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Abstract

In the study of hard optimization problems, it is often unfeasible to achieve
a full analytic control on the dynamics of the algorithmic processes that
find solutions efficiently. In many cases, a static approach is able to provide
considerable insight into the dynamical properties of these algorithms: in fact,
the geometrical structures found in the energetic landscape can strongly affect
the stationary states and the optimal configurations reached by the solvers.
In this context, a classical Statistical Mechanics approach, relying on the
assumption of the asymptotic realization of a Boltzmann Gibbs equilibrium,
can yield misleading predictions when the studied algorithms comprise some
stochastic components that effectively drive these processes out of equilibrium.
Thus, it becomes necessary to develop some intuition on the relevant features
of the studied phenomena and to build an ad hoc Large Deviation analysis,
providing a more targeted and richer description of the geometrical properties
of the landscape. The present thesis focuses on the study of learning processes
in Artificial Neural Networks, with the aim of introducing an out of equilibrium
statistical physics framework, based on the introduction of a local entropy
potential, for supporting and inspiring algorithmic improvements in the field
of Deep Learning, and for developing models of neural computation that can
carry both biological and engineering interest.
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Chapter 1

Theoretical framework

1.1 General introduction

The ability to learn and store information in our brain is the fundamental seed
of what we call intelligence. It is generally believed that these mechanisms take
place in real neural systems via plastic changes to the connections between
neurons, the synapses, in response to external stimuli, either by creating or
destructing the connections or by modifying their efficacy [9]. This idea is the
basic inspiration of the Deep Learning research field, which in recent years
has proved able to produce algorithms that achieve top performance in a host
of complex applications, such as image or speech recognition, and is slowly
closing the gap that still separates human and in silico computation [10, 11],
[12]. However, these practical successes have been guided by intuition and
numerical experiments, while obtaining a complete theoretical understanding
of why these techniques work seems currently out of reach, due to the inherent
complexity of the problem.

While the mainstream approach is based on the application of heuristic
variants of the stochastic gradient descent algorithm, in deep continuous neu-
ral networks, it is rather unlikely that biological brains employ the same
gradient-based learning strategy: real synapses are generally very noisy, and
the estimated precision with which they can store information, although very
difficult to assess conclusively, seems to range between 1 and 5 bits per synapse
[13, 14]. Real synaptic efficacies might be better described by discrete quantities
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rather then continuous ones, and even machine learning applications (especially
hardware implementations) could benefit from the implementation of simpler
synaptic models and update protocols.

In the past decades, various methods borrowed from Statistical Physics of
Disordered Systems, have been quite successful in studying the basic properties
of neural-like systems [15]. These analyses predict a qualitative difference
between neural networks when the synaptic weights are either continuous
or discrete variables. Even in the simplest discrete neural network — the
Perceptron with N binary synapses — the learning problem is known to be
intractable in the worst-case [16], and its equilibrium description is dominated in
the typical case by an exponential number of local minima [17–20], which easily
trap standard search strategies based on free energy minimization, e.g. Monte
Carlo [21, 22] (a familiar situation in spin glass phases, [23–25]); moreover, the
optimal synaptic configurations are typically geometrically isolated (i.e. they
have extensive mutual Hamming distances), and thus even harder to find for
local search strategies [22].

However, the additional computational difficulties associated with discrete
synapses are not insurmountable: a number of heuristic algorithms are known
to achieve very good performances even in the extreme case of binary synapses
[26–29]; some of those are even sufficiently simple and robust to be conceivably
implementable in real neurons [27, 28]. In general, these algorithms are by
no means bound to sample solutions uniformly at random and the underly-
ing stochastic dynamics is not guaranteed to reach states described by an
equilibrium probability measure, as would occur for ergodic statistical physics
systems. An out of equilibrium description is indeed needed in order to capture
structures which are relevant for these learning processes.

In most random combinatorial optimization problems the dominant ground
states of the equilibrium Gibbs measure at zero temperature, are not relevant
in the analysis of practical optimization algorithms and their dynamics. The
algorithmically accessible states, in fact, are typically sub-dominant states
characterized by a high internal entropy [30] (see also next paragraph). The
structure of such sub-dominant states can be investigated by means of the
Replica or the Cavity Methods [24], at least in the average case. As we will
show throughout this thesis, this scenario also holds in the case of learning
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algorithms for Artificial Neural Networks, where much work is still needed
in order to get a better understanding of what determines the success of the
various heuristics.

1.2 Algorithms and Out-of-Equilibrium

In the past few decades, a very prolific knowledge exchange greatly boosted
the development of a research field at the interface between Statistical Physics,
Discrete Mathematics and Computer Science: Combinatorial Optimization [23].
The scope of this subject is impressive, since the problem of identifying the best
choice over a set of possible alternatives is ubiquitous in a plethora of scientific
fields, ranging from Biology to Economics. A generic optimization problem is
defined by a given parametric space S and a loss-function f : S → R, which is
the objective of the optimization process: the goal of an effective algorithm is
that of efficiently solving the problem, i.e. finding a configuration, s⋆ ∈ S, that
minimizes the loss s⋆ = Argminsf (s) in the shortest possible computational
time.

In a combinatorial optimization problem, the feasible solution space S is
finite: this allows a link with a Statistical Physics formalism, easily established
by associating a partition function to the problem. In this context, the loss-
function, properly rescaled by the number of variables of the problem N ,
plays the role of an energy: by tuning the inverse temperature, β, one can
focus the measure on the solutions of the problem, eventually recovered in
the limit β →∞. From a physicist perspective, it is interesting to study the
thermodynamic limit, N →∞, in search of interesting phase transitions that
could be relevant for understanding the behavior of the designed optimization
algorithms, even in finite size instances.

An ideal framework for studying the onset of these complex collective
phenomena is that of random Constraint Satisfaction Problems (CSPs). An
instance of a CSP is defined through an extensive number, M ∝ N , of con-
straints that need to be satisfied by a set of N variables: the hardness of
the optimization task can be increased by adding more constraints to the
problem. As the system becomes more and more frustrated, the zero-energy
configurations in S, satisfying all the constraints, get progressively decimated.
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A first question that can be answered with the tools of Statistical Physics,
is whether any solutions to the problem can be found at a given constraint
density, α = M/N , in the thermodynamic limit. Interestingly, in random CSPs,
the system undergoes a sharp transition at a critical density αC , going from a
phase where exponentially many zero-energy configurations are present with
very high probability, the so-called SAT phase, to a phase where the problem
is no longer satisfiable and at best a small fraction of the constraints will be
necessarily violated, the UNSAT phase.

However, setting the problem in the SAT phase is not a sufficient condition
for guaranteeing the possibility of finding solutions algorithmically, as the most
interesting CSPs are NP-complete problems: this means that the number of
elementary computational operations needed to find a solution is expected to
grow exponentially with N in the worst case, since one would be required to
perform an extensive check over all the possible assignments for the variables.
The efficient solvers are instead those that are able to provide solutions in less
than exponential time. Very often, the intuition behind the design of these
optimal algorithms exploits some knowledge on the geometrical organization of
the solutions in S. There is, in fact, a clear connection between the dynamical
properties of the employed algorithms and the static properties of the energy
landscape: the computational hardness is often associated with the coexistence
of low-energy configurations and sub-optimal metastable states, that break
ergodicity and “hide” the solutions of the problem, often grouped into various
clusters of nearby configurations [31, 32].

The main analytical tools that allow a theoretical analysis of random CSPs,
the Replica and the Cavity methods, are directly inherited from Disordered
Systems, a quite modern but well established branch of Statistical Physics [24].
These methods were initially developed in the study of the thermodynamic
properties of the so-called Spin glasses, i.e. spin models defined by an Hamilto-
nian that is dependent on some kind of randomness, usually enclosed in the
couplings, fields or topology of the model [33, 34]: in order to average over the
possible realizations of the Hamiltonian, one can exploit the so-called Replica
trick (see chapter 2), a mathematical identity for evaluating the quenched
average of the free energy. This average can in fact be extrapolated from the
behavior of a replicated model, where the copies of the system are virtually
interacting through the common realization of the disorder. The order param-
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eters of these models, signaling the onset of the spin glass phase, explicitly
describe a Gibbs measure composed of exponentially many disjoint groups of
solutions, generating an ultrametric structure [35]. The transfer of knowledge
to the context of Combinatorial Optimization was pioneered by Parisi and
Mézard in 1985 [36], giving way to a series of important theoretical findings as
well as substantial algorithmic developments [31].

In the Replica (or in the Cavity) method, in order to characterize the
typical properties of large instances of a given CSP, it is necessary to make
some assumptions on the relevant symmetries that characterize the phase space
of problem. These geometrical properties are strongly related to the degree
of correlation between the variables of the model, induced by the constraints
of the problem: high correlations can lead to the frustration phenomenon, as
any local change in the assignment of a single variable can require extensive
rearrangements in the neighboring variables, in order to maintain the energy
at the minimum. As the density α is increased, the system can thus undergo
a series of structural transitions [31, 32], where the clusters of solutions pro-
gressively break apart into smaller clusters, characterized by higher internal
correlations between the variables (see a sketch in figure 1.1). In the Replica
Symmetric phase, where the Gibbs measure can be seen as a unique pure state,
even relatively basic algorithms based on energy relaxation, as Monte Carlo
Simulated Annealing [37], can usually find solutions of the CSP. Instead, after
the occurrence of the Replica Symmetry Breaking phenomenon above a certain
critical density αD, the Gibbs measure scatters into a convex linear combination
of pure states, and only special classes of algorithms are able to avoid being
trapped in the metastable states that jam the solution space.

In the Replica Symmetry Breaking scheme proposed by Parisi [35], the
number of disjoint pure states specified by a given internal entropy of solutions
S is assumed to be exponential, N (S) ∼ exp (NΣ (S)). The function Σ
plays the role of an entropy of clusters, usually called complexity. In the
thermodynamic limit one can evaluate the typical entropy S⋆ by means of a
saddle point approximation, and obtain some information on the states that
dominate the Gibbs measure. If the efficient algorithms sampled uniformly at
random from the solutions of the problem, the probability of finding a solution
belonging to the states characterized by the lowest free energy would tend to
1 for large instances. In this case, the equilibrium properties of the problem
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Fig. 1.1 Sketch of the structural phase transitions in the solution space of a
CSP. The ensemble of solutions disconnects progressively as the constraint density
is increased, going from a single large cluster to an exponential number of smaller
clusters. The red colored clusters are those where a fraction of the variables is frozen.
After the SAT/UNSAT transition, zero energy configurations can no longer be found.
Adapted from [32].

would provide sufficient information on all the dynamical properties of the
algorithms. However, the algorithms are often attracted towards sub-dominant
states, characterized by specific geometrical properties [30].

After the dynamical transition at αD, in fact, some of the dominant clusters
can become partially frozen (the so-called rigidity transition [38, 30]), i.e.
contain only solutions where a fraction of the variables forcedly take a precise
value. This backbone structure can be very hard to “guess” algorithmically, as
the search would require collective rearrangements of the variable assignments
and the frozen variables would need to be correctly assigned altogether: this
high degree of correlation could thus induce an exponential slowing down of
the algorithms. Therefore, in this regime, the efficient solvers become attracted
to the still existing unfrozen states, even though these are not numerically
favored. After the final freezing transition, all the clusters become frozen
and the algorithms stop working, even though solutions still exist until the
SAT/UNSAT transition at αC [38, 30]. It is important to underline that the
dynamical behavior of the algorithms can thus be reflected only by a static
analysis where also the large deviations of the problem are considered, in order
to describe the dominant as well as the sub-dominant structures in the solution
space.

The main objective of this PhD thesis is that of trying to transpose the same
approach, initially employed for studying various CSPs, in the framework of
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discrete Artificial Neural Networks, where there is still a clear gap between the
theoretical analysis, limited to the equilibrium properties of simplified models,
and the abundance of algorithmic results, often relying on clever heuristic
modifications that push the learning process out of equilibrium in order to
achieve a better performance.

1.3 Outline of the thesis

The first chapter of this thesis, Theoretical framework, contains a brief intro-
duction to the scientific background and to the aims and scope of our research
work; furthermore, it provides an overview of the organization of the results,
with a short summary of each chapter of the thesis. The rest of the material
presented in this thesis will be organized mainly in two main parts, each one
subdivided in chapters.

The first part, Neural Networks: Equilibrium vs Algorithms, will feature the
following content:

• The second chapter, Equilibrium Analysis, will provide a brief general
introduction to Artificial Neural Networks (ANN), specifically in the
setting of discrete synaptic models. The chapter is mainly devoted to
the theoretical analysis of the simplest feed-forward ANN model, the
Perceptron, and to the description of two common learning scenarios, the
Random classification and the Teacher-student problems. In particular,
all the results will be obtained in the Binary Perceptron model first, to
be then extended to the Generalized Discrete Perceptron case. The main
analytic tool employed in the equilibrium analysis, the Replica Method,
will be introduced operationally: we will first retrace the classical results
of the Gardner analysis, both in the Replica Symmetric and in the Replica-
Symmetry-broken frameworks. The analysis will then be extended to
the Generalized Discrete Perceptron case, where some original results
will be reported. After the standard Replica analysis, we will also report
on some modern theoretical results on the fine geometrical structure
of the solution space of the Binary Perceptron, obtained through the
study of the so-called Franz-Parisi potential, and we will extend them
to the general case of discrete synapses. Finally, we will here provide
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also a generalization of the Franz-Parisi potential computation to the
Teacher-student scenario, in the binary case. The results in paragraph
2.6.2 are original and unpublished.

• The third chapter, Learning with Discrete Synapses, will be dedicated
to the algorithmic side of the problem of learning in ANNs. After an
introduction to Belief Propagation, a physics-inspired message-passing
technique, we will report on some recent algorithmic advancements, re-
garding the proposal of efficient solvers for the Binary Perceptron learning
problem. We will briefly describe some attempts at extending these heuris-
tic learning algorithms to the more relevant (from a machine learning
perspective) multi-layer case. In order to validate the geometrical land-
scape predictions obtained in the second chapter, we will also describe
the results of some numerical tests, probing the neighborhood of the solu-
tions found by the solvers. The numerical results will be compared with
the theoretical predictions, highlighting the existence of a gap between
the equilibrium analysis and the numerical findings, and suggesting the
development of an ad hoc theoretical framework for better understanding
these effective learning processes. The results described in sections 3.4-3.7
are novel and unpublished.

The second part, Large Deviation Analysis, will be organized as follows:

• The fourth chapter, Novel Measure, will describe the main theoretical
results of this thesis. We will introduce a Large Deviation Analysis able
to discover the presence of a complex sub-dominant structure in the
solution space of the Binary (and Generalized Discrete) Perceptron. The
main conceptual step will be that of defining a local entropy potential,
counting the number of solutions in close proximity of a given configura-
tion, and enhancing the statistical weight of dense clusters of solutions.
In the theoretical analysis, again based on the Replica Trick, we will
consider different scenarios and Ansatzs, uncovering a possible structural
phase transition above which the dense structure disappears, in exact
correspondence with the numerically recorded algorithmic thresholds.

• In the fifth chapter, Entropy driven Monte Carlo, we will devise a simple
and theoretically under control algorithm, able to explicitly target the
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dense regions in the space of solutions of Discrete Perceptrons. The
framework will be that of a Markov Chain Monte Carlo strategy, where,
instead of the usual energy (or loss function), we elect the local entropy
as the objective to be maximized. The estimation of the local entropy
will rely on the Belief Propagation algorithm, and the resulting learning
process will be defined as a two level optimization procedure.

• The sixth chapter, Robust Ensembles, will provide a description of a
general optimization scheme able to target the local entropy measure
introduced in chapter four: the inverse temperature, associated to the
entropy reweighting, can be set to positive integer values and treated as
a replica index. This suggests the definition of a new statistical ensemble,
that naturally favors dense regions of solution, and allows to bypass the
employment of a second level algorithm for the local entropy estimation
(as in EdMC, in chapter five). The suggested scheme is then applied
in the context of the most common optimization algorithms: Simulated
Annealing, Gradient descent and Belief Propagation.

• In the seventh chapter, Stochastic Synapses, we will introduce a stochastic
formulation of ANNs that naturally gives prominence to dense regions
of solutions in the loss landscape. We show that, in this context, binary
solutions can be obtained through a simple gradient descent procedure
on a set of real values, that parametrize a probability distributions over
the binary synapses. All these properties will be confirmed through a
theoretical analysis in the Binary Perceptron model and supported by
numerical results. We will also show some preliminary result on the
extension of this framework to deeper neural networks models.

Finally, the last part, Conclusions, will be devoted to the discussion of the
results presented throughout the thesis and to the proposal of some directions
for future investigation.



Part I

Neural Networks: Equilibrium
vs Algorithms





Chapter 2

Equilibrium Analysis

In the past few decades Artificial Neural Networks (ANN) have become one
of the most flexible and successful tools for machine learning applications in
a variety of complex recognition tasks: from computer vision [12] and speech
recognition to medical diagnostics and biological and physical data analysis.
Some outstanding achievements, especially in the context of video and board-
game playing AI, seem to question the very definitions of human-like intelligence,
intuition and creativity [39, 40].

The computational power of these devices comes from the huge number of
parameters that, without any task specific or rule-based programming, can be
progressively fine-tuned to improve performance, in a example-based learning
procedure. Of course, large-scale ANNs (the so-called Deep Neural Networks,
DNNs in the following) have two main requirements, that initially slowed down
the escalation to their present success: big and rich training datasets and
adequate hardware support. Remarkably, despite the fact that the non-linear
optimization needed for training DNNs takes place in a potentially complex,
extremely roughed landscape, learning often occurs without getting trapped in
local minima with poor prediction performance and over-fitting behaviors are
surprisingly sporadic [41].

Unfortunately, the knowledge extracted by the enormous amount of research
in Deep Learning is often empirical, resulting from a trial and error process
mainly guided by intuition and numerical evidence, while the theoretical un-
derstanding of many of the employed heuristic techniques is incomplete. In
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recent years, there have been many parallels between the studies of algorithmic
stochastic processes and out-of-equilibrium processes in complex systems [42–
46], as a Statistical Physics approach has proven successful also in computer
science applications, for understanding the behavior of local search algorithms
for optimization and inference. The theoretical interest of these processes
origins from the fact that the underlying dynamics are not guaranteed to reach
states described by an equilibrium probability measure, as would happen in
an ergodic system in classical Statistical Mechanics. Indeed, sets of relevant
configurations that are typically inaccessible for an equilibrium process can
become extremely attractive for the analyzed algorithms.

The statistical physics approach to the study of neural-like systems is
complementary to the one of neurophysiology [15], being based on the in-
terpretation of intelligence and learning as collective emerging properties of
large ensembles of neurons, rather than being dependent on the overwhelming
variety of microscopical differences, between each single neuron, that can be
observed in biological brains. This assumption justifies the choice of extremely
simplified models for the constituents of these large-scale artificial systems: the
McCulloch–Pitts neuron [47], more than half a century old, is still the main
building block in modern DNNs. In this basic model the neuron is represented
as a bi-stable linear threshold unit, either in a excited or a quiescent state: it
simply sums up the incoming stimuli, weighted by the corresponding synaptic
coupling strengths, makes a comparison with a threshold value and outputs
a binary signal representing its state (modeling, respectively, the input from
the dendrites, the accumulation in the soma and the firing in the axon in a
biological neuron).

A feed-forward neural network can then be obtained by connecting a set
of McCulloch–Pitts neurons in a layered architecture, from the inputs to a
series of intermediate “hidden” neurons, to the final output layer [15]. This
device can be easily trained in a supervised learning procedure: a series of
input vectors are sequentially presented in the first layer of the network, and
the error signal is obtained from the comparison of the resulting output with
the correct label associated to the pattern in input. This supervised signal can
then be distributed in the neural network, inducing local modifications in the
synaptic couplings, such that the correct output is eventually memorized in the
network’s parameters. In the statistical physics formulation one considers two



14 Equilibrium Analysis

typical supervised scenarios: the “classification” problem, where the task is that
of perfectly performing a given set of input-output associations, and the more
realistic “generalization” scenario, where the goal is that of inferring a correct
association rule, which could be represented either explicitly, by a “teacher”
device (in the so-called “teacher-student” scenario), or implicitly, through an
additional set of examples which are only presented in the test phase [15]. Both
these scenarios will be considered in the following.

The theoretical approach that is adopted throughout this thesis can be seen
as an atomistic approach to Deep Learning: we will start by considering the
simplest neural network models, where we are able to gather some analytical
results, and then we will try to extrapolate to the more complex phenomena
emerging from learning in large-scale neural networks, in the assumption that
the qualitative behaviors of the building blocks should somehow be inherited
by the more complex DNN architectures.

2.1 The Perceptron

Introduced by Rosenblatt in 1962 as a simplified model of a neuron [48], the
Perceptron is the simplest example of a feed-forward neural network. The
network has no hidden layers and is parametrized by a single vector of synaptic
couplings {Wi}N

i=1: given an input pattern ξ, the output is simply obtained as:

τ (ξ; W ) = sign (W · ξ − θ) (2.1)

(here we will set the firing threshold to θ = 0, for simplicity); τ = 1 represents
the excited state of the neuron and τ = −1 the quiescent one. Despite its
simplicity, the Perceptron exhibits a variety of desirable computational features:
the inputs are processed in parallel, the device is able to memorize an extensive
amount of information and the learning procedure can be devised as a simple
on-line process; however, it also suffers from strong computational limitations,
being able to solve only linearly separable classification tasks.

From the statistical physics perspective, the Perceptron has become the
“hydrogen atom” of the field. By using some techniques borrowed from the
physics of disordered systems, one can study the constraint satisfaction problem
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Fig. 2.1 The perceptron: a schematic representation.

of correctly classifying an extensive set of random patterns {{ξµ
i }

N
i=1 , σµ}M

µ=1,
with M = αN and α being the so-called storage load [49]. Each constraint
can be simply represented by a Θ-function, nullifying the statistical weight of
synaptic configurations that entail classification errors. Statistical mechanics
mainly aims at producing exact results for the typical learning behaviour, which
can be extracted by considering the thermodynamic limit of the model, N →∞:
in this limit both the number of degrees of freedom of the neural network and
the number of constraints in the training problem diverge, and one can study
different learning regimes by tuning the O (1) parameter α.

In order to carry out the analytical computations one has to make very
strong uncorrelation assumptions on the distribution of the patterns: usually
one considers each component ξµ

i , to be i.i.d. uniformly drawn from {−1, 1},
while the binary outputs can either be uncorrelated themselves, as in the
random or classification scenario, or can be determined by a teacher device W T ,
with σµ = sign

(
W T · ξµ

)
, as in the teacher-student or generalization scenario.

Once the training set is determined, one can study the probability distribution
induced on the synaptic couplings PW (W ) and the way it is affected by the
addition of new constraints to the learning problem. The idea of considering
a phase space of interactions, overturning the usual paradigm of Disordered
Systems where the randomness is enclosed in the couplings of the model, was
initially established by Elisabeth Gardner [50].
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In the thermodynamic limit one is interested in measuring self-averaging
quantities, whose probability distribution gets focused on a typical value as
the variance vanishes with N → ∞. In this case one can simply compute
the average over the disorder, induced by the training patterns, and find the
most probable value for the chosen quantity. Unfortunately not all physically
meaningful quantities are automatically self-averaging: in the Perceptron, one
would be interested in counting the number of solutions for a given instance
of the learning problem, and possibly determine the critical value for α after
which, with high probability, one cannot find any more solutions (or, in the case
of the teacher–student problem, only the teacher is left as a viable solution).
However, the annealed entropy density, obtained by taking the normalized
logarithm of the average volume:

〈
Ω
(
{ξµ, σµ}αN

µ=1

)〉
ξ,σ

=
〈∫

dµ (W )
αN∏
µ=1

Θ
(

σµ W · ξµ

√
N

)〉
ξ,σ

(2.2)

returns an average value which is very different from the sought most probable
value of the entropy: this common problem is due to the long tails of the
probability distribution, which causes the average to drift away from the mode,
attracted by the rare events of the model. Because of the concavity the
logarithm, the annealed approximation can however provide an upper bound to
the correct value we are seeking to compute: intuitively it describes a best-case
scenario in which both the degrees of freedom and the constraints are adapted
to minimize the free energy of the system [15].

A correct theory of learning must instead consider the quenched entropy
density:

S =
〈
log

(
Ω
(
{ξµ, σµ}αN

µ=1

))〉
ξ,σ

(2.3)

which is technically much less straightforward to obtain. The main problem is
that one would like to exploit the “translational invariance” of the problem and
treat each component Wi homogeneously, factorizing over the index i = 1, ..., N ,
but the quenched average seems to require an integration over the synaptic
weight measure dµ (W ) at each fixed realization of the disorder. Fortunately,
there is a way of interchanging the order between the average and the logarithm,



2.1 The Perceptron 17

well-known since the 1970s, by exploiting the simple identity:

log X = lim
n→0+

Xn − 1
n

(2.4)

This gives rise to the replica trick: one can first consider an enlarged system
with n ∈ N independent and identical replicas of the system, then take the
disorder average, which introduces a coupling between the n copies, and in
the end look for an analytical continuation of the result to continuous n ∈ R
(in the thermodynamic limit), for retrieving the initial expression in the limit
n→ 0+. This formalism is very problematic from the mathematical point of
view: for example, the extrapolation at n = 0 is not in correspondence of an
accumulation point, and in the calculations the two limits n→ 0+ and N →∞
are interchanged. However, the application of this method for studying artificial
neural networks, first proposed by Elizabeth Gardner [49], has proven very
successful.

During the Replica computation, since the minimization of the action in
the full parametric space is unfeasible, the saddle point evaluation is always
performed in a restricted subspace, defined through some kind of Ansatz on the
geometrical structure of the described phase space, based on possible symmetries
of the replicated model: the simplest possible choice is the Replica Symmetric
(RS) Ansatz, where one assumes that the Gibbs space cannot be decomposed
into a mixture of pure states, and is instead well described as a unique state,
where the various replicas are completely symmetric (under permutation). In
the continuous Perceptron, where the couplings are usually restricted to lay
on the N -sphere, dµ (W ) = (∏i dWi) δ (∑i W 2

i −N), the Replica symmetric
assumption yields correct results; this is closely related to the fact that the
phase space of the problem happens to be convex and connected (which is
physically similar to saying that the system dynamics is ergodic). The order
parameter of the model is the overlap between two replicas, qab = ∑

i
W a

i W b
i

N
,

with a, b ∈ {1, ..., n}: as more constraints are added the overlap q → 1, and the
volume of solutions shrinks, up to a single point at the critical storage capacity
αc = 2 (the same result was also independently obtained by Cover [51]).

Also from the algorithmic point of view, the continuous Perceptron is a
simple problem, as we will see in chapter 3: many learning rules are able to
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saturate the critical capacity of the model, from the classical Hebb and the
Perceptron Rule, to the Pseudo-Inverse and Adaline Rules [15].

2.1.1 The Ising Perceptron

Throughout this thesis, we will mostly focus on the problem of learning in
discrete artificial neural networks, i.e. networks in which the synapses are
chosen from a discrete set of possible values. The simplest case, which can
be regarded as the Ising model of ANN, is that of the binary Perceptron,
where we restrict the synaptic couplings to the corners of the N -hyper-cube
, W ∈ {−1, 1}N . We will also consider the extension to synapses with more
states, for example Wi ∈ {0, 1, ..., L}, in an analogous of the Potts model of
Statistical Mechanics. The apparent simplification of the model, due to the
restriction to “fewer” possible states, surprisingly turns out to produce a variety
of complications, both on the analytical and on the algorithmic sides of the
problem.

What motivates the choice of these discrete models is a series of biological,
engineering and theoretical motivations. From the biological experiments, we
know that the elementary computational step for learning is the modulation
of synaptic efficacy: in the last years, some neuroscientific results have hinted
at the fact that synaptic potentiation or depression might be induced through
switch-like unitary events, allowing the shift between a restricted number of
discrete stable states [13]; it was also suggested, from the analysis of some
neurophysiological data, that synaptic efficacies might be able to store a few
bits of information each (between 1 and 5) [14]. What is certain is the fact
that the biological brain is an extremely noisy yet very robust computational
environment, marginally affected by the high failure rate of its single components
or the extreme variety and blurriness of the received external stimuli: these
properties are hardly compatible with a system that relies on “floating-point”
continuous precision, as various theoretical results show that binary-synapses
models could be more adequate than continuous ones as neuronal models
exhibiting long term plasticity [28], showing an enhanced robustness against
noise.
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From the engineering point of view, switch-like synapses might be the
building block for neuromorphic applications: in order to obtain a hardware
implementation of neurons, the current attempt is to rely on the Memristor
technology [52, 53], where an electronic component can be switched into one
of two possible states, representing a binary (on/off) synapse. The hardware
implementation of artificial neural networks, able to autonomously modify
their local structure, could potentially produce a revolution in the world of
information technology. On the other hand, even in the more common software
implementation of deep neural networks, it was often observed [54, 55] that big
reductions in the precision of the numerical representation of the synapses is not
accompanied by any clear deterioration in the computational performance, thus
suggesting that a very convenient memory compression is possible. However,
it is not clear how to devise training protocols that take place directly in a
discrete space and that are able to maximize their performance in this setting.

Finally, the theoretical motivation: it is easy to see that there is a qualitative
jump in difficulty between learning in a continuous setting and in discrete one.
While the reduction in the storage capacity, when going to discrete models, is
surprisingly small, the geometric structure of the space of solutions in the SAT
region (i.e., when the constraints are satisfiable and zero energy solutions can be
found), at α < αc, becomes very complex and intriguing. As we will see in the
following sections, the space of solutions is no longer convex nor connected (if we
allow a transposition to the discrete setting of these concepts): typical solutions
are far apart in Hamming distance, surrounded by an exponential number of
glassy sub-optimal configurations that entail an extensive number of errors.
At the same time, the Gibbs measure does not undergo the usual transitions,
where the structures formed by the ensemble of solutions progressively break
apart into smaller and more numerous pure states (clusters of solution). As a
consequence, differently from other well-studied constraint satisfaction problem,
the discrete Perceptron learning problem appears to be always in a hard
phase (where only exponential algorithms should be able to find solutions),
and local search algorithms can easily get trapped in the exponential local
minima. However, the recent proposal of feasible and simple learning strategies
[29, 28, 26] stimulates a deeper theoretical analysis of the geometry of the
phase space of these models, requiring to move from the “classical” equilibrium



20 Equilibrium Analysis

description to a novel “out-of-equilibrium” analysis, able to grasp the relevant
structures allowing the effectiveness of these algorithms.

2.2 The Replica Symmetric Analysis

We start our theoretical analysis of the binary Perceptron model by revisiting
the Gardner analysis [56] in the special case of a synaptic measure of the
form: dµ (W ) = ∏

i (δ (Wi − 1) + δ (Wi + 1)). We first consider the random
classification problem [17–20], where both the components ξµ

i and the outputs
σµ are drawn uniformly at random from {−1, 1}. It is easy to see that this
model possesses a Z2 symmetry, since the cut in the phase space induced by
any random association ξ, σ is the same one induced by −ξ,−σ: this allows one
to set all the outputs to one (trivializing the corresponding average), without
loss of generality.

As introduced in section 2.1, the correct self-averaging quantity we want to
evaluate is the quenched entropy density, i.e. the normalized logarithm of the
typical number of solutions left in the space of synaptic couplings at a given
storage load α. In order to compute the average over the disorder, represented
by the possible choices for the training set, we need to apply the replica trick
(see section 2.1). Therefore, we first compute the replicated volume for positive
and discrete values of n:

〈
Ωn

(
{ξµ}αN

µ=1

)〉
ξ

=
〈∫ n∏

a=1
dµ (W a)

n∏
a=1

αN∏
µ=1

Θ
(∑

i W a
i ξµ

i√
N

)〉
ξ

(2.5)

The usual way for proceeding in the calculations is to introduce an auxiliary
variable for the arguments of the Θ-functions and to fix their value through
δ-functions:

Θ
(∑

i W a
i ξµ

i√
N

)
=
∫ dλµ,adλ̂µ,a

2π
Θ (λµ,a) exp

(
iλ̂µ,a

(
λµ,a −

∑
i W a

i ξµ
i√

N

))
(2.6)
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so that the pattern dependence is isolated in an exponential term. We are now
able to perform the disorder average, obtaining in the large N limit:〈∏

µ,a

exp
(
−iλ̂µ,a

∑
i W a

i ξµ
i√

N

)〉
ξ

=
∏
µ

exp
(
−1

2
∑
ab

λ̂µ,aλ̂µ,b

(∑
i

W a
i W b

i

N

))
+O

(
N−2

)
(2.7)

In this expression we can see the appearance of the order parameter of the
model, qab = ∑

i
W a

i W b
i

N
, representing the overlap between two different replicas

a and b. We can thus introduce an integration over its possible values via a δ-
function (where in this case the conjugate parameter q̂ab needs to be imaginary,
so we can directly substitute q̂ab → iq̂ab), and factorize over the synaptic indices
i = 1, ..., N and the pattern indices µ = 1, ..., αN , to obtain the following
expression for the replicated volume:

〈
Ωn

(
{ξµ}αN

µ=1

)〉
ξ

=
∫ ∏

a<b

dqab dq̂ab

(2π/N) exp
−N

∑
a<b

q̂abqab

 (GS)N (GE)αN (2.8)

In a physics analogy, we introduced the entropic (i.e., linked to the volume) and
the energetic (i.e., linked to the constraints) single-body partition functions,
respectively:

GS =
∫ n∏

a=1
dµ (W a) exp

∑
a<b

q̂abW aW b

 (2.9)

GE =
∫ n∏

a=1

dλadλ̂a

2π
exp

(
−1

2
∑
ab

qabλ̂aλ̂b

)
(2.10)

In order to continue with the replica calculation, we need to chose an Ansatz
on the structure of the overlap matrix: we start from the most basic one, the
RS Ansatz described in section 2.1, posing:

• qab = 1, if a = b; qab = q otherwise.

• q̂ab = q̂ for all a < b.

We can therefore proceed with the computation of the entropic term, where we
can perform a Hubbard-Stratonovich transformation, introducing the Gaussian
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measure
∫
Dz =

∫+∞
−∞

dz√
2π

e− z2
2 , to obtain:

GS = exp (−nq̂)
∫
Dz

(
2 cosh

(√
q̂z
))n

(2.11)

therefore, taking the logarithm GS = log GS, in order to recover the saddle
point expression for the entropy density, in the limit n→ 0 , we get:

GS = −n
q̂

2 + n
∫
Dz log

(
2 cosh

(√
q̂z
))

(2.12)

Similarly, we can compute the logarithm of the energetic term in the n → 0
limit, obtaining:

GE = n
∫
Dz log

(
H

(
−
√

qz√
1− q

))
(2.13)

Therefore, by neglecting the O (n) terms, the expression for the entropy in this
simple case is given by:

SRS =− q̂
(1− q)

2 +
∫
Dz log

(
2 cosh

(√
q̂z
))

+ α
∫
Dz log

(
H

(
−
√

qz√
1− q

))
(2.14)

where, following the standard notation [15], we introduced the error-function:

H (x) = 1
2erfc

(
x√
2

)
(2.15)

that will be used throughout this thesis. To compute this entropy we first
have to numerically determine the typical values for the RS overlap q and its
conjugate parameter q̂, by imposing the saddle point conditions, ∂SRS/∂q = 0
and ∂SRS/∂q̂ = 0, and iterating the obtained equations.

Unfortunately, if we study the behavior of the RS entropy we get some
puzzling results:

• the entropy becomes negative after a threshold, found numerically at
αS=0 = 0.833: in a discrete model, where the entropy is associated to a
counting operation of a numerable set of points, negative values of the
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entropy do not make sense, so the calculation must be incorrect above
this threshold.

• the overlap q reaches the value 1 only much later, at a storage load
αE>0 = 1.27; after this threshold value, the zero temperature energy of
the model is found to become strictly positive, so the RS calculation
predicts this value as the critical capacity of the model.

Both these thresholds need to be compared with a third threshold, α = 1, this
time obtained from a sanity check: since we are studying the case where both
the patterns and the synapses are binary, it is easy to see that storing more
than N bits of information (the correct outputs) into N bits (the synapses)
would produce an information paradox. It is therefore clear that the q → 1
criterion is no longer sufficient (as it was in the continuous Perceptron, see 2.1)
for determining the critical threshold αC of the model, and that the symmetry
that was assumed in the RS Ansatz might be spontaneously broken before,
thus causing some wrong predictions for the energy.

One way of checking whether a specific Ansatz might be suitable for a replica
calculation, is to evaluate the local stability of the saddle point [49], by studying
the Hessian of the entropy (or of the free energy, in general) in correspondence
of the typical values for the parameters. In the binary Perceptron model the
instability is numerically found above αAT = 1.015, so the threshold prediction
at αE<0 must be discarded. However, even below this threshold we need to
check for the global stability of the RS solution, since the model (undergoing
some sort of a first order transition) might have many stable stationary points,
and in the limit N →∞ only the maximum will prevail. The global stability
analysis can be done by considering one step of replica symmetry breaking, as
in Parisi’s 1RSB Ansatz, in the calculation of the quenched average.

2.3 1-step Replica Symmetry Breaking

The 1RSB Ansatz follows a hierarchical symmetry breaking scheme, originally
proposed by Parisi [35], describing a disconnected space of solutions, populated
by clustered structures: the solutions are now organized in an exponential
number of groups, geometrically separated between each other. Because of
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the glassy landscape, ergodicty is assumed to be completely broken and the
Gibbs measure is decomposed into a convex linear combination of pure states
α, related to each one of the different clusters and weighed by a probability Pα.
Thus, the expectation value of any given observable O will be given by:

⟨O⟩ =
∑

a

Pa ⟨O⟩a (2.16)

In this more complex Ansatz we need to differentiate between the intra-cluster
overlap q1 and the inter-cluster overlap q0 (with q1 > q0), defined as:

q1 = 1
N

∑
i

⟨Wi⟩2a (2.17)

q0 = 1
N

∑
i

⟨Wi⟩a ⟨Wi⟩b (2.18)

Moreover we also introduce the Parisi parameter m = 1 −∑a P
2
a, such that

P (q) = mδ (q − q0) + (1−m) δ (q − q1). The Parisi parameter can be used for
focusing the measure on different clusters, spanning the space of solutions from
the dominant to the sub-dominant structures, and allowing us to find the correct
(globally stable) extremum of the free energy. Specifically, the n replicas will be
grouped in n

m
blocks, containing m replicas each. It is useful to split the replica

indices a = 1, ..., n in two new indices expliciting the hierarchical organization:
a = (α, β), where α ∈ {1, ..., n/m} labels the blocks, and β ∈ {1, ..., m} labels
the replicas inside the blocks.

So we can go back to expression 2.8, and try the substitutions:

• qαβ,α′β′ = 1, if α = α′, β = β′; qαβ,α′β′ = q1 if α = α′ and β ̸= β′;
qαβ,α′β′ = q0 otherwise.

• q̂αβ,α′β′ = q̂1 if α = α′ and β ̸= β′; q̂αβ,α′β′ = q̂0 otherwise.

We can continue the computation, by performing two Hubbard-Stratonovich
transformation in the entropic and energetic terms, and obtain the 1RSB
expression ([17]) for the entropy density:

S1RSB = − q̂1 (1− q1)
2 − m

2 (q̂1q1 − q̂0q0)−
q̂0q0

2 + GS + αGE (2.19)
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with the definitions:

GS = −n

2 q̂1 + n

m

∫
Dz0 log

∫
Dz1

(
2 cosh

(√
q̂1 − q̂0z1 +

√
q̂0z0

))m

(2.20)

GE = n

m

∫
Dz0 log

∫
Dz1H

(
−
√

q1 − q0z1 +√q0z0√
1− q1

)m

(2.21)

At the critical threshold, we now expect the various clusters to shrink and
eventually disappear, while being still well separated in the solution space:
therefore we can study the limit q1 → 1 with q0 < 1. One can see that near
the threshold the conjugate parameter q̂1 explodes as ∼ 1/

√
1− q1, and obtain

the new saddle point equation for m in this limit: by choosing a proper scaling,
q̂0 = q̂/m2 and q0 = q, the resulting equation can be recognized as equivalent
to the requirement SRS (αC) = 0. We already know that this happens at the
threshold found in the previous paragraph, αC = αS=0 = 0.833, therefore the
critical capacity can be correctly estimated through a so-called zero entropy
criterion [17]. It is important to stress the impressive robustness of neural
networks, as the storage capacity is only cut to roughly 40%, when going
from continuous to binary synapses. In correspondence of αC the inter-cluster
overlap is still notably small, q ∼ 0.5, and this is one of the reasons the q → 1
criterion gave incorrect results in the RS Ansatz. The behavior of the entropy
density is exactly the same one observed in the RS Ansatz until α < αC , while
above the critical threshold it is corrected, as the entropy remains fixed to 0
(avoiding unphysical negative values). In figure 2.2, we can see the entropy
density curve as a function of the storage load α.

In general, in a 1RSB analysis, one assumes to find at each m an exponential
number, N (m) ∝ exp (NΣ (m)), of pure states characterized by different
internal entropies: the dominant contribution to the measure is given by the
Legendre transformation:

S ∼ extrm [mS (m) + Σ (m)] (2.22)

However, a part from the dominant solutions, described at the saddle point
value for m, we can also look for different ones, by dropping this stationarity
requirement and spanning the entire interval 0 ≤ m ≤ 1. We can thus further
characterize the sub-dominant clusters and separate their contributions to
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Fig. 2.2 Entropy density curve as a function of the storage load. The RS prediction
is exact until the critical threshold αc = 0.833, after which it returns negative values
for the entropy. However, this problem is fixed in the 1RSB Ansatz.

S (m), into an internal entropy S and a complexity (or external entropy) Σ,
defined as:

S (m) = ∂

∂m
[mS (m)] (2.23)

Σ (m) = −m2 ∂

∂m
[S (m)] (2.24)

These potentials represent, respectively, the number of solutions inside each
cluster (of the size determined by m) and the number of clusters of this size.

Interestingly, in the binary Perceptron, no other solutions can be found
below α < αC except for the one with q1 = 1 and q0 = qRS, and the trivial
one (equivalent to the RS Ansatz), with m = 0 and q1 = q0 = qRS. From a
finite temperature study, which can be found in detail in [17], we report that
a total freezing phenomenon can be observed for values α > αC : if T > Tc,
there still is only the RS solution; if T < Tc a 1RSB solution can be found
with m = T/Tc, q0 = q, q̂0 = q̂/m2, q1 = 1 and q̂1 =∞. The free energy of the
systems is found to be independent of T and equal to the replica symmetric
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free energy at Tc. This transition is similar to a first order one, since the order
parameter function (a sum of two δ-functions) is discontinuous, while the free
energy is still continuous around Tc.

Because of the non-rigorous nature of the replica calculations, we cannot
state that these results are correct, but it was proven (again in [17]) that they
are robust with respect to additional steps of replica symmetry breaking. In
fact, from the 2RSB calculation one can find no other solutions, implying
that there are no further symmetry breaking effects to be taken into account.
Therefore the geometrical picture in the binary Perceptron model seems to be
the following:

• The equilibrium analysis is not able to find any sub-dominant structures
in the solution space, with 0 ≤ m ≤ 1 and q1 ̸= 1.

• The dominant solutions do not merge into clusters of various sizes, but
seem to be organized into an exponential number of point-like pure states,
for any α < αC .

• Below the critical threshold, the model is RS with a unique pure state
described by the overlap order parameter qRS. However, this state is
peculiar in that, in a 1RSB analysis, it can also be seen as an ensemble
of point-like clusters, with q1 = 1 and q0 = qRS: these states have
zero internal entropy, but the complexity (i.e., the number of states) is
equivalent to the RS internal entropy (i.e. the number of solutions in the
RS cluster).

2.4 Learning from a teacher

The teacher-student scenario can be studied by means of the replica trick in a
very similar way, resulting in some slightly more involved calculations [15]. In
this case, of course, the statistics of the outputs σµ is not trivial, since they are
determined by the teacher device W T . However, since we want to describe the
typical learning behavior, which would require an average over all the possible
choices for the teacher, in full generality we can instead exploit the symmetry
of the problem and fix the gauge W T

i = 1, for all i = 1, ..., N .
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Therefore, every constraint will now require an additional substitution for
the label σ = sign (∑i ξ), but we can exploit the scaling invariance of the
Θ-function and write the constraints as:

Θ
(∑

i ξi√
N

∑
i W a

i ξµ
i√

N

)
=
∫ duµdûµ

2π

∫ dλµ,adλ̂µ,a

2π
Θ (uµλµ,a)

exp
(

iλ̂µ,a

(
λµ,a −

∑
i W a

i ξµ
i√

N

)
+ iûµ

(
uµ −

∑
i ξµ

i√
N

))
(2.25)

Now, in the disorder average, we have two terms depending on the patterns,
so we need to introduce a new order parameter:

Ra = W T ·W a

N
=

N∑
i=1

W a
i

N
(2.26)

representing the alignment between the typical student, i.e. one of the dominant
solutions of the training problem, and the teacher. The rest of the computation
is very similar to the previous one, giving the following result:

S =− q̂
(1− q)

2 − R̂R

+
∫
Dz log

(
2 cosh

(√
q̂z + R̂

))
+ 2α

∫
Dz H

(
− R z√

q −R2

)
log

(
H

(
−
√

qz√
1− q

))
(2.27)

If we analyze the behavior of the entropy density, similarly to the random
classification case we can see that the RS Ansatz predicts a threshold, at
αD = 1.245, after which the symmetry assumption becomes incorrect, since the
entropy reaches unphysical negative values. Again, the computation can be
revised in the 1RSB approach, where one can see that, after αD, the RS saddle
point no longer gives the global maximum of the entropy, which is instead
found at the extremal value R = 1 (where of course the entropy density is
S = 0, as the phase space has shrunk to the single teacher configuration).
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It is natural to question the performance of the typical student on so far
unseen input-output associations, by studying the generalization error :

ϵ (α) =
〈

Θ
(
−W T · ξ⋆

(
N∑

i=1

Wi · ξ⋆
i

N

))〉
{ξµ,σµ}αN

µ=1

(2.28)

which is simply computed as the probability of obtaining a classification error
on a new random pattern, after the learning procedure. This quantity is the
main probe of the learning performance of an ANN, even when one deals with
real world data. Of course, we expect from our geometrical intuition that the
generalization properties of the solutions W are determined by their alignment
with the teacher, measured by the R order parameter. In fact the simple result
is:

ϵ (α) = 1
π

arccos (R (α)) (2.29)

Because of the first order transition at αD = 1.245, in correspondence of this
threshold we have a discontinuous jump to perfect learning: all the other
solutions to the learning problem are decimated and the sole teacher is left
[18, 15]. However, from the algorithmic point of view, there is a large window
around αD, extending until α ≃ 1.5, where the problem of numerically finding
the teacher remains hard, even when the provided information is theoretically
sufficient for determining it. This is probably due to the presence of a meta-
stable regime [15, 29]. In figure 2.3 we can see the entropy density and
generalization curves as a function of the storage load α.

2.5 The generalized Perceptron

As stated in the introduction, we are also interested in considering the general
discrete case, where the synaptic weights can take values in a finite discrete
set. Let’s consider, for simplicity, the set Wi ∈ {0, 1, . . . , L− 1, L}, where L is
the value of the highest available synaptic state. We can also consider a more
general scenario for the input-output patterns, where we allow a bias in the
statistics of the inputs and outputs P (x) = fδ (x− 1) + (1− f) δ (x), and we
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Fig. 2.3 Entropy density and generalization error as a function of the storage
load. At low α, where the entropy density is strictly positive, the RS Ansatz
produces correct results, in agreement with the 1RSB analysis. After the critical
value αD = 1.2445, the extremal point R = 1 becomes the global minimum and the
generalization error drops to zero discontinuously.

assume them to be sparse, ξµ
i , σµ ∈ {0, 1}: in this context the bias f is in fact

called sparsity or coding level of the model.

Because of the different choices for the synapses and the pattern distribution,
the average of the scalar product is no longer centered around 0, and we must
introduce a firing threshold θ; therefore, the state of the generalized discrete
neuron is determined as:

τ (W, ξ) = Θ
(

N∑
i=1

Wiξi − θN

)
(2.30)

In order to repeat our Statistical Physics analysis in the random classification
scenario, we thus have to modify the definition of the constraints to the form:

Θ
(

(2σµ − 1)
(

N∑
i=1

Wiξi√
N
− θ
√

N

))
(2.31)
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Following step by step the calculations of section 2.2, we need to perform the
average over the pattern distribution, giving:

∏
µ,i

〈
exp

(
− i√

N

(∑
a

λ̂a
µW a

i

)
ξµ

i

)〉
ξ

= (2.32)

∏
µ

exp
(
−iξ
√

N

(∑
a

λ̂a
µ

∑
i

W a
i

N

)
−

σ2
ξ

2

(∑
ab

λ̂a
µλ̂b

µ

∑
i

W a
i W b

i

N

))

As we can see the result explicitly depends on the average ξ and the varianceσ2
ξ

of the pattern distribution, and we need to introduce an additional order
parameter for the L1-norm of the synaptic weights. In order for the Perceptron
to be able to balance its outputs it is natural to require that, on average:

W = θ

f
(2.33)

However, since the distribution of the outputs is also biased, we need to
introduce an O

(
1√
N

)
correction, controlled by a new order parameter, M :

∑
i

Wi

N
= W + M√

N
(2.34)

The only remaining difference with respect to the binary case comes from the
fact that the L2-norm of W is no longer trivially fixed to N , so we also add the
associated order parameter Qa = ∑

i (W a
i )2 /N . The computation can proceed

in the same fashion of the one presented in section 2.2, obtaining the final
result:

S = −q̂
q

2 − Q̂Q− M̂W + GS + αGE (2.35)
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Fig. 2.4 A. Critical capacity αc as a function of of the number of states per synapse
L + 1, for different values of the coding rate f . B. Same as in panel A, but only
for the dense (unbiased) case f = 0.5, with a wider range of L, and showing a fit of
the form α∞ − a

Lb over the last part of the curve (L ≥ 5). The fit parameters are
α∞ ≃ 1.0, a ≃ 0.5, b = 0.85.

with the generalized entropic and energetic contributions:

GS =
∫
Dz log

(
L∑

l=0
exp

((
Q̂− 1

2 q̂
)

l2 +
(

z
√

q̂ + M̂
)

l
))

(2.36)

GE = (1− f)
∫
Dz log

H

ξM − z
√

σ2
ξ q√

σ2
ξ (Q− q)


+ f

∫
Dz

〈
log

H

−ξM + z
√

σ2
ξ q√

σ2
ξ (Q− q)

〉
s

(2.37)

As it is clear from a simple comparison between the expressions obtained in
the binary and the general discrete case, the qualitative scenario is not modified
by they introduction of many synaptic states or by the sparse statistics of the
patterns. The model is still Replica Symmetric, as the RS entropy density curve
is exact until αc = αS=0, after which there is a freezing phenomenon. Of course,
we expect the critical capacity to increase with the addition of more degrees
of freedom to the model, as L→∞, and with a reduction in the information
content of the single patterns, as f → 0. We can thus use the RS expression
for the entropy density, and the zero-entropy criterion, for computing the exact
dependence of theoretical critical capacity of the system on the number of
states per synapse L + 1 and of the coding rate f .
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We know from the literature that:

• The Perceptron with positive continuous weights (corresponding to the
limit L→∞ of our discrete model) has a critical capacity ofαc = 1 when
the inputs are extracted uniformly from {0, 1} (i.e., f = 0.5) [57];

• The binary Perceptron, with Wi ∈ {0, 1} (L = 1) and unbiased inputs
f = 0.5, reaches a capacity of αc = 0.59 [58]; the optimal neuronal
threshold θ, in this case, is θ ≃ 0.16.

Figure 2.4B shows the saturation of the continuous limit αc = 1. as L is
increased in the f = 0.5 case. From this study, one can extract an interesting
general observation: the gain in capacity, when an ulterior synaptic state is
added, decreases very rapidly after the first few values. Therefore, it seems that
indefinitely increasing the synaptic precision could prove not to be a sensible
engineering (or biological) strategy: notwithstanding a linear increase in the
implementation cost one only obtains a small computational or representational
advantage. This new theoretical result is consistent with the hypothesis that
biological synapses would only need few bits of precision [3].

2.6 Local exploration of the solution landscape

In the last few sections we have described the geometrical organization of
typical solutions of discrete Perceptron models: below the critical threshold
αC , these constraint satisfaction problems are always found to be in a peculiar
RS phase, where the Gibbs measure is a pure state formed by an exponential
number of point-like clusters, with an internal overlap q1 = 1, and with an
inter-cluster overlap q0 = qRS equal to the value of the typical overlap obtained
in the RS analysis.

We can continue our analysis by asking a different question: what does
the immediate neighborhood of a typical solution look like? Is it possible to
find other solutions in close proximity? The suitable theoretical framework
for getting some insight about the local properties of the solution space was
originally proposed by Parisi and Franz in [59]. In that context the goal was
to give a characterization of the meta-stable state structures in mean-field
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spin glasses: they introduced a free energy potential, the so-called Franz-Parisi
potential, measuring the cost of maintaining a system at a given temperature,
while under the constraint of being at a fixed distance from an equilibrium
configuration selected at a different temperature.

However, as proposed in [22], it is possible to consider a zero-temperature
limit of this procedure and use the same formalism for describing the en-
tropic landscape around a typical solution of a constraint satisfaction problem.
Therefore, in the following, we investigate these local properties in the binary
case, both in the classification and in the teacher-student scenarios [1]. The
binary case is here considered for simplicity, while the generalization to the
discrete Perceptron and sparse patterns can be found in [3]: we report that the
qualitative results are unaltered also in that scenario.

2.6.1 Random Classification scenario

The computation of the Franz-Parisi potential is conceptually divided in two
stages: first, one selects a reference configuration W̃ from the equilibrium
Boltzmann-Gibbs measure at a certain inverse temperature β′; then, the idea
is to evaluate the free energy of a coupled model where the configurations
{W}, at inverse temperature β, are constrained to be at a distance D from the
reference point:

SF P (β′, β, D) = 1
N

〈
1

Z (β′)
∑
{W̃}

e−β′E(W̃) log
∑

{W }
e−βE(W )δ

(
d
(
W, W̃

)
−D

)〉
{ξ,σ}

(2.38)

In the following we will consider the Perceptron as a constraint satisfaction
problem, in the limit where both temperatures are set to zero (β, β′ → ∞).
An important remark has to be made: the sampling of W̃ is completely
unaffected by the coupling to the {W} system, since this configuration is
extracted at random from a flat distribution over all possible solutions (i.e.,
the Gibbs measure at zero temperature) and represents the typical solution
(i.e. numerically dominant and thus most frequent). Again, as in section 2.2,
we can set all the outputs σµ = 1, µ = 1, ..., αN .
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As noted above, the Franz-Parisi potential can be interpreted as a typical
local entropy density of solutions:

SF P (D) = 1
N

〈〈
log

∑
{W }

∏
µ

Θ
(∑

i

Wiξ
µ
i√

N

)
δ
(
d
(
W, W̃

)
−D

)〉
W̃

〉
{ξ}

(2.39)

where the averaging ⟨·⟩W̃ is performed over the flat measure on all solutions to
the problem, and depends on the quenched noise {ξµ}. For a generic function
f , the two averages can be written as:

〈〈
f
(
{ξµ} , W̃

)〉
W̃

〉
{ξµ}

=
〈∫ ∏

i dµ
(
W̃i

)∏
µ Θ

(∑
i

W̃iξ
µ
i√

N

)
f
(
{ξµ} , W̃

)
∫ ∏

i dµ
(
W̃i

)∏
µ Θ

(∑
i

W̃iξ
µ
i√

N

) 〉
{ξµ}

(2.40)

This kind of ensemble average can be rewritten using the replica trick: we
write the denominator as the product of ñ−1 replicas and take the limit ñ→ 0,
assigning the replica index 1 to the expression in the numerator and the indices
2 to ñ to the others. In the following, we will always use the indices c and d

for the replicas of the reference typical configuration:

〈
f
(
{ξµ} , W̃

)〉
W̃

= lim
ñ→0

∫ ∏
ic

dµ
(
W̃ c

i

)∏
cµ

Θ
(∑

i

W̃ c
i ξµ

i√
N

)
f
(
{ξµ} , W̃ 1

)
(2.41)

Moreover, we will use the indices a, b ∈ {1, . . . , n} for the replicated W and
c, d ∈ {1, . . . , ñ} for the replicated W̃ .

SF P (D) = 1
N

lim
n,ñ→0

∂

∂n

〈∫ ∏
i,c

dµ
(
W̃ c

i

) ∫ ∏
i,a

dµ (W a
i )
∏
cµ

Θ
(∑

i

W̃ c
i ξµ

i√
N

)

×
∏
aµ

Θ
(∑

i

W a
i ξµ

i√
N

)∏
a

δ

(
1
2
∑

i

(
W a

i − W̃ 1
i

)2
− 2DN

)〉
ξ,σ

= 1
N

lim
n→0

∂

∂n
Ωn

F P (D) (2.42)
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As usual, we first need to introduce some auxiliary variables for extracting the
disorder dependence in the constraints:

∏
c

Θ
(∑

i

W̃ c
i ξµ

i√
N

)∏
a

Θ
(∑

i

W a
i ξµ

i√
N

)
= (2.43)

∫ ∏
µ,a

dλa
µdλ̂a

µ

2π

∫ ∏
µ,c

dλ̃c
µdˆ̃λc

µ

2π

∏
µ,a

Θ
(
λa

µ

)∏
µ,c

Θ
(
λ̃c

µ

)∏
µ,a

eiλa
µλ̂a

µ

×
∏
µ,c

eiλ̃c
µ

ˆ̃λc
µ
∏
µ,i

〈
exp

(
− i√

N

(∑
a

λ̂a
µW a

i +
∑

c

ˆ̃λc
µW̃ c

i

)
ξµ

i

)〉
ξ

Now we can perform the average over the pattern distribution:

∏
µ,i

〈
exp

(
− i√

N

(∑
a

λ̂a
µW a

i +
∑

c

ˆ̃λc
µW̃ c

i

)
ξµ

i

)〉
ξ

= (2.44)

∏
µ

exp
(
−i
√

N

(∑
a

λ̂a
µ

∑
i

W a
i

N
+
∑

c

ˆ̃λc
µ

∑
i

W c
i

N

)
+

−1
2

(∑
ab

λ̂a
µλ̂b

µ

∑
i

W a
i W b

i

N
+
∑
cd

λ̂c
µλ̂d

µ

∑
i

W̃ c
i W̃ d

i

N
+ 2

∑
ac

λ̂a
µ
ˆ̃λc

µ

∑
i

W a
i W̃ c

i

N

))

We can see that the coupled model can be described by the following order
parameters:

• q̃cd = ∑
i

W̃ c
i W̃ d

i

N
, representing the overlap between two typical solutions of

the binary Perceptron.

• qab = ∑
i

W a
i W b

i

N
, representing the overlap between the coupled replicas

W a.

• Sca = ∑
i

W a
i W̃ c

i

N
, representing the overlap between one of the replicas W a

(coupled to W̃ 1), and the reference solutions W̃ c.

We substitute these definitions in the expression of the replicated volume
Ωn (D), by using the integral representation of the Dirac delta distribution,
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and rearrange the integrals in order to factorize over the µ and i indices:

Ωn
F P (D) = lim

ñ→0

∫ ∏
c>d

dq̃cddˆ̃qcd

(2π/N)

∫ ∏
a>b

dqabdq̂ab

(2π/N)

∫ ∏
ca

dScadŜca

(2π/N) (2.45)

×
∫ ∏

a

dD̂a

2π
G1 (GS)N (GE)αN

where we have singled out a first term G1 and the so-called entropic and
energetic contributions GS, GE:

G1 = exp
−N

∑
c>d

ˆ̃qcdq̃cd +
∑
a>b

q̂abqab +
∑
ca

ŜcaSca

+
∑

a

D̂a
(
1− 2D − S1a

)))
(2.46)

GS =
∫ ∏

c

dµ
(
W̃ c

) ∫ ∏
a

dµ (W a) exp
∑

c>d

ˆ̃qcdW̃ cW̃ d +
∑
a>b

q̂abW aW b+

+
∑
ca

ŜcaW aW̃ c

)
(2.47)

GE =
∫ ∏

a

dλadλ̂a

2π

∫ ∏
c

dλ̃cdˆ̃λc

2π

∏
a

Θ (λa)
∏

c

Θ
(
λ̃c
)

× exp
(

i

(∑
a

λaλ̂a +
∑

c

λ̃c ˆ̃λc

)
− 1

2
∑

a

(
λ̂a
)2
− 1

2
∑

c

(
ˆ̃λc
)2

−1
2
∑
(a,b)

λ̂aλ̂bqab − 1
2
∑
(c,d)

ˆ̃λc ˆ̃λdq̃cd −
∑
ac

λ̂a ˆ̃λcSac

 (2.48)

As in the previous computations, we continue by making an RS assumption in
the structure of the replicated order parameters. However, we have to make
a distinction between the overlaps S, involving the replica W̃ c=1 appearing
in the distance constraint, and S̃ involving the other replicas of the reference
configuration:

• Sca = S for c = 1, Sca = S̃ for c ̸= 1.

• qab = q, q̃cd = q̃, D̂ca = D̂.
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We start by working on the first term G1, where the ñ→ 0 limit can be taken
directly, obtaining up to order O (n):

G1 = exp
(
−Nn

(
−1

2 q̂q + ŜS − ˆ̃SS̃ + D̂ (1− 2D − S)
))

(2.49)

In the entropic term, in order to be able to completely factorize over the indices
c = 1, ..., ñ and a = 1, ..., n, we have to reorganize the term:

ˆ̃S
∑

a

W a
∑

c

W̃ c = 1
2

ˆ̃S
(∑

a

W a +
∑

c

W̃ c

)2

− 1
2

ˆ̃S
(∑

a

W a

)2

− 1
2

ˆ̃S
(∑

c

W̃ c

)2

(2.50)

and then perform three Hubbard-Stratonovich transformations, for eliminating
the squared sums, with the Gaussian variables x, z and z̃.

Then, we go through the following analytical steps:

1. Factorize over the replica index of the reference configurations.

2. Take the limit ñ→ 0, restoring the presence of the denominator.

3. Take the logarithm of the expression in the n→ 0 limit (GS = log GS/n).

4. Perform two rotations, between the integration variables (z̃, x) and (z,
x).

5. Compute analytically the
∫
Dx integral.

The final expression for the entropic term thus reads:

GS = − ñ

2n
ˆ̃q − 1

2 q̂+ (2.51)

+
∫
Dz

∫
Dz̃

∑
W̃ exp

(
z̃
√

q̂W̃
)

log
(

2 cosh
(

z

√
q̂ ˆ̃q− ˆ̃S2

ˆ̃q + z̃
ˆ̃S√

ˆ̃q
+ ∆Ŝ W̃

))
2 cosh

(
z̃
√

q̂W̃
)

where we defined ∆Ŝ = Ŝ − ˆ̃S.

We proceed similarly with the computation of the energetic term:

1. Reorganize the term coupled to the parameters S and S̃.
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2. Take the ñ→ 0 limit.

3. Take the logarithm of the expression in the n→ 0 limit.

4. Set ∆S = S − S̃.

5. Evaluate the λ̂ and λ integrals, using the error function H (x) defined in
equation 2.15.

6. Perform the change of variables z′ = z − iˆ̃λ∆S
√

σ2
ξ√

q−S̃
.

7. Perform two rotations between (z̃, x) and (z, x)

The point of the last steps where to be able to perform analytically the
∫
Dx

integral:

∫
Dx H

−
z̃
√

q̃ + z
(

∆S
√

q̃√
qq̃−S̃2

)
+ x

 ∆S

√
(q̃−S̃)S̃√

(qq̃−S̃2)(q−S̃)


√

1− q̃ − (∆S)2

q−S̃

 =

H

−
z̃
√

q̃ + z
(

∆S
√

q̃√
qq̃−S̃2

)
√

1− q̃ − (∆S)2

q−S̃
+ ∆S2S̃(q̃−S̃)

(qq̃−S̃2)(q−S̃)

 (2.52)

Finally, we integrate over ˆ̃λ and λ̃ to obtain, in the n→ 0 limit:

GE = log GE/n = (2.53)

∫
Dz

∫
Dz̃

H

− z̃
√

q̃+z

(
∆S

√
q̃√

qq̃−S̃2

)
√

1−q̃− (∆S)2
q−S̃

+ ∆S2S̃(q̃−S̃)
(qq̃−S̃2)(q−S̃)

 log

H

− z

√(
qq̃−S̃2

q̃

)
+z̃

√
S̃2
q̃

√
1−q




H

(
−x
√

S̃+z̃
√

q̃−S̃√
1−q̃

)

Plugging all the terms into the expression of the volume, and recovering the
initial expression in the n → 0 limit, we can now write the saddle point
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approximation for the Franz-Parisi potential:

SF P (D) ≈ − 1
2 q̂ (1− q)− ŜS + ˆ̃SS̃ − D̂ (1− 2D − S) + GS + αGE (2.54)

All the order parameters must satisfy the saddle point equations, obtained
through the stationarity requirement δSF P = 0. A useful observation that can
be made, is that the reference solution is sampled independently from the flat
Boltzmann distribution, so the typical value for the order parameterq̃ is the
RS value, qRS, found in the calculation presented in section 4.2.

Numerically, the resulting sub-system of 7 coupled equations can be easily
solved by iteration, using Newton’s method for the homogeneous equations.
In order to minimize the number of homogeneous equations and strongly help
convergence, one can recast the equations and use Q̂ as a control parameter
instead of D, since at the saddle point Q̂ (D) is a bijective function of the
distance.

As can be seen in figure 2.5, the qualitative result obtained from this
calculation is very interesting: for all values of α, the typical solutions of the
problem are extensively isolated, since a zero entropy gap is found in the close
neighborhood (D → 0) of the references W̃ . Moreover, the minimal Hamming
distance separating two solutions grows with the constraint density (see a
sketch in figure 2.6). As suggested in [22], this geometrical landscape might
explain the origin of the computational hardness in the binary Perceptron
problem: when the number of synapses becomes large, learning strategies
based on local exploration of the weight space (e.g., MCMC algorithms) will
exhibit an exponential scaling in computational time for reaching finite storage
capacities.

2.6.2 Teacher student scenario

We need to check whether the isolation property is only due to the random
uncorrelated nature of the classification scenario. We therefore study the same
Franz-Parisi potential also in the teacher-student-scenario [1], where the correct
labels are correlated by the presence of a teacher: as in section 2.4 we can fix
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Fig. 2.5 Franz Parisi potential for the binary Perceptron in the random classifi-
cation case. The upper bound is obtained by counting all the configurations at the
given distance D (equivalent to the α = 0 case). At all values of α, the Franz-Parisi
potential becomes negative for positive values of the extensive distance D, signaling
an entropy gap below that radius. Moreover, the gap widens as more constraints are
added to the problem.

Fig. 2.6 Sketch of the phase space of the random binary Perceptron, as described
by the equilibrium analysis. The typical solutions of the problem are extensively
isolated at any pattern load.
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arbitrarily the teacher: we choose again W T
i = 1 for all i = 1, ..., N , so that for

a given pattern ξ its correct output function is sign (∑i ξi).

The Franz-Parisi potential still consists of two steps: we generate αN

random patterns, and we pick at random a typical student Perceptron with
binary weights W̃ ∈ {−1, 1}, which correctly classifies those patterns, and
which we call “pseudo-teacher” in the following; then, we study the solution
space of the training problem with an additional interaction term between the
new student Perceptrons and the pseudo-teacher. In this way, we can describe
the space of the solutions in the neighborhood of a given solution.

Both the patterns and the pseudo-teacher are considered as part of the
quenched disorder and will be averaged out. As we have seen before, the
addition of the correct outputs introduces an interaction between the students
and the teacher: in this case we have two new order parameters, the overlap
between the pseudo-teachers and the teacher R̃c = ∑

i
W̃ c

i

N
, and the overlap

between a student and the teacher Ra = ∑
i

W a

N
. The computation follows

straightforwardly the one presented in the previous paragraph: we only have
to note that in the RS Ansatz the dependence on the replica indices in R and
R̃ is completely dropped.

After some manipulation one obtains the entropic contribution to the Franz-
Parisi potential:

GS =− q̂

2 + log 2 +
∫

Dz log cosh
(

z
√

q̂ + R̂ + ∆Ŝ
)

+

−
∫

Dz log
cosh

(
z
√

q̂ + R̂ + ∆Ŝ
)

cosh
(
z
√

q̂ + R̂−∆Ŝ
)

×
∫

Dz̃
1

1 + exp
(

2
((

zT̂ + z̃
√

1− T̂ 2
)√

ˆ̃q + ˆ̃R
)) (2.55)

where we defined:

∆Ŝ = Ŝ − ˆ̃S (2.56)

T̂ =
ˆ̃S√
q̂ ˆ̃q

(2.57)
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and the energetic term, which instead reads:

GE =2
∫

Dz
∫

Dz̃

H

 R̃
√

p(zT −z̃
√

1−T 2)−zR
√

q̃√
(q̃−R̃2)(p−R2)−(S̃−RR̃)2


H
(
−
√

q̃
1−q̃

z̃
)

×
∫ ∞

−z̃

√
q̃

1−q̃

Dλ̃ log H

−√p
(
z
√

1− T 2 + z̃T
)

+ ∆S√
1−q̃

λ̃
√

1− q

 (2.58)

with the definitions:

∆S = S − S̃ (2.59)

p = q − ∆S2

1− q̃
(2.60)

T = S̃√
q̃p

(2.61)

Therefore the final expression for the local entropy density is thus given by:

SF P (D) = −1
2 q̂ (1− q)− ŜS + ˆ̃SS̃ − D̂ (1− 2D − S)−RR̃ + log 2 + GS + αGE

(2.62)

The order parameters q̃, R̃ and their conjugates can again be fixed to their RS
value, found in the typical teacher-student setting (see section 2.4). Therefore,
we can add the restrictions that

q̃ = R̃ = q⋆ (2.63)
ˆ̃q = ˆ̃R = q̂⋆ (2.64)

where q⋆ and q̂⋆ satisfy:

q⋆ =
∫

Dz tanh
(

z
√

q̂⋆ + q̂⋆
)

(2.65)

q̂⋆ = α

√
2
π

1√
1− q⋆

∫
Dz GH

(
z
√

q⋆
)

(2.66)
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and where we defined the function GH as the ratio of the gaussian and the
error-function:

GH (x) = G (x)
H (x) (2.67)

When these constraints are added, the saddle point equation can be simplified,
since the expressions for S̃ and ˆ̃S become equivalent to those for R and R̂,
respectively. More precisely: assuming S̃ = R it can be proved that ˆ̃S = R̂,
and vice-versa. Numerical simulations confirm that this is the solution which
is found when solving the full saddle point equations by an iterative procedure.
Therefore, 6 order parameters remain to be determined. The reduction also
allows a drastic simplification of the equations, allowing to perform a further
analytical integration in each expression, after a change of variables.

First, we write the expressions of GS and GE, which are needed for the
computation of the entropy (2.62):

GS =
∫

Dz log cosh
(

z
√

q̂ + Ŝ
)

(2.68)

GE = 2
∫

Dz log H

(
z

√
q

1− q

)
H

(
z

S

q − S2

)
(2.69)

Then, we write the simplified expressions for the saddle point equations:
the overlaps read:

q =
∫

Dz tanh
(

z
√

q̂ + Ŝ
)2

(2.70)

R =
∫

Dz
∫

Dz̃ tanh
(

z
√

q̂ + Ŝ
)

tanh

z
R̂√
q̂

+ z̃

√√√√q̂⋆ − R̂2

q̂
+ q̂⋆

 (2.71)

S =
∫

Dz tanh
(

z
√

q̂ + Ŝ
)

(2.72)
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and the conjugate parameters are given by:

q̂ = 1
π

α√
1− q2

∫
Dz

H
(
z S

q−S2

√
1−q
1+q

)
H
(

z
√

q
1+q

)2 (2.73)

R̂ = 2α√
1− q⋆

√
1− q

∫
Dw

∫
Dz G

(
z

√
q⋆

1− q⋆

)

×H


√

q⋆

1− q⋆

z
√

q − R2

q⋆ + w S−R√
q⋆√

q − R2

q⋆ − (S−R)2

1−q⋆

 log H

w
√

q − R2

q⋆ + z R√
q⋆√

1− q


(2.74)

Ŝ = γ +
√

2
π

α√
1− q

∫
Dz G

(
z

√
q − S2

1− q

)
(2.75)

Note that q, S, q̂ and Ŝ form a closed system of equations which can be
solved independently. These equations are the same which would be obtained
by studying the teacher student problem and coupling the students with the
teacher via a distance constraint, except that the overlap S would play the
role of the overlap between the student and the teacher in that case, rather
than the pseudo-teacher. This fact, together with the facts that S̃ = R and
that the entropy does not depend on R or R̂, leads to the conclusion that
the typical solution to the teacher student problems, which we chose as our
pseudo-teachers, are indistinguishable from the teacher in everything except
the generalization properties. It is also interesting to note that by setting R

and R̂ to 0, we recover the expressions for the classification problem, which
also happens for the standard teacher-student problem.

Numerical evaluations of the Franz-Parisi potential show that, for all α > 0,
the local entropy is always negative in a neighborhood of S = 1, meaning that
all typical solutions (including the teacher itself) are extensively isolated (see
figure 2.7). The saddle point equations have two instability transitions: a global
transition is observed when the value of the entropy, as computed at the saddle
point becomes lower than that of the extremal point at S = 1. The second is
characterized by a local transition, when the entropy curve changes concavity
with respect to the overlap S. After this second point, the extremal point at
S = 1 is the only solution to the saddle point equations.
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1

0

-0.35

Fig. 2.7 Franz-Parisi potential for the binary Perceptron in the teacher-student
scenario. As in the random classification case, the RS entropy becomes negative for
a value S < 1 (D > 0) for all values of α < αD. The black curve represents the
case of unconstrained synapses, which provides an upper bound for local entropy
evaluations. The four gray curves represent respectively: the zero entropy level, the
typical entropy (obtained in correspondence of D̂ = 0, where the distance constraint
is removed), the global instability transition (where the RS saddle point entropy
estimate is lower than the extremal condition at S = 1, after α > αD), and the local
transition where the curve changes concavity with respect to S.
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It might be interesting to compute also the average probability that the
ensemble of students generalizes correctly with respect to the teacher, i.e. the
probability that the average of the outputs of the students on a random new
pattern has the same sign as that given by the teacher:

pc =
〈〈〈

Θ
((

1√
N

∑
i

ξ⋆
i

)〈
sign

(
1√
N

∑
i

Wiξ
⋆
i

)〉
W

)〉
W̃

〉
{ξµ}

〉
ξ⋆

(2.76)

where ξ⋆ is a test pattern, ⟨·⟩ξ⋆ is an average over i.i.d. test patterns, ⟨⟨·⟩W̃ ⟩{ξµ}
is the average over training patterns and corresponding pseudo-teacher ensemble
(see equation (2.40)), and ⟨·⟩W is the average over the students which have
learned the patterns {ξµ}. We can write the latter as:
〈

sign
(

1√
N

∑
i

Wiξ
⋆
i

)〉
W

= (2.77)

∫ ∏
i dµ (Wi)
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µ
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∑
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i
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2
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i(Wi−W̃i)2
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∑
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⋆
i

)
∫ ∏
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1√
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∑
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µ
i

1√
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∑
i ξµ

i

)
e− γ

2
∑

i(Wi−W̃i)2

where, as in the previous section, µ (W ) is the measure over the W ’s, dµ (W ) =
(δ (W + 1) + δ (W − 1)) dW , and W̃ is a pseudo-teacher. Note that the condi-
tion that ∏µ Θ

(
1√
N

∑
i W̃iξ

µ
i

1√
N

∑
i ξµ

i

)
= 1 is enforced in the ⟨·⟩W̃ operator, so

it doesn’t appear here.

We rewrite the average (equation 2.77) using the replica trick: we use the
replica index 1 for the W ’s in the numerator, and we write the denominator as
n− 1 replicas, indexed from 2 to n, in the limit of n→ 0:〈

sign
(

1√
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∑
i

Wiξ
⋆
i

)〉
W

=

∫ dkdk̂
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− ik̂√

N

∑
i

W 1
i ξ⋆

i

 (2.78)

In order to perform the average over the training patterns {ξµ}, we proceed
as follows: we first expand equation 2.76 by substituting the arguments of
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the Θ function using Dirac deltas and expanding those with their integral
representation:

pc =
∫

dx
dydŷ

2π
eiyŷΘ (xy) (2.79)

×
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Then, we use the series representations of the exponential, exp (z) = ∑∞
s=0

zs

s! ,
and perform the average over each individual term. For each value of s, we
introduce a new replica index l = 1, . . . , s, and we therefore need to compute
(see equation 2.78):
〈〈

s∏
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The computation proceeds along the lines of the volume calculations pre-
sented above. The difference is that we now have sn replicas instead of n, and
that there is the extra term for the replicas with a = 1. This extra term only
affects the computation of the entropic part, which (with the RS Ansatz) now
becomes:
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We then take the limits n → 0 and ñ → 0, compute the integrals over
dµ (W ) explicitly and then expand for N →∞ up to the first order in N . The
resulting expansion produces terms which happen to be related to ∂

∂q̂
GS and

∂
∂R̂
GS. Therefore, we can use the saddle point equations and substitute the

complicated integral expression with just R and q. The result is:
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(2.82)

We can now go back to equation (2.80), having factorized everything with
respect to the indices l:〈
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Finally, we use this in the expression for pc, obtaining:
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2π
eiyŷΘ (xy)

×
〈

δ

(
x− 1√

N

∑
i

ξ⋆
i

)∫
Dz exp

−iŷ erf
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where we got rid of the Dirac deltas, we used the fact that erf is an odd function,
and we approximated the terms 1√

N

∑
i ξ⋆

i with a random variable distributed
as a Gaussian centered in 0 with variance 1.

In the limit of D̂ →∞, we have q = 1 and R = q⋆, so we recover the usual
expression for the generalization error of a single student:

pc = 1− 1
π

arccos (q⋆) (2.85)

In the limit of D̂ → 0, instead, we have q = R = q⋆, so we recover the result
for the Bayesian inference of standard teacher-student (which turns out to be
the same as for the continuous case):

pc = 1− 1
π

arccos
(√

q⋆
)

(2.86)



Chapter 3

Learning with Discrete Synapses

One of the most striking properties of training artificial neural networks in
a supervised scenario is how simple it can be to determine which is the best
update for each synaptic connection W , in order to obtain a better classification
performance. The first thing to do is to consider an appropriate loss function
L (or energy function, in a Statistical Physics context), which compares the
present output with the desired one. There are many possible alternatives,
like the mean squared error or the cross-entropy loss functions [60], and many
modifications of the loss can be introduced in order to enforce some desired
properties in the network, such as a high sparsity degree (with an L1 norm)
or small couplings (with an L2 norm). The recipe is simple: explicitate the
functional dependency of the obtained output with respect to the synapse to
be updated, and then evaluate the gradient of the chosen loss function. Given
a small parameter ϵ, the correct update will simply given by:

W ← W − ϵ
∂L
∂W

(3.1)

This procedure can be done fully in parallel with respect to all the synapses,
exploiting the chain rule for evaluating the nested derivatives, as in the cel-
ebrated back-propagation algorithm [12, 61]. It is important to notice that,
most often, the minimization of the loss function is not itself the real objective
of the learning procedure and it should be regarded more as a tool, since the
true goal is that of obtaining better classification performances. Moreover, this
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simple procedure in not guaranteed to reach the global minimum of the loss
function.

In the last few decades, a big part of the machine learning community
has been devoted to the optimization of these learning procedures, always
looking for better heuristics for initializing optimally the learning algorithms
and speeding them up, for enhancing the computational efficiency and (most of
all) for obtaining better generalization performances when learning from real
data. Notwithstanding all these developments, (stochastic) gradient descent
has remained the main ingredient for learning (even though it might be “cooked”
in different ways) [62].

In the prototypical case of the Perceptron with unbounded continuous synap-
tic weights, a specific choice for the loss function, L = ∑

µ Θ (−σµW · ξµ) W · ξµ

, produces the simple but effective Perceptron learning rule, able to find a
perfect classifier (provided the problem is linearly separable) [63, 64] in a finite
time. The algorithm works in a fully online regime, where the input patterns are
presented sequentially: at each presentation of a pattern ξ one first computes
the total input ∆ = ∑

i Wiξi, and then simply increments the synaptic weights
as in W = W + ξ if ∆ < 0. Convergence in finite time can be proved in the case
of unbounded synaptic weights [63] and for sign-constrained synaptic weights
[65].

However, the algorithm doesn’t achieve an extensive capacity when the
synaptic weights can take only a finite number of states and in the extreme
case, only two possible values (where the algorithm would become the so-called
“clipped Perceptron” rule). Unfortunately, in the binary Perceptron any gradient
descent based (or inspired) approach is apparently not applicable, and the
problem of learning in this kind of architecture is known to be intractable in
the worst-case [16]. As we have seen in the previous chapter 2, the classical
Statistical physics description of the model shows that it is dominated in the
large N limit by an exponential number of isolated local minima[17–20]. This
situation is typical of a spin glass phase, which is common to many hard random
optimization problems in which standard search strategies based on energy
minimization are easily trapped [23–25, 66].

In the last decade, though, a series of algorithmic results [26–28] have shown
that nearly optimal learning performance can be achieved also in the discrete
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setting. The striking performance of the simplified versions of these learning
algorithms raises a few questions: in this chapter we try to characterize the
features of the particular solutions these methods are able to find, and to
what extent they correspond to the typical solutions described in the standard
equilibrium Replica calculations.

3.1 BP in the Perceptron

The main building block for conceiving heuristic solvers in the discrete Percep-
tron problem is the Belief Propagation (BP) algorithm. Belief Propagation, or
Sum-Product, is an iterative message-passing algorithm that can be used to
describe a probability distribution, over a given instance of a CSP, within the
Bethe-Peierls approximation [67, 68, 24]. BP stems directly from the Cavity
Method, a statistical physics approach developed in the context of spin glasses
and closely related to the Replica Method (see section 2.1).

The algorithm is known to give exact results on tree graph; in the case
of highly connected factor graphs (as the one associated to the Perceptron
learning problem), instead, its approximation is based on a weak correlations
assumption, closely linked to so-called Replica Symmetry (in replica analyses,
see Chapter (2)): one assumes that, when an interaction is removed from the
network, the nodes involved in that interaction become effectively independent.

At variance with the statistical mechanics results presented in the previous
chapter, where an average over the quenched disorder is performed in the limit
N →∞, here we are interested in single problem instances at finite N . Because
of the so called self-averaging property, if N is large enough, we expect the
quantities estimated by BP to match the typical case predictions, but even
at finite N the results provide good approximations that can be exploited for
algorithmic purposes.

The binary Perceptron learning problem has a natural formulation it terms of
a CSP [26, 27][1], where the N synaptic variables {Wi}N

i=1, with Wi ∈ {−1, +1},
have to satisfy M = αN constraints {Xξµ,σµ}M

µ=1, associated to a given set of
input-output associations{ξµ, σµ}M

µ=1. We may define an energy function of the
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system simply as the number of violated constraints, namely:

H0 (x) =
∑

µ

Eµ (W ) =
∑

µ

(1− Xξµ,σµ (W )) (3.2)

The problem is fully-connected, in the sense that all the variables participate
in all the constraints. Thus, if we associate a bipartite Factor Graph to the
problem, we can connect with an edge each variable node i = 1, ..., N (one
for each synapse) to all the factor nodes µ = 1, ..., M . This kind of graphical
model representation can be very helpful in understanding the basic dynamics
of message passing methods such as BP (see figure 3.1).

The BP equations are a set of coupled nonlinear equations for the cavity
messages {ui→µ, ûµ→i}, which run along the edges of the Factor Graph:

ui→µ (Wi) ∝
∏

ν∈∂i\µ

ûν→i (Wi) (3.3)

ûµ→i (Wi) ∝
∑

{Wj}j ̸=i

e−βEµ(W )∏
j\i

uj→µ (Wj) (3.4)

Each cavity message represents a marginal probability distribution in the
absence of the constraint (or the variable) towards which the message is
directed. The information we are looking for can be obtained from the fixed
point

{
u⋆

i→µ, û⋆
µ→i

}
of these equations. Solving the equations by iteration

produces an efficient, fully distributed technique (which gives origin to the name
“message-passing” method) with a typical computational complexity scaling
roughly as O (N2 log (N)) (almost linearly in the size of the input times an
extensive number of patterns). Once the fixed point is reached, it is possible to
compute local joint marginal probabilities and all the thermodynamic potentials,
such as the average energy, the entropy and the free energy of the system, in
terms of purely local contributions from variables, edges and factor nodes. The
single variable marginals, for example, can be simply computed as ui (Wi) ∝∏

ν ûν→i (Wi). In the case of Ising-like systems (with binary ±1 variables)
the messages associated to the possible values of Wi can be summarized in
a single number, usually a cavity magnetization mi→µ = ui→µ (Wi = +1) −
uµ→i (Wi = −1) (and analogous for the other set of messages). Moreover, it
is always possible to set ∀µ : σµ = 1 without loss of generality, by means of
the gauge transformation ξµ

i → σµξµ
i . With these simplifications, in the binary



3.1 BP in the Perceptron 55

Fig. 3.1 BP factor graph scheme for a perceptron with N = 5 variables and
trained on 2 patterns (green and red). The variable nodes are represented as circles,
the interaction by other geometrical figures. The hexagons at the bottom represent
external fields (priors) on the synaptic variables, the large squares with rounded
corners represent Perceptron-like nodes, the small squares at the top represent
external fields enforcing the desired output of the machine. The synaptic variables
Wj are at the bottom (black circles), while the red and green variables are auxiliary
and represent the output of the perceptron for the two patterns.

Perceptron the explicit BP equations for the cavity magnetizations read:

mi→µ = tanh
∑

ν ̸=µ

tanh−1 (m̂ν→i)
 (3.5)

m̂µ→i =
∑N−1

s=−ξi
Dµ→i (s)−∑N−1

s=ξi
Dµ→i (s)∑N−1

s=−ξi
Dµ→i (s) +∑N−1

s=ξi
Dµ→i (s)

, (3.6)

where:

Dµ→i (s) =
∑

{Wj}j ̸=i

δ

s,
∑

j

Wjξj

∏
j ̸=i

(1 + Wjmj→µ)
2 (3.7)

is the convolution of the all cavity messages mj→µ impinging on the pattern
node µ, except for mi→µ. The computation of the convolutions can be done
efficiently, limiting the complexity to an order O (N2).

In the case of large networks, N ≫ 1, and of an extensive number of
patterns, it is natural to apply the Central Limit Theorem and adopt a Gaussian
approximation D̃µ→i (s) = 1

bµ→i
G
(

s−aµ→i

bµ→i

)
for the distribution Dµ→i (s) (where

G (s) denotes the normal distribution) [26]. Thus, it is sufficient to compute
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the mean aµ→i and variance b2
µ→i of the approximated distribution:

aµ→i =
∑
j ̸=i

ξµ
j mj→µ (3.8)

b2
µ→i =

∑
j ̸=i

(
1−m2

j→µ

)
(3.9)

By doing so, equation (3.6) simply becomes:

m̂µ→i = ξi g (aµ→i, bµ→i) (3.10)

where, using the error function H (x) = 1
2erfc

(
x√
2

)
, we define:

g (a, b) =
H
(

a−1
b

)
−H

(
a+1

b

)
H
(

a−1
b

)
+ H

(
a+1

b

) . (3.11)

At zero temperature, the free-entropy F of the system can be easily obtained,
in the Gaussian approximation, as:

Fperc =
∑

µ

log
(

H

(
aµ

bµ

))
−
∑
i,µ

log (1 + mi→µm̂µ→i)

+
∑

i

log
[∏

µ

(1 + m̂µ→i) +
∏
µ

(1− m̂µ→i)
]

(3.12)

while the normalized logarithm of the total number of solutions for a given
instance is given by the entropy:

Sperc =
∑

µ

log
(

H

(
aµ

bµ

))
+

−
∑
i,µ

[1 + mi

2 log
(1 + mi→µ

2

)
+ 1−mi

2 log
(1−mi→µ

2

)]

+ (M − 1)
[1 + mi

2 log
(1 + mi

2

)
+ 1−mi

2 log
(1−mi

2

)]
(3.13)

Consistently with the theoretical predictions, BP equations always converge
for α < αc, and the entropy decreases monotonically with α, vanishing at the
critical threshold αc ∼ 0.833 (provided N is high enough).
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Fig. 3.2 BP factor graph scheme for a committee machine with N = 15 variables,
K = 3 units in the second layer, trained on 2 patterns. The two patterns are
distinguished by different colors. The graph can represent a fully-connected committee
machine if the patterns are the same for all first-layer units, or a tree-like one if they
are different. The variable nodes are represented as circles, the interaction by other
geometrical figures. The hexagons at the bottom represent external fields on the
synaptic variables, the large squares with rounded corners represent Perceptron-like
nodes, the small squares at the top represent external fields enforcing the desired
output of the machine. The synaptic variables W k

j are at the bottom (black circles),
while the rest of the variables are auxiliary and represent the output of each unit for
a given pattern.

With the same factor nodes we can also represent the factor graph associated
to the simplest two-layer binary neural network, the committee machine, as
it can be seen in figure 3.2. In this case the weights in the second layer can
be fixed all to 1, by exploiting a symmetry of the model, and therefore the
variable nodes are associated only to the weights in the first layer.

3.2 Effective learning algorithms

As stated in the introduction of this chapter, until a few years ago only a handful
of heuristic algorithms were believed — based on numerical evidence — to be
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able to solve (in sub-exponential time) the classification problem in the binary
Perceptron, and achieve an extensive capacity in the large N limit: reinforced
Belief Propagation (R-BP) [26], reinforced Max-Sum [29] (R-MS), SBPI [27]
and CP+R [28]. In the classification case, they all achieve very high capacities,
between α ≃ 0.69 and α ≃ 0.75. The same qualitative scenario holds in the
generalization case, where all these algorithms perform well except in a finite
(“hard”) window 1 ≲ α ≲ 1.5 around the transition at αT S = 1.24 [28]. These
algorithms also share the property of being local and distributed, and have
typical solving times which scale almost linearly with the size of the input. SBPI
and CP+R additionally have extremely simple requirements (only employing
finite discrete quantities and simple, local and on-line update schemes), making
them appealing for practical purposes and reasonably plausible candidates for
biological implementations. For the sake of completeness, in the following we
provide a brief description of these heuristics solvers for the binary Perceptron.

3.2.1 The R-BP algorithm

In order to turn BP into a solver, one needs to introduce some heuristic
ingredient able to induce a collapse of the algorithm onto a single configuration
[26], rather than the usual fixed points describing the probability distribution
of ensembles of solutions of the problem. The idea is to add an extra term into
Eqs. (3.6) and (3.5), enforcing mi = ±1 at the fixed point, and thus extract
the solution Wi = sign (mi).

Inspired by the decimation technique [69], where the an increasing number
of variables are progressively fixed (with an infinitely strong field), the R-
BP algorithm introduces a “reinforcement” term, proportional to the field
associated to the marginal magnetization of the variable, as computed in the
previous iteration step:

mt+1
i = tanh

(∑
ν

tanh−1
(
m̂t

ν→i

)
+ ρ tanh−1

(
mt

i

))
. (3.14)

This procedure induces a smooth decimation, where the less polarized variables
receive an external field as well, but with a finite intensity, proportional to their
polarization. In order to improve convergence, this term can be introduced
stochastically (with increasing probability as BP progresses).
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This method seems to achieve an algorithmic capacity of at least α ≃ 0.74.
Moreover, the scheme seems to be quite general, leading to very good results
in a variety of different problems, even when standard BP would not converge
or would provide a very poor approximation (see e.g. [70]).

3.2.2 The R-MS algorithm

This algorithm is the analogous of R-BP, the difference being that Max-Sum
(MS) is chosen as the underlying algorithm rather then BP [29]. The MS
equations can be derived as a particular zero-temperature limit of BP: in this
process they normally become computationally simpler, since they require only
sum and max operations, in contrast with the hyperbolic functions included
in the BP equations. MS can also be seen as a heuristic extension (to loopy
graphs) of the dynamic programming approach.

The heuristic reinforcement term introduced in R-MS acts very similarly
to the previous case (R-BP), but here it is also needed in order to ensure
convergence of the MS algorithm (which would otherwise be problematic, since
the factor graph associated to the Perceptron is far from acyclic and the ground-
state of the problem is degenerate). The addition of a reinforcement introduces
a slight dependence on the initialization, which can be controlled by reducing
ρ (at the cost of an increased computational time).

The resulting characteristics of R-MS are very similar to those of BP and
extensive numerical tests give an equivalent capacity of about α ≃ 0.75.

3.2.3 The SBPI algorithm

Derived as a crude simplification of the R-BP algorithm [27], in an attempt to
remove all features which would be unrealistic from a biological point of view,
SBPI is an on-line algorithm, like the Perceptron rule. All the information
needed for the update is contained in the same ∆ = ∑

i Wiξi computed above,
but in this case it is not the synapse itself to be updated, but an integer (and
odd) internal state variable hi, that takes values in a finite range (|hi| ≤ K − 1)
and whose sign determines the synaptic value Wi = sign (hi).
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The update rule is familiar: hi → hi + 2ξµ
i σµ, and it is applied depending

on the value of ∆: if ∆ > 1 , then nothing is done; if ∆ = 1 , then only the
synapses for which Wi = ξµ

i σµ , are updated with probability ps; if ∆ ≤ 0,
then all synapses are updated. The parameter ps ∈ [0, 1] makes the algorithm
stochastic, and its optimal value is usually found between 0.3− 0.4.

Because of the simple dependency of the synaptic values only through the
sign of the hidden variables, the algorithm inherits the property of finding
solutions which are more resistant against accidental changes in the internal
states, in the presence of noise and degradation. Rather surprisingly, the
measured critical capacity of this algorithm, α ≃ 0.69, is only slightly reduced
with respect to the original R-BP algorithm.

3.2.4 The CP+R algorithm

This last algorithm was derived as an utter simplification of SBPI [28]. The
main observation that led to its conception is the following: in the generalization
scenario, the effect of the update in the ∆ = 1 case (the near-threshold type
of event which distinguishes the SBPI algorithm from the Clipped Perceptron
algorithm) is on average equivalent to applying an unspecific reinforcement to
all the internal states hi → hi + 2sign (hi) with probability pr (in contrast with
the reinforcements described above). This increment needs to be applied at a
calibrated rate, in order to keep most of the hidden states near the boundary
(at 0) and allow the associated synapses to change sign during the learning
procedure.

The equivalence with SBPI only holds in the context of the on-line general-
ization task, but CP+R can be adapted, with some minor modifications, also
to the classification context. The simplifications introduced in CP+R greatly
reduce the overhead associated with the complex computations required by the
faster algorithms, while maintaining a scaling behavior of order O (N log N).
With some fine-tuning, the CP+R algorithm reaches the same capacity of SBPI:
α ≃ 0.69.
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3.3 Extension to multi-layer networks

It is easy to imagine that, if the restriction to discrete synapses can turn the
learning problem in the simplest neural network architecture into a hard task,
finding an effective approach in multi-layer discrete networks can be a very hard
problem. The main issue is due to the fact that the message-passing algorithms,
which inspired the effective heuristics for the Perceptron, in this scenario suffer
from inherent convergence problems[29, 26]. An easy to spot source for these
problems is the permutation symmetry: when single Perceptrons are stacked
and connected to obtain a more complex architecture, if the Perceptrons in
the uppers layers are initialized in the same unbiased way, during the message-
passing iterations they will exchange the same exact messages with the rest
of the network and will not be able to differentiate. This kind of symmetry
is disruptive for the classification performance, since the network becomes
completely redundant.

A seemingly reasonable solution is to apply to these variables a small
random external field, which could potentially play a symmetry-breaking role.
This heuristic seems to help, but even in the case of two-layer binary networks
(committee machines), the results obtained with BP are at least questionable: it
seems that a growing number of distinct BP fixed points (not imputable only to
the permutation symmetry) may be found, and using the information obtained
through the message-passing procedure for finding single solutions, as in the
R-BP algorithm, requires a very delicate fine-tuning of the reinforcement rate.
In fact, the extension of BP to multi-layer networks unfortunately introduces
all sorts of numerical stability problems, due to the “loopy” nature of the factor
graph and to the presence of long-range correlations which are neglected in
the BP approximation. For example, the gaussian approximation in equation
(3.10) and, in some cases, even the finite machine precision can cause the
message-passing procedure to go off the rails.

All these numerical issues motivated the search of a simplified heuristic
[1], inspired by the efficient ones described above. It is indeed possible to
heuristically extend the CP+R algorithm to the case of a multi-layer classifier,
obtained by stacking two layers of fully-connected committee machines, with L

possible output labels. Because of a symmetry associated to any simultaneous
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Fig. 3.3 Multi-layer architecture considered in the extension of the CP+R algo-
rithm. The neural network can be seen as a “committee of committees”, with an
argmax at end, in order to allow for a multi-label classification.

change in the sign of a synapse in the top layers and in all the synapses directly
below it, it is sufficient to learn only the synapses in the first layer.

More specifically, the architecture (in figure 3.3) consists of an array of K2

committee machines, each comprising K1 hidden units. The K2 outputs are
sent to L summation nodes (each one specifically associated to a possible label),
and the maximum one is chosen as the predicted output of the network. The
non-linear function represented by the network can be written as:

ϕ (ξ) = argmaxl∈{1,...,L}

 K2∑
k2=1

Yk2l sign
 K1∑

k1=1
τ
(
W k1k2 , ξi

) (3.15)

where Yk2l ∈ {−1, 1} are random quenched binary weights, defining mutually
perpendicular directions associated a priori to the labels, and W k1k2 ∈ {−1, 1}N

are the synaptic weights learned by the algorithm.

The unsupervised reinforcement term, characteristic of CP+R, can be left
unaltered from the single-layer version of the algorithm. Instead, it is necessary
to design a scheme for back-propagating the observed errors (ϕ (ξ) ̸= σ) down
to the synapses W k1k2 ∈ {−1, 1}N . The main idea is that allowing for too many
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changes of the synapses in the first layer can destabilize the learning procedure
quite easily. A possible cure of this problem is the following: first, one needs to
find all the committee machines which contributed to the error, i.e. all those for
which sign

(∑K1
k1=1 τ

(
W k1k2 , ξi

))
̸= Yk2σ. Then, for each of these, the signal is

further propagated only in the branch corresponding to the hidden unit whose
mistake is easiest to fix, i.e. for which Yk2σ

∑N
i=1 W k1k2

i ξi is less negative. In
these branches, the update of the hidden states associated to the synapses
simply follows the standard CP+R rule. The generalization performance can
be highly improved if a “robustness” requirement is added, such that an error
signal is emitted also when ϕ (ξ) = σ, but the gap between the two maximum
outputs of the L committees is smaller then some threshold r.

This extension allows us to test the algorithm on real world data, for
example on the MNIST database benchmark [71], which consists of 7 · 104

gray-scale images of hand-written digits (L = 10). The last 104 images are
reserved for assessing the generalization performance of the learned network.
We observed that it is very easy to learn perfectly the training set, and that
very good generalization errors can be reached despite the binary nature of
the synapses, without any specialization of the architecture for this particular
dataset. Moreover, the algorithm seems to completely avoid over-fitting, even
when the considered networks are very large. The smallest network which was
found to be able to achieve zero training error had K1 = 11 and K2 = 30,
with r = 0, reaching a generalization error around 2.4%. Very large networks
can achieve much better generalization error rates, e.g. 1.25% with K1 = 81,
K2 = 200, r = 120.

3.4 Bayesian approach

As we said before, it is nearly impossible to employ effectively a pure R-BP
approach in a multi-layer context, mostly due to convergence problems during
the message-passing iterations. But since we are now able to find a particular
solution of the problem with the extended CP+R heuristic, an interesting
question is whether this information could be used for bootstrapping the BP
algorithm into an easier region, where it could be more effective. Geometrically,
the idea would be similar to the one in the Franz-Parisi potential: once a
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configuration is “planted” (via the addition of external fields on the synaptic
variables), one can look at its neighborhood and obtain an estimate of the single
variable marginal magnetizations representing the ensemble of solution at a
given distance from the central configuration (which can be seen as a “state”).

From a Bayesian point of view, in the generalization task this method
could be used to estimate a “local” bayesian prediction, as an alternative
to the maximum likelihood prediction given by the single solution found by
the heuristic solver. The Bayesian output is obtained by first building a
factor graph containing only the factors and the auxiliary variables associated
to the pattern to be tested, with an unconstrained output. Then, on each
synaptic variable node an external field is applied, with an intensity given by
its marginal magnetization (hext

i = tanh−1 (mi)) measured in the “state” found
by the bootstrapped BP on the training set. The BP convergence in the testing
factor graph is trivial, as in the large N limit the network simply computes a
Gaussian propagation, where the mean output of each Perceptron is obtained
by first evaluating mean and variance of the distribution of its pre-activation
(depending on the average inputs ⟨xi⟩):

µ =
∑

i

mi ⟨xi⟩ (3.16)

σ2 =
∑

i

(
1−m2

i ⟨xi⟩2
)

(3.17)

and then by applying the special transfer function erf
(

µ√
2σ

)
= 2H

(
−µ

σ

)
− 1.

We note that, a part from the Gaussian approximation, also the correlations
between the outputs/inputs are completely neglected in this formalism, because
of the implicit assumption in the definition of the BP factor graph. If we
also ignore the off-diagonal correlation terms in the argmax evaluation, we
can simply pick the maximum of the distribution on the output labels as the
maximum likelihood prediction.

We can therefore make a direct comparison, in the generalization perfor-
mance, between three possible predictions:

1. The output of a single solution, which in this formalism is obtained in the
limiting case of an infinite external field in the direction of the solution
found by the solver.
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Fig. 3.4 Generalization error measured as a function of the polarization of the
planted field in the BP bootstrapping phase, in the three above considered scenarios,
on the MNIST test set (104 images) after learning only from 104 images of the
training set. While the single solution performance can be seen from the score at a
magnetization m = 1, the red and the green curves show the progressive improvement
registered in the generalization task as the initial polarization was decreased.

2. The local Bayesian prediction (labeled as “trained” in figure 3.4), with
the marginal magnetizations found by converging BP on the training set
factor graph, after planting the solution with a finite field.

3. The output obtained as a flat average over all the configurations (not
only the solutions) in a close neighborhood of a solution (labeled as
“untrained”). In this case the marginal magnetizations, to be used as
external fields in the testing phase, are simply obtained by rescaling
uniformly the binary solution weights to a value |mi| < 1, and thus
represent a depolarized solution.

The efficacy of the Bayesian procedure can be particularly seen when the
solution found by the solver is clearly in an over-fitting regime (for example
by training a network on a small subset of the patterns usually present in the
MNIST training set). In this case the local Bayesian prediction’s performance
distances both the single solution and the flat average ones. However, even
the trivial operation of depolarizing the solution marginals is quite effective in
reducing the generalization error (see figure 3.4).
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Unfortunately, the gap between these method closes as one chooses a
better generalizing solution as the planted configuration. In this case, the
improvement of the Bayesian approach with respect to the single solution
prediction is marginal, and, surprisingly, seems to be almost equivalent (except
for the very long computational times required for obtaining convergence of
BP) to the one observed in the case of a simple depolarization of the solution.
Moreover, an increase in the generalization error can be observed when the
radius of the state explored with BP (or in the depolarization) becomes larger
than a small threshold.

3.5 The algorithmic solutions

It would be most impressive if any algorithm was able to find solutions which
are isolated points in an exponentially large phase space. This “golf course”
scenario, usually characterizing the so-called frozen phase, is known to prevent
local search algorithms and standard optimization techniques, e.g. Simulated
Annealing, from working. The heuristic modifications of massage-passing
algorithms, like BP or MS, and even Survey Propagation [32] are usually
failing as well, in a situation like this [66]. For instance in the K-SAT problem,
all the algorithms are able to find solutions when these are all part of a big
cluster (α < αD), and some are able to find them even when the cluster breaks
apart into exponentially many smaller cluster (αD < α < αcond). But as the
remaining solutions “condense” into a sub-dominant number of clusters and,
eventually, only the isolated (“frozen”) solutions are left, all these algorithms
stop working [38].

From the equilibrium analysis we presented in chapter 2, we know that the
Percepton’s typical solutions are characterized (in the 1RSB analysis) by an
internal overlap q1 = 1, and are always extensively isolated, for any value of α,
like the frozen solutions of K-SAT. Some numerical result are in agreement with
this picture: Simulated Annealing’s solving time is in fact known to diverge,
also for “easy” instances, when the number of synapses N is large. Nevertheless,
the heuristics presented above (in section 3.2) are almost able to saturate the
SAT/UNSAT threshold αC , despite the adverse landscape.
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We need to characterize the type of solutions found by effective algorithms, in
order to see if they possess some special property that makes them “dynamically”
attractive for learning processes. We can easily check one of the defining
property of typical solutions, the geometrical isolation. In figure 3.5, we can
see the fraction of isolated solution found by SBPI, as a function of α and of
the size of the network N . The results are quite counter-intuitive:

• When the considered pattern load is not high enough, α ∼ 0.5, almost
all the solutions found by this algorithm are not isolated, differently from
what we expected from the equilibrium analysis.

• Near the critical algorithmic threshold (0.65 < αU < 0.7) the fraction of
isolated solutions increases, but it also vanishes as N is increased.

A simple justification for the detection of connected solutions would come from
finite size effects, but the phenomenon becomes more accentuated in large
instances. It seems that the effective algorithms systematically move towards
dense regions of the phase space which might be invisible to the standard 1RSB
analysis. The increment in the fraction of isolated solutions as α is increased
also suggests that the “clusters” found by the algorithms might fragment before
disappearing completely at an α < αC . An important question is whether these
clusters can somehow be seen as well defined states (in the Statistical physics
sense).

We can also check the isolation property in the teacher-student scenario.
Intuitively, one could think that in this case the teacher itself might be a special
solution, and might belong to these connected regions of solutions. However,
this is not the case: the teacher is predicted to be extensively isolated, just like
typical solutions are, and in this case this fact can also be checked numerically
(as we don’t have to find it first, which would not be possible since it is frozen).
Yet, we can also see that the same type of connected structures are reached by
the working heuristic solvers also in this scenario.
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Fig. 3.5 Fraction of isolated solutions found by the heuristic algorithms (SBPI)
in the random classification case of the Perceptron. As the size of the Perceptron N
is increased, the fraction of isolated (“frozen”) solutions shrinks, while it becomes
larger as more constraints are added o the problem (and α is increased).

3.6 Whitening: Frozen vs Unfrozen

A possible approach for detecting the presence of well defined states in the
space of solutions is the so-called whitening procedure, developed in the context
of sparse random graphs.

The name for this method origins in a different CSP, the coloring problem,
where one has to assign a color, chosen from a family of q colors, to each of
the nodes of a given graph, with a constraint that prohibits equally colored
adjacent nodes. The problem gets interesting when the graph is colorable in
many diffent ways and a rich landscape of geometrical structures can be found
in the space of solutions of the problem [72].

The whitening procedure is defined as a “reversed” coloring process: once a
legal coloring is produced, one looks for the nodes whose color can be changed
without violating any constraint, assigning them with the white color (which
denotes a “free” state: these nodes can now be variably assigned a color
which is most convenient for freeing more variables). The procedure continues
as a cascade of white assignments, until one possibly finds the “core” node
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assignments that cannot be whitened: in this way one can highlight those nodes
that are essential in the legal coloring initially produced.

A slightly more complicated version of this procedure, closely related to
message-passing algorithms (as BP and TAP), is defined as the directional
coloring process: in this case the white state can be assigned to the cavity
messages (instead of the variable states, making it harder for the process to
spread into the entire factor graph). When the directional whitening can no
longer proceed, an extremal directional whitening configuration is found. The
variables which cannot be assigned a white color are defined to be “frozen”,
while the others are said to be “unfrozen” (see also section 1.2).

At this point we can have different possible scenarios:

• If the model is below the dynamical phase transition, at α < αD, then
only one trivial whitening is possible: all the graph becomes white.

• After the transition, at αD < α < αC , there is an exponentially large
number of extremal directional whitenings. Their number exp(NΣ(α)) is
in one to one correspondence with the number of states (well separated
clusters of solutions, detectable in a 1RSB analysis) in the phase space
of the problem. When different legal coloring assignments end up in the
same extremal directional whitening, it means that the two solutions
belong to the same cluster.

• above αC , typically no legal coloring can be produced, thus the whitening
process is ill-defined.

It can be proven that the local equilibrium condition for the extremality of
a directional whitening is equivalent to the BP or the TAP equations in this
context.

Thus, we can try to apply a similar procedure also in the Perceptron model:
in this case a white state will be assigned to a synapse whose value can be
chosen arbitrarily without making any classification errors. The directional
whitening, moreover, can be studied in the following way:

1. A solution is found with one of the effective heuristics described in section
3.2.
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2. The BP algorithm is initialized in correspondence of the solution (by
running it to convergence in the presence of strong external fields, on the
variable nodes, in the direction of the solution).

3. The external fields are removed.

4. The BP algorithm is run again and convergence is reached.

Now, there are two possible scenarios for point 4: the BP marginals can either
remain fixed (as set by the external fields), or they can be driven away, reaching
the closest BP fixed point. In the first case the solution is completely frozen
and represents a point-like state (with q1 = 1). In the second case one ends up
in the BP fixed point relative to the state the solution belongs to (with q1 < 1).

Unfortunately, due to the fully-connected nature of the problem, this ap-
proach is not able to give a better characterization of the space of solutions in
the Perceptron. In fact, we couldn’t find any states except the point-like ones
(when the solver ends up in an isolated solution, with q1 = 1 as predicted in
[17]), and the so-called Replica Symmetric BP fixed point, which is reached
from all the unblocked solutions (solutions which are found not to be isolated
at O (1) distances) or any other random initialization of the BP messages. It is
important to stress that the point-like states appear to have a vanishing basin
of attraction for BP (or TAP), since every small perturbation of the messages
in the initialization (point 2. above) allows the message-passing algorithms to
flow away towards the RS point.

In order to explain this trivial behavior we can consider the factor graph
associated to a given Perceptron instance: since we are trying to study the
directional whitening process, we can simplify the graph, excluding those
factor nodes that correspond to patterns with a stability ∆µ = W · ξµ strictly
higher than 1 (when N is odd the stabilities can only take odd integer values
{...,−3,−1, 1, 3, ...}), i.e. patterns that are robust to any one flip in the synapses.
In fact, if we imagine the BP algorithm, at convergence these factors are already
sending white (flat) messages to all the variables.

Therefore, consider the simplified factor graph where only the unstable
patterns are present: we can connect all the variables with the factor nodes
with two kind of lines, dashed if a flip in the value of the variable will increase
the stability (in this case the pattern is sending back a white message), and
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.
Fig. 3.6 Factors constraining the value of the synapses in the simplified factor
graph associated to the Perceptron problem, where only the patterns with a stability
at the threshold (∆µ = 1) are considered. The dashed lines link the synapses with
the patterns that would gain in stability from a flip in the value of the synapses.
The solid lines, instead, link the variables with the patterns whose stability would
decrease, violating the constraint.

solid if a flip decreases the stability, implicating an error in the classification
of that pattern (see figure 3.6). These solid lines are thus representing the
constraints actually “felt” by each synapse.

If we are in a situation where the solution is blocked (i.e. isolated), it
means that all the synapses receive at least one solid line from the unstable
patterns. If we consider a directional whitening process starting from one
of these solid lines, we can see that the messages sent to the other synapses
by the associated pattern wouldn’t become dashed and be “freed”, since the
stability ∆µ would be utterly decreased by a wrong assignment for the variable
we started the whitening from. Therefore the directional whitening process
would stop immediately: this kind of solution is completely frozen.

On the other hand, we have the case where one of the synapses only receives
dashed lines from the unstable patterns, implying that it is unblocked, since a
flip would still produce a configuration with stable, correctly classified patterns.
If the messages sent by this variable to the unstable patterns are set to white in
a directional whitening process, automatically all the stabilities are increased
to 3, and the rest of the variables are released from their constraints, i.e. all
the solid lines become dashed. Therefore the whitening spreads to the entire
graph.
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An exemplary case is represented by the teacher, in a teacher-student
learning scenario: as observed above this solution is typically isolated. The
whitening procedure described above, using the BP algorithm, finds a point-like
state in correspondence of this configuration. However, if the training set is
selected in a way that all the patterns which have a stability lower than 3 (for
the teacher) are discarded, i.e. if we consider a situation in which the teacher
is unblocked and receives only dashed lines, the whitening procedure ends up
in the RS fixed point.

3.7 Random walk on a connected cluster of
solutions

Now that we know that the effective learning algorithms land on solutions
which are unblocked, i.e. connected to other solutions at one spin-flip, and
completely unfrozen, i.e. they do not seem to be part of well defined states
in the phase space, we can ask some more questions about the geometrical
structures they belong to:

• How far, in terms of hamming distance, do these structures extend to?
Is this distance extensive?

• What kind of distribution for the overlaps can one find among solutions
belonging to the same connected group?

• Where are these structures located in the phase space, with respect to
the typical frozen solutions?

• Do they contain an extensive or sub-extensive number of solutions?

• How many distinct connected components can be found by the algorithms?

• What happens at the threshold value where the heuristic solvers stop
working?

In order to find an answer to these questions we have to explore the neighborhood
of these unblocked solutions: a natural way of doing this is to implement a
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Fig. 3.7 Random walk on the solutions belonging to the same connected compo-
nent. These kind of structures, despite being invisible to the replica analysis, seem
to be ubiquitous in the space of solutions of the Perceptron.

random walk restricted to the solutions of the problem, i.e. a zero temperature
Monte Carlo, during which we can measure the quantities of interest [1].

In order to estimate the radius of the connected components we can simply
allow the random walk to evolve for a long time, and see what is the maximum
reached distance. However, because of the curse of dimensionality, it is more
efficient to bias the exploration in the outwards direction: this can be easily
done, for example, by sorting the indices, in the move proposal of the MC,
in a way that privileges the choice of synapses still taking the same value
of the starting configuration W̃ . These simulations show that the connected
structures extend throughout the phase space, reaching O (N) distances.

The overlap distribution can be estimated either by memorizing many
unique solutions touched by one (or more) random walks, and sampling the
overlaps by choosing uniformly pairs of solutions, or by starting two parallel MC
chains and seeing if the overlap evolves towards an asymptotic value: in both
cases we observe that the mode of the distribution is peaked in a value which
is compatible with the typical overlap between isolated solutions predicted in
the replica calculations (with q in the RS Ansatz, or the external overlap q0 in
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the 1RSB ansatz). This means that this kind of structure is almost ubiquitous
in the phase space.

In order to count numerically both the number of solutions grouped together
and the number of connected components which are present in the solution
space, we need to explore extensively these structures, which poses serious
numerical feasibility issues. Even if we kept only an hash table corresponding to
the already reached solutions (trying to avoid problems with a fast saturation
of the memory for large instances), the exploration of a structure pervading
an exponential space would be possible only if such structure was fractal,
containing a sub-exponential number of solutions. In this type of scenario the
number of “open” directions, in a percolation procedure that keeps branching
every time a new direction of the connected component is found, remains
bounded.

However, the observed scenario is different: the number of contained solu-
tions appears to be exponential, putting out of question any extensive explo-
ration (at least when the size of the network, N , gets any close to the values
where a comparison with the replica calculations would make sense). We can
therefore proceed in two alternative ways:

1. Since these connected structures seem to disappear at a threshold below αc,
we can find an unblocked solution W̃ and keep adding constraints (patterns
to be classified correctly) until the associated connected component is
decimated to the point that an extensive exploration becomes possible in
reasonable times.

2. We can devise a method for extrapolating the number of contained
solutions from some quantities that can be measured during a random
walk. The method must be conceived in a way that a sufficiently large
sampling guarantees a good guess of the size of the structure.

The first approach can help us answering two of the proposed questions: sup-
pose we move towards the algorithmic threshold and reach the point where
the entropy of solutions inside the connected clusters is sufficiently limited,
and suppose we then find many different solutions with one of the heuristic
algorithms. We can now check how many distinct connected components were
reached, by exploring all the neighborhoods of the registered solutions. The
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answer given by the simulations is that, a part from the detection of a few small
clusters (which might be located at the “boundaries” of the main component),
there is a bigger cluster which is almost always targeted by the heuristics.
This result is even more impressive if one compares the number of solutions
contained in these structures (near the threshold) and the estimate of the total
number of solutions still present in the phase space (obtained with BP or with
the replica calculations): the solvers reach always the same kind of solutions
even though they are outnumbered by various orders of magnitude by the
typical solutions.

Moreover, we can now memorize completely a giant connected component,
and start adding more constraints to the problem. Because of these additions,
some of the solutions in the cluster might get decimated, and this can lead
to a fracture of the connected component into many sub-components. We
can register the hierarchical relationship between these connected clusters and
observe how fast this kind of structures disappear. In figure 3.8, we can see
a depiction of this process, as measured in an instance with size N = 201.
Between α = 0.756 and α = 0.78 all the solutions which had been part of the
same connected component got decimated. By comparing this disappearance
phenomenon at different sizes, we conjecture that it becomes a sharp transition
in the limit N →∞. After this cluster has disappeared no algorithm seems to
be able to find solutions, even though exponentially many (isolated) solutions
are known to be left until αc = 0.833.

In order to give a final answer to question regarding the extensive/sub-
extensive entropy of solutions contained in the connected components, we need
to try the second approach proposed above. A possible strategy for obtaining
an approximation of this quantity within a given radius is the following: we
can start many random walks from the “central” solution initially found by the
algorithm W̃ . During each MC trajectory, we record and update the average
Outgoing Branching Factor (OBF) and the average Ingoing Branching Factor
(IBF) at each distance D, taking into account the number of unique solutions
observed at that radius. We also need to consider a special case, where the
random walk exploration took us to terminal which was going inwards: we thus
introduce a Probability of Birth (PB), again function of the distance.
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Fig. 3.8 Disappearance of the cluster in a binary Perceptron of size N = 201.
The system was prepared very close to the algorithmic threshold, where an extensive
exploration of the connected components found algorithmically is feasible. In this
depiction we show the hierarchical relationships between the surviving components of
the cluster, after the addition of new random patterns. The “children” components in
each picture are contained inside the same area occupied by the “father” component
in the picture to its left. Notice that this depiction is not meant to correctly represent
distance relationships between the solutions. After the addition of a few more
constraints all the solution disappear (around α ∼ 0.78).

By using all these quantities we can estimate the rate of growth of the
cluster as one moves away from the starting solution, and therefore the entropy
of solutions within a given radius. Of course the sampling required for a correct
estimation at large distances diverges very rapidly, but at small distances the
procedure seems to be quite robust. The number N of solutions at distance D

can be found recursively by using the relation:

N (D + 1) = OBF (D)
IBF (D) (1 + PB (D)) N (D). (3.18)

This procedure was checked to converge to the correct values in the scenario
(described above) where an extensive exploration is also possible. By applying
this method to different regimes, we can see that the number of solutions (at a
distance of order N from the starting one) grows exponentially with N (see
figure 3.9).

Finally, one can also study the Franz-Parisi potential (estimate the total
entropy of solutions at each distance), in a single problem instance, by exploiting
BP (with the addition of external fields of variable intensity γ (D)). With this
analysis we can observe that, as we leave the core of these dense regions of
connected solutions, some isolated solutions pop out “around” the connected
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Fig. 3.9 Numerical evidence of the existence of clusters of solutions. En-
tropy at a given distance from a reference solution W̃ , in the classification case at
α = 0.4. From bottom to top: (magenta) theoretical prediction for a typical W̃ ;
(blue) numerical estimate based on a random walks on connected solutions starting
from one provided by SBPI, with N = 1001; (red) estimate from Belief Propagation
using a solution from SBPI, with N = 10001; (green) theoretical curve for the optimal
W̃ as computed in the next chapter; (dotted black) upper bound (α = 0 case, all
configurations are solutions). The random-walk points underestimate the number of
solutions since they only consider single-flip-connected clusters; the BP curve is lower
than the optimal because in the latter W̃ is optimized as a function of the distance,
while in the former it is fixed. Inset: comparison between a typical solution and one
found with SBPI, in the teacher-student case at α = 0.5 with N = 1001. Larger
potentials correspond to smaller distances. Top points (red): SBPI reference solution,
entropy computed by BP; bottom curve (magenta): theoretical prediction for a
typical solution; bottom points (purple): BP results using the teacher as reference.
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component. At small distances, though, the entropy of the connected cluster
almost saturates both the total entropy of solutions (as estimated by BP) and
the maximal entropy (the upper bound is given by total number of configurations
at that distance), which means that these structures are extremely dense. All
these results are collected in figure 3.9, from [1].

We also performed a random-walk exploration in the space of solutions
in the case of a multi-layer network, starting from a solution obtained with
the extended version of the CP+R algorithm. The results are qualitatively
similar: the simplified algorithm lands on a solution which is part of a large
connected cluster, whose extremely high local density decreases as one moves
away from the core found by the solver. This observation could also explain the
small improvements in the generalization obtained with the Bayesian approach
presented in section 3.4: if most of the configurations surrounding the planted
solution are solutions themselves, there is no need to run BP again in order to
obtain a good generalization performance.



Part II

Large Deviation Analysis





Chapter 4

Novel Measure

All the results gathered in the previous chapter leaves us facing a quite confusing
conundrum: even in the case of the simplest discrete neural network model, the
Perceptron, there seems to be a discrepancy between the theoretical picture,
obtained analytically through the replica method, and a series of numerical
and algorithmic findings.

On the one hand, the classical Statistical Mechanics description of the model
depicts an energy landscape dominated by an enormous number (exponential in
the number of synapses N) of local minima, where the typical optimal synaptic
configurations are geometrically isolated (with mutual Hamming distances of
O (N)). This kind of landscape can easily trap standard optimization strategies
based on energy minimization, e.g. Monte Carlo [21, 22], and any kind of local
search algorithm should fail [22].

On the other hand, after the introduction of a few heuristic modifications,
the Belief Propagation approach proves to be able to achieve nearly optimal
performance and succeeds in finding a special class of the ephemeral solutions of
the Perceptron model. Moreover, one of the defining features of these particular
solutions – namely their high density near the core of a cluster pervading the
solution space – is in open contrast with the theoretical predictions for the
geometrical landscape of the problem, and one could even question whether the
Parisi ansatz usually employed in standard equilibrium Replica calculations is
suited for the description of such type of structures.
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In this chapter we will give a general introduction to the theoretical concepts
and methods that we developed in the last few years [1, 4, 2, 3] in order to find
an answer to these open questions.

4.1 Sub-dominant structures

Since a landscape analysis based on an unbiased Gibbs measure leads to the
description of solutions which cannot realistically be found by any algorithm, in
order to filter out the typical optimal configurations (that dominate the picture)
and highlight other classes of solutions, we need to carry out a large deviations
analysis: instead of the standard Boltzmann-Gibbs weight (an indicator function
Xξ (W ) = ∏αN

µ=1 Θ (σµW · ξµ) over the solutions of the problem, in a CSP
formulation), we can consider a reweighed measure, where the probability of
any configuration W̃ is given by:

P
(
W̃ ; y, D

)
=

Xξ,σ

(
W̃
)

eyNS(W̃ ,D)∑
W̃ ′ Xξ,σ

(
W̃ ′
)

eyNS(W̃ ,D) . (4.1)

The reweigthing is done through a local entropy function S
(
W̃ , D

)
= 1

N
logN

(
W̃ , D

)
,

where:
N
(
W̃ , D

)
=
∑
{W }

Xξ (W ) δ
(
W · W̃ , N (1− 2D)

)
(4.2)

counts the number of solutions W at normalized Hamming distance D from
the reference W̃ . When the value of the inverse temperature y is set to 0 we
retrieve the typical case, while as we increase y the measure gets more focused
on denser regions of solutions in the landscape. In the limit y → 0, instead,
S (D, y) reduces to the computation à la Franz-Parisi of [22].

It is important to stress the role of the distance parameter D: it serves for
the definition of a neighborhood of the reference configuration inside which we
are counting the solutions – consequently the name local entropy.

Instead of using the Kronecker δ-function, a possibly more natural definition
for the counting function could be:

N
(
W̃ , γ

)
=
∑
{W }

Xξ (W ) exp
[
−γ

2
(
W − W̃

)2
]

(4.3)
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where γ is the Laplace conjugate of D, seemingly playing the role of an elastic
interaction between W̃ and the surrounding solutions. While this definition is
more easily implementable in an algorithmic setting (as we will see in chapters
5 and 6), in the thermodynamic limit it becomes completely equivalent to
the definition 4.2, since in high dimensions the points counted in N

(
W̃ , γ

)
accumulate on the “circumference” of radius D (γ). On the other hand, the
first definition avoids some technical issues in the calculations, arising when
the Legendre transform between D and γ loses its injection property.

We thus want to study the following free entropy density: We can study the
typical behavior of these modified measures as usual within the replica theory,
by computing their corresponding average free entropy density:

Φ (D, y) = 1
N

〈
log

∑
W̃

Xξ,σ

(
W̃
)

eySξ,σ(W̃ ,D)
〉

(4.4)

This free entropy describes a system in which each configuration W̃ is con-
strained to be a solution, and has an additional energy E

(
W̃ , D

)
= −NS

(
W̃ , D

)
which favors configurations surrounded by an exponential number of other
solutions. From this quantity we can also obtain the typical values of the local
entropy density:

S (D, y) = ∂

∂y
Φ (D, y) (4.5)

and of the external entropy density, or complexity:

Σ (D, y) = Φ (D, y)− yS (D, y) (4.6)

While the first depends on the number of solutions inside each cluster
(centered in W̃ ), the second quantity counts the entropy (i.e. the logarithm
of the number) of clusters. There are mainly two possible scenarios for the
distribution of the desired outputs σµ:

1. the classification (or storage) case, in which they are i.i.d. random variables
and therefore the patterns are completely uncorrelated.

2. the generalization (or teacher-student) scenario, in which the correct
results are provided by a “teacher” device, i.e. another Perceptron with
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synaptic weights W T. Without loss of generality, the teacher synaptic
weights W T can all be set to 1, thanks to a symmetry of the problem.

We here consider the first case, as the second is slightly more involved, but
follows the same exact line of reasoning and yields similar qualitative results
[1].

Replica trick In order to study the large-deviation free entropy density,
we can first compute the replicated volume Ωn (D, y), using the relation
Φ (D, y) ≡ 1

N
limn→0

∂
∂n

Ωn (D, y). The quenched average over the set of patterns
{ξµ, σµ}µ=1,...,αN can be evaluated by using the replica trick. In the following
n will denote the number of replicas of the reference configuration W̃ , and
the letters c and d, with c, d ∈ {1, . . . , n}, will indicate the associated replica
indices. The same trick can also be exploited for expanding the N

(
W̃ , S

)y

term, introducing ny “student” replicas, with the real replica indices denoted
by a, b ∈ {1, ..., y}.

Remembering the teacher-student problem we can portrait a geometrical
situation of this kind: each of the n reference solutions, distributed in the
solution space, will look like a “pseudo-teacher”, surrounded by y “student”
replicas at a fixed distance D. In this computation, though, only the n → 0
limit must be taken while y will remain as a parameter of the problem.

We thus need to evaluate the replicated volume:

Ωn (D, y) = (4.7)〈∫ ∏
i,c

dµ
(
W̃ c

i

) ∫ ∏
i,ca

dµ (W ca
i )

∏
c

Xξ,σ

(
W̃ c

)∏
ca

Xξ,σ (W ca)

×
∏
ca

δ

(
1
2
∑

i

(
W ca

i − W̃ c
i

)2
− 2DN

)〉
ξ,σ

We can follow the steps of a standard replica calculation (cf. with chapter
2), substituting the arguments of the theta functions in the Xξ terms via
Dirac-delta functions, expanding these delta functions using their integral
representation, factorizing the expression where the patterns are involved and
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taking the average over the disorder in the large N limit:

∏
µ,i

〈
exp

(
− i√

N

(∑
c

ˆ̃λc
µW̃ c

i +
∑
ca

λ̂ca
µ W ca

i

)
ξµ

i

)〉
ξ

= (4.8)

∏
µ

−1
2

∑
ca,db

λ̂ca
µ λ̂db

µ

∑
i

W ca
i W db

i

N
+
∑
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ˆ̃λc
µ
ˆ̃λd

µ

∑
i
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i W̃ d

i

N
+

+2
∑
ca,d

λ̂ca
µ

ˆ̃λd
µ

∑
i

W ca
i W̃ d

i

N



Now we can introduce the order parameters for the overlaps of the model,
which can be fixed by introducing the related Dirac delta distributions:

• ∑
i

W̃ c
i W̃ d

i

N
= q̃cd , the overlap between two reference solutions W̃ .

• ∑
i

W ca
i W db

i

N
= qca,db , the overlap between two student solutions W .

• ∑
i

W ca
i W̃ d

i

N
= Sca,d , the overlap between a student and a reference.

After the substitutions in the expression of the volume, one can manage to
factorize over the indices µ and i (thus removing all those indices), getting:

Ωn (D, y) =
∫ ∏

c,a>b
c>d,ab

dqca,dbdq̂ca,db

(2π/N)

∫ ∏
c>d

dq̃cddˆ̃qcd

(2π/N)

∫ ∏
ca,d

dSca,ddŜca,d

(2π/N) (4.9)

×
∫ ∏

ca

dD̂ca

2π
G1 GN

S GαN
E
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with the definitions for the G1 and for the entropic and energetic terms GS,GE:

G1 = exp
−N

∑
c

∑
a>b

q̂ca,cbqca,cb +
∑
c>d

∑
ab

q̂ca,dbqca,db +
∑
c>d

ˆ̃qcdq̃cd+

+
∑
ca,d

Ŝca,dSca,d +
∑
ca

D̂ca (1− 2D − Sca,c)
 (4.10)

GS =
∫ ∏

c

dµ
(
W̃ c

) ∫ ∏
ca

dµ (W ca) exp
∑

c

∑
a>b

q̂ca,cbW caW cb +
∑
c>d

∑
ab

q̂ca,dbW caW db+

+
∑
c>d

ˆ̃qcdW̃ c
i W̃ d

i +
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Ŝd,caW caW̃ d

 (4.11)

GE =
∫ ∏

c

dλ̃cdˆ̃λc

2π
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dλcadλ̂ca

2π
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∑
a>b
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∑
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∑
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λ̂caλ̂dbqca,db −
∑
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
(4.12)

4.2 Replica Symmetric Ansatz

In order to proceed with the computation, we now need to make a simplification
and put forward an Ansatz on the structure of the parameters describing the
replicated system. We start from the simplest one, a replica symmetric Ansatz;
notice however that the reweighting term already introduced a natural grouping
of the students W in n sets of y replicas, each surrounding a certain reference
solution W̃ , thus leading to a situation formally similar to a 1RSB description
(see section 2.3).

We thus have to make a distinction between the typical overlap q1, between
replicas found surrounding the same reference W̃ (say W ca,W cb), and the
overlap q0, between replicas referred to different ones (say W ca,W db with
different c ̸= d): we can assume the first one to be larger, since the distance
constraint shared by students of the same W̃ increases their correlation. We
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also expect these students to have an overlap S with their own reference which
is higher than the typical overlap S̃, with another W̃ . We therefore set:

• qca,cb = q1 for (a ̸= b), qca,db = q0 for (c ̸= d)

• Sca,c = S, Sca,d = S̃ for (c ̸= d)

• q̃cd = q̃ , D̂ca = D̂

With these assumptions, neglecting the O (n2) terms, we find for G1:

G1 = exp
(
−Nny

(
(y − 1)

2 q1q1 −
y

2 q̂0q0 −
1
2

ˆ̃qq̃

y
(4.13)

+ŜS − ˆ̃SS̃ + D̂ (1− 2D − S)
))

Moving to the computation of the entropic term we start by recasting

ˆ̃S
∑
ca

W ca
∑

c

W̃ c = 1
2

ˆ̃S
(∑

ca

W ca +
∑

c

W̃ c

)2

− 1
2

ˆ̃S
(∑

ca

W ca

)2

− 1
2

ˆ̃S
(∑

c

W̃ c

)2

(4.14)

and then we can proceed by:

1. introduce the variables x, z0, z̃ to perform three Hubbard-Stratonovich
transformations, in order to get rid of the squared sums involving the
replica index c and to factorize over it;

2. perform the last Hubbard-Stratonovich transformation and factorize over
the index a as well;

3. consider the limit n → 0, bringing the logarithm inside the Gaussian
integration;

4. perform two rotations of the integration variables in order to evaluate
analytically the

∫
Dx integral.
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In the end we obtain:

GS = 1
n

log GS = (4.15)

− 1
2
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2 q̂1 +
∫
Dz̃

∫
Dz0 log


∑

l̃=±1

exp


z̃

√√√√ˆ̃q −
ˆ̃S2

q̂0
+ z0

ˆ̃S√
q̂0

 l̃


×
∫
Dz1

[
2 cosh

(
z0

√
q̂0 + z1
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)]y}

In a similar way, we reorganize the summations in the energetic term, with
the substitution:

S̃
∑
ca

λ̂ca
∑

c

ˆ̃λc = 1
2 S̃

(∑
ca

λ̂ca +
∑

c

ˆ̃λc

)2

−
(∑

c

ˆ̃λc

)2

−
(∑

ca

λ̂ca

)2
 (4.16)

Next, we can perform the following operations, in order to evaluate the Dx

integral:

1. perform three Hubbard-Stratonovich transformations, introducing x, z0,
and z̃, and factorizing over the index c;

2. evaluate the Gaussian integral in the variable ˆ̃λ;

3. a fourth Hubbard-Stratonovich transformation, introducing the variable
z1 and factorizing over the replica index a;

4. evaluate also the λ̂ Gaussian integral;

5. perform a rotation between z0 and x;

6. change the sign of x and perform another rotation between z̃ and x;

7. perform a shift in the variable λ̃.

Now, after the integral in x, using the fact that
∫

Dz H (az + b) = H
(

b√
1+a2

)
,

we take the logarithm of the energetic term in the n → 0 limit, and after
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rotating z1 and λ̃ we can introduce the error functions to finally find:

GE = 1
n

log GE = (4.17)
∫
Dz0

∫
Dz̃ log

∫ Dz1H

−z0
√

q0 + z1
√

q1 − q0√
(1− q1)

y

H
(
C̃ (s, z0, z1, z̃)

)
with the definition:

C̃ (s, z0, z1, z̃) = −
z̃

√(
q̃ − S̃2

q0

)
+ z0

√
S̃2

q0
+ z1

(S−S̃)√
(q1−q0)√

(1− q̃)− (S−S̃)2

(q1−q0)

(4.18)

Putting the pieces together and using the saddle point method we finally
obtain a leading order estimate of the free energy density function in the large
N limit:

Φ (D, y) ≈−
((
−y

2 (1− q1) q̂1 −
y2

2 (q̂1q1 − q̂0q0)−
1
2 (1− q̃) ˆ̃q − y

(
ŜS − ˆ̃SS̃

)
+

−yD̂ (1− 2D − S)
)

+ GS + αGE

)
(4.19)

where GS and GE are defined according to equations 4.15and 4.17. The station-
arity condition implies the following saddle point equations:

q̃ = −2 ∂

∂ ˆ̃q
GS; q0 = − 2

y2
∂

∂q̂0
GS; q1 = 2

y (y − 1)
∂

∂q̂1
GS; (4.20)

S̃ = −1
y

∂

∂ ˆ̃S
GS; S = 1− 2D; 0 = 1

y

∂

∂Ŝ
GS − S;

ˆ̃q = −2α
∂

∂q̃
GE; q̂0 = −2α

y2
∂

∂q0
GE; q̂1 = 2α

y (y − 1)
∂

∂q1
GE;

D̂ = Ŝ − α

y

∂

∂S
GE; ˆ̃S = −α

y

∂

∂S̃
GE; .

We are thus left with a system of 11 coupled equations that can be solved by
recursion, and three control parameters (α, y and D).

It is important to stress the geometrical implications of the dependence on
the distance D of the overlaps describing the structure of the dense cluster, in
contrast with what usually happens in the 1RSB Parisi Ansatz. This means that
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a special type of symmetry, which usually holds inside the clusters found by the
standard 1RSB, implying that the contained solutions are typically equidistant
from one another (therefore one single overlap is sufficient for describing their
geometrical structure) is broken in this sub-dominant structure, that becomes
exponentially denser near its core.

Consistency check: y = 1 case In the case y = 1, the integrals over z1 in
GS and GE can be computed explicitly, using the formulas:

∫
Dz H (az + b) =H

(
b√

1 + a2

)
(4.21)∫

Dz cosh (az + b) =e
a2
2 cosh (b) (4.22)

As expected, the dependency of Φ (D, 1) on q1 and q̂1 cancels out. Furthermore,
the resulting equations seem to have only solutions with q̃ = q0 = S̃ and
ˆ̃q = q̂0 = ˆ̃S. Therefore, we are left with only 3 order parameters (besides S

which is set by the external parameter D): q, q̂ and Ŝ. The resulting simplified
expression is:

Φ (S, 1) = (1− 2q) q̂ + SŜ − D̂ (1− 2D − S)− G1
S − αG1

E (4.23)

G1
S =

∫
Dz log

∑
l̃=±1

ezl̃
√

q̂
(

2 cosh
(

z
√

q̂ + l̃
(
Ŝ − q̂

))) (4.24)

G1
E =

∫
Dz log

∫ ∞

−z
√

q
1−q

Dλ H

−z
√

q (1− q) + (S − q) λ√
(1− q)2 − (S − q)2

 (4.25)

This expression has two limiting cases which can be verified analytically:

• when S is equal to the value for the overlap of the single Perceptron
qRS, we have Φ

(
1−qRS

2 , 1
)

= −2SRS where SRS is the RS entropy of the
single Perceptron, since in that case the contributions of the W̃ and W

terms in Φ essentially factorize; this case is essentially equivalent to the
computation of [19];

• when on the other hand D = 0 and S = 1, we obtain the degenerate
case Φ (0, 1) = −SRS, since in that case the contribution of the W terms
vanishes.
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4.3 Large y limit

From a physicist perspective, it is natural to consider the limiting case y →∞,
looking for the (possibly unique) ground state of the free energy 4.4. This means
that we want to characterize the optimal reference solution W̃ ⋆ surrounded
by most other solutions at the given distance D. If even in thermodynamic
limit an exponentially large cluster of solutions exists in the solution landscape
of our problem, we expect to find S⋆ (D) > 0 in any small neighborhood of
D = 0.

In the large y limit the computation gets greatly simplified: it is easy
to observe that the Xξ,σ

(
W̃
)

constraint on the reference configuration ef-
fectively disappears and that the fixed point for the saddle point equations
remains unaltered when it is completely removed. The reason is the follow-
ing: in the expression for energetic term GE of equation (4.19), the function
H
(
C̃ (s, z0, z1, z̃)

)
is not elevated to the power of y, and thus becomes effectively

irrelevant, implying that GE is constant with respect to the order parameters q̃

and S̃. In turn, looking at the saddle point equations, this means that ˆ̃q, and
ˆ̃S are all 0.

Thus the large y case can formally be obtained from the final expression 4.19
by setting to zero the order parameters describing the planted configuration
q̃, S̃, and their conjugates (even though the order parameters are not 0, and
their value can be obtained by carefully performing the limit). Moreover the
integration over z̃ in the GS and GE terms can be carried out analytically. The
final expression for the free entropy in this limit is thus the same as for the
unconstrained case, namely:

Φ (D, y) =−
((
−y

2 (1− q1) q̂1 −
y2

2 (q̂1q1 − q̂0q0)− yŜS+

−yD̂ (1− 2D − S)
)

+ GS + αGE

)
(4.26)

GS =
∫
Dz0 log

∑
l̃=±1

∫
Dz1

[
2 cosh

(
z0

√
q̂0 + z1

√
q̂1 − q̂0 + Ŝl̃

)]y


(4.27)

GE =
∫
Dz0 log

∫ Dz1H

−z0
√

q0 + z1

√
(q1 − q0)√

(1− q1)

y (4.28)
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It is easy to notice the resemblance of this expression with the standard 1RSB
case (in section 2.3), with the inverse temperature y taking the role of the
Parisi parameter m. However, 1-RSB solution of the standard equations shows
no hint of the dense regions which we find in the present work, even if we relax
the requirement 0 ≤ m ≤ 1 of [17]. This shows that the constraint on the
distance is crucial to explore these sub-dominant regions.

In order to take the y →∞ limit we need to make a self-consistent Ansatz
for the scaling of some order parameters with y: there is a term y2

2 (q1q̂1 − q0q̂0)
which diverges unless q1q̂1−q0q̂0 = O (y−1). This suggests that q1−q0 = O (y−1)
and q̂1 − q̂0 = O (y−1), i.e. a situation in which groups of solutions relative to
different W̃ would tend to become the same (and therefore q̃ → 1). So we
can define q0 = q and consider the scaling q1 → q + δq

y
. Similarly we can pose

q̂0 = q̂, q̂1 → q̂ + δq̂
y

.

We now want to evaluate the
∫
Dz1 integrals appearing in the energetic and

the entropic terms through a first order saddle point approximation: for this
purpose we need to rescale the integration variable z′

1 = √yz1in the entropic
and energetic terms. The z1 integrals and the summation over l̃ in the entropic
term are thus replaced by maximum functions, obtaining:

lim
y→∞

Φ (D, y) ≈ (4.29)

lim
y→∞

y
(
−1

2 (1− q) q̂ − 1
2δqq̂ − 1

2qδq̂ − ŜS − D̂ (1− 2D − S)

+
∫
Dz0 max

l̃=±1

(
max

z1

(
−z2

1
2 + log

(
2 cosh

(
z0

√
q̂ + z1

√
δq̂ + Ŝl̃

))))

+ α
∫
Dz0 max

z1

(
−z2

1
2 + log

(
H

(
−

z0
√

q + z1
√

δq√
1− q

)))

where the constant vanishing term log y
y

was neglected. Since S doesn’t appear
in the energetic term, at the saddle the equation Ŝ = D̂ holds, and after the
appropriate substitutions S comes out from the picture and can be ignored.
The typical values for the parameters can then be found by iterating the saddle
point equations, found by posing all the derivatives with respect to the order
parameters to 0.

After a study of the function inside the maximum (argGs, in figure 4.1) in
the final expression of the entropic term, it is easy to see that the optimal value
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Fig. 4.1 Study of the argGs function: the parameters where set (randomly) to
the values q̂ = 0.1, δq̂ = 2.0, D̂ = 0.3, z0 = 0.5. In figure (a) the function argGs is
plotted, for the two values l̃ = 1 (blue curve) and l̃ = −1 (yellow curve). The global
maximum is always found in the case l̃ = sign (z0). From the study of the derivative,
in figure (b), we can see that argGs′ (blue and yellow curve for the cases l̃ = ±1)
is always between the two axes y = ±

√
δq̂ − z1 (purple and orange lines). At fixed

l̃, when the vertical symmetry axis (at the values
(
z0
√

q̂ ± D̂
)

/
√

δq̂, green and red
lines) passes through the origin as z0 is increased, the extremal value z⋆

1switches side
(from a value around

√
δq̂ to −

√
δq̂, see also figure (a)).

of l̃ is always sign (z0), and the Newton algorithm can be initialized around
√

δq̂sign (z0).

Once the optimal value z⋆
1 is found, all the other derivatives of the free

energy (in the saddle point equations) can be reduced to simple expressions
involving this value, since for example for any p ∈

{
q̂, δq̂, D̂

}
:

∂GS

∂p
=
∫
Dz0

∂

∂p
(log (2 cosh (arg))) =

∫
Dz0

z⋆
1√
δq

∂

∂p
(arg) (4.30)

Now we can finally obtain an entropy phase diagram, which can be seen in
figure 4.2, showing that:

1. For all α < αc, there is a neighborhood of D = 0 where S (D) > 0,
implying the existence of extensive clusters of solutions. Furthermore, for
all α, the curves for S (D) are all approximately equal around D = 0; in
particular, they all approximate the case for α = 0 where all points are
solutions. This implies that the clusters of solutions are extremely dense
at their core.
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2. For large distances, as expected, S (D) collapses with a second-order
transition onto the equilibrium entropy, i.e. this regime is dominated by
the typical solutions.

Finally we can say that there seems to exists sub-dominant dense regions of
solutions, with a core whose local entropy almost saturates the total volume
of configurations. These structures can be found up to a critical value of
αU = 0.755, where the curves interrupt, signaling some symmetry breaking
phenomenon (which reminds of the cluster disappearance transition observed in
the numerical experiments); this phenomenon occurs before the SAT/UNSAT
transition at αC = 0.833. This could explain why the efficient algorithms,
attracted by this kind of structure, are unable to find solutions up to this
threshold.

Problems with the large y limit Despite being simple and providing some
insight into the phenomenon at study, the y → ∞ limit proves to be quite
problematic.

A thorough analysis shows that, in this limit, the replica symmetric Ansatz
yields clearly unphysical results:

• all the interrupted curves (above αU = 0.755) actually break into two
branches separated by an empty gap, reappearing at small distances
D → 0;

• The disappearance/appearance points correspond to stationary points
for the derivative of the local entropy;

• in all these cases the local entropy measured at the value of D at which
the right branch reappears is higher than the one measured at the end
of the left branch (see figure 4.3); this value is found to exceed also the
value of the RS entropy at the same α, which is in contradiction with the
sub-dominant nature of the dense cluster;

• the positive right branch is observed even when the value of α exceeds the
known SAT/UNSAT threshold (αc = 0.833), even after the information
paradoxical threshold α = 1.
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Fig. 4.2 Entropy phase diagram. Entropy levels are indicated by shaded areas
(decreasing from bottom-right to top-left). The white area marked with an asterisk in
the top-left corner denotes a region where there is no solution to the equations. Red
solid curve: minimum distance, either due to a first-order transition (in α or d), or to
the entropy becoming negative. White short-dashed curve: second-order transition
to the RS solution (level curves to its right are horizontal). Purple dot-dashed curve:
corresponds to a difference of 10−3 with the entropy of the α = 0 case, so that the
level curves to its left are quasi-vertical (high density of solutions). Blue long-dashed
curve: minimal distance for typical W̃ (zero-entropy line). Inset: entropy vs distance,
two examples: α = 0.5 (bottom) and α = 0.7 (top). Dotted gray curve: α = 0 case.
Red continuous curves: optimal W̃ . Blue dashed curves: typical W̃ . White squares:
RS transition points (white line in main plot). Full dots: the curves tend to the
α = 0 case (purple curve in the main plot).
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Fig. 4.3 Unphysical branches for the local entropy in the RS Ansatz and large y
limit. In this case, even above the SAT/UNSAT threshold αc = 0.833 we find a right
branch exhibiting an unrealistically high entropy of solutions at small distances. The
gap between the branches is found to correspond to the region where the derivative
∂S (D, y) /∂D becomes positive (∂S (D, y) /∂S negative).

All these observations point to the fact that the current Ansatz is incorrect,
at least in this large y limit. One way of proving this could be to break the
symmetry and see if the analytic results are stable to this modification in
the Ansatz. Anyway, we can first check the value of the complexity, which
should give a measure of the likelihood of observing this phenomenon in a real
numerical experiment. If the complexity is very small Σ→ 0+, it means that
typically the number of clusters is of order O (1), but with negative complexities
we are actually describing structures that appear with a probability that is
depressed exponentially in the large N limit.

In order to extract the complexity, we need to consider the second order in
the saddle point approximation for the free entropy density Φ (D, y). Consider
an expression of the type:

I (y, ϵ) = 1
y

log
∫

Dz exp
(

y f

(
z
√

y
, ϵ

))
(4.31)
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where we want to extract the second order saddle point approximation in
the limit y → ∞, when the parameters in f are perturbed by a quantity
proportional to ϵ = 1

y
→ 0. In order to obtain the O

(
1
y

)
correction to the

leading term we need to consider two contributions: the first one comes from
the second order in I (y, 0), while the second correction comes from the first
order in I

(
y, 1

y

)
.

Consider for example:

f (z, ϵ) = log cosh
(√

q̂ + q̂′ϵz0 +
√

δq̂ + δq̂′ϵz + l̃
(
Ŝ + Ŝ ′ϵ

))
(4.32)

With ϵ = 0, in the limit of large y, we have:

I (y, 0) = −(z⋆)2

2 + f (z⋆, 0)− 1
2y

log
(

1− ∂2f

∂z2 (z⋆, 0)
)

(4.33)

where z⋆ is the usual maximum, i.e.: z⋆ = ∂f
∂z

(z⋆, 0). The correction with ϵ = 1
y
,

instead, is simply given by:

I

(
y,

1
y

)
= I (y, 0) + 1

y

∂f

∂ϵ
(z⋆, 0) (4.34)

Overall the term at order y−1 has the form:

− 1
2 log

(
1− ∂2f

∂z2 (z⋆, 0)
)

+ ∂f

∂ϵ
(z⋆, 0) (4.35)

Therefore, by using the relationship z⋆ = 1√
δq̂

tanh
(√

q̂z0 +
√

δq̂z⋆ + l̃⋆Ŝ
)
,

we get, for the entropic term:

G′
S =

∫
Dz0

(
−1

2 log
(
1− δq̂ + (z⋆)2

)
+ 1

2
√

δq̂
z⋆

(
q̂′
√

q̂
z0 + δq̂′

√
δq̂

z⋆ + 2l̃⋆Ŝ ′
))

,

(4.36)
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while substituting z⋆ =
√

δq
1−q
G
(

−√
qz0−
√

δqz⋆

√
1−q

)
in the energetic contribution:

G′
E =

∫
Dz0

(
−1

2 log
(

1 + z⋆

(
z⋆

(
1 + δq

1− q

)
+
√

qδq

1− q
z0

))
+ (4.37)

+ 1
2

z⋆
(
z0
√

δq q + δq z⋆
)

1− q
+ q′ z⋆

1− q

(
z0√
δq q

+ z⋆

)
+ δq′ (z⋆)2

δq



Thus, the overall complexity is given by:

Σ (D, y) =− 1
2 (δq̂ (1− q) + δq (δq̂ − q̂) + δq̂′ q + δq̂ q′ + q̂ (δq′ − q′) +

+q̂′ (δq − q) + q̂′ + 2S Ŝ ′
)

+ G′
S + αG′

S (4.38)

Now we need to find the value of the perturbations of the order parameters, by
setting to 0 all their derivatives, yielding:

∂Σ
∂q′ = 1

2 (q̂ − δq̂) + α

2 (1− q)

∫
Dz0 z⋆

(
z⋆ + 1√

q δq
z0

)
(4.39)

∂Σ
∂δq′ = − q̂

2 + α

2δq

∫
Dz0 (z⋆)2 (4.40)

∂Σ
∂q̂′ = 1

2 (− (1− q)− δq) + 1
2
√

δq̂ q̂

∫
Dz0 z0z

⋆ (4.41)

∂Σ
∂δq̂′ = −q

2 + 1
2δq̂

∫
Dz0 (z⋆)2 (4.42)

∂Σ
∂Ŝ ′

= −S + 1√
δq̂

∫
Dz0 l̃⋆z⋆ (4.43)

These are nothing but the old saddle point equations already obtained for the
non-perturbed order parameters, so we find that all terms proportional to q′,
δq′, q̂′, δq̂′ and Ŝ ′ cancel out in the expression of Σ, as expected since the free
entropy is variational. Thus, the complexity is given only by the terms which
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don’t include the new order parameters:

Σ (D, y) =− 1
2 (δq̂ (1− q) + δq (δq̂ − q̂)) +

∫
Dz0

(
−1

2 log
(
1− δq̂ + (z⋆)2

))
+ α

∫
Dz0

(
−1

2 log
(

1 + z⋆

(
z⋆

(
1 + δq

1− q

)
+
√

q δq

1− q
z0

))
+

+1
2

z⋆
(
z0
√

q δq + δq z⋆
)

1− q

 (4.44)

In the large y limit the external entropy Σ (D, y) is found to be negative for
all values of the parameters, thus canceling out the unphysical results shown
above. This signals a problem with the RS Ansatz, and implies that we should
instead consider replica-symmetry-broken solutions. In geometrical terms, the
interpretation is as follows: the RS solution at y →∞ implies that the typical
overlap between two different reference solutions W̃ a and W̃ b, as computed
by q̃ = 1

N

∑
i W̃ a

i W̃ b
i , tends to 1, and therefore that there should be a single

solution of maximal local entropy density. The fact that the RS assumption
is wrong implies that the structure of the configurations of maximal density
is more complex, and that, at least beyond a certain y, the geometry of the
reference configurations W̃ breaks into several clusters.

Still, for a large range of values for α this limit is in good agreement with
the more involved analyses and can provide some insight into the physical
phenomena under study.

4.4 Finite y

Before giving up with the RS Ansatz, we can try to study the problem at finite
y [1]: a motivation is given by the fact that the replica symmetric scenario is
more directly comparable with the typical Franz-Parisi potential, providing
the most straightforward way to demonstrate the radically different picture
about the nature of the solutions painted by the large deviations analysis and
the equilibrium case. Moreover, from the technical point of view, the 1RSB
equations will produce a larger system of equations, involving multiple nested
integrals that are very computationally expensive for arbitrary y.
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In order to obtain a two-dimensional phase diagram, we need to choose a
criterion for fixing the value of y while α and D are varied. We have seen that
Σ (D, y) needs to be positive in order to get physically meaningful results: the
systems are discrete, so this quantity measures the logarithm of the number of
reference configurations W̃ (at the given y and D) divided by N , and negative
values would indicate rare events instead of typical instances [73].

It turns out that, for all values of α and D, there is a value of y beyond
which Σ (D, y) < 0. Therefore, we can search for the value y⋆ = y⋆ (α, d) at
which Σ (D, y⋆) = 0, i.e. the highest value of y for which the RS analytical
results are consistent, representing structures that appear O (1) times in the
space of solutions (as we expect the dense cluster to do). It is worth noting
that following this criterion we still get q̃ < 1, which implies that the number
of reference solutions W̃ is larger than 1. For each couple of α and D, the
sought value of the inverse temperature can be found by interpolating between
different saddle point solutions at varying values of y.

From the results (shown in figure 4.4), we observe that up to a certain αU

(where αU ≃ 0.77 in the classification case and αU ≃ 1.1 in the generalization
case), the S (D) curves are monotonic in D. Beyond αU , there is a transition in
which there appear regions of D (dotted in figure 4.4) which are not correctly
described by the RS Ansatz (since geometric bounds are violated, see the
discussion in the SM for details), and must be described at a higher level of
replica symmetry breaking (RSB). We speculate that this transition signals
a change in the structure of the space of solutions: for α < αU , the densest
cores of solutions are immersed in huge connected structure; for α > αU , this
structure fractures and the dense cores become isolated and hard to find (see a
sketch of this transition in figure 4.5).

Using the vanishing complexity criterion is sufficient to derive results which
are geometrically valid across most values of the control parameters α and D.
There are two exceptions to this observation, though, both occurring at high
values of α and in specific regions of the parameter D. Let us indicate with
[DL, DR] these regions, with 0 < DL < DR < 1:

• The most obvious kind of problem occurs occurs at α ≳ 0.79, where
S (D, y) < 0 for D ∈ [DL, DR]. The standard treatment for this kind of
problem is to break the replica symmetry, until the process reaches a level
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Fig. 4.4 Local entropy curves at varying distance d from the reference solution W̃
for various α (classification case). Black dotted curve: α = 0 case (upper bound). Red
solid curves: RS results. Up to α = 0.77, the curves are monotonic. At α = 0.78, a
region incorrectly described within the RS Ansatz appears (dotted; geometric bounds
are violated at the boundaries of the part of the curve with negative derivative). At
α = 0.79, the solution is discontinuous (a gap appears in the curve), and parts of
the curve have negative entropy (dotted). Blue dashed curves: equilibrium analysis
(typical W̃ ) [22] (dotted parts are unphysical): the curves are never positive in a
neighborhood of d = 0. Inset: zoom of the region around d = 0 (notice the solution
for α = 0.79, followed by a gap).
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Fig. 4.5 Sketch of the phase space of the random binary Perceptron, as described
by the large deviation analysis. The dense region of solutions disappears before the
SAT/UNSAT transition.

where the local entropy remains positive or null for any α and D (in the
equilibrium calculations a single step of symmetry breaking is sufficient,
but this is not guaranteed to hold for this large deviation analysis).

• Another type of transition occurs between α ≃ 0.77 and α ≃ 0.79,
where the ∂

∂D
S (D, y) ≤ 0 in [DL, DR]. A closer inspection of the order

parameters reveals that, in this interval, q1 ≥ S. At the transition points
q1 = S, which is manifestly unphysical: paradoxically any of the solutions
W (which are exponential in number, since S > 0) could play the role of
the reference solution W̃ , yet the number of W̃ should be sub-exponential
at Σ = 0. Clearly, those regions are inadequately described within the
RS Ansatz.

As for the parts of the curves which are outside these problematic regions, the
results obtained under the RS assumption are reasonable, and in very good
agreement with the numerical evidence. In order to assess whether the RS
equations are stable, further steps of RSB would be needed; unfortunately, this
would multiply the number of order parameters and complicate the system of
equations.

Since the extremal case is found only in the limit of y =∞ (where the RS
solution is inadequate) the values found for S (Σ = 0) might be seen as lower
bound. However, when D → 0 the sought value y⋆ →∞. The same happens
when D → (1− qRS) /2, where the distance constraint starts including the
typical equilibrium solutions of the standard analysis and S becomes equivalent
to the standard entropy of the equilibrium ground states.
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4.5 Unconstrained case, 1RSB in the large y
limit

We are also interested in considering the case in which the reference configuration
W̃ is not constrained to be a solution. This scenario is vital for designing search
algorithms where the local entropy optimization is substituted to the usual
energy optimization (with the additional constraint on the reference we get a
hybrid approach which is not easily implementable). It is possible to show that
even when this explicit constraint is removed, if the local entropy is estimated
at every step and the configuration for which it is maximum is obtained, in all
likelihood the algorithm will end up in a solution (see [2]).

Unfortunately, in this case a finite y study is not sufficient for obtaining
reasonable results when assuming replica symmetry, so a 1RSB Ansatz needs
to be considered. Specifically, we presume that the symmetry breaking phe-
nomenon occurs at the level of the W̃ variables (external replica symmetry
breaking), while an RS description for the student variables W is kept. This
appears as a geometrically consistent assumption, in that the clusters we are
analyzing are dense and we do not expect any internal fragmentation of their
geometrical structure (also in agreement with experiments of section 3.7).

In order to simplify the computation of the saddle point equations, we also
consider the limit y → ∞. In this case the problem of the negative external
entropy is not cured, as the complexity is found to be negative for all values
of α and S. However, its magnitude is greatly reduced with respect to the
analogous RS solution at y → ∞; furthermore, its value tends to zero when
S → 1 (the region which is most crucial for proving the properties of the dense
cluster), and all the other unphysical results of the RS solution appear to be
fixed at this step of RSB.

Starting from expression 4.9 for the replicated volume in the constrained
reweighted measure, we drop the constraint Xξ,σ

(
W̃
)

on the reference configu-
rations (thus getting rid of the parameters q̃, S̃ and their conjugates) and we
opt for an external 1RSB Ansatz. With this scheme we describe a geometrical
situation where the n replicas are organized in n

m
blocks of m replicas each.

The Parisi 1RSB parameter m will be optimized alongside the other order
parameters. We introduce the multi-index c = (α, β), where α ∈ {1, ..., n/m}
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labels a block of m replicas, and β ∈ {1, ..., m} indexes the replicas inside each
block. The structure for the overlap matrix qca,db becomes:

qαβ,a;α′β′,b =



1 if α = α′, β = β′, a = b

q2 if α = α′, β = β′, a ̸= b

q1 if α = α′, β ̸= β′

q0 if α ̸= α′

(4.45)

and similarly for the conjugated parameter matrix q̂ca,db, while the Ansatz
for the rest of the order parameters can remain unchanged from the RS case.
Because of the presence of the reference configurations and their students,
we will obtain an expression which is formally similar to a standard 2RSB
description.

After some calculations one can obtain the following expression for the free
entropy density Φ1RSB (D, y):

Φ1RSB (D, y) ≈−
(

y2 m

2 q̂0q0 − y2 m− 1
2 q̂1q1 − y

y − 1
2 q̂2q2 −

y

2 q̂2

−yD̂ (1− 2D) + GS + αGE

)
(4.46)

GS = 1
m

∫
Dz0 log

∫
Dz1Z (z0, z1)m (4.47)

Z (z0, z1) =
∫
Dz2

∑
l̃=±1

[
2 cosh

(
z0

√
q̂0 + z1

√
q̂1 − q̂0 + z2

√
q̂2 − q̂1 + D̂ l̃

) ]y

(4.48)

GE = 1
m

∫
Dz0

〈
log

∫
Dz1

[∫
Dz2 H

(
−

z0
√

q0 + z1
√

q1 − q0 + z2
√

q2 − q1√
1− q2

)y]m〉
s

(4.49)
where the trivial saddle point equation Ŝ = D̂ was already substituted.

In the y → ∞ limit we have to choose again a scaling for the overlap
parameters: it is natural to set in this case q2 → q1 + δq

y
and q̂2 → q̂1 + δq̂

y
,

where in the limit the replica symmetry is restored. Moreover, in order to
maintain the correct scaling with y, we can m→ x

y
. The

∫
Dz2 integral can now

be computed by a saddle point approximation, after rescaling the integration
variable (similarly to the case of z1 in the RS Ansatz), and to the leading order
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in y we find:

lim
y→∞

Φ1RSB (D, y) ≈ lim
y→∞
−y

(
x

2 (q̂0q0 − q̂1q1)−
1
2(δq̂ q1 + q̂1 δq)− 1

2 q̂1 (1− q1) +

−D̂ (1− 2D) + G∞
S + αG∞

E

)
(4.50)

G∞
S =1

x

∫
Dz0 log

∫
Dz1 exAS(z0,z1) (4.51)

AS (z0, z1) = max
l̃=±1,z2

{
− z2

2
2 + log

(
2 cosh

((
z0

√
q̂0 + z1

√
q̂1 − q̂0 + z2

√
δq̂ + D̂ l̃

)))}
(4.52)

G∞
E =1

x

∫
Dz0

〈
log

∫
Dz1 exAE(s,z0,z1)

〉
s

(4.53)

AE (s, z0, z1) = max
z2

{
− z2

2
2 + log H

−z0
√

q0 + z1
√

q1 − q0 + z2

√
δq)

√
1− q1

}
(4.54)

Differently from the previous case, in addition to α and D in this system
of equations we have the control parameter x, which we can optimize on by
requiring ∂Φ1RSB

∂x
= 0. When this saddle point condition is required the external

complexity is naturally set to zero, as we required in the finite y study. In fact,
we have:

mΦ1RSB (D, y) = Σ0 (D, y) + m (Σ1 (D, y) + yS (D, y)) , (4.55)

where Σ0 denotes the external complexity, Σ1 the internal complexity and S is
the (internal) local entropy. It is clear that when the condition ∂Φ1RSB/∂m = 0
is required we directly get Σ0 = 0. In the large y limit we are instead using x =
my, so by posing Φ′ = Φ1RSB/y we have (dropping the D and α dependence):

xΦ′ = Σ0 + x

y
Σ1 + xS = x (Φ0 + Φ1/y) , (4.56)

therefore ∂Φ/∂x = 0 implies Σ0 = 0 (in this situation, though Σ1, the com-
plexity inside the cluster of W̃ is always negative). The system of saddle point
equations is very sensitive to any change in x, so a good way of setting the
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Fig. 4.6 A. Local entropy vs overlap S, at various values of α. All curves tend
to the α = 0 case for sufficiently high S. For α ≳ 0.77, a gap appears, i.e. a region of
S where no solution to the saddle point equations exists. For α ≳ 0.79, some parts
of the curve have negative entropy (dashed). B. Relationship between the overlap
S and its conjugate parameter, the external field γ. Up to α ≲ 0.75, the relationship
is monotonic and the convexity does not change for all values of S; up to α ≲ 0.77, a
solution exists for all S but the relationship is no longer monotonic, implying that
there are regions of S that can not be reached by using γ as an external control
parameter. The gap in the solutions that appears after α ≳ 0.77 is clearly signaled
by the fact that γ reaches 0; below αc = 0.83, a second branch of the solution always
reappears at sufficiently high S, starting from γ = 0.

associated derivative to 0 is to reach convergence of the other order parameters
(by iterating the other equations) at fixed values of x, and then interpolate.
The internal complexity Σ1 can be found from a first-order expansion in y,
giving:

Σ1 =1
2 (−δq̂ − δqδq̂ + δq̂q1 + δqq̂1) + C∞

S + αC∞
E (4.57)

C∞
S =− 1

2

∫
Dz0

∫
Dz1 ex B̃(z0,z1) log

(
1− δq̂ + z⋆

S (z0, z1)2
)

∫
Dz1 ex B̃(z0,z1)

(4.58)

C∞
E =− 1

2

∫
Dz0

∫
Dz1 ex B(z0,z1)

(
log

(
1 + z⋆

E (z0, z1)2 + b (z0, z1)
)
− b (z0, z1)

)
∫
Dz1 ex B(z0,z1)

(4.59)

The phase diagram can be seen in figure 4.6. We also show the relationship
between the overlap S and its conjugate parameter γ, which is easier to use
in an algorithmic setting in which the local entropy is defined according to
equation 4.3. Qualitatively, from the results of the 1RSB analysis we can
observe that:
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1. For all α below the critical value αc = 0.83, the local entropy in the
region of S → 1 tends to the curve corresponding to α = 0, implying
that for small enough distances the region around the ground states W̃ ⋆

is extremely dense (almost all points are solutions).

2. The internal complexity is always negative, but tends to 0 as D → 0.

3. The unphysical branches of the local entropy (found for the RS Ansatz
in the y →∞ limit) no longer exist above αc = 0.833.

4. q1 < S for all the saddle points. When S → 1 (i.e. D → 0, at small
distances) we observe that S ∼ √q1, which means that W̃ is actually
barycentric to its set of students W . Moreover q0 ̸= q1 holds everywhere,
so the number of optimal W̃ is larger than 1 (but sub-exponential).

5. There is a transition at αU ≃ 0.77 after which the local entropy curves
are no longer monotonic; in fact, we observe the appearance of a gap
in S where the system of equations has no solution. We speculatively
interpret this fact as signaling a transition between two regimes: one for
low α in which the ultra-dense regions are immersed in a huge connected
structure, and one at high α in which the structure of the sub-dominant
solutions fragments into separate regions.

6. As before, in the limit y →∞ the local entropy takes exactly the same
value as for the constrained case in which the W̃ are required to be
solutions, and the same is true for the parameters that are common to
both cases. The external entropy, however, is different.

7. For the unconstrained case, we can compute the probability that the
reference configuration W̃ makes an error on any one of the patterns (see
figure 5.2). It turns out that this probability is a decreasing function
when D → 0 (going exponentially to 0) and an increasing function of α.
For low values of α, this probability is extremely low, such that at finite
values of N the probability that W̃ is itself a solution to the full pattern
set is ≃ 1.

The simulation results, where available, seem to be in remarkable agreement
with the predictions of this Ansatz (see 3 for the algorithmic thresholds and the
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numerical results on the disappearence of the cluster). Furthermore, the results
of the 1RSB analysis at y →∞ and of the RS analysis of the constrained case
at y = y⋆ (D) are both qualitatively and quantitatively very similar. We can
speculate that this solution provides a reasonable approximation to the real
behavior at y →∞.

The threshold αU signals a transition between an “easy” and a “hard”
computational phases, related to the accessibility of the dense regions of
solutions that allow the existence of efficient algorithms able to solve the
training task. The problem with the non monotonicity of the entropy curves
will become clearer in the next chapter, where we will introduce a new solver
based on the concept of the local entropy: in that setting we will employ a
conjugate field in order to fix the distance D, and this is obviously no longer
possible after αU .

It is natural to make a comparison with other constraint satisfaction prob-
lems like random K-satisfiability (K-SAT), where in particular there is a
“frozen” phase where solutions become isolated and no algorithm is known
to work [32]. Contrary to the K-SAT example, however, in artificial neural
networks this transition cannot be seen in the equilibrium analysis – which
would predict that the problem is intractable at all values of α. This latter
observation is presumably linked with the complex geometrical properties of
the dense regions found by our large deviation analysis: they are not “states”
in the usual sense (in the context of Statistical Physics of complex systems),
since they are not clearly separated clusters of configurations.

Our analysis (theoretical and numerical) is not sufficient to completely
characterize this peculiar geometrical structure: we know that is must be
extensive, that the density seems to vary in a rather smoothly (i.e. such that it
is algorithmically easy to find a path towards a solution in the local entropy
landscape), and that there are several (but less than exponentially many)
regions of highest density.
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4.6 Generalized Perceptron case

Very similar results can be obtained also in the case of multiple synaptic states,
{0, 1} patterns and various sparsity levels [3].

In figure 4.7, for example we can see the local entropy plotted against the
distance in one representative case, for a Perceptron with synaptic states l ∈
{0, 1, 2, 3, 4} and a coding level f = 0.1 for the sparse patterns, and compared
with the Franz-Parisi potential at different values of α. The numerical solution
of the saddle point equations becomes numerically extremely challenging around
the transition point αU , therefore some curves couldn’t be completed. The
most notable features that emerge from this figure are qualitatively equivalent
to the binary case presented above:

• Typical solutions are isolated: the Franz-Parisi potential curve (typical W̃

in the figure) becomes negative in a neighborhood of D = 0, determining
an extensive gap between neighboring solutions.

• Up to a certain αU < αc (between 1.55 and 1.62 for the specific case in
the plot), non-typical dense regions of solutions exist: at small distances
the local entropy curves tend to collapse onto the α = 0 curve, which
corresponds to the upper bound where each configuration is a solution.

• Between αU and αc, there are regions of D where either there is no
solution to the equations or the solution leads to a negative local entropy;
both these phenomena indicate a change in the structure of the dense
clusters, either disappearing or breaking into small disconnected and
isolated components.

It would be interesting to determine numerically the transition point αU ,
where the dense regions seem to disappear (or are at least no longer easily
accessible), as a function of the number of states available to the synapses,
measuring the effective gain in capacity of the device as they are added. This
problem is extremely challenging from the computational point of view, due
the time-consuming task of solving the system of equations that result from
the replica analysis and to purely numerical issues related to the finite machine
precision available and the trade-offs involved between computational time and
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Fig. 4.7 Local entropy density as a function of the distance D from the reference
configuration W̃ , comparing the typical case from the Franz-Parisi analysis (black
lines, marked with squares) with the large deviations case (red lines, marked with
circles), at various values of the number of patterns per variable α. The upper bound
(gray dashed curve) corresponds to the α = 0 case where every configuration is a
solution. The unphysical portions of the curves, where the local entropy becomes
negative, are dotted. For the typical case, all curves eventually go below zero at some
Dmin > 0, for all values of α, i.e. typical solutions are isolated. For the large deviations
case, the curves for the Φ (D, y⋆ (D)) case (RS analysis) and the Φ1RSB (D,∞) case
(1RSB analysis) yield results which are too close to be distinguished in the plot at
this resolution. The “large deviations W̃” curve at α = 1.6 is interrupted due to
numerical problems in solving the equations, but it could continue up to D = 0,
approaching the upper bound for small α. The curves for α = 1.62 and α = 1.64
are interrupted because the equations stop having solutions at some value of D > 0
(αU transition, see text). The large deviations curve at α = 1.3 is also essentially
indistinguishable from the RS computation performed at y =∞.



4.6 Generalized Perceptron case 111

increased precision. All these problems are exacerbated near the transition
point.

For this reason, the pathological RS analysis (in the limit y → ∞) can
be employed to provide an estimate of αU , which can be obtained reasonably
efficiently. As it can be seen in the binary case, this estimate is not too far
away from the better one obtained in the much more expensive 1RSB Ansatz
(αU = 0.755 against αU ≃ 0.76); in the case of the multi valued model of figure
4.7, the RS analysis at y →∞ gives αU ≃ 1.6 while the 1RSB analysis gives
αU between 1.55 and 1.62. Therefore, we can use the RS analysis at y →∞ to
explore the behavior of αU when varying the number of states and the coding
level of the patterns. The transition is most easily detected by studying the
derivative of the local entropy as a function of the distance ∂DS (D,∞) (αU is
found when it becomes tangent to the x axis, reaching the value 0).

It is a bit trickier to find the optimal value z⋆
1 , in the entropic term, when the

synapses can take more than two values, since the degeneracy of the stationary
points is increased linearly. We can nevertheless simplify the search for the
maximum by studying the argument of the function, see figure 4.8:

GS =
∫
Dz0 max

l̃

 ˆ̃Q
y

l̃2 + max
z1

(
−z2

1
2 + log

(
f
(
Q̂, q̂, δq̂, M̂ , Sl̃

))) (4.60)

f
(
Q̂, q̂, δq̂, M̂ , Sl̃

)
=
∑

l

exp
((

Q̂− 1
2 q̂
)

l2 +
(

z0

√
q̂ + z1

√
δq̂ + M̂ + Sl̃

)
l
)

(4.61)

In figure 4.9A the behavior of αU as a function of the number of states, for
various values of the coding level f , is plotted. It is clearly similar to that of
the critical capacity αc, cf. figure 2.4. Since in the limit L → ∞ the device
should behave as a model with continuous synapses, we expect the ratio of
these two thresholds to converge to 1, as it is found in figure 4.9B.
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Fig. 4.8 Study of the argGs function for multiple synaptic states: the parameters
where set (randomly) to the values Q̂ = 0.2, q̂ = 3., δq̂ = 8., D̂ = 0.30, z0 = −2.5,
l ∈ {0, 1, 2}. The function argGs can now have more than two local maxima for each
value of l̃ (blue curves). The easiest way to find the maximum is to search explicitly for
the couple {l̃, l} that maximizes the quantity: − l̃

2D̂ +(Q̂− 1
2 q̂ + 1

2δq̂)l2 +(z0
√

q̂ +D̂l̃)l
(corresponding to the green tangent of the yellow parabola, that represents the
maximal mode of argGs), and then to initialize Newton’s algorithm at z1 =

√
δq̂l.

Fig. 4.9 A. Transition point αU as a function of of the number of states per synapse
L + 1, for different values of the coding rate f , as computed in the approximation of
RS at y → ∞. B. Same as panel A, but αU is divided by the critical capacity αc.
Error bars indicate the errors induced by the precision with which the values were
determined. Points for different values of f are slightly shifted relative to each other
for improved legibility. Despite the limited number of values, a general tendency
of this value to increase with L is observed (the ratio is expected to tend to 1 for
L→∞), while the dependency on f is less clear.
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Fig. 4.10 Generalization error (teacher-student scenario). From top to bottom:
(blue) typical solution; (red) optimal W̃ at d = 0.025 (this solution disappears after
α ≃ 1.2); (black points) solutions from SBPI at N = 10001, 100 samples per point;
(magenta) optimal W̃ at the value of d for which SI is maximum (i.e. it equals the
equilibrium entropy); (green) Bayesian case: error from the average over all solutions.
At αT S = 1.245 is the first-order transition to perfect learning; between αT S and
α = 1.5 there is a meta-stable regime; the dashed parts of the curves correspond to
unphysical solutions of the RS equations with negative entropy.

4.7 Teacher-student scenario

The solution to the system of equations stemming from the RS saddle point
produces qualitatively very similar results for both the classification (with
α < αc) and the generalization (with α < αT S) case [1].

In the teacher-student scenario, the relevant quantity is the generalization
error, i.e. the ability of giving a correct prediction on a newly presented pattern
extracted from the same distribution of those in the training set. The analytical
prediction for the generalization error rate is found to be simply dependent on
the alignment of the student with the teacher: pe = 1

π
arccos

(
1
N

W ·W T
)
.

As can be seen in figure 4.10, the generalization properties of the optimal
reference solutions W̃ are generally much better than those of typical solutions.
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Moreover, the curve for small D is found to be in striking agreement with the
numerical results, produced using solutions obtained from the SBPI algorithm.
The generalization error decreases monotonically when D is increased, and
saturates to a plateau when S (D) equals equilibrium entropy (of the typical
solutions).

This good generalization property might be justified with a Bayesian argu-
ment: given a new pattern-output association, the optimal Bayesian prediction
is obtained by averaging the outputs of all the solutions of the training problem,
as in:

P
(
σ|ξnew; {ξµ, σµ}αN

µ=1

)
=
∫

dW P (σ|W, ξnew) P
(
W | {ξµ, σµ}αN

µ=1

)
(4.62)

Since a solution in the sub-dominant cluster is immersed in a dense region
of solutions, its output can be seen as a local Bayesian estimator of the output
of its neighboring solutions. This means that the weight of this output in the
full Bayesian prediction is likely larger than the output of a typical isolated
solution, therefore the high (exponential) density guarantees good generalization
properties.

Also in the case of multi-layer networks, the same qualitative scenario
seems to hold: if one considers a random-walk constrained to the solutions
of the training problem, the generalization properties of the starting solution
(obtained with the extension of the CP+R algorithm) are found to be better
than those of the neighboring solutions, found in later stages of the random
walk, as it can be seen in figure 4.8.
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Fig. 4.11 Generalization vs density in a multi-layer network (with K1 = 11,
K2 = 30, r = 0). Performing a random walk over solutions to the training set,
one can observe that, moving away from this solution, the generalization error (red,
circles) increases, and the solution density (blue, squares) decreases. The same
qualitative behavior is observed with all network sizes.



Chapter 5

Entropy driven Monte Carlo

The results of the Large Deviation Analysis presented in the previous section
finally put forward an explanation for the success of the heuristic solvers of the
binary Perceptron. In a landscape dominated by frozen solutions, which cannot
be found in sub-exponential time by local search strategies [66], the algorithms
exploit the presence of a region in which the solutions accumulate and form
a complex connected structure – branching with a decreasing density to the
whole space of solutions – and sample solutions near the core of this cluster.
The key ingredient for highlighting analytically these special structures was
the introduction of a local entropy potential, that was used for enhancing the
statistical weight of dense regions of solutions.

Now that we know what kind of solutions attract the efficient algorithms,
we can devise more theoretically under-control solvers that explicitly target
the dense cluster of solutions [2, 3]. Markov Chain Monte Carlo (MCMC)
algorithms are often used in the context of combinatorial optimization for
approximating the stationary distribution π of the studied problem. This
distribution is monotonically decreasing with respect to the objective function
to be minimized, and can be made more focused on the optima by tuning a
properly introduced temperature, a simple procedure exploited in the Simulated
Annealing algorithm [37]. Depending on the smoothness of the stationary
distribution the sampling process can rapidly converge to low energy minima or
it can get trapped in sub-optimal local minima of the loss-function. Typically,
there is a trade-off between the optimality of the sampled configurations and
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the form of π: at high temperature, sampling from smooth and close to uniform
distributions is usually easy, but the obtained configurations are most often
far from optimal. On the other hand, as the statistical weight of the minima
is increased by lowering the temperature, in hard optimization problems one
has to deal with the emergence of a glassy landscape, where the number of
meta-stable minima that can trap the MCMC, breaking the ergodicity of the
sampling process, is exponential.

In section (4.5 large dev: unconstrained case), we have seen that the dense
cluster can be found even by lifting the requirement of selecting a solution
as the reference configuration, since it is sufficient to look for configurations
immersed in a zero energy configuration neighborhood. This fact suggests that
it is possible to treat the local entropy as a pure objective function and to define
a novel MCMC scheme, the Entropy-driven Monte Carlo (EdMC), where this
new “energy” is maximized in a simple Metropolis procedure. The computation
of the local entropy is obviously more involved than that of the energy, but
EdMC is able to explore a smoother landscape (see figure 5.1) than the one
seen by a standard Simulated Annealing (SA), that is usually hindered by the
proliferation of local minima. Moreover, EdMC offers a numerical method for
validating the Replica calculations on single problem instances, and can help
in understanding the properties of the heuristic BP-inspired algorithms that
are able to find a solution in the binary Perceptron.

5.1 Energy of the reference configuration

An important question is what is the optimal radius – defining the neighborhood
considered in the local entropy estimation – to choose in order to be confident
that an algorithm like EdMC would eventually land on a solution. In order
to address this question, we need to take a look at the behavior of the typical
energy density of the unconstrained reference configuration W̃ , as a function
of the selected distance D or, equivalently, of the typical overlap S = 1− 2D

(between the surrounding solutions and the reference).

The energy density can be easily related to the probability of classifying
incorrectly a pattern ξ⋆, drawn uniformly at random from the training set.
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Fig. 5.1 Energy landscape compared to local entropy landscape in an illustra-
tive toy example. The energy landscape (gray curve) can be very rugged, with a large
number of narrow local minima. Some isolated global minima can also be observed
on the right. On the left, there is a region of denser minima which coalesce into a
wide global optimum. The red curves show the local entropy landscape (equation 5.7
with the opposite sign) computed at increasing values of the interaction parameter
γ, i.e., at progressively finer scales. At low values of γ (dashed curve), the landscape
is extremely smooth and the dense region is identifiable on a coarse-grained scale.
At intermediate values of γ (dot-dashed curve) the global minimum is narrower and
located in a denser region, but it does not correspond to a global energy minimum
yet. At large values of γ (solid curve) finer-grain features appear as several local
minima, but the global minimum is now located inside a wide global optimum of
the energy. Note that in a high-dimensional space the isolated global minima can be
exponentially more numerous and thus dominate the equilibrium measure, but they
are “filtered out” in the local entropy description.
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This quantity can be obtained by calculating:

P (σ⋆ ̸= 1) =
〈

Θ
(
− 1√

N

∑
i

W̃iξ
⋆
i

)〉
W̃

(5.1)

where the average is defined over the re-weighted unconstrained measure
dµW

(
W̃
)

= dµ
(
W̃
)
Nξ

(
W̃ , S

)y
. This calculation can be carried out straight-

forwardly by exploiting the replica trick, rewriting the ensemble average as:

lim
n→0

∫
dµW

(
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)
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(
− 1√
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∑
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W̃ 1
i ξ⋆

i

)
(5.2)

We have thus introduced n − 1 unconstrained replicas of the reference
solution, leaving out the replica index 1 for the probing W̃ -replica, coupled
to the pattern ξ⋆ by the constraint. In this way one can first average out the
quenched disorder, and then recover the initial expression in the n→ 0 limit.

When one extracts the overlaps referred to the reference configurations by
introducing vanishing constraints (i.e. when γ → 0), the conjugate parameters
related to these overlaps tend to vanish as well. Therefore, if one organizes
the calculation in the same way of the previously presented ones, the entropic
terms cancel out and the only non-zero contribution to the average comes from
the energetic part. The final expression, in the 1RSB Ansatz, is the following:

P (σ⋆ ̸= 1) =
∫

Dz0

∫
Dz1 (

∫
Dz2H (A)y)m−1 ∫

Dz2H (A)y H (−C)∫
Dz1 (

∫
Dz2H (A)y)m (5.3)

with the definitions:

A (z0, z1, z2) =
z0
√

q0 + z1
√

q1 − q0 + z2
√

q2 − q1√
1− q2

(5.4)

C (z0, z1, z2) =
z0

S̃0√
q0

+ z1
S̃1−S̃0√

q1−q0
+ z2

S−S̃1√
q2−q1√

1− S̃2
0

q0
− (S̃1−S̃0)2

q1−q0
− (S−S̃1)2

q2−q1

(5.5)
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Fig. 5.2 A. Probability of a classification error by the optimal reference config-
uration W̃ , for various values of α, as a function of S. The dashed parts of the curves
correspond to the parts with negative local entropy (cf. figure 4.6); the curves have
a gap above α ≳ 0.77. B. Same as panel A, but in logarithmic scale on the y axis,
which shows that all curves tend to zero errors for S → 1.

In the limit y → ∞, posing the same scaling behaviors as in section 4.3,
we get:

P (σ⋆ ̸= 1) =
∫

Dz0

∫
Dz1e

x B(z0,z1)H

− z0
S̃0√

q0
+z1

S̃1−S̃0√
q1−q0

+z2
δS√

δq√
1−

S̃2
0

q0
− (S̃1−S̃0)2

q1−q0


∫

Dz1ex B(z0,z1) (5.6)

The analytic curves are plotted in figure 5.2, where we can see that, as long as
the cluster exists, the probability of a classification error drops exponentially
as the overlap S is increased to 1 (i.e. for small distances D → 0 and a strong
couplings γ →∞).

Unfortunately, if one starts the learning procedure from a random configura-
tion directly at a high value for γ, the information provided by the local entropy
is not sufficient for reaching the dense cluster. Therefore, in the same spirit of
the annealing procedure employed in SA, we can initialize γ to a small value
and devise a learning scheme in which the MC is slowly led to lower energy
solutions by increasing the coupling γ, focusing the local entropy evaluation to
smaller and smaller neighborhoods of the reference configuration and biasing
the measure towards denser and denser regions of solutions. In the following,
we call this special annealing the “scoping” procedure.
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5.2 Implementation of the algorithm

A solution to the learning problem can thus be found by maximizing, at high
enough γ, the local free entropy Φ

(
W̃ , γ

)
:

Φ
(
W̃ , γ

)
= 1

N
logN

(
W̃ , γ

)
(5.7)

In this case, for algorithmic purposes, we choose to use γ, in the expression of
N
(
W̃ , γ

)
= ∑

{W } Xξ (W ) eγW ·W̃ , to define a soft constraint for delimiting the
region where the solutions are counted (as noted before, in the N →∞ limit it
can be seen as the Legendre conjugate of the typical distance D between W̃

and the solutions {W}).

The main practical difficulty in implementing the EdMC algorithm is thus
estimating the local free entropy Φ (x̃, γ): a natural choice is to obtain it in
the Bethe approximation given by the Belief Propagation (BP) algorithm. In
order to determine Φ (x̃, γ), one needs to study a slightly different system than
the one defined by H0 (W ) (cf. with section 4.1), in which the variables W are
coupled to the external fields γW̃ , with W̃i ∈ {−1, +1} and γ ∈ R:

H
(
W ; W̃

)
= H0 (W )− γ

N∑
i=1

WiW̃i (5.8)

Thus, in this expression, the directions of the external fields W̃i are treated
as external control variables, and the parameter γ sets the magnitude of the
external fields. The cavity magnetizations are thus modified, as in:

mi→µ = tanh
∑

ν ̸=µ

tanh−1 (mν→i) + γW̃i

 (5.9)

and similarly for the total magnetization: mi = tanh
(∑

µ tanh−1 (m̂µ→i) + γW̃i

)
.

The local free entropy Φ (x̃, γ) is then obtained as the zero-temperature
limit of the free energy of the system described by H (x; x̃), and its definition
is the same of equation 3.12, except for using the modified magnetizations.
Similarly, with the new {mi}N

i=1 one can obtain an estimate of the average
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overlap S and the local entropy S:

S
(
W̃ , γ

)
= 1

N

∑
i

W̃imi (5.10)

S
(
W̃ , γ

)
=F

(
W̃ , γ

)
− γS

(
W̃ , γ

)
(5.11)

Therefore, the EdMC learning scheme can be defined as a very straightfor-
ward two-level optimization process: W̃ is initialized at random; at each step
Φ
(
W̃ , γ

)
is computed by the BP algorithm; randomly chosen local moves (spin

flips of the reference configuration W̃ ) are accepted or rejected using a standard
Metropolis rule, at a temperature y−1. After a number of accepted moves, we
apply a “scoping” increment to γ (thus reducing D), until we eventually find a
solution.

One could also consider an annealing procedure for y, but in practice, we
found that the performance is good enough when it is kept fixed to a high value:
in many regimes it is even possible to adopt a greedy strategy, setting y =∞
and thus considering a zero temperature Monte Carlo. It seems to be more
relevant, instead, to start from low values of γ and to increase it gradually.

5.3 Numerical results

Now that we have designed the EdMC optimization scheme, we can begin
the numerical analysis by comparing the EdMC results, observed on finite
size single-problem instances, with the theoretical predictions obtained via
replica calculations. We therefore ran EdMC on a series of samples at size
N = 201 and α = 0.6. The scoping increment was determined by using the
relationship between the coupling parameter γ and the resulting polarization
in the magnetizations, γ = tanh−1 (p), and by implementing a linear increment
in p (p ∈ [0.4, 0.9], in steps of 0.1).

In order to study the behavior of the free entropy F (x̃, γ) as a function
of γ, we carried on with each EdMC simulation even when a solution was
already found. The inverse temperature was both set to ∞, in a greedy version
of the algorithm, and to a finite value, slowly incremented in an annealing
procedure with an exponential rate of 1.01 (applied every 10 accepted moves).
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Fig. 5.3 A. Probability of error on a pattern (cf. figure 5.2) B. Local entropy
(cf. figure 4.6A). See text for details on the procedure. For the version with cooling,
700 pattern sets were tested for each value of γ. For the y =∞ version, 2000 samples
were used. Error bars represent standard deviation estimates of the mean values.

The chosen stopping criterion was the consecutive rejection of 5N consecutive
move proposals.

As we can see in figure 5.3, the recorded values of the local entropy S and
of the error probability per pattern, as a function of the overlap S, are in good
agreement with the theoretical analysis. The observed qualitative behavior is
the same: the error rate goes to zero at S → 1 and the entropy is positive until
S = 1, as it should be in a dense cluster. We note that, in the more accurate
version with an annealing in the inverse temperature y, the gap between the
theoretical values and the measured ones is partially closed. The remaining
discrepancy could be due to:

• finite size effects, since N = 201 is rather small;

• inaccuracy of the Monte Carlo sampling, which can be handled by lowering
the cooling rate for y;

• inaccuracy of the theoretical curves due to additional RSB effects.

With the chosen settings, we note that the average number of errors per pattern
set is almost always less than 2 for all points plotted in figure 5.3A, and that a
zero energy configuration was always reached by EdMC. Also note that, in the
plots, the noise recorded in the averages is only ascribable to the tails of the
error distribution, while the modes and the medians are always found at 0.
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Fig. 5.4 Typical trajectories of standard Simulated Annealing (red curve, right)
and Entropy-driven Monte Carlo (blue curve, left), for N = 801, α = 0.3. Notice
the logarithmic scale in the x axis. EdMC is run at 0 temperature with fixed
γ = tanh−1 (0.6), SA is started at y0 = 1 and run with a cooling rate of fy = 1.001
for each 103 accepted moves, to ensure convergence to a solution.

We can now test the efficacy of our method as a solver, by comparing
its performance, at various problem sizes N and different values of α, with
a standard energetic MCMC. EdMC, in fact, shows a remarkable ability in
retrieving solutions, even in a greedy zero temperature setting, with a relatively
small (O (N)) number of required MC steps. In the same setting the standard
MCMC would get immediately trapped in a local minimum, even at small N .
Instead, in order to find a solution also with the energetic MCMC, we employed
a Simulated Annealing (SA) with initial inverse temperature y0 = 1, increased
by a factor fy, every 103 accepted moves (the cooling rate fy was optimized for
each problem instance).

In figure 5.4 we show a comparison between a two typical trajectories,
exemplifying the difference between standard SA and EdMC (at y =∞ with
fixed γ = tanh−1 (0.6)) on the very same instance: the number of required
accepted moves, in order to reach a solution with EdMC, is of 4 or 5 orders
of magnitude smaller than the ones in the energetic SA. This highlights the
qualitatively different smoothness of the landscape explored by EdMC.



5.3 Numerical results 125

Fig. 5.5 Number of iterations required to reach 0 energy in log-log scale, as a
function of the problem size N . A: Simulated Annealing at α = 0.3, B: EdMC
at α = 0.3 (bottom) and α = 0.6 (top). See text for the details of the procedure.
Notice the difference in the y axes scales. For both methods, 100 samples were tested
for each value of N . Color shades reflect data density. Empty circles and squares
represent medians, error bars span the 5-th to 95-th percentile interval. The dashed
lines are fitted curves: the SA points are fitted by an exponential curve exp (a + bN)
with a = 8.63 ± 0.06, b = (8.79± 0.08) · 10−3; the EdMC points are fitted by two
polynomial curves aN b with a = 0.54± 0.04, b = 1.23± 0.01 for α = 0.3, and with
a = 0.14± 0.02, b = 1.74± 0.02 for α = 0.6.

More importantly, a scaling analysis with the size of the network N (varied
between between 201 and 1601), shows two radically different behaviors between
the two MCMC strategies (as pictured in figure 5.4):

• the behavior of the standard SA is clearly exponential at α = 0.3, and no
solution can be found at α = 0.6 already at N = 201.

• in the case of EdMC (panel B in the figure), instead, the gathered data
can be fit by polynomial curves, with a scaling of ∼ N1.23 for α = 0.3,
and ∼ N1.74 for α = 0.6.

• Even in the simple α = 0.3 instances, a difference of several orders of
magnitude was recorded in the required number of iterations in the two
cases.

A detailed description of these numerical experiments can be found in the
original paper ([2]).
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5.4 Generalization to the Potts model

The existence of sub-dominant dense clusters of solutions was also proven in
a discrete Perceptron with more than two synaptic states. Similarly to the
binary case, we can therefore design an algorithm that exploits directly the
local entropy information, obtaining radically different results from a normal
SA on the energy function [3].

The only differences in the implementation of the EdMC algorithm, with
respect to the binary case, are the following:

• In the BP equations, the reduction to a single magnetization associated
to each synapse is no longer possible. Instead, one has to associate a pair
of cavity messages to each available synaptic state.

• Since the L2 norm of the discrete synaptic configurations (parametrized
by the order parameter Q in the replica calculations presented in section
2.5) is no longer trivially fixed to N , we cannot simplify the distance
constraint −γ/2

(
W − W̃

)2
→ γW · W̃ , as in the local entropy definition

of equation 5.7. Therefore, when the external fields are applied, in order
to plant the reference configuration W̃ , the field intensity on each synaptic
state will be given by γ

(
W · W̃ −

(
W 2 + W̃ 2

)
/2
)
.

• In order to be coherent with choice of the euclidean distance (instead of a
Hamming distance), in the definition of the neighborhood determined by
γ, the MC move proposal cannot be given by a uniform choice between
the available synaptic states. We instead opt for proposing configurations
W̃ ′, that are obtained by picking uniformly at random a synaptic index i

and then randomly increasing or decreasing W̃i to the closest available
states.

• Since the patterns considered in this case are sparse, ξµ
i , σµ ∈ {0, 1}, we

had to introduce a firing threshold θ, for balancing the output distribution.
In both EdMC and the SA, θ was set a priori to its optimal value,
determined analytically via replica calculations.

The tests performed in this case show that, while standard energetic SA (simply
using the number of misclassified patterns as objective function) is immediately
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trapped by the exponentially large number of local minima, the entropic version
can again reach a solution even in the greedy case (y →∞).

Figure 5.6 shows the results of a test on one sample for N = 501, α = 1.2,
L = 4, f = 0.1. Although the search space is considerably larger, the behavior
of the algorithm is very similar to what was observed in [2] for the binary,
balanced and unbiased case: while EdMC reaches 0 errors in a few iterations,
standard SA plateaus and only eventually finds a solution, in several orders of
magnitudes more iterations. Some heuristic enhancements, presented below,
can further accelerate EdMC performance.

The considered scoping procedure was qualitatively similar to that of the
binary case, even though the values of the couplings associated to small
distances,γ (D), are usually larger with respect to the former. In order to
guarantee BP convergence in the early stages, we thus started with external
fields of low intensity γ = 0.5 and progressively increased it, by ∆γ = 1.0
after each greedy optimization procedure (a cycle through all the synapses
i = 1, ..., N).

On the other hand in the SA we observed that, at high enough α, the
standard Monte Carlo would get trapped even when implementing a very slow
annealing in the temperature [21, 22]. We therefore decided to advantage the SA
optimization, resorting to a more informative definition for the energy function,
measuring the sum of the negative stabilities ∆ (cf. with the Perceptron
learning rule and section 3.2):

E∆
(
W̃
)

=
∑

µ

(
− (2σµ − 1)

(∑
i

W̃iξ
µ
i − θN

))
+

(5.12)

where (x)+ = x if x > 0, 0 otherwise. In the annealing scheme we adopted a
cooling rate of ry = 1.005, applied every time 100 accepted moves are observed.

5.5 Accelerating the algorithm

Despite the fact that the number of MC steps is drastically reduced (with
respect to standard SA) and scales well with the size N , the computational
time required by the EdMC scheme can still be very high, due to the fact that
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Fig. 5.6 Comparison between different Monte Carlo-based solver algo-
rithms for one sample with N = 501, α = 1.2, L = 4 and f = 0.1. The curves show
in log-log scale the number of errors of the system as a function of the number of
iterations (note that while the number of errors is used as the energy throughout
the rest of the paper, none of the algorithms shown here uses it as its objective
function). The curves shown are labeled from worst to best: simulated annealing
on E∆ (gray curve, see equation (5.12), more than 106 iterations required to find
a solution); EdMC starting from random initial condition with zero-temperature
dynamics (red curve, less than 104 iterations), EdMC using BP marginals as initial
condition with zero-temperature dynamics (blue curve, less than 103 iterations);
EdMC using BP marginals both as initial condition and to propose the Monte Carlo
moves (green curve, less than 102 iterations). The local-entropy landscape is clearly
much smoother than the energy landscape (even when using the energy E∆).
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convergence of the BP algorithm has to be awaited at each move proposal. We
can therefore introduce some heuristic modifications, which are able to greatly
boost the speed of the algorithm.

Instead of starting from a random configuration, which could raise some
numerical issues related to BP convergence (especially at high α), a good
starting point can instead be found by using the information in the BP Replica
Symmetric fixed point (which can be easily reached, in absence of external fields,
for all α < αc): the initial configuration can thus be chosen as W̃ = sign (mRS)
in the binary Perceptron. In the Potts Perceptron case, instead, one can assign
to W̃i the argmax between the RS state marginal probabilities ui (W ).

Moreover, it is also possible to use the BP fixed point messages for the
proposal of efficient MC moves, rather than performing them at random. The
idea is that an extensive number of synaptic flips (in the direction of maximum
free energy) can be done all at once in a single step. Each time BP reaches
convergence, one can identify the set of synapses whose cavity marginals mi,
in absence of the external field that plants the reference configuration, are not
in agreement with the direction W̃i of the field itself. Once this set of synaptic
indices is ranked, so that the ones associated to the largest difference between
the external and the cavity fields come first, we can propose a collective move
changing all the identified synapses and compute the new value of F . As in a
normal Metropolis algorithm, the move is always accepted if there is an increase
in the free energy, or with probability ey∆F otherwise. If the collective flip is
accepted, the heuristic procedure can move on, computing a new set of synaptic
variables to be changed with the help of BP marginals. If, on the contrary, the
collective move is rejected, the new proposal can be on the reduced set where
the last ranked variable is removed; this procedure can be repeated until the
set is empty, and in the end one goes back to the standard EdMC scheme. We
observed that most of these collective moves are immediately accepted. The
physical interpretation is that, in this way, one tries to maximize, at each step,
the local contributions to the Bethe free energy associated to each variable Wi,
in presence of an external field γW̃i.

Finally, in case BP was unable to reach convergence, one can still obtain some
information from F , obtained from the time average of the cavity marginals
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Input: problem sample; parameters tmax, tstep, y, γ, fy and fγ

;
Randomly initialize x̃0

i . Alternalively, run BP with γ = 0 and set
x̃0

i = sign(hi);
Run BP with external fields γx̃0

i ;
Compute free energy F 0 from BP fixed point (F̄ 0 if BP does not
converge);

t← 0;
while t ≤ tmax do

Retrieve fields ht
i (h̄t

i if BP did not converge);
for i = 1 to N do ∆i ← x̃t

i (γx̃t
i − ht

i);
Collect V = {i | ∆i > 0} and sort it in descending order of ∆i;
accepted← FALSE;
while NOT accepted do

Propose a flip of the x̃t
i for all i ∈ V , producing x̃t+1;

Run BP with new proposed external fields γx̃t+1
i ;

Compute free energy F t+1 from BP fixed point (F̄ t+1 if BP does
not converge);

with probability ey(F t+1−F t) do accepted← TRUE;
if NOT accepted then

Remove the last element from V ;
if |V | = 0 then exit and run EdMC with x̃t as initial
configuration;

end
end
t← t + 1;
Compute energy E of configuration x̃t;
if E = 0 then retrieve solution x̃∗ = x̃t and exit;
if t ≡ 0 (mod tstep) then

Annealing: y ← y × fy;
Scoping: γ ← γ × fγ (run BP and update F t);

end
end

Algorithm 1: Heuristic EdMC with Annealing and Scoping.
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(over a few BP iterations), which can be useful for bootstrapping the EdMC to
a region where convergence can be obtained more easily.

With the implementation of the heuristic modifications, the EdMC algorithm
turns out to be extremely fast and capable of solving hard instances, achieving
a higher algorithmic threshold αU . The resulting algorithm is detailed in
Algorithm 1.

5.6 Generalization to multi-layer continuous
networks: Entropy SGD

The idea of searching for regions with a high local entropy of zero energy
configurations cannot be directly exported to the continuous case: first of all,
the usual losses L that drive the learning processes in the continuous case are
not bounded below and do not allow for a clear analogous of the zero energy
requirement; secondly, the concept of entropy itself is not well defined as in the
case of discrete sets of configurations.

However, it is still possible to find a connection between local geometric
properties of the objective function and the generalization performance of
the solutions, found by the learning algorithms employed in deep learning
[74, 75]. It seems that a quite general qualitative picture holds in most cases,
independent of the chosen neural network architecture and heuristic solver:
there is a correlation between the well generalizing synaptic configurations and
the local minima that reside in “wide valleys” of the energy landscape, rather
than in sharp isolated wells. A possible measure of this geometric property can
be obtained through the study of the Hessian of L, and in [74] it was observed
that in correspondence of “good” solutions the landscape looks flat in most of
the directions.

Similar to what we sketched in section 4.7, also in [74] the proposed intuitive
explanation for this phenomenon comes from a Bayesian argument: in a full
Bayesian approach, where the prior is concentrated on the configurations with
minumum expected loss, the weight of wide valleys is much larger than that
of narrow, sharp valleys at a similar level in the training loss function. The
analogy with the discrete case also extends to the algorithmic side: while
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most heuristic solvers are biased “by hand” towards well generalizing solutions,
through the introduction of noise-robustness requirements and by perturbing
the networks during the training phase, as a byproduct they also end up in
wide valleys without any explicit indication.

Entropy Stochastic Gradient Descent (ESDG) is a learning algorithm intro-
duced in [74], as the analogous of EdMC in the context of multi-layer continuous
networks: instead of simply minimizing the original loss L(W̃ ), the proposed
algorithm maximizes a local entropy function:

F
(
W̃ , γ

)
= log

∫
W ∈RN

exp
(
−L (W )− γ

2
(
W − W̃

)2
)

dW (5.13)

Similarly to what happens in the EdMC, the practical problem is that of
evaluating this quantity (or its gradient): as in the former case, the answer
comes from a MCMC method, the Stochastic Gradient Langevin Dynamics
(SGLD), which is the suitable choice in this continuous setting. The resulting
algorithm is again a two-level optimization process that, through a scoping
procedure in γ, eventually lands on solutions with low generalization errors. The
numerical results show that state-of-the-art generalization performance can be
achieved in various benchmarks and with different neural network architectures,
together with a boost (about x2) in the speed of the learning procedure with
respect to a standard SGD.



Chapter 6

Robust Ensembles

In the last section, we have seen that the introduction of the local entropy
density, crucial for discovering dense regions of solutions in the phase space
of the discrete Perceptron model, is able to turn an apparently hard learning
problem into an easy one: the landscape explored by simple optimization
algorithms like Simulated Annealing is drastically modified, and the process
is pulled towards accessible low-energy configurations. The main practical
difficulty, associated with this straightforward strategy, comes from the high
computational cost of evaluating the local density of solutions S, a quantity
whose precise measure would require exponential times. The simplest solution
to this problem was to estimate it in the Bethe approximation, through the
Belief Propagation algorithm, which brought us to the definition of the Entropy
driven Monte Carlo scheme [2], a two-level optimization procedure which
proved to be successful in finding solutions that belong to the sub-dominant
connected cluster, overtaking the challenges posed by the glassy landscape of
the Perceptron. A very similar strategy was also implemented in the context of
continuous multi-layer neural networks [74]: in this case the average over the
local entropy measure was approximated via a Stochastic Gradient Langevin
Dynamics.

All the solutions found by these “entropic” algorithms share some interesting
properties: they are rare in the space of solutions (i.e., not emerging in a
standard equilibrium description) yet algorithmically accessible (i.e., attractive
for the efficient heuristics), and robust (i.e., immersed in dense regions of “good”
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configurations). Moreover, there is a relation between the robustness of solutions
and their good generalization ability: this can be intuitively understood in a
Bayesian framework, where the robust solutions can be seen as representatives
of extensive sets of configurations surrounding them.

The main question we now want to address is whether it is possible to
avoid this two-level strategy formulation, while still targeting the same local
entropy measure which proved to be a crucial ingredient for achieving good
learning performance [4]. Moreover, we also aim at providing a general learning
paradigm which could be applied to any given learning algorithm, e.g. Simulated
Annealing (SA), Stochastic Gradient Descent (SGD) and Belief Propagation
(BP), effectively turning energy-based local search strategies into local-entropy-
based ones.

6.1 Real replicas

In statistical physics, the canonical ensemble is usually introduced to describe
the equilibrium (i.e., long-time limit) properties of a stochastic process, in
terms of a probability distribution over the configurations W of the system:

P (W ; β) = Z (β)−1 exp (−βE (W )) , (6.1)

where E (W ) is the energy of the configuration, β is an inverse temperature,
and the normalization factor Z (β) is the partition function of the model. In
particular, in the context of optimization problems, E (W ) plays the role of
a cost function to be minimized, and one is interested in the limit β → ∞,
where a uniform weight is assigned to the sought global minima of the energy
function.

Unfortunately, in some special cases, this standard equilibrium description
might be insufficient for capturing the relevant structures which, despite being
“hidden” in the vast landscape, are specifically targeted by effective optimization
strategies [1]. This motivated the introduction of a different measure, which
ignores isolated solutions and enhances the statistical weight of large, accessible
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regions of solutions:

P
(
W̃ ; β, y, γ

)
= Z−1 (β, y, γ) ey Φ(W̃ ,β,γ). (6.2)

Here y is a parameter that has the formal role of an inverse temperature and
Φ
(
W̃ , γ, β

)
is a “local free entropy”:

Φ
(
W̃ , β, γ

)
= log

∑
{W }

e−βE(W )− γ
2 d(W,W̃) (6.3)

where d (·, ·) denotes a distance between configurations, which needs a proper
definition according to the model under consideration. Note that, in this new
statistical measure:

• the limit β →∞ corresponds (up to an additive constant) to measuring a
“local entropy”, i.e. counting the number of minima of the energy around
the reference configuration W̃ , and weighting them (via the parameter γ)
by the distance d(W, W̃ ).

• At large values of y, only the configurations W̃ that are surrounded by
an exponential number of local minima will have a non-negligible weight.

• By increasing the value of γ, it is possible to focus on narrower neighbor-
hoods around W̃ : at large values of γ also the reference W̃ is expected
(with high probability) to share the same properties of the surrounding
minima [2].

Suppose now that we take y to be a (non-negative) integer: in this case we can
rewrite the partition function of the large deviation distribution equation (6.2)
as:

Z (β, y, γ) =
∑
W̃

ey Φ(W̃ ,β,γ) = (6.4)

∑
W̃

∑
{W a}y

a=1

e−β
∑y

a=1 E(W a)− γ
2
∑y

a=1 d(W a,W̃)

This partition function describes a system of y identical “real” replicas of
the system, subject to their usual energies E (W a) but also interacting with the
reference system W̃ . The adjective real is here employed to stress the fact that
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Fig. 6.1 Sketch of the Robust Ensemble optimization process. In plot A, we can
see the real replicas exploring the loss landscape while being attracted towards the
reference configuration through an elastic interaction (as in equation 6.4). In plot
B, the reference configuration is integrated out, producing an effective interaction
between the real replicas (as in equation 6.5).

the y replicas are not to be confused with the virtual replicas usually introduced
in the “replica trick”: we are not interested in taking the limit y → 0, since the
actual model comprises y identical interacting objects. Once an expression for
all integer y is found, the general case of y ∈ R can be recovered by analytic
continuation. The equilibrium statistics of this enlarged system are thus exactly
equivalent to the original large deviation analysis, provided the replicas W a

are eventually traced out.

This new way of rewriting the expression for the local entropy measure
suggests a simplified recipe for explicitly targeting the dense states: introduce y

replicas of the model, add an interaction term depending on the distance with
respect to a reference configuration, and run the algorithm over the resulting
extended system. In fact, in most cases, this scheme can be further improved
upon by directly tracing out the reference W̃ , obtaining a system of y identical
interacting replicas with a slightly more complicated mutual coupling (a sketch
can be seen in figure 6.1), describing the robust ensemble (RE):

Z (β, y, γ) =
∑

{W a}
e−β(∑y

a=1 E(W a)+A({W a},β,γ)) (6.5)

A ({W a} , β, γ) = 1
β

log
∑
W̃

e
γ
2
∑y

a=1 d(W a,W̃) (6.6)
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The main advantage of considering an optimization procedure in the repli-
cated system is that it avoids the need to use BP for the local entropy estimation,
which makes this algorithmic procedure much simpler and more general [4].

6.2 Connection with other RSB methods

Let us go back to expression 6.3, for the local free entropy, and consider the
large-deviation partition function associated to a central central configuration
W̃ , who is also subjected to the standard energy function E

(
W̃
)
:

Z (β, β′, y, γ) =
∑
W̃

e−βE(W̃)+yϕ(W̃ ,γ,β′) (6.7)

Note that, in general, the two temperatures β and β′ can be different. We can
thus start by expanding this expression, setting y ∈ N (as above) to obtain
the replicated system, and then trace out the reference configuration W̃ : the
result, in the special case β = 0 (i.e. with an unconstrained reference), reads:

Z (0, β′, y, γ) =
∑

{W a}
e−β′

∑y

a=1 E(W a)+log
∑

W̃
exp(− γ

2
∑y

a=1 d(W a,W̃)) (6.8)

This expression can be directly compared with the derivation, proposed in
Ref. [76], of an ergodicity-breaking scheme that reproduces the 1RSB Ansatz.
In that work, an auxiliary pinning field (playing the same role of the “planted”
reference W̃ ) was introduced in order to break the Replica Symmetry: the
system thus obtained was characterized by a free energy in which, instead
of the usual Hamiltonian, the energy had the form of a “local free entropy”.
The system was then replicated y times and W̃ was traced out, as in the RE,
obtaining a new extended system of y real replicas with pairwise interaction.
Eventually, the limit of vanishing interaction γ → 0+ was considered, recovering
an equilibrium description identical to the 1RSB Ansatz (in the original system),
where y was mapped onto the Parisi parameter m.

If we make a comparison with the RE, the main difference is given by the
fact that, in our case, the interaction is not removed and we thus have an
explicit dependence on a distance parameter D (γ): this allows us to explore
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more thoroughly the phase space of the studied problem and discover sub-
dominant structures which are invisible in the equilibrium picture [6]. In our
framework, we also have no reason to restrict the analysis to the “physical”
range y ∈ [0, 1] (where the standard 1RSB parameters acquire a straightforward
interpretation), being interested in the limit of large y, instead. However, if
we complete the ergodicity-breaking procedure, taking the same limits γ → 0+

and β = 0, indeed our large deviations equations (in section 4.4) reduce to the
standard 1RSB case (cf. with section 2.3).

6.3 Application to various algorithms

In the following, we show how the RE algorithmic formula can be applied
straightforwardly in the context of learning in discrete neural networks, greatly
enhancing the performance of standard optimization strategies, namely SA,
SGD and BP [4]. Instead of restricting the numerical analysis to the Perceptron,
we will consider the more general case of two-layer neural networks, or fully-
connected committee machines. Notice that, as pointed out before, the synaptic
weights in the second layer can all be set to 1, without loss of generality. Thus,
the ensemble of y replicas can be parametrized by a multi-dimensional binary
array W ka

i ∈ {−1, 1}, where k ∈ {1, . . . , K} indexes the unit, i ∈
{
1, . . . , N

K

}
is the synaptic index and a ∈ {1, . . . , y} is the replica index. The output
of each unit is obtained by calculating τ (ξ; W ) = sign

(∑N/K
i=1 Wiξi

)
, then

the output of the network is given by the majority vote ζ
({

τ k
}

k
;
{
W k

}
k

)
=

sign
(∑K

k=1 τ
(
τ k; W k

))
, where τ k represents the input to the k-th hidden unit.

6.3.1 Replicated Simulated Annealing

As the simplest example of an optimization strategy based on the RE (equation
6.5), we can start by adopting a Monte Carlo method [25] for sampling the new
measure. In order to find a solution, the temperature 1/β will be slowly lowered,
as in standard Simulated Annealing, until either a zero of the energy is reached
or a stopping criterion is met. We can obtain a fair comparison with a standard
SA on the energy by simply considering the case in which the interaction
between the replicas is absent (i.e. γ = 0, which is equivalent to running y
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parallel independent optimization processes). In the coupled version, together
with the annealing procedure in β, we also implement a scoping procedure (see
section 5.2), gradually increasing the interaction γ (and reducing the average
distance D between the replicas). This intuitively corresponds to exploring the
energy landscape on progressively finer scales.

Implementation

The aim of the MC algorithm, in the binary case, is to sample from the
probability distribution:

P ({W a}) ∝
∑
W

exp
−β

y∑
a=1

E (W a) + γ
y∑

a=1

N∑
j=1

W a
j Wj


∝ exp

−β
y∑

a=1
E (W a) +

∑
j

log
(

2 cosh
(

γ
y∑

a=1
W a

j

)) (6.9)

At fixed values of β and γ, the sampling can be performed straightforwardly by
using the Metropolis rule: the proposed move is to flip (i.e. change sign to) a
random synaptic weight from a random replica. The energy variation associated
to a candidate move, though, includes the interaction term, introducing a bias
that favors movements in the direction of the center of mass of the system of y

replicas:

kj = 1
2

log
 cosh

(
γ + γ

∑
b ̸=a W b

j

)
cosh

(
−γ + γ

∑
b̸=a W b

j

)
 (6.10)

This bias, which can take only a finite, O (1), set of possible values, can
be entirely accounted for by adding a prior on the choice of the moves, while
still maintaining the detailed balance condition (of course, this reduces to the
standard Metropolis rule for γ = 0). In general, given a transition probability
P (W → W ′), from a state W to W ′, the detailed balance equation reads:

P (W ) P (W → W ′) = P (W ′) P (W ′ → W ) (6.11)

The probability is usually split in two parts: P (W → W ′) = C (W → W ′) A (W → W ′),
where C is the probability of proposing the given move, and A is the probability
of accepting it. In the standard Metropolis the choice of the proposed index j
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is uniform in the interval{1, . . . , N}, and the move is accepted with probability
min

(
1, e−β∆EW →W ′ −2kjWj

)
.

Instead, the effect of the field can be almost completely incorporated in the
proposal of the move. One can first organize the possible choices of indices
in y classes {Kc}y

c=−y, based on the possible values of Wjkj = c, and then
assume that the probability of choosing one of the two classes Kc

⋃
K−c is a

simple function of their cardinality qc = nc + n−c = |Kc| + |K−c|, while the
indices in each set can be assigned with a uniform probability. With these
assumptions, one would like to find a form for the conditional probability
P̂c (nc, qc) = N

qc
P (c; nc, qc), of choosing class Kc (between Kc and K−c), such

that the following condition holds:

e−2kjWj
C (W ′ → W )
C (W → W ′) = 1 (6.12)

Unfortunately this condition cannot be always satisfied, and one is left with
a residual rejection rate ac (nc, qc) in the special case nc = qc: this scenario
is connected to the “condensation” phenomenon which can be observed in
the limit of very large γ (and very large c), where an aligned configuration of
replicas is found to be highly favored.

The conditional probability can thus be written in terms of the hypergeo-
metric function:

P̂c (nc, qc) = ϕ
(
nc, qc, e−2c

)
(1− δnc,qc) + δnc,qc (6.13)

ϕ (n, q, λ) = λ
n

q − n + 1 2F1 (1, 1− n; q − n + 2; λ) (6.14)

A (W → W ′) = min
(
1, e−β∆EW →W ′

)
ac (nc, qc) (6.15)

where the residual rejection rate is given by:

ac (nc, qc) =

1− δnc,qc (1− e−2c)qc if c > 0
1 if c ≤ 0

(6.16)

The biased sampling procedure is thus the following: choose a class pair
Kc

⋃
K−c at random with probability qc

N
, then choose either Kc or K−c according

to P̂c, finally pick another index uniformly at random within the class. Of
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Fig. 6.2 Replicated Simulated Annealing on the Perceptron, comparison between
the interacting version (i.e. which seeks regions of high solution density) and the
non-interacting version (i.e. standard SA), at α = 0.3 using y = 3 replicas. With
optimized annealing/scoping parameters, the minimum number of iterations required
to find a solution scales exponentially with N for the standard case, and polynomially
for the interacting case. 10 samples were tested for each value of N (the same
samples in both cases). The bars represent averages and standard deviations (taken
in logarithmic scale) while the lines represent fits. The interacting case was fitted by
a function aN b with a ≃ 0.13, b ≃ 1.7, while the non-interacting case was fitted by a
function aN becNd with a ≃ 0.2, b ≃ 1.5, c ≃ 6.6 ·10−4 , d ≃ 1.1. Data is not available
for the non-interacting case at N = 6401 since we couldn’t solve any of the problems
in a reasonable time (the extrapolated value according to the fit is ∼ 3 · 109). The
two data sets are slightly shifted relative to each other for presentation purposes.

course, the advantage of this method consists in reducing the rejection rate, but
at the same time the move proposal becomes more computationally expensive,
so this approach is not well suited for systems in which computing the energy
cost is very easy. This efficient sampling procedure was utterly refined in [77].

Numerical results

In figures 6.2 and 6.3, we show the numerical results of RSA applied to the
learning problems in the binary Perceptron and in the committee machine.
A scaling analysis demonstrates that the interaction is crucial for finding a
solution in polynomial time. We also note that the gap in performance between
the interacting and non-interacting cases widens with increasing storage loads.
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>

Fig. 6.3 Replicated Simulated Annealing on the fully-connected committee
machine, with K = 5 hidden units, comparison between the interacting version
(i.e. which seeks regions of high solution density) and the non-interacting version
(i.e. standard SA), at α = 0.2 using y = 3 replicas. This is the analogous of figure 2
of the main text for a committee machine, showing similar results. 10 samples were
tested for each value of N (the same samples were used for the two curves). The
bars represent averages and standard deviations (taken in logarithmic scale) while
the lines represent fits. The interacting case was fitted by a function aN b with
a ≃ 0.02, b ≃ 2.0, while the non-interacting case was fitted by a function aN becNd

with a ≃ 0.08, b ≃ 1.7, c ≃ 4.2 · 10−5, d ≃ 1.5. The two data sets are slightly shifted
relative to each other for presentation purposes.
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Finally, we remark that, in the replicated MC we substitute the two-level
strategy of EdMC, where BP was employed to get an instantaneous estimate
of the local free entropy, with a single level strategy defined in a replicated
system. In the new formulation, though, the replicas need to equilibrate at
each value of γ and β, and with a finite sampling there is no guarantee that
the landscapes explored by the RSA and EdMC will be exactly the same: it is
possible that, when BP can actually provide the needed information, the latter
method is affected by even fewer local minima.

6.3.2 Replicated Gradient Descent

When the size of the network is very large, Monte Carlo methods can become
very computationally expensive. One simple alternative general method for
finding minima of the energy is using Gradient Descent (GD) or one of its
many variants. All these algorithms are generically called back-propagation
algorithms in the neural networks (NN) context [61]. In particular, Stochastic
GD (SGD) is the basis of most of the recently developed “deep learning”
techniques employed in Machine Learning. In the following, we demonstrate
that performing the gradient descent over the RE energy defined in equation
(6.6), leads to a noticeable improvement in the performance of the algorithm;
moreover, the solutions found by the algorithm are indeed part of a dense
regions, as expected.

Implementation

Gradient Descent is defined only for differentiable systems, and thus it needs
some adaptations in order to be applied to the case of systems with discrete
variables.

One possible work-around is a generalization to a mini-batch learning
scenario of the “Clipped Perceptron” (CP) algorithm [78]: we can associate an
auxiliary continuous variable W to each binary synaptic variable W , binding
them through the relationship W = sign (W). The gradients will now be
evaluated in correspondence of the real synapses W , but stored in the auxiliary
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variables:
(
Wk

i

)t+1
=
(
Wk

i

)t
− η

1
|m (t)|

∑
µ∈m(t)

∂

∂W k
i

Eµ
(
W t

)
(6.17)

(
W k

i

)t+1
= sign

((
Wk

i

)t+1
)

(6.18)

where η is the learning rate and m (t) is a set of pattern indices (the so-
called minibatch). The CP algorithm is recovered in the case of a sin-
gle layer network without replication (K = 1, y = 1), of a fixed learn-
ing rate, and in the fully-online regime (|m (t)| = 1). In that case, since
Eµ (W ) = R (−∑i Wiξ

µ
i ), with R (x) = 1

2 (x + 1) Θ (x), the gradient becomes
∂Wi

Eµ (W ) = −1
2ξµ

i Θ (−∑i Wiξ
µ
i ). The relation (6.18) is scale-invariant, so we

can just set η = 4 and obtain

W t+1
i =W t

i − 2ξµ
i Θ

(
−
∑

i

W t
i ξµ

i

)
(6.19)

where the auxiliary quantities W can be restricted to discrete values as well, if
they are initialized as integers. We note that the CP rule by itself does not
achieve an extensive capacity in the large N limit; it is however possible to
make it efficient, as in the CP+R heuristic algorithm (see section 3.2) or by
adding the interaction term as in the RE.

In the two-layer case (K > 1) the energy associated to a wrong classification
can be defined as the minimum number of spin flips needed to correct the
output. The computation of the gradient becomes more involved, but of course
gives a non-zero contribution only in case of error, and only for those units
k which contribute to the energy computation. Also in this case, since by
setting η = 4 the gradient is restricted to 3 possible integer values, we could
use discretized variables for the W . It is interesting to point out that a slight
variation of this update rule in which only the most easily-fixable unit is affected
gives the extended CP+R rule, decribed in section 3.2, giving good results on
a real-world learning task when the uniform reinforcement term was added.
Note that, the difference between the two rules becomes irrelevant in the later
stages of learning, when the overall energy is low.

Once we have the gradient of E (W ) separately for each system, we can
add the interaction of the RE (with the traced-out center), and obtain the full
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SGD update:

(Wa
i )t+1 = (Wa

i )t − η
1

|m (t)|
∑

µ∈m(t)

∂Eµ

∂Wi

(W )
∣∣∣∣∣
W =(W a)t

(6.20)

+ η′
(

tanh
(

γ
y∑

b=1

(
W b

i

)t
)
− (W a

i )t

)

where we used η′ = γ
βη

as a control parameter, such that it remains finite in
the limit β, γ →∞; in this limit the tanh reduces to a sign.

The update equation (6.20) can be implemented in the following way: at
each time step, we pick uniformly at random a replica a and compute the
gradient with respect to a mini-batch of m (t) patterns, we partially updateWa

and W a, we compute the gradient with respect to the interaction term with the
stored value of ∑y

a=1 W a
i , update it, and then complete the updates of Wa and

W a. This scheme can be easily parallelized, since it alternates the standard
learning periods in which each replica acts independently with brief interaction
periods, similarly to what was done in [79]. In our tests, we kept fixed the
learning rates η and η′ during the training process, and we implemented the
usual scoping procedure.

Numerical results

In figure 6.4 we can see the results obtained in the case of the fully-connected
committee machine: the introduction of the interaction term greatly improves
the capacity of the network (from 0.3 to almost 0.6), and generally reduced
the number if required presentations of the dataset (epochs); moreover, when
the algorithm fails to solve the instance the reached configurations have a
lower error rate than the non-interacting version. We also observed the same
qualitative results in the Perceptron, where a capacity exceeding 0.7 can be
reached, suggesting the fact that Replicated SGD is able to achieve near-optimal
learning performance.

Relationship with EASGD

It is interesting to note that a very similar learning strategy—a replicated
system in which each replica is attracted towards a reference configuration,
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Fig. 6.4 Replicated Stochastic Gradient descent on a fully-connected committee
machine with N = 1605 synapses and K = 5 units in the second layer, comparison
between the non-interacting (i.e. standard SGD) and interacting versions, using y = 7
replicas and a minibatch size of 80 patterns. Each point shows averages and standard
deviations on 10 samples with optimal choice of the parameters, as a function of
the training set size. Top: minimum training error rate achieved after 104 epochs.
Bottom: number of epochs required to find a solution. Only the cases with 100%
success rate are shown (note that the interacting case at α = 0.6 has 50% success
rate but an error rate of just 0.07%).



6.3 Application to various algorithms 147

called Elastic Averaged SGD (EASGD)—was proposed in [79] (see also [80]).The
context was that of deep convolutional networks with continuous variables, and
EASGD was heuristically introduced to exploit parallel computing environments
under communication constraints. In this work, the strategy of replicating
the system and introducing the elastic interaction was concurrent with the
employment of the usual deep learning techniques (e.g. momentum), so it is
difficult to fully disentangle the effect of the various heuristics. However, their
results clearly demonstrate a benefit from introducing the replicas in terms of
training error, test error and convergence time.

It might be plausible that the general underlying reason for the effectiveness
of the method is similar, related to the possibility of accessing robust low-energy
states in the space of configurations, despite a conclusive assessment is difficult
due to the great jump in complexity in the choice of the network architecture.

6.3.3 Replicated Belief Propagation

As we have seen in section 3.2, BP can be turned into a solver with the addition
of a “reinforcement” term [26]: for each variable, a time-dependent local field,
proportional to its most recent marginal probability estimation, is introduced
and is gradually increased to induce a polarization of the system towards a
single configuration, in a soft decimation fashion. Despite the clear effectiveness
of reinforced BP, as a solver in a variety of problems, even when BP would
suffer from convergence problems, a real understanding of the reasons for
its performance is not at hand. Intuitively, R-BP progressively focuses on
smaller and smaller regions in the phase space of the problem, by looking
in the “most promising” direction, as given by the current estimation of the
probability distribution. This process has thus some qualitative similarities
with the scoping procedure employed to search for dense regions of solutions
(as in the previous sections).

This analogy can be explored more thoroughly by writing the BP equations
for the replicated system described by equation (6.4). There are two possible
approaches [6], which lead to the same results:

1. we can use the local entropy as the energy function, writing a second-level
BP to estimate the local entropy itself. The obtained equations are very
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similar to the so called 1-step replica-symmetry-breaking (1RSB) cavity
equations (see [24] for a general introduction).

2. The second approach is to explicitly replicate the system, but, in order
to take into account the correlations between the replicated copies of the
variables, one has to consider N vector variables

{
W a

j

}y

a=1
of length y.

We can simplify the equations by assuming Replica Symmetry, i.e. that
all marginals are invariant under permutation of the replica indices:
Pj

({
W a

j

}y

a=1

)
= Pj

(∑y
a=1 W a

j

)
. The resulting message passing algorithm

reproduces quite accurately the analytical results at the RS level.

As explained in section 4.3, this type of RS Ansatz becomes wrong at high
values of α, γ and y, due to the onset of correlations between the variables
(i.e. to a replica-symmetry-breaking effect). From the geometrical point of
view, in the RS approximation the solution assumes that there is a single
dense region, while the occurrence of RSB effects might imply that there
are several maximally dense regions in the RE. As a consequence these two
algorithms are not very good candidates for the definition of an effective solver.
A more correct description would in fact require a third level of BP equations,
or, equivalently, an assumption of symmetry-breaking in the structure of the
marginals Pj

({
W a

j

}y

a=1

)
.

Implementation

Fortunately, there is a simplified way of turning BP in the replicated system
into an efficient solver, still well described by the theoretical results but also
very similar to the reinforced BP algorithm. Instead of considering the joint
distribution over each replicated vector variable (which is required for a more
correct treatment of the correlations), at a certain site j, one can naively
replicate the original factor graph y times; then, every replicated site j will be
connected to an extra variable W ⋆

j , thus introducing the y interactions between
all the W a

j and W ⋆
j .

If we now make a symmetry assumption between the replicas, implying
that each replica of the system would behave in exactly the same way and that
same messages would be exchanged along the edges of the graph, regardless of
the replica index, we can avoid the redundancy and work with a single system.
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Fig. 6.5 A. Portion of a BP factor graph for a replicated variable Wj with
y = 3 replicas and a reference configuration W ⋆

j . The dashed lines represent edges
with the rest of the factor graph. The squares represent the interactions γW ⋆

j W a
j .

All BP messages (arrows) are assumed to be the same in corresponding edges. B.
Transformed graph which represents the same graph as in A but exploits the
symmetry to reduce the number of nodes, keeping only one representative per replica.
The hexagon represents a pseudo-self-interaction, i.e. it expresses the fact that m⋆→j

depends on mj→⋆ and is parametrized by γ and y.
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This representation is effectively identical to the original one, except for the
fact that the elastic interaction between the replicas has now been mapped
in a self-interaction at each variable site Wj, exchanging messages with y − 1
identical copies of itself through an auxiliary variable (that can be traced out).
The factor node structure is shown graphically in figure 6.5. Thus, at each
iteration step t, each variable receives an extra message of the form:

mt+1
⋆→j = tanh

(
(y − 1) tanh−1

(
mt

j→⋆ tanh γ
))

tanh γ (6.21)

where mt
j→⋆ is the cavity magnetization resulting from the standard factor graph

(without the self interaction) at time t. After this approximated transformation,
the inverse temperature y reappears as a continuous parameter, and is no longer
constrained to integer values. This version of the algorithm will be referred to
as “focusing Belief Propagation” (fBP).

Numerical results

The proposed algorithm, fBP, has a straightforward application as a solver: the
best results are obtained when one employs a scoping procedure on γ, and at
the same an annealing in the inverse temperature y, until a solution is found.
However, it is also interesting to compare the numerical results, at fixed values
of y and γ, with the analytical predictions obtained in the binary Perceptron
case.

The local entropy density can be computed from the entropy of the whole
replicated system (from the BP messages at their fixed point), by subtracting
the entropy of the reference variables. The result is then normalized by the
number of variables N and of replicas y. Finally, we need to take a Legendre
transform by subtracting the interaction term γS, where the overlap S between
each replica’s weights is computed as:

S = 1
N

∑
j

mj→⋆m⋆→j + tanh (γ)
1 + mj→⋆m⋆→j tanh (γ) (6.22)

In particular, the resulting estimate of the local entropy at high y is in very
good agreement with the 1RSB predictions up to at least α = 0.6, as can be seen
figure 6.7, where we set y = 21 and demonstrate that the fBP curve deviates
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Fig. 6.6 Focusing BP (fBP) spontaneously breaks replica symmetry: the overlap
order parameter q (black thick curves) gradually transitions from the inter-cluster
overlap q0 and the intra-cluster overlap q1 of the replica theory (red thin curves,
q0 < q1) as the distance to the reference W ⋆ goes to 0 (i.e. as γ →∞). The insets
provide an alternative visualization of this phenomenon, plotting (q − q0) / (q1 − q0)
against the distance. These results were obtained on a Perceptron with N = 1001 at
α = 0.6, averaging over 50 samples. The two panels shows that the transition occurs
at larger distances (i.e. at smaller γ) at larger y.
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Fig. 6.7 Comparison of local entropy curves between the fBP results and the
analytical predictions, for the case of the Perceptron with α = 0.6. The algorithmic
results (blue curve) were obtained with N = 1001 at y = 21, averaging over 50
samples. Error bars indicate the estimated standard deviation of the mean. The RS
results (red curve) were also obtained with y = 21. The 1RSB results, however, are
for the y =∞ case, and it is therefore to be expected that the corresponding curve
is slightly higher.

from the RS prediction and is very close to the 1RSB case. This suggests
that the algorithm has spontaneously chosen one of the possible states of high
local entropy in the RE, achieving an effect akin to the spontaneous symmetry
breaking of the 1RSB description. Within the state, replica symmetry holds,
so that the algorithm is able to eventually find a solution to the problem.

This replica-symmetry breaking behavior can be better highlighted, as
in figure 6.6, by studying the average overlap between replicas (defined as
q = 1

N

∑
j W a

j W b
j ): it’s value is close to q0 (the average overlap between replicas

belonging to different states) for low γ, but it becomes close to q1 (the average
overlap between replicas in the same state) at high γ. This analysis confirms
a scenario in which the fBP algorithm spontaneously chooses a high density
state, breaking the symmetry in a way which seems to approximate well the
1RSB description.

Furthermore, fBP can also be used to obtain an estimate of the value of α

at which the accessible dense states cease to exist, even in cases, like multi-layer
networks, where analytical calculations are unfeasable. Figure 6.8 shows the
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result of experiments performed on a committee machine. The implementation
closely follows [26] with the addition of the self-interaction equation (6.21),
except that great care is required to get a correct numerical estimation of
the local entropy at large γ, due to numerical issues. The figure shows that
dense states are found by fBP nearly up to α = 0.6, in agreement with the
results obtained with the replicated GD, and α = 0.6 is also the value of the
algorithmic threshold, after which fBP is no longer able to find solutions.

In figure 6.8, we can also see how fBP is able to break the permutation
symmetry affecting the committee machine (cf. section 3.3) only once a high
enough coupling γ is employed.

Focusing BP vs Reinforced BP

If we make a comparison between equation 3.14 (in section 3.2) and equation
(6.21), we can see that the reinforced introduces a self interaction term of the
form:

mt+1
⋆→j = tanh

(
ρ tanh−1

(
mt

j

))
(6.23)

In order to find a solution with R-BP, usually the reinforcement parameter
ρ is changed dynamically, increasing from an initial value of 0 up to 1 during
the BP message-passing iterations. The only possible fixed points are thus
corresponding to completely polarized configuration, i.e. one where mj ∈
{−1, +1} for all j. Similarly, in the fBP scheme the two external parameters
γ and y need to diverge in order to ensure that the marginals mj become
completely polarized as well.

The main difference between these two schemes is the fact that the self-
interaction m⋆→j is a function of a cavity marginal mj→⋆ in the case of fBP, and
of a non-cavity marginal mj in case of R-BP. However, a relationship between
the two formulations can be found by considering the BP fixed points reached
at constant values for the parameters γ, y and ρ. The self-consistency condition
between the quantities m⋆→j, mj→⋆ and mj read:

mj = tanh
(
tanh−1 (m⋆→j) + tanh−1 (mj→⋆)

)
(6.24)
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Fig. 6.8 Results of fBP on a committee machine with N = 1605, K = 5, y = 7,
increasing γ from 0 to 2.5, averages on 10 samples. Top: local entropy versus distance
to the reference W ⋆ for various α (error bars not shown for clarity). The topmost
gray curve (α = 0) is an upper bound, representing the case where all configurations
within some distance are solutions. Inset: enlargement of the region near the origin
indicated by the rectangle in the main plot. This shows that dense states exist up
to almost α = 0.6: at this value of α, dense states are only found for a subset of
the samples (in which case a solution is also found). Negative local entropies (curve
at α = 0.7) are unphysical, and fBP fails shortly after finding such values. Bottom:
error rates as a function of tanh (γ). For α ≤ 0.6, all curves eventually get to 0.
However, only 7 out of 10 samples reached a sufficiently high γ at α = 0.6, while in 3
cases the fBP equations failed. The curve for α = 0.7 is interrupted because fBP
failed for all samples, in each case shortly after reaching a negative local entropy. The
plateaus at α = 0.4 and α = 0.5 are regions where the solution to the equations are
symmetric with respect to the permutation of the hidden units: fBP spontaneously
breaks that symmetry as well.
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Therefore in this case of R-BP we get:

mj = tanh
(

1
1− ρ

tanh−1 (mj→⋆)
)

(6.25)

while the analogous expression in the fBP case is:

mj = tanh
(
tanh−1 (mj→⋆) + tanh−1

(
tanh

(
(y − 1) tanh−1 (mj→⋆ tanh γ)

)
tanh γ

))
(6.26)

Even though the second expression appears to be much more complicated,
if we let γ →∞ and y = 1

1−ρ
,it simplifies exactly to the former, obtaining an

exact mapping between fBP and R-BP. However, since we are looking for a
physical motivation for the efficacy of R-BP, this limiting case doesn’t allow for
a straightforward connection with the reweighted entropic measure, since the
requirement γ →∞ seem to rule out the “non-local” effect of the interaction.

On the other hand, we can devise a possible annealing protocol for fBP,
in which both γ and y start from low values and are progressively increased,
related by the parameter ρ:

γ = tanh−1 (ρx) (6.27)

y = 1 + ρ1−2x

(1− ρ) (6.28)

With this choice of y it is possible to match the derivative between the curves
of eqs. (6.25) and (6.26) in the point mj→⋆ = 0. Note also that both γ →∞
and y →∞ in the limit ρ→ 1, thus ensuring that, in that limit, the only fixed
points of the iterative message passing procedure are completely polarized,
consistently with the notion that we are looking regions of maximal density
(y →∞) at small distances (γ →∞). If we now set x = 0, we obtain again the
exact map onto the standard reinforcement relations. However, even at different
values of x one can observe the same qualitative and quantitative behaviors,
as can be seen in figure (6.9) (representing the case x = 0.5). Moreover, the
performances of the resulting algorithm are hardly distinguishable from R-BP.
In this sense, we can say that the effectiveness of reinforced BP is due to the
fact that it targets the same accessible dense states described in the RE.
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Fig. 6.9 Plots of eq. (6.26), comparison of protocols defined by eqs. (6.28) and (6.27)
with two different values of the parameter x. The x = 0 case (thick red lines)
corresponds to standard reinforcement. The curves are in fact very similar across the
whole range of ρ ∈ [0, 1] and x ∈ [0, 1], and consequently display similar performance
properties in practice.



Chapter 7

Stochastic Synapses

In the previous chapter, we have seen the proposal of a novel optimization
strategy able to reroute simple learning algorithms towards dense regions of
solutions, avoiding the many poor local minima that characterize the loss land-
scape in feed-forward ANNs. We have also proposed some qualitative arguments
supporting the correlation of a high local entropy density with a very desirable
property in the generalization scenario (see section 5.6), namely the enhanced
robustness to noise of these special solutions. This robustness translates into ex-
cellent generalization performance for the optimal configurations of the Robust
Ensemble, indicating that they are able to act as local Bayesian representatives
of the entire neighborhoods of low energy configurations surrounding them [4].

We can thus try to adopt a reversed approach (with respect to [4]), where
the system is purposely required to learn in a stochastic (i.e., noisy) setting
and see if the high local entropy can result as an emerging property. In nature,
synaptic weights are known to be plastic, low precision and unreliable: it is
thus important to understand if this synaptic stochasticity can help or hinder
the learning process [81].

In order to learn with stochastic synapses, we need to move to a Bayesian
learning framework, where instead of looking for a single assignment for the
synaptic weighs one is interested in characterizing a probability distribution
over the possible assignments, the so-called posterior distribution [5]. The
posterior is to be inferred in the assumption of maximizing the likelihood of
some input-output associations, prescribed by a given dataset D. One can
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devise a learning procedure in which the posterior distribution obtained at the
previous step is used as a prior (similar to the Empirical Bayes approach), from
which the stochastic synapses are sampled independently for each pattern. Thus,
one obtains a stochastic machine that learns a “noise-robust” parametrization
of the probability distribution, such that any sampled network configuration is
likely to achieve a correct classification of the training patterns.

In this case, the learning process affects the parameters of the prior distri-
bution, instead of the synapses themselves, and this allows the employment
of gradient descent algorithms that would otherwise be inappropriate in a
binary setting. At late stages of the learning procedure, the prior is expected
to peak around a single binary configuration, which can then be proposed as
the solution found by the algorithm: even though the final prior apparently
neglects the neighborhood of this configuration, being very focused on a small
region, the fact that it was obtained through a dynamical procedure, where the
scope of the posterior distribution is slowly narrowed, implies that the local
entropy is playing a role in its choice.

In the following, we will first introduce a more rigorous description of this
framework, and then we will describe a theoretical analysis in the Binary
Perceptron model, once again chosen as the prototypical model of an ANN,
linking the Bayesian approach to our Large Deviation analysis (see chapter 4).

7.1 Maximum likelihood and the Bayesian ap-
proach

Let us consider a typical Deep Learning classification task: we have a training
set D = {(xµ, yµ)}M

µ=1 of M input-output associations, where the correct labels
are represented by indicator vectors in a K-dimensional space. For any input
x ∈ X and for any assignment of the synaptic weights W , an ANN defines a
probability density function P (y |x, W ) over the K possible categories: while
the propagation of the activity through the network is completely deterministic,
involving scalar products and the application of a non-linear activation function,
the employment of a softmax function in the last layer can turn the outcome
into a probabilistic prediction. The goal of the learning procedure is to adjust
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the parameters W according to the supervised error-signal resulting from wrong
classifications. From a mathematical point of view, the learning problem can
be framed as a log-likelihood L̃(W ) maximization over the synaptic weights W :

max
W
L̃(W ) :=

∑
(x,y)∈D

log P (y |x, W ) (7.1)

This optimization problem is usually approximately solved by taking −L̃(W )
as a loss-function and by applying some heuristically improved version of the
Gradient Descent (GD) procedure [62].

The aim of a Bayesian approach, instead, is that of obtaining an approxima-
tion of the posterior distribution P (W | D) ∝ P (D |W )P (W ), with a proper
choice of a prior, P (W ), for the synaptic weight distribution. Ideally, with
the knowledge of the posterior distribution one could obtain the best pos-
sible prediction in a generalization scenario, given by the weighted average
output ŷ(x;D) = argmaxy

∫
dW P (y |x, W )P (W | D). Unfortunately, in real

applications, an exact computation of P (W | D) and of the Bayesian integral is
almost always unfeasible. For this reason, there have been various proposals
of methods for approximating the posterior distribution, based on variational
approximations, strong factorization assumptions, or obtained through Monte
Carlo estimations [82–85].

Inspired by the analytical analogy between the computation of the local
entropy reweighed measure and the Stochastic Binary Perceptron model (see
following paragraphs), it is possible to devise a novel optimization method able
to find binary solutions of the problem (7.1), that shares some features with
the Bayesian approach. We first introduce a factorized family of probability
distributions over the synaptic weights (the analog of the Bayesian prior),
Qθ(W ), parametrized by a set of variables θ. Since the synapses can take one
of two possible values, a single parameter θi per synapse is sufficient. As stated
in the introduction, we formulate the learning problem as follows:

max
θ
L(θ) :=

∑
(x,y)∈D

logEW ∼Qθ
P (y |x, W ) (7.2)

Here, L(θ) is the log-likelihood of a model where the synaptic weights are inde-
pendently sampled, according to the prior Qθ(W ), in correspondence of each
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classification pattern (x, y) ∈ D. This approach bears great resemblance with
some variational methods for approximating the Bayesian posterior distribution
(as in [84], for example), except that in our case the usual order between the sum
and the expectation in equation (7.2) is inverted. This subtle difference is quite
relevant, in that it introduces the notion of stochastic synapses into the model.
Within this scheme we can obtain an approximation to the Bayesian integral,
ŷ(x) = argmaxy

∫
dW P (y |x, W )Qθ(W ), averaging over all the solutions in-

cluded in the prior, as well as the simpler predictor ŷ(x) = argmaxyP (y |x, Ŵ ),
choosing the mode of the prior Ŵ = argmaxW Qθ(W ) as a deterministic assign-
ment for the synaptic weights.

In general, in deep networks, the Bayesian problem of equation (7.2) is more
involved than the maximum likelihood (7.1), because of the computational
difficulty of dealing with the distributions P (W | D) instead of single instance
parameters W . Also notice that, for any zero-temperature solution W ∗ of (7.1),
provided that it belongs to the same parametric family of Qθ (W ), we have
that δ(W −W ∗) is a solution also of the second problem (7.2).

As we will see in the following, there are at least two reasons for choosing
the complications involved with L(θ), instead of L̃(W ):

• In the discrete setting, this formulation allows the application of GD
algorithms for training the network, since the training takes place at the
level of the continuous parameters θ of the distribution.

• The optimization over L(θ) exhibits some useful dynamical properties:
the GD in the θ-space naturally incorporates the regularization property
of the Bayesian approach, but also induces a high robustness to the sought
solutions. In fact, if one initializes in a configuration of the parameters
with a small L2 norm, representing a wide probability distribution in-
cluding a very large ensemble of synaptic configurations, the gradient
naturally evolves towards a corner δ(W −W ∗): the norm of θ gradually
increases, mimicking the scoping procedure (cf. with the previous chap-
ters), as the Bayesian posterior gets more and more focused on high local
entropy regions.



7.2 Stochastic Perceptron 161

7.2 Stochastic Perceptron

We now proceed in the theoretical analysis by specializing to the case of the
Perceptron, chosen as a prototypical example of discrete feed-forward NN. We
will also consider the case of random unbiased i.i.d. binary input patterns:
xi ∼ 1

2δ (xi − 1) + 1
2δ (xi + 1), as usual. The symmetry of the problem allows

us to set all the outputs to 1 without loss of generality: ∀µ yµ = 1.

Consider a stochastic version of the same network, in which the values
of the weights W are extracted from some probability distribution Q (W ; θ)
parametrized by the vector θi, i = 1, ..., N . We will denote with ⟨·⟩θ the average
over W for a given parametrization θ: of course, for some function g, the
average is obtained as ⟨g (W )⟩θ = ∑

W Q (W ; θ) g (W ). In order to make a clear
connection with the analyses presented in the previous chapters, we can choose
to extract each weight independently, as:

Q (W ; θ) =
N∏

i=1
σ (γWiθi) (7.3)

where the stochastic machine parameters are normalized to ∑N
i=1 θ2

i = N , a
global parameter γ is introduced as an explicit scale, and σ is the logistic
function:

σ (x) = 1
1 + e−2x

= ex

ex + e−x
. (7.4)

With this definition, we see that the average value of each weight is simply:
⟨Wi⟩θi,γ

= tanh (γθi). From the statistical physics perspective, the control
parameters θ play the role of external fields, and the average represents a
magnetization mi = ⟨Wi⟩θi,γ

of the state described by the prior. The connection
with the entropic reweighting term of equation 4.3, in section 4.1, is clear: if
we suppose to take also the parameters θ to be binary, the resulting prior is
equivalent to:

σ (γWiθi) ∼ exp (γ (Wiθi)) ∼ exp
(
−γ

2 (Wi − θi)2
)

. (7.5)

therefore, we are simply generalizing the elastic coupling with the reference
system to the case where W̃ = θ can take continuous values.
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In the stochastic Perceptron, the probability distribution P (y |x, W ) over
the possible output classes, y ∈ {−1, +1}, can be simply obtained as:

P (y |x, W ) = Θ
(

y
N∑

i=1
Wi xi

)
. (7.6)

Then, as mentioned above, one can measure the average performance of the
stochastic network on the training set, for a given value of the parameters θ, by
using a log-likelihood function L (θ; {xµ, yµ

d}). There are two slightly different
possible definitions for the log-likelihood, corresponding to two scenarios:

1. The full-batch scenario, usually considered in variational Bayes methods,
in which we extract an assignment of weights W and test it on the whole
pattern set. L is therefore the log-likelihood of extracting a value of the
weights that correctly classifies all the patterns simultaneously:

max
θ
L(θ; {xµ, yµ

d}) := EW ∼Qθ

∑
(x,y)∈D

log P (y |x, W ) (7.7)

2. A fully-stochastic scenario, which we consider here, where the weights
W are extracted independently for each pattern. L is therefore the log-
likelihood of achieving a perfect overall classification when extracting a
new set of weights for each pattern:

max
θ
L(θ; {xµ, yµ

d}) :=
∑

(x,y)∈D
logEW ∼Qθ

P (y |x, W ) (7.8)

It could indeed be possible to interpolate between the two scenarios, working
with mini-batches (as usually done in Deep Learning), but this is left for future
work. After the introduction of the likelihood function, we can then define an
optimization task over the parameters θ, for a given training set, that consists
in trying to maximize L (h; {xµ, yµ

d}), and study theoretically the behavior of
the associated free entropy.

The average free entropy potential in the full-batch case is simply given by:

ϕ (γ, β) = Ex log
∫

dµ (θ)
(∑

W

∏
i

σ (Wiθiγ)
∏
µ

Θ
(

1√
N

N∑
i=1

xµ
i Wi

))β

(7.9)
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The result of the replica calculations, in the binary control case, is in fact
identical to the large deviation analysis of chapter 4 (with the trivial mapping
β → y). Also in the case of continuous θ, we don’t expect qualitatively different
results. The fully stochastic case, instead, cannot be mapped onto the local
entropy calculation as straightforwardly.

7.3 Equilibrium analysis and stability

The fully-stochastic settings allows us to obtain an explicit expression of the
log-likelihood in the limit of large N , by simply applying the Central Limit
Theorem (CLT). For later convenience, instead of using directly the parameters
θ, we write the prior distribution Q (W ; θ) through the induced magnetizations,
according to:

Qm (W ) =
N∏

i=1

[1
2(1 + mi)δWi,+1 + 1

2(1−mi)δWi,−1

]
. (7.10)

where, clearly, we require mi ∈ [−1, 1] ∀i.

In order to apply the CLT, to evaluate analytically the distribution over
the outputs, we just need to compute the mean and variance of the random
variable ∑N

i=1 xµ
i Wi, given by:

N∑
i=1

xµ
i ⟨Wi⟩θi,γ

=
N∑

i=1
xµ

i mi (7.11)

N∑
i=1

(〈
(xµ

i Wi)2
〉

θi,γ
− ⟨xµ

i Wi⟩2θi,γ

)
=

N∑
i=1

(
1−m2

i

)
x2

i (7.12)

and transform the sum over W into a Gaussian integral. We can then write
the log-likelihood function of equation (7.2) as:

L(m) =
∑

(x,y)∈D
log H

− y
∑

i mi xi√∑
i(1−m2

i )x2
i

 , (7.13)

where, as usual, H (y) =
∫∞

y dy e− y2
2√

2π
= 1

2erfc
(

y√
2

)
.
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We can therefore study the properties of the partition function:

Z =
∫

Ω

∏
i

dmi δ

(∑
i

m2
i − q∗N

)
eβL(m) (7.14)

where Ω = [−1, 1]N , and β is the usual inverse temperature. The squared norm
of m, q⋆, is constrained to a value ≤ 1, in order to be able to mimic the gradual
increment of q∗ in the training process (analogous of the scoping procedure in
the calculations of the previous chapters). Otherwise, the minima of the energy
are exactly the same of the standard binary Perceptron, since the log-likelihood
L is maximized in all the corners associated to a solution of the binary problem,
therefore the case q⋆ = 1 is trivial. The partition function of equation 7.14 has
an implicit dependence on the quenched disorder, represented by the training
set D = {xµ, yµ}αN

µ=1.

We want to investigate the typical properties of this system in the thermo-
dynamic limit and at fixed storage load α: as usual, we will employ the replica
method, limiting our analysis to the RS ansatz for simplicity. In the following,
we will denote with ED the expectation over the possible choices of training set
(with i.i.d. input and outputs with zero mean and variance one). We can thus
study the average asymptotic free entropy:

ϕ = lim
N→∞

1
N
ED log ZN (7.15)

In order to perform the disorder average, we replicate n times the system
and consider the replicated partition function:

ED Zn
N = ED

∫
Ω

n∏
a=1

N∏
i=1

dma
i

n∏
a=1

δ

(
N∑

i=1
(ma

i )2 − q∗N

)
M∏

µ=1

n∏
a=1

Hβ

(
yµ∑N

i=1 xµ
i ma

i√
N

)
.

(7.16)
After averaging over the patterns and factorizing over the synaptic and the
pattern indices, i = 1, ..., N and µ = 1, ..., αN respectively, we can write the
leading order O (N) expression for the free entropy:

ED Zn
N ∼

∫ ∏
a

dq̂aa

2π

∏
a<b

dq̂abdqab

2π
eNϕ[q̂,q] (7.17)
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with the following definition for the replicated action:

ϕ[q̂, q] = −1
2
∑
a,b

q̂ab qab + GS + αGE (7.18)

GS[q̂] = log
∫

Ω

∏
a

dma e
1
2
∑

ab
q̂abmamb , (7.19)

GE[q] = log
∫ ∏

a

dλ̂adλa

2π
e− 1

2
∑

ab
qabλ̂aλ̂b+iλ̂aλa

∏
a

Hβ(λa). (7.20)

Notice that the overlap qaa ≡ q∗ is fixed by the L2 norm constraint. If we
denote with ≪ • ≫S and ≪ • ≫E the expectations taken according to the
single-body partition function in the logarithms of equation (7.19) and equation
(7.20), the saddle point evaluation of the replicated partition function yields:

q̂ab = −α≪ λ̂aλ̂b ≫E a > b, (7.21)
qab =≪ mamb ≫S a > b, (7.22)
qaa ≡ q∗ =≪ m2

a ≫S . (7.23)

where the last equation can be used as an implicit equation for determining
the conjugated order parameter q̂aa.

In order to continue the computation and obtain the original typical free
entropy as an analytic continuation to n → 0+, we need to make an Ansatz
on the structure of the order parameters. We therefore consider the Replica
Symmetric (RS) Ansatz:

• qab = q0, q̂ab = q̂0 for a ̸= b.

• q̂aa = q̂1 ∀a. Of course, q1 = q⋆ because of the constraint.

The computation follows the same lines of the ones presented in the previous
chapters, and the final RS prediction for the average free entropy is found to
be:

ϕRS = extr
q0,q̂0,q̂∗

1
2(q0q̂0 − q∗q̂1) + GS(q̂0, q̂1) + αGE(q0, q∗) (7.24)
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where:

GS(q̂0, q̂1) =
∫
Dz0 log

∫ 1

−1
dm e

1
2 (q̂1−q̂0)m2+

√
q̂0z0m, (7.25)

=− 1
2 log a +

∫
Dz0 log

[√
π

2 e− b2
2a

(
erfi

(
a− b√

2
√

a

)
+ erfi

(
a + b√

2
√

a

))]
(7.26)

GE(q0, q∗) =
∫
Dz0 log

∫
Dz1 Hβ

(
−
√

q0z0 +√q∗ − q0z1√
1− q∗

)
. (7.27)

As usual, we would be interested in studying the limiting case β → ∞,
but unfortunately the RS solution becomes locally unstable for large β. We
conjecture that ϕRS gives good predictions at low β, while for exploring lower
temperatures, β ≫ 1 (required in the context of the maximization of the
log-likelihood), a symmetry-broken replica analysis is needed.

In order to keep things simple, we will present the results obtained for large
values of β still in the RS stable region. The local stability criterion of the free
energy functional of equation (7.18) at the RS stationary point, involving the
eigenvalues of the Hessian (see [49] for the original calculation), can be recast
as the condition:

αγEγS < 1. (7.28)

where γE and γS are the relevant eigenvalues of the Hessians, of the GE[q] and
GS[q̂] functionals, at small values of n. They can be computed as:

γE =
∫
Dz0

[
û2(z0)−

(
û(z0)

)2
]2

, (7.29)

γS =
∫
Dz0

[
m2(z0)− (m(z0))2

]2
. (7.30)

where the averages in the last equations are defined as:

ûk(z0) ≡
∫ dûdu

2π
ûk e− 1

2 (q∗−q0)û2+iûu+iû
√

q0z0Hβ(u)∫ dûdu
2π

e− 1
2 (q∗−q0)û2+iûu+iû

√
q0z0Hβ(u)

(7.31)

mk(z0) ≡
∫ 1

−1 dm mk e
1
2 (q̂1−q̂0)m2+

√
q̂0z0m∫ 1

−1 dm e
1
2 (q̂1−q̂0)m2+

√
q̂0z0m

(7.32)
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Fig. 7.1 Critical value βc for the stability of the RS solution for different storage
loads α, as a function of q∗. Above βc the RS solution is locally unstable.

In figure 7.1, we can see the behavior of the stability line βc(q∗), at various
values of α: the critical temperature is always found at finite (but large) values.

7.4 Gradient Descent in the Stochastic Per-
ceptron

We have reduced the stochastic learning problem over a binary machine to an
optimization problem over the parameters θ of the probability distribution,
which can be assumed to be continuous and without any residual stochasticity.
We can thus try to perform the optimization with the usual methods of
continuous optimization, in particular by using the gradient descent method
and its variants.

The gradient of the loss-function −L(m) produces the simple update rules:

mt+1
i ← clamp

(
mt

i + η ∂mt
i
L
(
mt
))

. (7.33)
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Fig. 7.2 (Left) The training error Ê and the squared norm against the number
of training epochs, for α = 0.55 and N = 10001, averaged over 100 samples. (Right)
Success probability in the classification task as a function of the load α for networks
of size N = 1001 and N = 10001 averaging 1000 and 100 respectively. We set the
inverse temperature to β = 20, where the RS results are stable and supposedly
correct, but also quantitatively close to the β = +∞ limit.

where η is a suitable learning rate and the clamping function clamp(x) :=
max(−1, min(1, x)) is required to ensure that the magnetizations do not leave
the allowed interval [−1, 1]. Their initial value, instead, can be set to be small,
distributed as m0

i ∼ N (0, 1/
√

N). At each epoch t in the GD dynamics, the
training error Ê(t) = 1

M
H(Ŵ t) can be computed with respect to the mode of

the distribution, the clipped configuration Ŵ t
i = sign(mt

i).

In figure 7.2, we can see the evolution of the network during the above de-
fined learning procedure, in the case of full-batch GD. The network approaches
zero training error while the L2 norm of the magnetizations (corresponding to
the order parameter q∗ in the replica calculations) reaches one. Therefore, Qm

focuses around a single corner of the distribution, a binary synaptic configu-
ration, as the training procedure progresses. This natural dynamical flow is
similar to the scoping procedure on the coupling parameter γ, which had to be
manually performed in the local entropy inspired algorithms presented in the
previous sections.

We also show the performance of this algorithm as a solver, by measuring
over many realizations of D the probability of finding a solution of the binary
problem: in figure 7.2, we see its behavior as a function of the storage load
α = M/N . In the case of a pure full-batch GD (at zero temperature), the
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measured algorithmic capacity is approximately αGD ≈ 0.63. This value has to
be compared with the capacities achieved by the algorithms described in the
previous chapters αMP ∈ [0.6, 0.74].

In our numerical experiments, also many variants of the GD procedure of
equation (7.33) have achieved qualitatively similar performance:

• the natural gradient (1 − m2
i )∂mi

[86], where the term multiplying the
derivative of the log-likelihood helps preventing the magnetizations from
saturating immediately ±1, even with high learning rates;

• the explicit gradient on the fields θi = arctanh(mt
i), which is slightly more

expensive than the previous ones (because of the repeated applications of
tanh and arctanh functions), but allows one to avoid the clamping of the
magnetizations.

• stochastic gradient descent (SGD), where the gradient is evaluated only
over a random mini-batches of the training set, injecting noise into the
learning procedure: this method is very effective for avoiding local minima,
and reaches a slightly higher algorithmic capacity than standard GD;

• more sophisticated updates rules involving some message-passing iter-
ations, which could be derived through an on-line Bayesian learning
approach [87, 88].

7.5 Energy of a clipped configuration

Building on the theoretical results presented above, we can now make a com-
parison between analytic predictions and numerical results, with respect to
some properties of the mode of the distribution Q(W ; m), namely the clipped
configuration Ŵi = sign(mi).

The probability of a classification error on a pattern of the training set, pe,
associated to a clipped configuration obtained from a typical magnetization
m (q⋆) (sampled according to the Gibbs measure (7.14)), is defined as:

pe = lim
N→∞

1
αN

ED

 ∑
(x,y)∈D

〈
Θ
(
−y

N∑
i=1

sign(mi)xi

)〉
m

 (7.34)
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where ⟨•⟩ is the thermal average, with an implicit dependence on D, q∗ and β.
We can relate this quantity with the typical value of the energy of a clipped
configuration, which can be computed analytically within the replica framework:

E = 1− lim
N→∞

lim
n→0

ED

∫
Ω

∏
a,i

dma
i

∏
a

δ

(∑
i

(ma
i )2 − qaaN

)
×

×Θ
(∑

i sign(m1
i )x1

i√
N

)
eβ
∑

a
L(ma)

]
(7.35)

At this point, we need to introduce two distinct order parameters, qab =
1
N

∑
i ma

i mb
i and pa = 1

N

∑
i sign(m1

i )ma
i , where qab represents the typical overlap

between the magnetizations of different replicas, while pa describes the overlap
between a magnetization and the clipped solution. We therefore get the
following expression for E:

E =1− lim
N→∞

lim
n→0

∫ ∏
a<b

dqab

∏
a≤b

dq̂ab

2π

∫ ∏
a

dpadp̂a

2π

× eNϕ(qab,q̂ab,pa,p̂a)G ′
E (qab, pa) (7.36)

with the following definitions:

ϕ (qab, q̂ab, pa, p̂a) = −1
2
∑
a,b

q̂abqab −
∑

a

p̂apa + GS (q̂ab, p̂a) + αGE (qab) (7.37)

G ′
E (qab, pa) =

∫ ∏
a

duadûa

2π

∫ dũdˆ̃u
2π

∏
a

Hβ

(
− ua√

1− q∗

)
Θ(ũ)×

× exp
i
∑

a

uaûa −
1
2

ˆ̃u2 + iũˆ̃u− 1
2
∑
a,b

qabûaûb − ˆ̃u
∑

a

paûa

 (7.38)

GS[q̂, p̂] = log
∫ 1

−1

∏
a

dmaexp
1

2
∑
a,b

q̂abm
amb + sign(m1)

∑
a

p̂ama

 (7.39)

GE[q] = log
∫ ∏

a

duadûa

2π

∏
a

Hβ

(
− ua√

1− q∗

)
exp

i
∑

a

uaûa −
1
2
∑
a,b

qabûaûb


(7.40)
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After a proper Ansatz on the structure of the order parameters, the expression
can be evaluated at the saddle point, in the thermodynamic limit N →∞. In
the Replica Symmetric Ansatz we pose:

• As before: qaa = q⋆, qab = q for a ̸= b.

• p1 = p, pa = p̃ for a ̸= 1.

and we obtain the following expressions for the action ϕ and G ′
E:

ϕRS = −1
2nq∗q̂∗ −

1
2n(n− 1)qq̂ − pp̂− (n− 1)p̃ ˆ̃p + lnGS

(
q̂∗, q̂, p̂, ˆ̃p

)
+ lnGE (q∗, q)

(7.41)

G ′
E (q∗, q, p, p̃) =

∫
Dz

∫
D ˆ̃u

∫ dũ√
2π

θ(ũ)exp
(
iũˆ̃u

)
×
[∫ dudû

2π
Hβ

(
− u√

1− q∗

)
exp

(
−1

2 (q∗ − q) û2 + i
√

qzû + iuû− p̃ûˆ̃u
)]n−1

×
∫ dudû

2π
Hβ

(
− u√

1− q∗

)
exp

(
−1

2 (q∗ − q) û2 + i
√

qzû + iuû− pûˆ̃u
)
(7.42)

We also defined:

GS

(
q̂∗, q̂, p̂, ˆ̃p

)
= log

∫
Dz

∫ 1

−1
dm1

[∫ 1

−1
dm exp

(√
q̂zm + 1

2 (q̂∗ − q̂) m2 + ˆ̃p sign(m1)m
)]n−1

× exp
(√

q̂zm1 + 1
2 (q̂∗ − q̂)

(
m1
)2

+ p̂ sign(m1)m1
)
(7.43)

GE (q∗, q) = log
∫
Dz

[∫ dudû

2π
Hβ

(
− u√

1− q∗

)
exp

(
−1

2 (q∗ − q) û2 + i (√qz + u) û
)]n

(7.44)
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Now we can substitute n = 0 and recover the expression of the ensemble
average:

ϕ
(
q∗, q, q̂∗, q̂, p, p̃, p̂, ˆ̃p

)
= −pp̂ + p̃ ˆ̃p + lnGS

(
q̂∗, q̂, p̂, ˆ̃p

)
(7.45)

G ′
E (q∗, q, p, p̃) =

∫
Dz

∫
Du H

−
(

(p−p̃)√
q∗−q

u− p̃√
q

z

)
√

1− p̃2
q

− (p−p̃)2
q∗−q

 Hβ
(
−

√
q∗−qu−√

qz√
1−q∗

)
∫
Du Hβ

(
−u

√
q⋆−q−√

qz√
1−q∗

) (7.46)

where we substituted GE (q∗, q) = 1 and:

GS

(
q̂∗, q̂, p̂, ˆ̃p

)
=

∫
Dz0

∫ 1

−1
dm1 exp

(√
q̂0zm1 + 1

2 (q̂∗ − q̂) (m1)2 + p̂ sign(m1)m1
)

∫ 1
−1 dm exp

(√
q̂zm + 1

2 (q̂∗ − q̂) m2 + ˆ̃p sign(m1)m
)

(7.47)

We do not need to compute again the saddle point value for the parameters
obtained in the calculation presented above (in section 7.3), yet only the typical
overlaps between the clipped configuration and the other magnetizations:

p =
∫
Dz0

∫ 1
−1 dm sign(m)m e

1
2 (q̂∗−q̂0)m2+

√
q̂0z0m∫ 1

−1 dm e
1
2 (q̂∗−q̂0)m2+

√
q̂0z0m

(7.48)

p̃ =
∫
Dz0

(∫ 1
−1 dm e

1
2 (q̂∗−q̂0)m2+

√
q̂0z0msign(m)

) (∫ 1
−1 dm m e

1
2 (q̂∗−q̂0)m2+

√
q̂0z0m

)
[∫ 1

−1 dm e
1
2 (q̂∗−q̂0)m2+

√
q̂0z0m

]2
(7.49)

In figure 7.3, we compare the analytical prediction of the average energy
with the values obtained in the numerical experiments. For large β (i.e., at low
temperatures) the clipped configuration becomes a zero-energy solution of the
problem as q∗ approaches one. While the numerical results in the greedy full-
batch GD procedure are sub-optimal compared to the theoretical predictions,
the values of the training error as a function of q∗ approaches the analytic curve
if the GD dynamics is controlled in the following way: a given value of q∗ is
fixed, the system is equilibrated for 103 iterations, and only then q⋆ is allowed
to increase.
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Fig. 7.3 Energy of the clipped center versus the norm of the control variables
q∗. We show the static prediction of equation (7.34), and numerical results from the
GD algorithm and a GD algorithm variant where after each update we rescale the
norm of m to q∗ until convergence before moving to the next value of q∗. For GD we
average over 20 random realization of the training set with N = 10001.

7.6 Franz-Parisi potential

We know from the previous chapters that while most solutions of the binary
Perceptron are isolated, a sub-dominant but still exponentially large number
of solutions belong to a dense connected cluster: these are the only type of
solutions which can be accessed by sub-exponential algorithms. Since the
stochastic synapses formulation allowed us to define an alternative way of
finding binary solutions, we also expect this algorithm to end up in the same
sub-dominant structures.

It is, in fact, possible to show that the clipped configurations of the stochastic
binary Perceptron typically belong to dense regions of solutions, when q∗ is
high enough. We can study the Franz-Parisi potential (cf. with section 2.6), by
fixing an extensive radius D N and counting the number of binary solutions at
this Hamming distance from a clipped configuration. It is interesting to make a
comparison between the possible clipped configurations, corresponding to three
different choices for the measures from which m is extracted. We can treat all
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these cases in parallel, by keeping an implicit dependence on the domain of
integration ΩN of m, and on the energy function f :

1. The typical solutions of the binary Perceptron, with Ω = {−1, 1} (imply-
ing q⋆ = 1) and f = Θ (·): this corresponds exactly to the case presented
in sub-section 2.6.1.

2. The typical solutions of the continuous Perceptron, with Ω = {−∞,∞}
and f = Θ (·): in this case, the clipped configurations are qualitatively
similar to those that would be found algorithmically by employing the
Clipped Perceptron algorithm (cf. with chapter 3).

3. The maximum-likelihood solutions of the binary Perceptron, with Ω =
[−1, 1] and f = H

(
− ·√

1−q⋆

)
= L (m).

We thus introduce the coupled partition function:

Z(d, m) =
∑

{Wi}

∏
(x,y)∈D

Θ
(

y
∑

i

Wixi

)

× δ

(
N(1− 2D)−

∑
i

sign(mi)Wi

)
(7.50)

In order to characterize the typical behavior of the coupled system, we need to
take the expectation ⟨•⟩m over m, specializing to the three cases listed above.

The distance constraint that couples the binary Perceptron system with the
reference system of the clipped configuration, is equivalent to the requirement
of a fixed overlap between 1

N

∑
i Wisign(W̃i) ≡ p. The Franz-Parisi free entropy

is thus defined as:

S(p) ≡ lim
N→∞

1
N
ED < log

∑
{Wi=±1}

δ

(∑
i

sign(W̃i)Wi − pN

)∏
µ

θ

(∑
i

xµ
i Wi

)
>W̃ ;D

(7.51)
with:

< • >W̃ ;D≡

∫
Ω
∏

i dW̃i • δ
(∑

i W̃ 2
i − q∗N

) ∏
µ f

(∑
i

xµ
i W̃i√
N

)
∫

Ω
∏

i dW̃i δ
(∑

i W̃ 2
i − q∗N

) ∏
µ f

(∑
i

xµ
i W̃i√
N

) (7.52)
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The calculation follows the same steps of the ones presented in the previous
chapters, giving in the RS Ansatz the following expression:

ϕF P (S) = −1
2Q̂ (1−Q) + ŝ0s0 − ŝ1s1 − p̂p + GS + αGE (7.53)

GS =
∫
Dz0

∫
Ω dµ

(
W̃
) ∫
Dη e

1
2 (q̂1−q̂0)W̃ 2+

√
q̂0z0W̃ AS(W̃ , η, z0)∫

Ω dµ
(
W̃
)

W̃ e
1
2 (q̂1−q̂0)W̃ 2+

√
q̂0z0W̃

(7.54)

GE =
∫
Dz0

∫
DηDz1 f

(√
q0z0 +

√
az1 + s1−s0√

b
η
)

log H

(
−

√
bη+ s0√

q0
z0

√
1−Q

)
∫
Dz1 f

(√
q0z0 +√q∗ − q0z1

)
(7.55)

where we defined:

AS(W̃ , η, z0) = log 2 cosh

(ŝ1 − ŝ0)W̃ + p̂sign(W̃ ) +

√√√√Q̂q̂0 − ŝ2
0

q̂0
η + ŝ0√

q̂0
z0


(7.56)

a = q∗ − q0 −
(s1 − s0)2

(Q− s0)

(
1− s0 (q0 − s0)

(Qq0 − s2
0)

)
(7.57)

b = Qq0 − s2
0

q0
(7.58)

Now we can differentiate between the three possible scenarios:

1. Binary Perceptron:

GS =
∫
Dz0

∑
W̃ =±1

∫
Dη e

√
q̂0z0W̃ AS(W̃ , η, z0)

2 cosh
(√

q̂0z0W̃
) (7.59)

AS(W̃ , η, z0) = log 2 cosh

(ŝ1 − ŝ0)W̃ +

√√√√Q̂q̂0 − ŝ2
0

q̂0
η + ŝ0√

q̂0
z0


(7.60)
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2. Continuous Perceptron, in the assumption q̂0 > q̂1:

GS =
∫
DW̃Dz0 log 2 cosh

[(
ŝ1 − ŝ0

q̂0 − q̂1

√
2q̂0 − q̂1 + ŝ0√

2q̂0 − q̂1

)
W̃+

+γsign(W̃ ) +

√√√√Q̂− ŝ2
0

2q̂0 − q̂1
z0


(7.61)

3. Stochastic binary Perceptron:

GS =
∫
Dz0

Ĩ+ + Ĩ−

Ĩ0
(7.62)

where we defined:

Ĩ+ = a
∫
Dη f+(aη + b)×

× log 2 cosh


√√√√Q̂q̂0 − ŝ2

0
q̂0

+ (ŝ1 − ŝ0)2(aη + b) + p̂ + ŝ0√
q̂0

z0

 (7.63)

Ĩ− = a
∫
Dη f−(aη + b)×

× log 2 cosh


√√√√Q̂q̂0 − ŝ2

0
q̂0

+ (ŝ1 − ŝ0)2(aη + b)− p̂ + ŝ0√
q̂0

z0

 (7.64)

Ĩ0 =
√

π

2|q̂1 − q̂0|
×

erfϵ

 |q̂1 − q̂0|+
√

q̂0z0√
2|q̂1 − q̂0|

+ erfϵ

 |q̂1 − q̂0| −
√

q̂0z0√
2|q̂1 − q̂0|


(7.65)

a =

√√√√√ Q̂q̂0 (q̂0 − q̂1) + q̂0 (ŝ1 − 2ŝ0) + q̂1ŝ2
0

(q̂0 − q̂1)
(
q̂0
(
Q̂ + (ŝ0 − ŝ1)2

)
− ŝ2

0

) (7.66)

b = q̂0z0

(q̂0 − q̂1)
ŝ1 − ŝ0√

Qq̂0 − ŝ2
0 + q̂0(ŝ1 − ŝ0)2

(7.67)
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Fig. 7.4 Local entropy of binary solutions at fixed distance d from clamped
configurations (CCs) of the spherical, binary and stochastic Perceptron (q∗ = 0.7, 0.8
and 0.9 from bottom to top) at thermodynamic equilibrium. In both figures α = 0.55,
also β = 20 for the stochastic Perceptron and β =∞ for the spherical and binary
ones.

and the function erfϵ is defined as:

erfϵ (·) =

erf (·) q̂1 − q̂0 > 0
erfi (·) q̂1 − q̂0 < 0

(7.68)

In figure 7.4, we see the comparison between the entropy S(D) obtained
in the stochastic Perceptron model, and the analogous entropies in the two
other cases. It is clear that, as q∗ is increased, the zero-entropy gap between
the clipped configuration and the nearest binary solutions closes: this clearly
indicates that the clipped maximum likelihood configuration belongs to the
dense cluster of solutions.

We also performed some numerical experiments for a validation of the
theoretical predictions. The reference configuration W = sign(m) is selected
by running the GD algorithm until a given configuration, at a fixed norm q∗, is
reached. Then the single instance Franz-Parisi entropy is computed through
the Belief Propagation (BP) algorithm (see section 3.1). In figure 7.3, we can
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Fig. 7.5 Franz-Parisi potential, numerical estimation and theoretical predictions.
Dashed green and violet lines, theoretical Franz-Parisi entropy for different values of
q∗, 0.8, 0.9 respectively. Solid blue and yellow lines, numerical estimate of Franz-Parisi
entropy for different values of q∗, 0.8, 0.9 respectively averaged over 100 samples.
α = 0.6.
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see a direct comparison with the analytical curves for two different values of q∗.
Again, the numerical results seem to be sub-optimal: this is not only due to
finite size effects but also to the greedy nature of the full-batch GD algorithm
we employed for finding the reference configuration.

7.7 Binary control variables and Dropout

It is also interesting to consider the case in which the control variables m are
constrained to the corners of the hyper-cube of side √q⋆ (therefore mi = √q∗W̃i,
with W̃i ∈ {−1, 1}, and ∑i m2

i = q⋆N). In this case the computation becomes
simpler, since the likelihood can be written as:

L (m) =
∑

(x,y)∈D
H

−
∑N

i=1
√

q⋆W̃ix
µ
i√∑

i

(
1− q⋆W̃ 2

i

)


=
∑

(x,y)∈D
H

(
− ρ√

N

N∑
i=1

W̃ix
µ
i

)
(7.69)

with the definition ρ = √q⋆/
√

1− q⋆. It is clear that, in the limit q∗ → 1,
the new control parameter ρ → ∞ and the error function H becomes an
Heaviside Θ-function, recovering exactly the binary Perceptron model.

This formulation allows a nice connection with the Dropout/Dropconnect
schemes, commonly employed in the Deep Learning context. The Dropout
technique was introduced in [89], as a strategy for uncorrelating the hidden
units, helping against the vanishing gradient [90] and avoiding over-fitting
during the training of large ANNs. In recent years this method has become one
of the most successful heuristics for improving the generalization properties of
huge feed-forward models. From the practical point of view, in Dropout the
synapses are deterministic, but the inputs of the various layers can be set to 0
with some probability η, usually η ≤ 0.5; Dropconnect [91], instead, is a slight
variation over the same idea, where some synaptic couplings can be randomly
dropped. Notice that both these techniques introduce a source of noise in the
training process. It is also easy to see that in a single-layer model the two
schemes are indistinguishable.
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Let us call u = (ui)N
i=1 ∈ {0, 1}N the dropout mask, and η the probability

of dropout, i.e. ui ∼ ηδ (ui) + (1− η) δ (ui − 1). Also suppose, in connection
with the fully-stochastic case discussed above, that we generate a new dropout
mask at each presentation of a pattern. By applying the CLT we obtain:

L
(
W̃ , η

)
=

∑
(x,y)∈D

〈
Θ
(

1√
N

N∑
i=1

xµ
i W̃iui

)〉
u,η

=
∑

(x,y)∈D
H

(
−
√

1− η

η

1√
N

N∑
i=1

xµ
i W̃i

)
(7.70)

Thus, by setting η = 1− q⋆, we have a direct mapping between these two kinds
of stochastic machines (in expectation and in the limit of large inputs). Again,
γ → ∞ implies η → 0 (i.e., no Dropout) and the problem is reduced to a
standard binary Perceptron.

We can now study the free entropy potential in the special case of binary
variables and the control parameter ρ of equation 7.69:

ϕ = ED log
∑
W̃

H

(
−ρ

∑
i xµ

i W̃i√
N

)β

(7.71)

The computation is very similar to (but simpler than) the continuous one,
except that now the order parameters represent overlaps between the W̃ rather
than the magnetizations m, giving after the factorization over the spatial and
the pattern indices:

enϕ =
∫ ∏

a>b

dqabdq̂abN

2π
exp

−N
∑
a>b

qabq̂ab

 (GS)N (GE)αN (7.72)

GS[q̂] = log
∑
{W̃ a}

e
1
2
∑

ab
q̂abW̃ aW̃ b

,

GE[q] = log
∫ ∏

a

dλ̂adλa

2π
e− 1

2
∑

ab
qabλ̂aλ̂b+iλ̂aλa

∏
a

Hβ(−ρλa)
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and in the RS Ansatz one obtains the following expressions:

ϕ =N max
q,q̂

{1
2qq̂ + log GS + αGE

}
(7.73)

with the definitions:

GE = lim
n→0

1
n

log GE =
∫

Dz0 log
∫

Dz1H
(
ρ
(
z1
√

1− q + z0
√

q
))β

(7.74)

GS = lim
n→0

1
n

log GS = − q̂

2 +
∫

Dz log 2 cosh
(

z
√

q̂
)

(7.75)

We can also compute the average energy of the model, i.e. the log-likelihood,
which can simply be obtained by taking the derivative:

L = ∂ϕ

∂β
=α

∫
Dz0

〈
log H

(
ρ
(
z1
√

1− q + z0
√

q
))〉

z1
(7.76)

where we defined an averaging operator ⟨·⟩z1
with a measure proportional to the

weight G (z1) H
(
ρ
(
z1
√

1− q + z0
√

q
))β

. This allows us to find the entropy of
the W̃ , via the Legendre transformation: Σ = ϕ− βL. Since the problem is
discrete, in this case we can use the usual criterion Σ ≥ 0 to detect when the
RS solution is acceptable (cf. with section 4.2).

As in section 7.5, we can also compute (by the usual replica trick) the
typical number of errors per pattern made both by the stochastic machine,ϵstoch,
and by the reference configuration,ϵW̃, given respectively by:

ϵstoch =
∫

Dz0
〈
H
(
ρ
(
z1
√

1− q + z0
√

q
))〉

z1
(7.77)

ϵW̃ =
∫

Dz0
〈
Θ
(
−
(
z1
√

1− q + z0
√

q
))〉

z1
(7.78)

Notice that these formulas imply ϵW̃ ≤ ϵstoch, as expected, and that their
difference tends to vanish at ρ→∞.
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Finally, we can also check the the local instability criterion for the RS
solution, given by αγEγS > 1, where:

γE = 1
(1− q)2

∫
Dz0

(〈
z2

1

〉
z1

+ ⟨z1⟩2z1

)2
(7.79)

γS =
∫

Dz
(

1− tanh2
(

z
√

q̂
))2

(7.80)

Let us define β⋆ = β⋆ (α, ρ) such that Σ (β⋆) = 0. This should give an upper
bound for the region where the RS solution makes sense. In this region, one
finds the following general behavior:

• β⋆ exists for all p in the SAT region α ∈ [0, 0.83]; beyond that, there is
no solution near p→ 1.

• β⋆ →∞ for both p→ 0 (i.e. ρ→ 0) and p→ 1 (i.e. ρ→∞), as in the
case of continuous magnetizations.

• The solution at β = β⋆ is always locally unstable below a certain p, and
stable above it, for all α ∈ [0, 0.83]. However, we are mostly interested in
the region near p→ 1.

• The errors ϵstoch and ϵW̃ tend to 0 for p → 1, for all α ∈ [0, 0.83]. The
derivative at p→ 1 seems to always be 0 as well, implying the existence
of wide (i.e. extensive in N) good regions. These regions become very
small above α ≳ 0.77. It is unclear if these regions are physical, since we
are above the threshold αU measured in chapter 4.

• In the region α ∈ [0, 0.75], where the solution to the local-entropy compu-
tation exists for all p, the local entropy version consistently has a slightly
lower error than the fully-stochastic log-likelihood version. This was
expected since the high local entropy is only a byproduct of the stochastic
synapses formulation, while it was the main requirement of the large
deviation analysis of chapter 4.

In figure 7.4, we show a comparison between numerical measurements and
analytic predictions for the average energy. In this case, since the control
variables are binary, we resort to a MC algorithm for equilibrating over the
log-likelihood at fixed values of the parameter q⋆.
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Fig. 7.6 Binary model: Energy of the clipped center versus the norm of the control
variables q∗. Red curve, MC simulation at N = 1001, averaged over 100 samples.
Green curve, analytical result determined through the replica approach. α = 0.55.

7.8 Deep Networks

The learning strategy proposed throughout this chapter, namely going from a
learning problem in a binary setting to a stochastic optimization problem over
a parametrized probability distribution, can be very effective in training feed-
forward ANNs on real data. However, when dealing with K-label classification
tasks, in order to define the log-likelihood it is necessary to give a proper
definition to the underlying stochastic process, that determines the output of
the network and its probability P (y|x, W ). Let us first consider the case in
which the network outputs a vector τ ∈ {−1, 1}K , producing an independent
binary classification in correspondence of all the possible labels. Consider a
single pattern, whose correct label k⋆ ∈ {1, ..., K} is specified by the output
vector yµ = δk,k⋆ :

1. One could simply ask the network to give an output τ = 1 in correspon-
dence of the correct class, determining a log-likelihood with the shape of
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a cross-entropy loss:

Lµ (m) =
K∑

k=1
yµ

k log P (τk = 1|xµ, W ) = yµ
k⋆ log P (τk⋆ = 1|xµ, m)

(7.81)

2. Alternatively, one could also try to obtain τ = −1 in all the wrong classes,
with the log-likelihood:

Lµ (m) =
K∑

k=1
yµ

k log P (τk = (2yk − 1) |xµ, m) (7.82)

It is possible, instead, to define the stochastic process differently, so that the
loss-function becomes more similar to the softmax function usually employed
in Deep Learning. One can consider a stochastic model where the output of the
network is accepted only if it is is an indicator on one of the K classes, otherwise
the trajectory is rejected and the extraction of the synapses is repeated. The
unnormalized probability of obtaining the desired output is still:

P (k⋆|xµ, m) = P (τk⋆ = 1|xµ, m)
∏

k ̸=k⋆

P (τk = −1|xµ, m) (7.83)

However, if we also take into account the normalization we obtain an expression
for the likelihood of a single datapoint, wich can be simplified into the form:

Lµ (m) = ρk⋆R (k⋆|xµ, m)∑K
k=1 ρkR (k|xµ, m)

(7.84)

where R (k|xµ, m) = P (τk = 1|xµ, m) /P (τk = −1|xµ, m), and where we intro-
duced the weights ρk, with ρk = 1 ∀k ̸= k⋆, playing the role of a robustness
parameter, to be fixed at a value 0 < ρk⋆ ≤ 1. This can encourage a higher
probability in correspondence of the correct label.

The drawback, with these definition for the stochastic process, is the fact that
the space of possible outputs is exponential, with 2Kpossible labels. Therefore,
the probability of actually obtaining an acceptable output τ = 2δk,k⋆ − 1 is
exponentially small, and for example a MC sampling of P (y|x, W ), starting
from a random configuration of the parameters θ, would have a very high
rejection rate → 1.
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The other problem concerns the way the probability P (τk⋆ = 1|x, m) is
computed in practice: taking care of the potential correlations between the
inputs poses serious technical problems and, on the other hand, even a MC
sampling would become unfeasible with growing numbers of hidden layers.
Similar to what we did in section 3.4, we can completely neglect the correlations
and simply work in a factorized Gaussian approximation (see also [82]), where
the standard back-propagation algorithm can be applied. In the simulations,
we chose to employ the natural gradient (with (1 − m2

i )∂mi
instead of ∂mi

),
with a learning rate equal to 1; the loss-function was set to be that of equation
7.84, with ρk∗ = 0.5. Moreover, we found to be very important, in practice, to
apply the Dropout heuristic, with η = 0.25 in the input layer and η = 0.3 in
the intermediate layers. This effectiveness is probably due to two reasons: first,
one of the properties of Dropout is that of uncorrelating the hidden units, in
accordance with the naive assumption we made in the factorized approximation;
secondly, the error function can suffer from the vanishing gradient problem close
to saturation [90], in the late stages of the training procedures, and the Dropout
can help enhancing the error signal received by the small magnetizations.

On the MNIST digit recognition benchmark [71], we obtained the following
generalization performance:

• ∼ 1.3% with a fully connected architecture, with two hidden layers with
801 units each.

• ∼ 1.2% with three hidden layers of size 801.

These results are very promising, given that we are training a network with
binary weights and no convolutional layers [7].



Part III

Conclusions
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In this PhD thesis, we approached the problem of learning in Artificial Neural
Networks with discrete synapses, both from a theoretical and an algorithmical
point of view. The relevance of this subject is rapidly escalating in the Deep
Learning community, as the impressive success of DNNs, in a variety of complex
recognition tasks, is accompanied by growing memory and computational costs,
calling for methods of obtaining more compact and robust representations of
ANNs. This apparent simplification, going from continuous to discrete synaptic
weights, might also be crucial for developing more realistic models of neural
computation as well as hardware implementations of ANNs, but encompasses
a series of technical and theoretical complications.

The initial theoretical objective of our work was that of tracing back the
effectiveness of a few heuristic solvers to the static properties of the loss land-
scape, and to resolve the clear discrepancy between the equilibrium analytical
predictions and the dynamical properties of these learning processes, in the
Binary Perceptron. The main mathematical tool we employed is the Replica
Trick, borrowed from the Physics of Disordered Systems: the goal was that of
obtaining a Large Deviation analysis able to enhance the statistical weight of
configurations immersed in dense regions of solutions, since the solutions found
by the algorithms exhibited this peculiar feature. The key idea was to introduce
a local entropy potential, measuring the number of neighboring solutions, and
using it as a modifier of the standard energy-based Boltzmann-Gibbs measure:
the dominating effect of the isolated solution was thus canceled out, and a
sub-dominant dense (“unfrozen”) cluster of solutions was discovered in the loss
landscape. This novel structure was also found to break apart and disappear at
a certain constraint density, very close to the measured algorithmic threshold
[1].

Conceptually, the local-entropy-reweighting formalism can be seen as a
generalization of the 1RSB formalism: compared to the ergodicity breaking
scheme described by the Parisi Ansatz, in our scheme we keep an additional
dependency on a distance parameter, that explicitly introduces a notion of
locality in our model, and potentially allows the description of structures where
the usual ultra-metric symmetry of the Gibbs states is broken [6].

We extended our analysis also to the case of the Generalized Perceptron,
where a discrete set of possible values for the synaptic weights is allowed, and
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the training set input and output statistics can be biased. The same qualitative
picture holds also in this case, and we where able to show that the overall benefit
of adding more synaptic states rapidly vanishes, highlighting the relevance of
the problem of learning with discrete synapses [3].

Building on the theoretical understanding obtained through these Large
Deviation analyses, we developed a series of algorithms that can target the
sub-dominant dense regions of solutions explicitly:

• EdMC, a MCMC optimization scheme, was first introduced as a proof of
concept: in this simple solver the objective function is the local entropy
itself, estimated in the Bethe approximation through Belief Propagation.
A simple Simulated Annealing procedure, both in the usual temperature
β and in γ, a parameter controlling the radius inside which the local
entropy is estimated, can focus the measure on smaller and denser regions,
easily providing solutions of the Perceptron. The landscape explored by
this solver is much smoother than the roughed energy landscape, and the
process is able to avoid the exponentially numerous meta-stable states
even in the greedy zero-temperature limit β →∞. To prove the versatility
of this strategy, we also applied it to the 4-SAT problem, obtaining good
performance also in the hard region [2]. The main bottleneck in further
generalizations remains the problem of computing the local entropy
efficiently, as the validity of the cavity approximation has to be assessed
for each problem at hand and BP may not be applicable.

• In order to avoid the two-level formulation, based on the employment of
BP for the local entropy estimate, we proposed an alternative and more
general strategy for obtaining solutions immersed in dense clusters: we
defined the Robust Ensemble, where the original partition function is
replicated and the replicas interact elastically with a central reference.
Any optimization strategy (e.g., Simulated Annealing, Stochastic Gradient
Descent, Belief Propagation) applied on this system, instead of the original
one, is naturally attracted towards regions with high local entropy of low
energy configurations. Our simple recipe can be easily adapted to any
learning algorithm: one only needs to run a set of processes in parallel
and couple them, to drive them towards high local entropy regions [4].
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Similar to EdMC, this type of strategy was proven to be quite general,
as it was shown to be very effective also in the K-SAT problem.

• Finally, we also showed that the introduction of a source of stochasticity
at the level of the synapses can be exploited as a tool for directing
the learning process into the dense cluster. The robustness required
for learning in this noisy setting can in fact force the network to learn
representations that are unaffected by small local perturbations, similarly
to what would happen in a dense region of solutions. This stochastic
framework naturally induces a Bayesian treatment of the neural network
model, where the aim is that of learning a continuous parametrization
of a probability distribution over the synaptic states: this allows one to
employ a simple gradient descent procedure on these parameters, which
would not be directly applicable in the discrete context. We were able
to prove analytically that, in the Perceptron architecture, this learning
procedure ends up in the same dense sub-dominant states found in the
original Large Deviation analysis [5]. Moreover, this procedure can be
easily generalized to deeper architectures [7] and different constraint
satisfaction problems.

The idea of searching for high local entropy regins seems to be crucial in the
generalization context: in the teacher-student scenario the solutions inside the
cluster show remarkably smaller generalization errors with respect to the typical
isolated solutions. Moreover, also in the numerical tests performed on real-world
data (e.g., the handwritten-digit image-recognition benchmark MNIST), we
observed that the well-performing learning algorithms invariably end up in
dense regions of solutions, and walking away from their core harshly hampers
the generalization performance [1]. The intuitive explanation of this property
could be the following: the center of these wide, very robust regions can be
interpreted as a Bayesian estimator for the whole extensive neighborhood. This
is even more naturally understood when the stochastic synapses are considered,
where the mode of the probability distribution, a configuration at the core of
the dense cluster, is in fact the solution that carries the largest weight in the
Bayesian integral.

It is becoming clear that a phenomenon quite similar to the one we first
observed in simple discrete ANNs, is also manifesting in the context of complex
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deep neural network models, currently employed in machine learning appli-
cations. In [79], for example, an algorithm mainly developed for obtaining
efficient parallelization of the training process, EASGD, also exhibited a nice
generalization performance boost and its definition is actually equivalent to a
simple SGD procedure in the Robust Ensemble. Moreover, it seems plausible
that many effective heuristics, shaped and tuned in order to find solutions that
generalize well, actually search for wide flat regions in the loss landscape, which
are the transposition of high local entropy regions in the continuous setting.

Some progress towards designing more explicit and interpretable learning
heuristics was presented in [74], where, building on our theoretical analysis and
on the observation of a correlation between good generalization scores and the
presence of wide valleys, the authors designed an algorithm akin to EdMC for
deep continuous networks: Entropy-SGD achieves state-of-the-art performance
by exploiting the geometric properties of the energy landscape, targeting regions
with a high entropy, in this case estimated through a Langevin Dynamics. These
findings are in countertrend with respect to the widespread belief that deep
networks present multiple equivalent local minima with the same loss. Moreover,
Parle, a hybrid algorithm inpired by the RE and EASGD, shows the potential of
a parallel approach, where an explicit redirection towards the well-generalizing
flat minima is accompanied also by a generous wall-clock time speedup, with
infrequent communication requirements between the processes [92]. It might
even be possible to exploit this parallel formulation for splitting the dataset
instead of sharing it. All in all, these results seem to motivate a fundamental
reconsideration of distributed machine learning in non-convex problems, as
DNNs.

Another research direction is that of finding a role for the local entropy also
in the unsupervised learning scenario, both in attractor neural networks and
in generative models like the Restricted Boltzmann Machine. The enhanced
robustness to noise might in fact be relevant for modeling and memorizing
real data, that is often fuzzy and ambiguous. In this direction, in [8] we
propose a new learning rule, Delayed Correlation Matching, that proves that
the learning process can be built on highly noisy measurements and very small
signals. However, the link with the reweighted measure is not yet formed, and
it probably requires a more general rethinking of the true objective of inference
processes.
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In the attempt of exporting our novel algorithmic strategies to different CSPs
and other problems, we still have to investigate a proper way of generalizing
the definitions of locality and neighborhoods, since Hamming or Euclidean
distances might not be suited for capturing the relevant structures in some cases.
Another intriguing problem is the development of a theoretical framework for
those special out-of-equilibrium processes that are attracted to accessible states:
it might be possible to characterize their stationary state by a large local
entropy, even when the system is unable to reach thermodynamic equilibrium
due to the underlying stochastic forces.

Finally, it is interesting to note that in [93] the authors proved a connection
between Quantum Annealing and the RE in the Perceptron: the proposed
intuitive explanation, is that the quantum fluctuations naturally drive the QA
optimization process towards wide flat regions, since the system is able to lower
its kinetic energy by delocalizing. Indeed, this is one of the few known models
where the quantum limit corresponds to the optimal algorithmic setting.
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