields a designer to understand legacy
code and obtains a set of Pareto-optimal solutions based on defined constraints, addi-
tionally, macro-architectural trade-offs are considered by wrapping different parts of
the C-model into SystemC version to derive parallel RTL from behavioral description
of Simulink model via HLS. Study in [39] presents a learning-based method for DSE
that eases and accelerates micro-architectural modification using Random-Forest
model which considers all different knobs (micro-architectural choice) and number
of possible choices(e.g. unrolling and partitioning factor) to select Pareto-optimal
solution for final RTL realization.

However, important aspects of on-chip DSE are discussed at above-mentioned
works, but efficient data transfer from off-chip to on-chip memory is a design neces-
sity to drive high performance RTL. Interestingly, architectural template is proposed
in [40] that is capable to consider off-chip source of parallelism in deep convolutional
neural networks in which author claims generated RTL has better performance in
comparison to previous works using identical neural networks targeting same FPGA
devices.

In the next section, we propose a design space exploration method considering
area, power and execution time of each OpenCL kernel among set of candidate
solutions. Our experiment suggests, reported in chapter four, our best RTL on Xilinx
Virtex7 has higher performance-per-watt with respect to two different high-end
GPUs manufactured in the same node (28 nm). Moreover, our golden solution can
outperform tested GPUs by using Xilinx UltraScale FPGAs (20 nm) at the cost of
more expensive devices with much larger available on-chip resources.

2.5.1 DSE of Multi-Core RTL via OpenCL Synthesis

In order to sift through design alternatives prior to implementation, analyzing perfor-
mance and efficiency of off-chip to on-chip memory transfers is crucial. To do so,
we introduce the following parameters and monitor memory interface performance
using different configurations. Table 2.3 reports the memory interface performance
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of the generated RTL by SDAccel for burst and normal memory transfers.

Number of Transfers (NT): Number of total independent transfers between DDR
and kernel. Each transfer sends a pack of data with the specified burst size for read
or write operations.

Burst Size (BS): The data size of each transfer. The maximum burst size is
assumed to be 4096 bytes [23].

Transfer Efficiency (TE %): Burst size / Maximum Burst size.

Transfer Rate (MB/s): (Total Transfer (MB) / Total Transfer time (s) )

Bandwidth Utilization (BW%): (Transfer Rate / Available Bandwidth 2 )

Table 2.3 SDAccel off-chip to on-chip transfer analysis

NT BS TE BW MB Time(ms)
Burst 32 1024 25% 6.8% .032768 .049
Non-Burst 8192 64 1.56% 61% .524288 .088

Figure. 2.16 plots bandwidth utilization versus on-chip memory size. The non-
burst memory configuration has low transfer efficiency, which increases the overall
execution time of the kernel. In the second scenario, the memory controller is using
burst access which increases transfer efficiency. Note that the total transfered data is
much higher in the second row which explains why the transfer efficiency is different
with respect to the burst mode. The results are important since they demonstrate
the effect of local size on memory controller performance using available IPs for
on-chip to off-chip interface.

2In this work we consider a 20 GB/s maximum available bandwidth for evaluation purposes.
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Figure 2.16 Off-Chip bandwidth utilization vs on-chip memory size

The results of this section are obtained only by performing read and write op-
erations to evaluate the performance of memory controller by isolating on-chip
computation from off-chip transfers. The remaining memory bandwidth could be
used, for example, to increase the computational power of the FPGA, by instantiating
multiple parallel compute units (OpenCL work-groups).

Algorithm 1 describes the design space exploration method used in this work.
The algorithm below, illustrated in Figure. 2.18, suggests an automated flow which
considers area utilization, execution time and total number of work-groups for each
solution and suggests the minimum required numbers of compute-unit to meet the
given time constraint. Figure. 2.20 shows the output of DSE flow for each kernel
used in the sorting network. The bitonic-sorting algorithm is composed of three
different kernels each with different off-chip memory access pattern and internal
computations. In fact, each solution is a RTL core with a unique optimization
setting synthesized from the OpenCL WGs. The solution with lowest energy
consumption that meets resource and performance constraint is chosen for imple-
mentation of each kernel on the target FPGA.

The proposed algorithm estimates the quality of each solution considering three
main criteria described below:
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Figure 2.17 AXI memory controller diagram

1. Execution time of each compute unite obtained from cycle accurate RTL sim-
ulation. The performance of each RTL core , generated from OpenCL WG,
depends on off-chip bandwidth utilization and on-chip data path optimization.

time[i][ j]; i ∈ {1 . . .Solution}, j ∈ {1 . . .Kernels}

2. Design area of each solution that also reflects dynamic power consumption
of the kernel. Figure. 2.19 illustrates the semi-linear relation between LUT
utilization on a Virtex7 device and dynamic power consumption for the three
kernels used in the bitonic-sort algorithm.

LUT [i][ j]; i ∈ {1 . . .Solution}, j ∈ {1 . . .Kernels}

3. Total number of required compute units to complete computation which de-
pends on the local size of the OpenCL kernel and may decrease the perfor-
mance of the device due to inefficient usage of the memory controller3.

The main motivation behind developing this routine is to estimate the relative
quality of all solutions with respect to each other. Note that the quality of each
solution reflects the execution time and power consumption of each RTL core. Con-
sidering a more general equation for estimating power consumption based on the
area utilization and throughput of each OpenCL WG is left to future work.

3Memory controllers (Figure. 2.17) contain the logic necessary to read and write to DRAM, and
to "refresh" the DRAM.
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Figure 2.18 Design Space Exploration Flow of Multi Kernel OpenCL Models

Figure 2.19 Dynamic power consumption versus LUT utilization
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Figure 2.20 Quality of generated RTL by SDAccel for three kernels used in the sorting
network
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Algorithm 1: Design Space Exploration of Multi Kernel OpenCL Models
Input:
Solutions: LUT, Execution Time, Number of calls, Bandwidth utilization and Dynamic Power Consumption.

for each i ∈ {1 . . .number_o f _solutions} do
for each j ∈ {1 . . .number_o f _kernels} do

load LUT [i][ j]; LUT utilization of solution=i and kernel=j
load time[i][ j]; Execution time of solution=i and kernel=j
load call_number[i][j]; Total number of calls for solution=i and kernel=j

load BW [i][ j]; Off-chip bandwidth utilization of solution=i and kernel=j

load Pd [i][ j] ; Dynamic power consumption of solution=i and kernel=j
end

end

Application: Time constraint
Platform: Available LUT , Available off-chip bandwidth

Output:
Optimum solution for each kernel, Minimum number of parallel compute-units (cores) to meet the time
constraint,

Total LUT, Bandwidth and Dynamic power utilization of the best solution for multi core RTL

1 Begin

2 for each i ∈ {1 . . .number_o f _solutions} do
3 for each j ∈ {1 . . .number_o f _kernels} do
4 Quality[i][ j] =

(time[1][ j]/time[i][ j])∗ (LUT [1][ j]/LUT [i][ j])∗ (call_number[1][ j]/call_number[i][ j]);
5 end
6 end

7 for each j ∈ {1 . . .number_o f _kernels} do
8 M[ j] = Maximum(Quality[:][ j]);

9 Choose the solution with the highest quality for each kernel, Maximum function stores the maximum value

index
10 end
11

Total_time =
kernels

∑
j=1

call_number[M[ j]][ j]∗ time[M[ j]][ j];

12
NC = Total_time/Time_constraint;

Minimum number of required compute-unit is calculated based on the quality assessments
13

Total_Pd =
kernels

∑
j=1

NC ∗Pd [M[ j]][ j];

14

Total_LUT =
kernels

∑
j=1

NC ∗LUT [M[ j]][ j];

15

Total_BW =
kernels

∑
j=1

NC ∗BW [M[ j]][ j];

16 if Total_LUT < 60% Available_LUT and Total_BW < 80% Available_BW then

17 The design fits neatly into the Target FPGA.
18 end if

19 else
20 The Platform does not satisfy the design requirements.
21 end
22 End



Chapter 3

HPC - High Performance Computing

High Performance Computing(HPC) was traditionally used by governments and
universities to solve complex problems. Nowadays, thanks to technology advance-
ment, enterprises deploy HPCs to process numerous amount of raw data to make
data-driven decisions and predictions that will drive revenue for them. In this chapter
hardware and software aspects of HPCs are studied and various available platforms
and applications are discussed to clarify requirements and challenges of modern
HPCs.

3.1 Platform and Underlying Hardware

One important aspect of high performance computing challenges depends on under-
lying hardware in order to meet time and power constraints. Mainly, three different
approaches are used to map desired hardware on silicon to run parallel computations.

1. Application Specific Integrated Circuits(ASIC)

2. Field Programmable Gate Arrays(FPGA)

3. Graghical Processing Unit(GPU)



54 HPC - High Performance Computing

Nowadays, GPUs and FPGAs are more popular than ASICs mainly due to the
costly, laborious and non-recurring design cycles of ASICs. On the other hand, GPU
and FPGA platforms have their own advantage and each can cope with the specific
type of HPC applications with different performance-per-watt results which will be
discussed in the following parts of this work in more details.

3.1.1 GPU

Graphical Processing Unit (GPU) is a dedicated electronic circuit which is designed
to perform computations and memory managements in parallel fashion to improve
the performance of heavy workloads. In this work NVIDIA GPUs are deployed as
target platforms, however, their performance is higher in comparison to FPGAs in the
same technology nodes, but performance-per-watt analysis suggests that GPUs have
more costly results than Xilinx FPGAs in terms of power consumption. This issue
will be discussed extensively in the next chapter using standard OpenCL benchmarks.

NVIDIA’s GPUs have already redefined and accelerated High Performance
Computing (HPC) capabilities in areas such as seismic processing, biochemistry
simulations, weather and climate modeling, signal processing, computational finance,
computer aided engineering, computational fluid dynamics, and data analysis [41].

Several architectures, generation after generation, have been developed by
NVIDIA in order to improve both performance and overall floating point oper-
ation per second (FLOPS) / cost. Table 3.1 lists successive family members of
NVIDIA GPUs architecture.

Table 3.1 Release sequence of NVIDIA GPUs micro-architecture

Tesla 90 nm ,80 nm , 55 nm , 40 nm
Fermi 40 nm and 28 nm
Kepler 28 nm
Maxwell 28 nm
Pascal 14 nm and 16 nm
Volta 12 nm
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Each generation redefine its predecessor in order to achieve more deeper pipelined
hardware with minimum possible resources which can offers more optimized plat-
form to different applications. This work discuss some very interesting techniques
used in KEPLER and MAXWELL architecture both in memory hierarchy and pro-
cessing cores architecture which result in deeper pipelined hardware with respect to
their predecessors.

The following new techniques in Kepler increase GPU utilization and parallel
programming capabilities[42, 43].

• Dynamic Parallelism: Adds the capability for the GPU to generate new work
for itself, synchronize on results, and control the scheduling of that work
via dedicated, accelerated hardware paths, all without involving the CPU.
By providing the flexibility to adapt to the amount and form of parallelism
through the course of a program’s execution, programmers can expose more
varied kinds of parallel work and make the most efficient use the GPU as a
computation evolves. This capability allows less-structured, more complex
tasks to run easily and effectively, enabling larger portions of an application to
run entirely on the GPU. In addition, programs are easier to create, and the
CPU is freed for other tasks.

• Hyper-Q: Hyper-Q enables multiple CPU cores to launch work on a single
GPU simultaneously, thereby dramatically increasing GPU utilization and
significantly reducing CPU idle times. Hyper-Q increases the total number
of connections (work queues) between the host and the GPU by allowing
32 simultaneous, hardware-managed connections (compared to the single
connection available with Fermi). Hyper-Q is a flexible solution that allows
separate connections from multiple CORE streams, from multiple Message
Passing Interface (MPI) processes, or even from multiple threads within a
process. Applications that previously encountered false serialization across
tasks, thereby limiting achieved GPU utilization, can be accelerated without
changing any existing code.

• Grid Management Unit: Enabling Dynamic Parallelism requires an ad-
vanced, flexible grid management and dispatch control system. The new
Kepler Management Unit (GMU) manages and prioritizes grids to be executed
on the GPU. The GMU can pause the dispatch of new grids and queue pending
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and suspended grids until they are ready to execute, providing the flexibility
to enable powerful runtimes, such as Dynamic Parallelism. The GMU en-
sures both CPU- and GPU-generated workloads are properly managed and
dispatched.

• NVIDIA GPUDirect™: NVIDIA GPUDirect™ is a capability that enables
GPUs within a single computer, or GPUs in different servers located across
a network, to directly exchange data without needing to go to CPU/system
memory. The RDMA feature in GPUDirect allows third party devices such
as SSDs, NICs, and IB adapters to directly access memory on multiple GPUs
within the same system, significantly decreasing the latency of MPI send and
receive messages to/from GPU memory. It also reduces demands on system
memory bandwidth and frees the GPU DMA engines to used by other CUDA
tasks.

• Streaming Multiprocessor (SMX) Architecture: Each of the Kepler SMX
units feature 192 single-precision CUDA cores, and each core has fully
pipelined floating-point and integer arithmetic logic units.

One of the design goals for the Kepler SMX was to significantly increase
the GPU’s delivered double precision performance, since double precision
arithmetic is at the heart of many HPC applications. Kepler SMX also retains
the special function units (SFUs) for fast approximate transcendental opera-
tions as in previous-generation GPUs, providing 8x the number of SFUs of the
Fermi(figure 3.1).

• Quad Warp Scheduler: The SMX schedules threads in groups of 32 parallel
threads called warps. Each SMX features four warp schedulers and eight
instruction dispatch units, allowing four warps to be issued and executed
concurrently. Kepler’s quad wrap architecture schedule all four wraps(each
has 48 cores) which each can execute two independent(paired) instruction per
clock cycle. This means each SMX can execute 8 double precision independent
instructions concurrently that results in 108 total instructions for 16 SMX used
in GK210 manufactured by NVIDIA™.
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Figure 3.1 SMX: 192 single-precision CUDA cores, 64 double-precision units, 32 special
function units (SFU), and 32 load/store units (LD/ST).

To handle massive parallel-architecture of GPU cores an array of fast registers
with separate read and write ports are used which is called register file. Size and
architecture of register file is paramount to exploit maximum possible parallelism
without performance penalty. Nowadays, large register file is used to handle context
switching between multi-threads, table3.2 reports L1, L2 and register file size for
different GPU devices. The recent GPUs have larger register file than L1, L2 caches
which may consume up to 15% of total dynamic power[44].
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Table 3.2 NVIDIA GPUs L1, L2 and register file size(Sizes are in KB)

Architecture L1 Size L2 Size RF size

G80 Tesla None None 512S
GT200 Tesla None None 1920
GF100 Fermi 48 768 2048
GK110 Kepler 48 1536 3840
GK210 Kepler 48 1536 7680
GM204 Maxwell 48 2048 4096

Kepler’s memory hierarchy is organized similarly to Fermi. The Kepler architec-
ture supports a unified memory request path for loads and stores, with an L1 cache
per SMX multiprocessor. Kepler GK110 also enables compiler-directed use of an
additional new cache for read-only data, Figure 3.2.

Figure 3.2 Kepler Memory Hierarchy
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Maxwell architecture is the successor of Kepler and drive the most high-performance
silicon among Fermi, Kepler and Maxwell family which are all using 28 nm transis-
tors. Maxwell design retain all discussed powerful features of its predecessors i.e.
Fermi and Kepler architecture along with additional optimization in micro architec-
ture level to obtain higher compute capacity by performing fine-grained parallelism
among different section of SMM (Streaming Maxwell’s Multiprocessors is shown in
figure 3.3).

Maxwell architecture with larger shared memory, higher clock rates and more
transistors not only can outperform Kepler architecture, but also it is more energy
efficient mainly because of more thoughtful design of streaming multiprocessors.
Interestingly, both NVIDIA reports and reports from our experiments in POLITO lab
suggest up to 40% performance advantage and twice more energy efficient CUDA
cores for MAXWELL architecture with respect to Kepler. Table3.3 reports some
important parameters in two GPU devices manufactured with 28 nm transistors using
two different architecture[45].

Table 3.3 Comparison of Kepler and Maxwell architecture

GPU Kepler(GK110) Maxwell(GM204)

CUDA cores 1536 2048
Base Clock 1006 MHz 1126 MHz
GFLOPs 3090 4612
Shared Memory / SM 48 KB 96 KB
Memory Clock 6008 MHz 7010 MHz
L2 Cache Size 512 KB 2048 KB
TDP 195 Watts 165 Watts
Transistors 3.54 billion 5.2 billion
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Figure 3.3 Streaming Maxwell’s Multiprocessors
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3.1.2 High Bandwidth Memory(HBM):

Ever growing number of on-chip cores in modern processors demands high band-
width and low power memories to deliver gigabytes of data to many-core processors
in power-efficient fashion. HBM is the modern memory1 with the 3D-stacked of
DRAM adopted by JEDEC2 as an industry standard. The HBM DRAM is designed
to operate in lower frequency with respect to GDDR5 while delivering higher per-
formance to system using independent and distributed interfaces called channels.
Channels are independently clocked and they can work in parallel without the need of
synchronization(figure 3.4). Table 3.4 reports key parameters of HBM and GDDR5
memory, however, GDDR5 uses higher clock rates and voltage, but HBM with larger
number of independent interfaces offers higher overall band-width per watt which
breaks performance limitation caused by inefficient power consumption of GDDR5
memory subsystems[46].

Figure 3.4 Stack of Memory Chips

1High Bandwidth Memory has been adopted by JEDEC as an industry standard in October
2013.The second generation, HBM2, was accepted by JEDEC in January 2016.

2The JEDEC Solid State Technology Association is an independent semiconductor engineering
trade organization and standardization body.
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Table 3.4 Comparison of GDDR5 and HBM

Per Package Bus Width Clock Speed Bandwidth GB/s per watt

HBM 1024-bit Up to 500MHz 100 GB/s per stack 35
GDDR5 32-bit Up to 1750MHz 28GB/s 10.66

In addition to performance and power efficiency, HBM has much smaller footprint
with respect to GDDR5. As accelerators increasingly demand smaller and more
powerful memory, compared to GDDR5, HBM can fit the same amount of memory
in 94% less space [47]. Figure 3.5 illustrates how HBM outperform GDDR5 using
stacked of memory using shorter and more efficient connection to silicon die using a
silicon layer named interposer developed by AMD and Nvidia. Although, using HBM
improve performance-per-watt of accelerator and remove possible limitation caused
by power budget, but overall cost of chips increase significantly due to modern and
challenging deployed techniques of HBM fabrication instead of traditional printed
circuit board (PCB) methods.

Figure 3.5 HBM(7 mm * 5 mm) vs GDDR5(24 mm * 28 mm) footprint
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3.1.3 FPGA

FPGA architecture and possible programming methods are discussed in chapter one.
Moreover, as studied in previous section, GPU has dedicated ASIC-like design that
can address HPCs applications coming from various domain. In next chapter of
this work advantages and advancements of FPGA programming will be discussed in
order to perform a scientific and practical analysis on FPGA and GPU devices which
is also the main motivation of conducting this PhD program, but before chapter 4,
two common computational intensive workloads are discussed algorithmically which
will be used to draw analytical results of chapter 4.

3.2 Applications

In the rest of this chapter two different HPC applications are discussed algorithmically
to shed lights on high performance computing applications from different angles.

1. Join Operation: Join operations are at the core of all relational databases
which combine two given arrays based on a given criteria.

2. Frequency Modulated Continuous Wave (FMCW) RADAR: FMCW radar
which is a high performance and real time application used in automotive
industry.

3.2.1 Join Operation

Join operations are at the core of all relational databases. Their performance on
CPU-based platforms has been discussed extensively for several decades. This
section introduces and illustrates the pseudo-code of the nested loop and sort-merge
join approaches and covers previous similar studies.

Related Works and background

This section summarizes related work on implementation of the join operation
using GPU and FPGA accelerators, with the main focus on Xilinx FPGAs and
high-level synthesis.
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The authors of [48] discuss relative performance of the nested loop and sort-
merge join algorithms. However, they do not discuss a specific target platform. Their
results confirm that the sort-merge join algorithm outperforms the nested loop join
algorithm except for small data sizes. In [49] modern multi-core processors are
compared via an extensive analysis of their performance executing of sort-merge
join and radix-hash join. Their results indicate that only when very large amounts of
data are involved sort-merge join has better performance than radix-hash join.

Two different hardware implementations of the bitonic sorting network were
presented in [50]. The best performing design, in that case, utilized a single memory
port and a streaming permutation network (SPA), thus resulting in a memory and
energy optimized implementation on a Xilinx Virtex-7 platform. A significant
performance improvement was also achieved in [51] by proper pipelining of different
stages of the sorting network. In [52], the Bitonic sort algorithm was compiled for
a GPU-based hardware platform by using CUDA, where optimizations were done
mainly to reduce the number of global memory accesses and the number of kernel
launches.

Even though GPUs and CPUs have been the main platform for query processing,
FPGAs have recently gained interest due to the availability of FPGA-based reconfig-
urable computing [53]. Implementation of database systems on FPGA is now much
easier, as a result of the availability of OpenCL-based and C-based design flows.

In [54, 55] and [56] the authors discuss the usage of an OpenCL-based synthesis
framework targeting FPGAs that encourages many software developers to use them
as acceleration platforms. Although using OpenCL as a high-level synthesis input
language is not yet mature and significant hurdles should be addressed to achieve
high-quality RTL generation, the design speed offered by the new flow more than
overcomes any limitations [56].

Nested Loop join Algorithm:

The nested loop join, illustrated in Algorithm 2, is a straightforward approach
to join two relations. Since each loop iteration of this algorithm is completely inde-
pendent of the others, it offers a huge level of parallelism, but also requires a huge
memory bandwidth. This is because the complexity in terms of the number of both
of memory reads and writes, and of comparison operations is proportional to the
product of the sizes of the tables being merged (i.e. O(n2) if the have the same size).
Hence this case is almost ideal in terms of raw parallelism, but is absolutely brutal in
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terms of usage of memory bandwidth [33].

Algorithm 2: Nested Loop Join Algorithm
Input: vector A[N] and B[N] with Size of N ,M;
Output: A_out[N] ,B_out[M] and Value_out[N*M]; Output arrays store

indices and values of input after join operation respectively
1 for each i ∈ {1 . . .M} do
2 for each j ∈ {1 . . .N} do
3 if A[ j] and B[i] can be joined (have the same key) then
4 A_out[i*N+j]=j; write current index of A into output
5 B_out[i*N+j]=i; write current index of B into output
6 Value_out[i*N+j]=A[j]; write current value into output

7 end
8 else If the join condition is not met mark output with holes
9 A_out[i*N+j]=-99;

10 B_out[i*N+j]=-99;
11 Value_out[i*N+j]=-99;

12 end
13 end
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Sort Merge Join Algorithm:

The main idea behind the sort-merge join algorithm is to that sorts each vector
before performing join phase. Then the join process of two sorted vectors can be
implemented using one single loop with complexity O(N +M), whose execution
time is negligible in comparison with sorting (which is close to O(NlogN)).

Bitonic sorting is one of the fastest known sorting networks. In general, the term
"sorting network" identifies a sorting algorithm where the sequence of comparisons
is not data-dependent, thus making it suitable for parallel hardware implementation.
A simple example of sorting network is depicted in Fig. 3.6, with five comparators
and four inputs. The comparators in a layer can work concurrently (i.e. they can be
part of a kernel in OpenCL).

Figure 3.6 Illustration of a simple sorting network

The depth and number of comparators are key parameters to evaluate the perfor-
mance of a sorting network. The depth of a sorting network is the maximum number
of comparators along any path. If all the comparisons in each layer could be done in
parallel (i.e. with infinite resources), the depth of the network would be proportional
to the total execution time. The bitonic sort network shown in Fig. 3.7, is one of the
fastest comparison sorting networks, where the depth is D(N) = log2N.(log2N+1)

2 and
the number of comparators is C(N) = N.log2N.(log2N+1)

4 .
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Figure 3.7 Bitonic sort network with 8 inputs (N=8). It operates in 3 stages, it has a depth of
6 (steps) and employs 24 comparators.

Bitonic sorting is a recursive divide-and-conquer algorithm that is based on
the notion of bitonic sequence, i.e. a sequence of N elements in which the first K
elements are sorted in ascending order, and the last (N −K) elements are sorted in
descending order (i.e. the K − th element acts as a divider between two sub-lists,
each sorted in a different direction), or some circular shift of such an order.

Bitonic sorting first divides the input into pairs of keys and sorts them into a set
of bitonic sequences. It then repeatedly merges and sorts pairs of adjacent bitonic
sequences, until the entire sequence is sorted [52].

Algorithm 3 & 4 and 5:
Algorithm 3, executed on the host (i.e. the CPU), iterates the execution of three
kernels described in Algorithm 4 to complete bitonic sorting in three phases. In
the first phase, the algorithm partially sorts an arbitrary input array to obtain a set
of bitonic sequences. In the second and third phases respectively, the algorithm
merges bitonic sequences repeatedly until a fully sorted array is produced. All the
comparisons (i.e. all the WGs and WIs) in each kernel execution can be performed
in parallel and independent of each other. This makes the whole algorithm suitable
for parallel implementation.
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Algorithm 3: Host Code for Bitonic Sorting execution
Input: A vector of N keys to be sorted;
Output: A sorted vector of the same keys;

1 Begin
2 On host:
3 SORTLOCAL(Input, Output);
4 for size = 4∗Work_Group_Size to N do
5 multiply size by 2;
6 for stride= size

2 to stride > 0 do
7 divide stride by 2;
8 if stride >= 2∗Work_Group_Size then
9 MERGE LOCAL(Input, Output, size, stride);

10 end
11 else
12 MERGE GLOBAL(Input, Output, size, stride);
13 end
14 end
15 end
16 End
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Algorithm 4: Bitonic Sorting Kernels

1 On device:
2 Begin
3 function KERNEL1: SORT LOCAL(Input, Output)
4 for local_id = 0 to Work_Group_Size−1 do
5 copy a block of data from global to local memory with the size of

work_group;
6 for size = 2 to size <Work_Group_Size do
7 multiply size by 2;
8 for stride = size/2 to stride > 0 do
9 divide stride by 2;

10 perform comparison on each pair and swap them if they are not
sorted;

11 end
12 end
13 for stride =Work_Group_Size to stride > 0 do
14 divide stride by 2;
15 pos = 2∗ local_id − (local_id&(stride−1));
16 compare and sort each pair;

17 end
18 write back sorted array to global memory with the size of work_group;

19 end
20 function KERNEL2: MERGE LOCAL(Input, Output, size, stride)
21 for local_id = 0 to Work_Group_Size−1 do
22 read one pair in each Work Item;
23 perform comparison on each pair and swap them if they are not sorted;
24 write back sorted pair to the global memory;

25 end
26 function KERNEL3: MERGE GLOBAL(Input, Output, size, stride)
27 declare and initialize a private variable global_stride;
28 for local_id = 0 to Work_Group_Size−1 do
29 copy a block of data from global to local memory with the size of

work_group;
30 for stride = global_stride to stride > 0 do
31 divide stride by 2;
32 perform comparison on each pair and swap them if they are not

sorted;
33 end
34 end
35 End
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Join Algorithm:

Algorithm 5: Join Algorithm for Sorted Relations
Input: A[N] and B[M] are two sorted vector
A_index[N], B_index[M] contain indices of A and B before being sorted;
Output: A_out[N+M] ,B_out[N+M] ,Value_out[N+M]; If join condition is

met output arrays store indices and values of inputs respectively
1 Begin
2 Function Sort_Join
3 Initialize i,j,k, t_tmp = 0; i,j are indices of inputs , k is the outputs index and

j_tmp is used to check for successive join between array B elements and the
same element of A

4 while (i < N and j < M)
5 if A[i]>B[j] then
6 j++;
7 end
8 else
9 if A[i]<B[j] then

10 i++;
11 end
12 else If the join condition is met write indices and values of inputs into output
13 A_out[k]=A_index[i];
14 B_out[k]=B_index[j];
15 Value_out[k]= A[i];
16 j_tmp=j+1;
17 k++;
18 while(A[i]==B[j_tmp])
19 A_out[k]=A_index[i];
20 B_out[k]=B_index[j_tmp];
21 Value_out[k]= A[i];
22 j_tmp++;
23 k++;
24 end
25 i++;
26 end
27 end
28 end function
29 End
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Finally, algorithm 5 performs the join algorithm on two sorted vectors within
a single linear complexity loop. CPU can handle join operation with single loop
complexity without the need of accelerator, join operations are fundamental in
relational data base management.

When it comes to deep hardware accelerator, FPGAs are powerful devices and
are able to run fully pipelined stages, moreover, each stage is parallelized locally
to decrease latency and improve overall performance using discussed techniques
in chapter two and will be reported analytically in next chapter of this work using
standard OpenCL models targeting FPGA an GPU devices. The depth and number
of comparators of sorting network grow with input size,figures 3.8 and 3.9 plot their
behavior.

Figure 3.8 Depth of Sorting network : D(N) = log2N.(log2N+1)
2

Figure 3.9 Number of Comparators : C(N) = N.log2N.(log2N+1)
4
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3.2.2 Frequency Modulated Continuous Wave (FMCW) Radar

The idea of detecting objects based on Frequency Modulated Continuous Wave
(FMCW) is based on transmitting signals with known linear varying frequency and
receiving the reflection of signal from surrounding objects. As shown in figure 3.10,
during the round trip of continuous wave, received frequency from moving target
will shift horizontally and vertically due to Doppler effect which can be translated to
distance and velocity off surrounding object using following formulas.

Range = ( C / (4∗Frequency Ramp Rate))∗ ( f1 − f2)

Velocity = ( C / (4∗Carrier Frequency))∗ ( f1 + f2)

Figure 3.10 FMCW Radar signal analysis
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DSP algorithm of FMCW unit of radar is composed of four main sequential
sub-algorithms described briefly below (Figure 3.11):

Figure 3.11 Simulink Top model of FMCW

1. FIR filter and Decimation unit improve Effective Number Of Bits (ENOB),
in other words, it leverages more efficient signal for next block by lowering
sample rate of computation. In fact, decimation is a trade-off between accuracy
and computation cost. Decimation factor in this case is 8 that lowers sampling
frequency from 40 Mega Sample Per Second (MSPS) to 8 MSPS

2. Fast Fourier Transform (FFT) converts signal from time domain to frequency
domain in order to extract information from data signal.

3. Interpolation and peak detection is necessary to detect maximum frequency
with acceptable accuracy, as shown in figure 3.12.

Figure 3.12 Estimation improvement by Interpolation
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4. Finally, mathematical formulas of FMCW radar are modeled in Simulink to
estimate range and velocity of surrounding objects.

All four sub-algorithms are modeled and verified using Simulink, additionally,
both VHDL and C based models are automatically generated using Simulink code
generators. Table 3.5 reports computation accuracy of discussed DSP algorithm for
three different test cases, table 3.6 reports specification of discussed radar. In this
experiment, we modeled a vehicle with 50 Km/hr speed which is equipped with
FMCW radar and detects three objects distanced in 30 m moving with three different
velocities.

Table 3.5 Computation Accuracy of FMCW RADAR

Test Signal Range Accuracy (%) Velocity Accuracy(%)

R=30 m & V= -50 Km/hr 99.8 % 95%
R30 m & V = 0 Km/hr 99.9 % 97%
R=30 m & V = +100 Km/hr 99.8 % 95%

Table 3.6 Specification of Modeled FMCW Radar with FFT of 2048

Carrier Frequency Frequency Ramp Rate Maximum Range Minimum Range

77 GHz 1 GHz/s 300 m 1 m

Generated C code from DSP algorithm is verified using the test bench of top
model, Vivado HLS with integrated Eclipse environment enables designers to debug,
run and verify C based model before generation of RTL, moreover, Vivado HLS
estimates total required number of clock cycles for each sub-function and region of
C model after high-level synthesis. Based on this estimation 99% of total required
clock cycles for single initiation of FMCW algorithm belongs to FFT function. This
motivates us to parallelize FFT model and substitute sequential C code with parallel
SystemC version of FFT based on the principles described in the next section.
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FFT Algorithm:

The Fourier Transform is widely used in signal processing to transform signals
from the time domain to the frequency domain and vice-versa. The Fourier Trans-
form that operates on discrete data is called Discrete Fourier Transform (DFT). The
Fast Fourier Transform (FFT) is one of the most famous and widely used algorithms
to calculate the DFT and its inverse. The FFT algorithm exploits the symmetry of
the calculation and the re-use of already performed calculations to reduce the com-
putation complexity from N2 to NLog2N for a DFT that is computed on N samples.
The FFT algorithm is selected as case study because it can be represented using
different non-trivial signal flow graphs (SFG) and finds application in many signal
processing areas. These various signal flow graph representations are beneficial
for targeting different application domains with different performance requirements
under different constraints.

Figure 3.13 Signal flow graph for radix-2, 8-point in place FFT computations

Figure 3.13 shows a signal flow graph (SFG) for computing an FFT with 8
samples. The SFG represents the fully unrolled computations and data dependencies
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(and thus the full available parallelism) implied by the C code structure used by RTW
for a software oriented FFT implementation. In this SFG each node represents a
complex operator and each arrow represents a complex value. It is called radix-2
FFT since its basic unit, called butterfly and marked by the dotted box at the top left
of the figure, consumes two input samples to produce two output samples. Constants
marked as W N

0 , W N
1 , W N

2 and W N
3 are complex exponentials, known as twiddle

factors. Inputs x(0), x(1), . . . x(7) are the complex time domain samples of the
signal to be transformed and outputs X(0), X(1), . . .X(7) are the complex values of
the frequency spectrum of the signal. Each butterfly represents the multiplication of
twiddle factors by input samples and then one addition and subtraction to calculate
outputs.

The signal flow graph in Figure 3.13 is called in-place FFT because every butterfly
can write outputs to the same memory from where it has read the inputs. Such a
representation is useful for implementing a resource shared FFT with relatively low
throughput requirements, targeting low power applications with limited on chip
memory size and bandwidth. But this kind of signal flow graph is not well suited
when throughput requirements are high and either a pipelined implementation or a
fully unrolled register-based (rather than memory-based) implementation is required.
For example, let us assume that in order to increase throughput we unroll the inner
loop that performs butterflies in a stage (a column of Figure3.13), and that stage
inputs are mapped to registers. After performing a butterfly computation, the inputs
for the next butterflies mapped to the same multiplier/adder/subtractor resources will
come from signal flow graph positions that are different from the first stage, which in
hardware will imply high multiplexing cost and hence will not be efficient. Similarly,
some tools and memory architectures may not efficiently support pipelining of loops
in which computations read and write from the same memory, due to the need to
use multi-ported memories. This, on the other hand, would be easy in software, for
which the graph in Figure 3.13. works best.
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Figure 3.14 Signal flow graph for radix-2, 8-point FFT computations

Figure3.14 shows another signal flow graph for FFT, which also can be repre-
sented in C in the form of nested loops, but is much more flexible than the one
in Figure 3.13 to derive many possible implementations using HLS. In particular,
it can be mapped to a register-based unrolled implementation. The advantage of
such an FFT representation with respect to Figure 3.13 is that the interconnection
network between the stages is the same for all the stages, which results in less mul-
tiplexing cost when a stage is partially or fully unrolled and subsequent stages are
implemented by iteration. Even when a memory-based implementation with more
aggressive resource sharing and lower throughput is required, still the signal flow
graph in Figure 3.14 is more flexible. This is because one can always map inputs and
outputs of a butterfly to two different memories, while still allowing partial unrolling
depending on the memory read/write bandwidth. The signal flow graph in Figure
3.14 can even be mapped to a single on-chip memory implementation by utilizing
the memory merging capabilities offered by HLS tools, which allows one to map two
different memories of different lengths and widths (arrays in C) to a single aggregate
memory. In our FFT HLS-IP we used the SFG in Figure 3.14, because it can offer
broader design space exploration as compared to Figure 3.13, which corresponds
to the default software implementation from Simulink RTW. Moreover,in chapter 4
resource utilization of our fully pipelined FFT HLS-IP and HDL code of Simulink
FFT are presented and compared.



 



Chapter 4

Implementation and
Performance-per-Watt Analysis of
HPC Applications on FPGA-GPU
Platforms

In this chapter, first we demonstrate the capabilities of high level synthesis method-
ology by comparing performance and resource utilization of automatically generated
HDL and C codes from verified Simulink model targeting Xilinx FPGAs[15]1. In
fact, we generate HDL-based and C-based IPs from top model to program FPGAs
using Xilinx synthesis tools, namely VIVADO and VIVADO HLS.

In the next stage of this experiment, performance and power analysis on FPGA
and GPU platforms are conducted using different OpenCL benchmarks, this helps
to draw analytical conclusion from our experiments for each device using standard
OpenCL benchmark. Moreover, extensive optimizations are performed to enhance
the quality of generated RTL using SDAccel which will be discussed in this chapter.

1The procedures of automatic code generation using Embedded coder (C/C++) and HDL coder
(VHDL/Verilog) are discussed in chapter three.
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4.1 FFT-based Digital Signal Processing Unit of Radar

As discussed extensively in chapter three, a radar is an electronic device that is used
for estimating different parameters (e.g. speed, direction and position) related to
the movement of an object. Radars typically find uses in military and commercial
applications. In particular, they are an essential component of assisted driving appli-
cations in automotive electronics, e.g. parking assistance, lane departure warning
and collision avoidance. In this case study we experimented with the Digital Signal
Processing (DSP) unit of a radar for automotive applications based on the Frequency
Modulated Continuous Wave (FMCW) technique. The FMCW radar transmits a
frequency-modulated signal that will be reflected from a target object. The reflected
signal is captured and different parameters, such as the time of flight and Doppler
shift, are estimated as shown in figure 4.1. Then these can be translated into the
distance and the velocity of the object.

Figure 4.1 Operation of FMCW Doppler Radar

In our experiments we modeled using Simulink the digital signal processing unit
of this radar, as shown in figure 4.2. The most expensive block is a high precision
2048 sample FFT. In this experiment we targeted the implementation to a Kintex-7
FPGA (xc7k160tfbg484-3) from Xilinx. Table 4.1 shows the synthesis results only
for the FFT, using the performance requirement of the full radar application. It
illustrates that our HLS-IP, synthesized using Vivado HLS, uses similar resources
when compared to the optimized RTL implementation from HDL coder, for the
same real-time throughput constraints. Note that the LUT cost obtained via HLS
uses more LUTs because the resulting RTL is less efficient for exploiting the DSP48
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units. This is something that we will consider for the future, e.g. by automatically
generating FPGAs specific mapping directives for the HLS tool.

Figure 4.2 FMCW Radar receiver architecture

Table 4.1 FFT Implementation for Radar DSP Unit HLS-IP vs. HDL Coder

Synthesis Tool DSP 48 LUT FF Memory Blocks

Viado HLS (SystemC IP) 80 9069 7015 22
Vivado(RTL IP) 72 7744 11524 25

Table 4.2 Comparison of implementation cost for different radar blocks using HLS

Radar Block DSP 48 LUT FF Memory Blocks

FFT 80 9069 7015 22
LPF 6 901 1529 0
Detection& Estimation 24 11858 4927 0

Table 4.3 Full Radar DSP Unit Implementation HLS vs. HDL Coder

Synthesis Tool DSP 48 LUT FF Memory Blocks

Viado HLS (SystemC IP) 110 21828 13471 22
Vivado(RTL IP) 288 13268 11878 25
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The complete synthesis result for radar DSP front-end are reported in Table 4.2.
As shown in Table 4.3, the results obtained using HLS-IP and high level synthesis are
very comparable with the results obtained using HDL Coder. The HDL Coder based
solution uses many more DSP48 slices than results of HLS-IP,which again uses
many more LUTs. The other blocks are synthesized starting from the automatically
generated C-code produced by Embedded Real Time Coder.

FMCW radar is a real-time application which demands fully pipelined hardware
to perform required computation within the time constraint. Figure 4.3 illustrates
time diagram of synthesized model from behavioral description. Each output frame
between different interval is equal to FFT length (2048 samples, Clock Period = 10
ns). Figure 4.4 shows block diagram of streaming FFT model of Simulink which
provides output to next block in a streaming fashion after initial latency caused by
buffering and initialization of FFT algorithm.

Figure 4.3 RTL simulation of FMCW model generated in ISE Simulator (ISim)

Figure 4.4 Timing diagram of streaming Simulink FFT from HDL library

With the aim of concluding this part of the work in a more comprehensive way,
the implementation results of the streaming FFT using DSP Builder which is an
alternative MBD tool for Intel FPGAs are discussed as follows [58].

Intel tools such as DSP Builder, enable designers to complete a software-based
design flow while targeting FPGAs. DSP Builder for Intel FPGAs eases hardware
implementation of DSP functions, provides a top-level verification tool to the system
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engineer who is not necessarily familiar with HDL design flow, and allows the
system engineer to implement DSP functions in FPGAs without learning HDL. DSP
Builder for Intel FPGAs provides an interface from Simulink directly to the FPGA
hardware [57].

Figure 4.5 illustrates a numerical comparison between three different implemen-
tations of streaming FFT, Figure 4.4 presents the expected timing digram for high
throughput FFT. In [58] DSP builder from Altera targets Cyclone V FPGAs which
offer the lowest system cost and power for wide range of applications. However,
Altera and Xilinx FPGAs architecture are different from each other, in all three
approaches 2048 point streaming FFT fits neatly on Cyclone V and Kintex7 which
provide the best price/energy at 28 nm devices. Please note that FFT implementa-
tion using HLS methodology is based on the customized SystemC IP discussed
in chapter three and [15], moreover, DSE flow described in chapter two is used
to obtain the best RTL solution in terms of performance per watt.

Figure 4.5 Comparison of synthesis result of streaming FFT IP using three different ap-
proaches

The conducted experiments indicate that HDL based hardware design delivers
the most optimized solution in terms of energy efficiency, thanks to low level pro-
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gramming which enables to exploit intrinsic parallel architecture of FPGA in the
most sensible way both at macro and micro architectural level . Despite HDL loyalty
to underlying hardware, RTL level offers smaller design space with respect to HLS
based FPGA design. The HLS can generate high performance hardware with much
wider available design space. Figure 4.6, 4.7 and 4.8 demonstrates a comparison of
design space exploration of HDL and HLS for different FPGA resources. In all three
cases, HLS provides more solutions addressing various application requirements.

Figure 4.6 HDL and C based design space exploration of FIR subsystem (LUT Utilization)

Figure 4.7 HDL and C based design space exploration of FIR subsystem (FF Utilization)
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Figure 4.8 HDL and C based design space exploration of FIR subsystem (DSP Utilization)

Next section presents performance comparison between FPGAs and high-end
GPUs in terms of execution time, energy and power consumption. The algorithms
have been modeled in OpenCL for both GPU and FPGA implementation. However,
programming approach is totally different with respect to radar implementation, but
using OpenCL provides us with more optimization options in comparison to model
based design which is a more software development approach and generation of
high quality RTL is only possible for limited set of solutions. Additionally OpenCL
enables developers to target GPU/CPU and FPGA devices using same source code
that also promises programming heterogeneous platforms.

4.2 Implementation of a Performance Optimized Database
Join Operation on FPGA-GPU Platforms Using
OpenCL

This section of work presents two implementations of the join operation between two
database tables, i.e. the creation of a single merged table containing only elements
with the same primary key. One of them is ultra-parallel, based on two nested loops
which simply apply the join definition to unsorted tables. The other uses a fast
bitonic sort algorithm, with lower complexity,followed by a linear join of sorted
tables. Note that sorting is very memory bandwidth-intensive. So this application is
a sort of worst case when comparing GPU and FPGA platforms.
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4.2.1 Optimization of OpenCL models for FPGAs

SDAccel provides designers with an extensive set of OpenCL attributes that allows a
designer to fully control the micro-architecture of synthesized RTL. Optimizations
are performed in two phases, micro-architecture and macro-architecture optimiza-
tion. In our first micro-architectural optimization for both test cases, each kernel is
optimized only with respect to its internal structure, by using (1) work item pipelin-
ing, (2) loop unrolling and (3) array partitioning. In the next stage of optimization,
multiple WGs of each kernel are instantiated on an FPGA, each with its own global
memory access port for each OpenCL kernel argument, in order to fully utilize the
off-chip memory band-width and increase transfer efficiency.
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On-Chip Memory Architecture:

Thoughtful memory architecture of utilized on-chip memory is essential to
improve DDR band-with utilization, figure 4.11 illustrates top view of generated
hardware by SDAccel, m_axi_interconect_M00_AXI is implemented by memory
blocks and LUTs to use all available DDR memory ports. In fact, memory hierarchy
of SDAccel region can be presented by figure 4.9 that increase overall performance
thanks to more pipelined hardware.

Figure 4.9 Memory model of single compute unit

Fine-grained parallelism of on-chip resources for each compute unit is necessary
to increase overall performance. Instructions within the loops, described algorithmi-
cally in chapter 3, are unrolled completely and partially. Moreover, local memory
of each instantiation of WGs is both partially and completely partitioned to achieve
multiple solutions for different constraints. As it is discussed in Appendix A opti-
mum solution can be selected by considering key parameters of each application
that ensures better performance-per-watt results for FPGAs in comparison to fixed
architecture hardware, e.g. GPUs. Figure 4.10 shows parallel architecture of re-
configurable region of FPGA. Loop unrolling, memory partitioning and reshaping
factors provide the possibility of exploring the design space to find the solution with
highest performance-per-watt parameter that can be used to generate multi-core RTL
with low power consumption.
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Figure 4.10 Fine-grained memory model of compute unit

Figure 4.11 is the block diagram of SDAccel generated hardware with multiple
compute units from OpenCL model using proper optimization directives to address
time and power constraints of the design. On the top the master-bridge is connected
to available off-chip memory using a PCIE interface. AXI interface is an IP generated
by Vivado to connect kernels and bridges. K1, K2 and K3 are multiple instantiations
of WGs of same kernel, all executing in parallel. In this figure, each kernel has five
global array arguments mapped to global memory.
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Figure 4.11 Top-level block diagram with 3 OpenCl kernel instances, generated by SDAccel.
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4.2.2 Power Analysis

Measurement and analysis of power consumption is necessary to design and select
optimum hardware accelerator for HPC applications. Both NVIDIA and Xilinx
provide users with profiling tools which can estimate power consumption, memory
utilization and the temperature of target device. This section briefly covers these
capabilities, additionally, further information on NVIDIA and Xilinx analysis tools
can be reached in [59, 21].

NVSMI:

nvidia-smi (also NVSMI) provides monitoring and management capabilities for
each of NVIDIA’s Tesla, Quadro, GRID and GeForce devices from Fermi and higher
architecture families. GeForce Titan series devices are supported for most functions
with very limited information provided for the remainder of the Geforce brand.

The "nvidia-smi dmon" command-line is used to monitor one or more GPUs
(up to 4 devices) plugged into the system.This tool allows the user to see one line
of monitoring data per monitoring cycle. The output is in concise format and easy
to interpret in interactive mode. Figure 4.12 shows the output of nvidia-smi dmon
command line.

nvidia-smi dmon -i 0(for GTX)/1(for K4200)

In this experiment, our target platform has two different GPU devices specified in
table 4.4 which each can be monitored by choosing related GPU idx. NVSMI runs in
the background to monitor default metrics for each device under natural enumeration
(starting with GPU index 0) at a frequency of 10 second that demands large enough
data to keep GPU cores busy for at least one monitoring cycle.
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Figure 4.12 Output of nvidia-smi dmon command line

Vivado Power Analysis:

The Vivado power analysis feature performs power estimation through all stages
of the flow: post-synthesis, post-placement, and post-routing. It is most accurate
at post-route because it can read the exact logic and routing resources from the
implemented design. Figure 4.13 presents the Summary power report and the
different views of your design that you can navigate: by clock domain, by type of
resource, and by design hierarchy. Within the Vivado Integrated Design Environment
(IDE) you can adjust environment settings and design activity so you can evaluate
how to reduce your design supply and thermal power consumption. You can also
cross-probe into the design from the power report, which aids in identifying and
evaluating high power consuming hierarchy/resources used in the design.

Total on-chip power is the aggregate of dynamic and static power described in
the following lines.
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Static Power:

Device static power is the power from transistor leakage on all connected voltage
rails and the circuits required for the FPGA to operate normally, post configuration.
This is normally measured by programing a blank bitstream into the device. Device
static power is a function of process, voltage, and temperature. This represents the
steady state, intrinsic leakage in the device.

Dynamic Power:

This power is instantaneous and varies at each clock cycle. It depends on voltage
levels and logic and routing resources used. This also includes static current from
I/O terminations, clock managers, and other circuits that need power when used. It
does not include power supplied to off-chip devices.

Figure 4.13 Vivado Power Analysis
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4.2.3 Performance-per-watt Analysis

This section presents performance-per-watt analysis of target devices in this work
using join operations as standard benchmarks. Table 4.4 reports the specification
of GPUs [60] and FPGAs used in this study. Although the relative performance of
each device can vary from one test case to another, the GTX960 often outperforms
the K4200 in our experiments. The higher number of cores and higher memory
bandwidth of K4200 are not as effective as one could hope, most likely because of
higher core speed (37%) and the use of a second generation Maxwell architecture,
with a very large cache, for GTX960.

Table 4.4 Specification of tested Platforms

Params/Devices GTX960 K4200 Virtex7 Series VU440
Architecture Maxwell GM206 Kepler GK104 Virtex7 Virtex US
Process 28nm 28nm 28nm 20nm
Cuda Cores 1024 1344 - -
Core Speed 1127 MHz 706 MHz - -
Memory Interface GDDR5 GDDR5 DDR3 DDR4&HBM
Memory Bandwidth 112.2GB/sec 172.8GB/sec 200 GB/s 300 GB/s
On-chip memory 1 MB 0.5 MB 6 MB 11 MB
Maximum Power 120W 108 W - -
Double Precision NO YES YES YES
Price 350 $ 900 $ 3000 $ 37000 $

Even though companies like Microsoft may not disclose their data-center infras-
tructure specification in detail, reports suggest that a typical data center can consume
about 30 MW and include about 50,000 servers, with one or two GPUs on each
card. For example, the Microsoft Azure cloud service offers Tesla K80 cards with
two GK 210 GPUs on each card,as illustrated in figure 4.14. A Tesla GK 210 has
a similar specification to our K4200 GPU in terms of core frequency (562MHz),
architecture(Kepler) and double precision support.
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Figure 4.14 Tesla K80 Block Diagram

Figures 4.15 and 4.16 compare the performance of two discussed test cases on
target GPUs and FPGAs, with increasing input table sizes. For used benchmarks,
the most advanced VU440 FPGA has better performance than both GPUs. In this
experiment, our FPGA implementation uses a 200 MHz clock frequency that results
in lower dynamic power consumption and better overall performance per watt (i.e.
better energy consumption) than both GPU platforms. Tables 4.5 and 4.6 present
performance, resource usage and power analysis for the two discussed algorithms,
using always the same data size (8192 items2). In the FPGA case, we instantiated a
number of WGs that uses at most about 60% of the on-chip resources, to ensure that
the design can be placed and routed3.

28192 elements need 256 kB memory which is the size of available L1 cache for K4200 GPU
3The current version of SDAccel from Xilinx also limits the maximum number of WGs that can

be instantiated on an FPGA to 10. We did not consider this limitation since it is tool-dependent, rather
than resource-dependent, and will most likely be lifted in future versions of the tool.
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Figure 4.15 Performance comparison of nested-loop join versus data size

Moreover, for both applications a fully-optimized implementation on both FPGAs
consumes less energy than tested GPUs to perform the same amount of computation.
This is due to the smaller power consumption, and in case of the VU440 also to a
lower execution time.

Figure 4.16 Performance comparison of sort-merge join versus data size
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Table 4.5 Performance and energy analysis of Nested_Loop Join

Params/Devices Virtex7 VU440 GTX960 K4200
Device time 29 ms 3.145 ms( tclk = 5ns) 135 ms 253ms
WGs 65 400 256 256
Band-Width Utilization 3.2 %( 6.5 GB/s) 20 %(60 GB/s) 100% (172 GB/s) 59%(66GB/s)
Device power 35 W 81.7 W 95 W 105 W
Energy 1 J 0.256 J 12.8 J 26.5 J

Utilization

BRAMs = 65(4.4%) 400(16%)

NADSPs = 260(7.2%) 1600(28%)
FFs= 279500(32%) 1720000(33%)
LUTs = 260000(60%) 1600000(63%)

Table 4.6 Performance and energy analysis of Sort_Merge Join

Params/Devices Virtex7 VU440 GTX960 K4200
Device time 638 us 70 us ( tclk = 5ns) 127 us 152 us
WGs 20 122 256 256
Band-Width Utilization 5% (10 GB/s ) 30% (90 GB/s) 100 % (172 GB/s) 42% (47 GB/s)
Device power 13.2 W 75 W 90 W 100 W
Energy 8.4 mJ 5.2 mJ 11.7 mJ 15.2 mJ

Utilization

BRAMs = 140 (9.5 %) 923 (37%)

NADSPs = 300(8.3%) 2023 (36%)
FFs = 268000(30%) 1634800 (32%)
LUTs = 254800 (58%) 1554400 (61%)

Fast and extensive design space exploration of generated RTL is paramount to
achieve most optimum solution based on power and execution time. Appendix A
describes a developed model in MATLAB which evaluates all solutions with respect
to default behavior of SDAccel considering area , performance and dynamic power
consumption of each solution and suggests the best solution with highest overall
performance-per-watt.
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4.2.4 FPGAs and Energy Saving

A trade-off between power consumption and performance is crucial for designing
high performance accelerators to avoid reaching power budget limit. Thoughtful
utilization of power budget depends on both design architecture and underlying
hardware. Figure 4.17 draws a comparison between GPU and FPGA devices in
terms of performance-per-watt of each target device running join operation.

Virtex7 device performs same amount of computation as K4200 and GTX960
while consuming less power, on the other hand, VU440 is significantly more power
efficient and can outperform high-end GPUs. VU440 (20 nm) shows 55 % higher
performance-per-watt in comparison to GTX960 with MAXWELL architecture,
moreover, Virtex7 device is 21% more energy-efficient with respect to GTX960
manufactured in the same node as tested GPUs (28 nm).

Figure 4.17 Performance-per-watt compassion of FPGA vs GPU
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All in all, in this section we compared performance and energy consumption of
two well-known join algorithm implementations on GPU and FPGA devices. Nested-
loop and sort-merge join algorithms are memory-intensive computations that require
careful optimization to be efficiently implemented on FPGAs. Our experiment
suggests that a significant amount of speed up can be achieved by properly using
all the optimization techniques offered by SDAccel. Note that, even though sorting
is a memory-intensive application, our best implementation makes such effective
use of the available DRAM bandwidth that it has better performance than a GPU.
Moreover, thanks to the lower power consumption of the FPGA, its overall energy
consumption per operation is significantly better than that of a GPU.



Chapter 5

Conclusion

In this dissertation, several aspects of high performance computing (HPC) were
discussed. In chapter one and three, GPUs and FPGAs architecture and technology
advancements are studied to provide important insights into HPC’s underlying
hardware.

In chapter two, high level synthesis design process is introduced and discussed
in detail, Xilinx high-level synthesis tool chain is used in this research to study
and exercise FPGA programming using high level machine languages e.g. C/C++,
OpenCL and System C. Additionally, it is studied how compilation flow of C based
model toward high quality RTL is possible through HLS design flow with minimum
required hardware knowledge using wide range of optimization techniques provided
by modern HLS tool.

With the aim of computation acceleration, two different hardware design ap-
proaches are studied in this PhD program. Firstly, Model Based Design(MBD) is
used to develop digital signal processing algorithm of radar application discussed
in chapter 3. To do so, Simulink (developed by MATLAB) is used to model the
algorithm and generate C/C++ and HDL code from top model to compare high-level
and RTL synthesis using Simulink IPs. Secondly, as an alternative approach to MBD,
OpenCL programming language is used to program and compare GPU and FPGA de-
vices using standard OpenCL benchmarks via SDAccel which is the Xilinx SDK for
OpenCL. The experimental results suggest that MBD approach enables designers to
perform hardware-software co-design using verified sub-systems with small design
space which are only able to address limited range of applications, on the other hand,
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OpenCL framework with stronger design space exploration strategies and portable
functionality can program CPU/GPU and recently FPGA devices. OpenCL frame-
work enables developers to accelerate wide range of workloads coming from various
domains through more laborious design cycles with respect to MBD methodology.

In chapter three, various performance hungry applications are algorithmically
analyzed to shed lights on hardware acceleration challenges and requirements. More-
over, techniques and principles of off-chip bandwidth utilization, on-chip pipelining
and parallelism which are paramount to design high performance accelerators are
covered in this work.

Several options offered by the SDAccel tool from Xilinx were utilized to optimize
the application code for FPGA implementation. They mainly included pipelining
work-items and using on-chip global memory buffers for inter-kernel communica-
tions rather than using the traditional slower off-chip DRAM based global memory
buffers. Burst memory accesses were used for accessing the off-chip global memory
resulting in higher efficiency, since the access over-head is shared between larger
amounts of data being transferred. Concurrency on the FPGA was exploited further
by splitting the overall kernel computations into smaller chunks and executing them
in parallel using multiple compute units. All these optimizations were complemented
by the conventional HLS-based data-path optimization options e.g. pipelining and
unrolling both the explicit and the implicit loops in the kernels (i.e. the loops over
work-items).

Finally, this work reports how design space of multi-core RTL is explored using
different verified solutions via proposed Matlab model discussed in appendix A
that enables a designer to choose most optimum solution based on execution time,
power consumption and area of each application. This approach proposes automated
flow to evaluate many solutions each with unique optimization setting based on the
formulated criteria to design ASIC-like hardware from high-level model. The main
motivation behind developing this model relies on the wide range of optimization
options provided by HLS tools which demands careful exploration of design space to
choose proper optimization for each application. Although, our experiments suggest
GPU outperforms FPGA, but FPGA has higher performance-per-watt in comparison
to GPUs manufactured in the same node(28 nm). Additionally, our experiments
report that 20 nm Xilinx FPGAs (Xilinx UltraScale) with much larger amount of
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logic and on-chip memory consume less power and outperform NVIDIA GPUs
manufactured with 28 nm transistors at the cost of more expensive devices1.

We intend to exploit the findings from this research activity in the future to
enhance the level of automation in existing HLS tools to obtain high performance
energy efficient acceleration of kernels written in non hardware-specific OpenCL by
using FPGA-based platforms.

1NVIDIA GPUs and Xilinx FPGAs are discussed in chapter three
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Appendix A

The Matlab code reported in the next page, evaluates all customized solutions based
on three discussed criteria in chapter two and propose the best solution with highest
value of performance-per- watt. Obviously, model can be improved by considering
wider set of results and more numbers. This model was used to obtain presented
results in chapter 4 and in [16, 61].
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VARIABLES and CONSTANT DECLARATION
solution=12; % Number of solutions that you have provided using
 SDAccel
Time_constraint=1000; %Time Constraints of the design for specified
 data size in microsecond (array length=8192)

%%%%%% Following variables stores characteristics of the used device
 during

%%%%%% SDAccel simulation (KU115 - KINTEX ultra scale)
BANDWIDTH_DEFAULT=10;  %% DDR memory bandwidth(GB/s) of the used
 device during simulation
LUT_DEFAULT=663600;    %% Available LUT of the used device during
 simulation
FF_DEFAULT=1326720;    %% Available FF of the used device during
 simulation
DSP_DEFAULT=5520;      %% Available DSP of the used device during
 simulation
BRAM_DEFAULT=2160;     %% Available BRAM of the used device during
 simulation

%%%%%Following variables stores characteristics of target platform
 (XCVU440 - VIRTEX ULTRASCALE)

BANDWIDTH_TARGET=20;  %% DDR memory bandwidth(GB/s) of the target
 device
LUT_TARGET=2532960;     %% Available LUT of the target device

FF_TARGET=5065920;     %% Available FF of the target device
DSP_TARGET=5520;       %% Available BRAM of the target device
BRAM_TARGET=2520;      %% Available DSP of the target device

%%%%% Following coefficients are used in order to estimate
 characteristics of
%%%%% the design on the target platform. SDAccel does not provide
 users with all available Xilinx FPGAs and it considers same bandwidth
 for all available devices(~ 10 GB/s).
Bandwidth_CO=BANDWIDTH_TARGET/ BANDWIDTH_DEFAULT;
LUT_CO= LUT_TARGET/ LUT_DEFAULT;
FF_CO = FF_TARGET / FF_DEFAULT;
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BRAM_CO =BRAM_TARGET / BRAM_DEFAULT;
DSP_CO = DSP_TARGET / DSP_DEFAULT ;

%PREALLOCATION OF VARIBALES THAT STORES PARAMETERS FROM SDACCEL FOR
 EACH
%KERNEL USING DIFFERENT SOLUTIONS ON KU115 DEVICE, EXECUTION TIME IS
%OBTAINED FROM HARDWAARE EMULATION (SINGLE COMPUTE) AND RESOURCE
 UTILIZATION REPORT GENERATED BY
%VIVADO DESIGN SUIT.

time_sortlocal=zeros(solution ,1);
time_mergelocal=zeros(solution ,1);
time_mergeglobal=zeros(solution ,1);

LUT_sortlocal=zeros(solution,1);
LUT_mergelocal=zeros(solution,1);
LUT_mergeglobal=zeros(solution,1);
FF_sortlocal=zeros(solution,1);
FF_mergelocal=zeros(solution,1);
FF_mergeglobal=zeros(solution,1);
BRAM_sortlocal=zeros(solution,1);
BRAM_mergelocal=zeros(solution,1);
BRAM_mergeglobal=zeros(solution,1);
DSP_sortlocal=zeros(solution,1);
DSP_mergelocal=zeros(solution,1);
DSP_mergeglobal=zeros(solution,1);
%%%%DYNAMIC POWER CONSUMPTION OF SINGLE COMPUTE UNIT(W)
Power_sortlocal=zeros(solution,1);
Power_mergelocal=zeros(solution,1);
Power_mergeglobal=zeros(solution,1);
%%%STATIC POWER
P_STATIC=1.25;
%%%%%%%%%%%
call_sortlocal=zeros(solution,1);   %% CALL NUMBER OF THE SORTLOCAL
 COMPUTE UNIT IN ORDER TO COMPLETE COMPUTATION
call_mergelocal=zeros(solution,1);  %% CALL NUMBER OF THE MERGELOCAL
 COMPUTE UNIT IN ORDER TO COMPLETE COMPUTATION
call_mergeglobal=zeros(solution,1); %% CALL NUMBER OF THE MERGEGLOBAL
 COMPUTE UNIT IN ORDER TO COMPLETE COMPUTATION
quality_sortlocal=zeros(solution,1); % Quality of sortlocal kernel
 considering LUT , exectution time and number of call
quality_mergelocal=zeros(solution,1); % Quality of mergelocal kernel
 considering LUT , exectution time and number of call
quality_mergeglobal=zeros(solution,1); % Quality of mergeglobal kernel
 considering LUT , execution time and number of call
Time_vector = zeros(solution,1) ;
Call_vector = zeros(solution,1) ;
quality_matrix=zeros(solution , 3);
Time_matrix=zeros(solution , 3);
Call_matrix=zeros(solution , 3);

%%%%%%%READ DATA FROM EXCEL FILE AND STORE EACH COLUMN IN A ARRAY
data=xlsread('sheet3.xlsx'); % Read the data from excel file
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LUT=data(:,1);
FF=data(:,2);
BRAM=data(:,3);
DSP=data(:,4);
time=data(:,5);
call=data(:,6);
local=data(:, 7);
Power=data(:, 10);

%%%% THIS LOOP GENERATES UNIQUE ARRAY FOR EACH KERNEL THAT STORE
 EXECUTION
%%%% TIME, RESOURCE UTILIZATION (PERCENTAGE) AND DYNAMIC POWER
 CONSUMPTION.

for i= 0 : solution-1

time_sortlocal(i+1 , :) = time( 3*i + 2  , :);
time_mergelocal(i+1 , :) = time( 3*i + 3  , :);
time_mergeglobal(i+1 , :) = time( 3*i + 4  , :);
LUT_sortlocal(i+1 , :) = LUT(3*i + 2   , :);
LUT_mergelocal(i+1 , :) = LUT(3*i + 3   , :);
LUT_mergeglobal(i+1 , :) = LUT(3*i + 4   , :);
FF_sortlocal(i+1 , :) = FF(3*i + 2   , :);
FF_mergelocal(i+1 , :) = FF(3*i + 3   , :);
FF_mergeglobal(i+1 , :) = FF(3*i + 4   , :);
BRAM_sortlocal(i+1 , :) = BRAM(3*i + 2   , :);
BRAM_mergelocal(i+1 , :) = BRAM(3*i + 3   , :);
BRAM_mergeglobal(i+1 , :) = BRAM(3*i + 4   , :);
DSP_sortlocal(i+1 , :) = DSP(3*i + 2   , :);
DSP_mergelocal(i+1 , :) = DSP(3*i + 3   , :);
DSP_mergeglobal(i+1 , :) = DSP(3*i + 4   , :);
call_sortlocal(i+1 , :) = call(3*i + 2   , :) ;
call_mergelocal(i+1 , :) = call(3*i + 3   , :) ;
call_mergeglobal(i+1 , :) = call(3*i + 4   , :) ;
Power_sortlocal(i+1 , :) = Power(3*i + 2   , :) ;
Power_mergelocal(i+1 , :) = Power(3*i + 3   , :) ;
Power_mergeglobal (i+1 , :) = Power(3*i + 4   , :) ;

end
%%%%% Total computation time of each solution before quality
 assessment

for i=0 : solution-1
    Time_matrix( i+1 , 1  )  = call_sortlocal(i+1 , :) *
 time_sortlocal(i+1 , :);
    Time_matrix( i+1 , 2  )  = call_mergelocal(i+1 , :) *
 time_mergelocal(i+1 , :);
    Time_matrix( i+1 , 3  )  = call_mergeglobal(i+1 , :)*
 time_mergeglobal(i+1 , :);
    Call_matrix( i+1 , 1  )  = call_sortlocal(i+1 , :);
    Call_matrix( i+1 , 2  )  = call_mergelocal(i+1 , :) ;
    Call_matrix( i+1 , 3  )  = call_mergeglobal(i+1 , :) ;
end
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for i=0 : solution-1
   Time_vector(i+1 , :) = Time_matrix(i+1 ,1)+ Time_matrix(i+1, 2)+
 Time_matrix(i+1, 3);
   Call_vector(i+1 , :) = call_sortlocal(i+1 , :)+call_mergelocal(i
+1 , :)+call_mergeglobal(i+1 , :);
end
%%%%%%%%%%%%

SOLUTION ASSESSMENTS
EVALUATION OF EACH SOLUTION CONSIDERING AREA AND EXECUTION TIME

for i=0 : solution-1

   quality_sortlocal(i+1,:)= (time_sortlocal(1 , :) /
 time_sortlocal(i+1,:))*(LUT_sortlocal(1, :)/LUT_sortlocal(i
+1,:))*(call_sortlocal(1,:)/ call_sortlocal(i+1,:));

   quality_mergelocal(i+1,:)= (time_mergelocal(1 , :) /
 time_mergelocal(i+1,:))*(LUT_mergelocal(1, :)/LUT_mergelocal(i
+1,:))*(call_mergelocal(1,:)/ call_mergelocal(i+1,:));

   quality_mergeglobal(i+1,:)= (time_mergeglobal(1 , :) /
 time_mergeglobal(i+1,:))*(LUT_mergeglobal(1, :)/LUT_mergeglobal(i
+1,:))*(call_mergeglobal(1,:)/ call_mergeglobal(i+1,:));

end

[M_local,I_local] = max(quality_sortlocal(:));      % CHOOSING BEST
 SULTION WITH HIGHEST QUALITY FACTOR
[M_global,I_global] = max(quality_mergeglobal(:));  % CHOOSING BEST
 SULTION WITH HIGHEST QUALITY FACTOR

 for i=0 : solution-1

             quality_matrix(i+1 , 1) = quality_mergeglobal(i+1 , :);
             quality_matrix(i+1 , 2) = quality_sortlocal(i+1 , :);
             quality_matrix(i+1 , 3) = quality_mergelocal(i+1 , :);

      end

PERFORMANCE ANALYSIS
TOTAL EXECUTION TIME OF WHOLE ALGORITHM USING KERNELS WITH HIGHEST QUALI-
TY

Time = (call_sortlocal(I_local,: )* time_sortlocal(I_local, :)
 +call_mergelocal(I_global,: )*
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 time_mergelocal(I_global, :)+call_mergeglobal(I_global,: )*
 time_mergeglobal(I_global, :)) /Bandwidth_CO ;

NUMBER OF COMPUTE UNITS
compute_unit = ceil( Time/ Time_constraint);

%%%% EXECUTION TIME OF WHOLE ALGORITHM AFTER INSTANTIATION OF MULTIPLE
 COMPUTE UNITS

Time_Final= Time / compute_unit;  %%% EXECUTION TIME OF ALGORITHM
 USING MULTIPLE COMPUTE UNIT

RESOURCE UTILIZATION
RESOURCE UTILIZATION OF THE DESIGN AFTER INSTANTIATION OF MULTIPLE COMPUTE
UNIT ON TARGET PLATFORM (XCVU440 - VIRTEX ULTRASCALE)

TOTAL_LUT_PERCENTAGE = (LUT_sortlocal(I_local, :)* compute_unit +
 LUT_mergelocal(I_global)* compute_unit+LUT_mergeglobal(I_global)*
 compute_unit) / LUT_CO;
TOTAL_FF_PERCENTAGE = (FF_sortlocal(I_local, :)* compute_unit +
 FF_mergelocal(I_global)* compute_unit+FF_mergeglobal(I_global)*
 compute_unit) / FF_CO;
TOTAL_BRAM_PERCENTAGE = (BRAM_sortlocal(I_local, :)* compute_unit +
 BRAM_mergelocal(I_global)* compute_unit+BRAM_mergeglobal(I_global)*
 compute_unit) / BRAM_CO;
TOTAL_DSP_PERCENTAGE = (DSP_sortlocal(I_local, :)* compute_unit +
 DSP_mergelocal(I_global)* compute_unit+DSP_mergeglobal(I_global)*
 compute_unit) / DSP_CO;

TOTAL_LUT_NUMBER=  (TOTAL_LUT_PERCENTAGE * LUT_TARGET)/100;
TOTAL_FF_NUMBER = (TOTAL_FF_PERCENTAGE *FF_TARGET)/100;
TOTAL_BRAM_NUMBER= (TOTAL_BRAM_PERCENTAGE * BRAM_TARGET)/100;
TOTAL_DSP_NUMBER = (TOTAL_DSP_PERCENTAGE * DSP_TARGET)/100;

POWER CONSUMPTION
TOTAL ON-CHIP POWER USING MULTIPLE COMPOUTE UNITS

TOTAL_POWER=(Power_sortlocal(I_local, :)* compute_unit +
 Power_mergelocal(I_global)* compute_unit+Power_mergeglobal(I_global)*
 compute_unit) + P_STATIC ;

%bar3(quality_matrix)
%bar3(Time_matrix)
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