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Abstract

A rigorous structural analysis is fundamental in the safety assessment of the built
heritage and in its efficient conservation and rehabilitation. In line with the
necessity of refined techniques, the objective of the present thesis is to develop and
validate, in a displacement-based finite element framework, a nonlinear model apt
for the study of masonry and concrete structures under monotonic and cyclic
loading.

The proposed constitutive law adopts two independent scalar damage variables,
d" and d°, in combination with the spectral decomposition of the elastic strain
tensor, to simulate the pronounced dissimilar response under tension and
compression, typical of these materials. The assumption of energy-equivalence
between the damaged solid and the effective (undamaged) one is considered for
representing the orthotropy induced in the material by the degradation process, with
the consequence that a thermodynamically consistent constitutive operator, positive
definite, symmetric and strain-driven, is derived.

The formulation is integrated with a multidirectional damage procedure,
addressed to extend the microcrack closure-reopening (MCR) capabilities to
generic cyclic conditions, especially shear cyclic conditions, making the model
suitable for dealing with seismic actions. Maintaining unaltered the dependence of
the constitutive law from d" and d", this approach activates or deactivates a tensile
(compressive) damage value on the base of the current maximum (minimum)
principal strain direction. In correspondence with damage activation (crack
opening) or deactivation (crack closure), a smooth transition is introduced, in order
to avoid abrupt changes in stiffness and enhance the numerical performance and
robustness of the multidirectional procedure.

Moreover, the mesh-objectivity of the numerical solutions is ensured by
resorting to a nonlocal regularization technique, based on the adoption of damage
variables driven by an averaged elastic strain tensor. To perform the averaging of
the strain tensor, an internal length /z¢ is considered in the continuum. The strategy
chosen to define the parameters affecting the softening behaviour consists in the



modification of the local softening law on the base of the internal length, with the
intent of ensuring the proper evaluation of the correct fracture energy Gr.

The adequacy of the proposed constitutive model in reproducing experimental
results is proven for both monotonic and cyclic loading conditions. Under
monotonic loads, unreinforced concrete notched elements subjected to pure tension,
pure bending and mixed-mode bending are studied. The two examples of
application involving cyclic loads, a masonry and a reinforced concrete wall under
in-plane cyclic shear, constitute a validation of the multidirectional damage
approach, showing how the suitable representation of unilateral effects and
permanent deformations is essential to model the observed structural response in
terms of maximum resistance and dissipation capacity.

The effectiveness of the regularized damage formulation is proven by
successfully studying a masonry arch and reinforced and unreinforced concrete
elements. Besides the validation of the numerical results with experimental or
analytical data, each application is exploited to highlight one or more features of
the formulation: the mesh-size and mesh-bias independence of the results, the effect
of the choice of the variable to be averaged, the possibility to reproduce structural
size effects, the influence of the internal length /zc. On this latter aspect, the almost
null dependence of the regularized solutions on the internal length in terms of force-
displacement curves, achieved thanks to the calibration strategy adopted to define
the energy dissipation, suggests the interpretation of the internal length as a
regularization parameter. On the one hand, this implies an analogy between the role
played by the nonlocal internal length in a nonlocal model and the one’s of the mesh
size in the crack band approach (Bazant and Oh, 1983). On the other hand, this
translates in the versatility of the regularized damage model, which requires only
the identification of the standard material properties (elastic constants, fracture
energies and strengths).

Finally, the d*/d~ damage model is successfully applied to the study of a three-
span masonry arch bridge subjected to a concentrated vertical load, in order to
evaluate its carrying capacity and its failure mechanism. Numerical issues, usually
neglected in large-scale applications, are also addressed proving the reliability of
the regularized approach to provide mesh-independent results and its applicability.
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Chapter 1

Introduction

1.1 Motivation

The engineering modelling of traditional building materials, such as masonry and
concrete, and its implementation in computer-based structural analysis tools, has
undergone a raised interest in the last decades. The necessity of an accurate
structural analysis for the assessment and conservation of the built heritage is
nowadays present, as it was in the past. By means of it, the determination of the
structural safety as well as the design of the intervention measures is possible with
respect to a variety of actions (gravity, soil settlements, earthquakes and also actions
of anthropogenic nature such as architectural modifications or effects related to the
construction stages).

Such a need becomes stronger over time because the built heritage suffers an
ageing process whose consequences on the structural state are not completely
understood. On the one hand, the built heritage is composed of masonry structures,
the majority of which were erected centuries ago and can be classified as historical
constructions. If their longevity reassures, their vulnerability against seismic
actions can not be neglected. In addition, these structures are nowadays subjected
to service loads which are usually heavier than the ones foreseen in the original
design. In this respect, the most significant example is represented by the masonry
arch bridges, which constitute a relevant part of the current Italian and European
railway and road infrastructures.
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On the other hand, there are reinforced concrete structures, whose advent in the
construction sector dates back to the beginning of the twentieth century and whose
great expansion in Italy, both in the residential buildings and in the infrastructures,
is associated to the sixties. These structures can be considered only relatively recent
and their durability over time is somehow uncertain.

Considering the Italian case, the age of the built heritage can be quantified
taking into account a survey performed in 2001 on masonry and reinforced concrete
residential buildings by the National Institute of Statistics (ISTAT). On a total of
11 226 595 buildings, it resulted that more than 60% were erected before the 1971
(Pasca, 2012). These data suggest another important reflection, which is the meager
adequacy of the Italian built heritage in terms of the modern anti-seismic
requirements. The last time this fact was dramatically evidenced is very recent and
refers to the seismic sequence which hit the centre of Italy in 2016, causing almost
300 deaths, the destruction of several villages and the ruin of a vast cultural heritage.

Figure 1.1: Effects of the earthquake in the centre of Italy in 2016: (a) Pescara del
Tronto completely destroyed; (b) shear cracks in a masonry building at Amatrice; (c) plastic
hinge and overturning of a masonry wall in a reinforced concrete building at Pescara del
Tronto. (b) and (c) are images from (Celano et a/., 2016).
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Some images, attesting the severity of this event, are plotted in Figure 1.1.
Together with the wider picture of a village totally leveled by the earthquake, some
details on the typical damages induced by earthquakes on masonry and reinforced
concrete structures are also provided.

On the basis of these considerations, reliable analysis techniques are
indispensable in the hands of structural engineers to predict the behaviour of a
construction and hold the potentialities of saving human lifes and economic
resources. Therefore, the development of methods able to suitably simulate the
response of masonry and concrete elements represents nowadays a stimulating and
open challenge in the structural engineering field.

Firstly, the difficulties related to such a task derive from the constitutive
behaviour of these materials, which is far from the one of an isotropic linear elastic
homogeneous material. Indeed, masonry is a composite material that consists of
units (bricks, ashlars, blocks, stones) and joints (mortar, clay, bitumen, glue), whose
mechanical properties and geometrical rearrangement can be very different. Hence,
it is characterized by marked anisotropy and inhomogeneity. Concrete, as well, is
composed of different constituents (cement, water and aggregates), although the
directionality of the mechanical performance and the lack of homogeneity are much
less accentuated. Moreover, some distinctive aspects that can be identified both in
the different masonry tipologies and in the concrete are the pronounced asymmetry
between tension and compression and the occurrence of cracking even for low
stress levels, due to the scarse tensile strength. In terms of fracture behaviour,
concrete and masonry can be both classified as quasi-brittle materials, i.e. materials
characterized by a stress reduction after the attainment of the maximum strength
(softening). Differently from a pure brittle response, a quasi-brittle material shows
a measurable deformation prior to failure, which is not associated to a dislocation
motion, as in plasticity, but is related to the nucleation and stable growth of defects.
In terms of failure criterion, both concrete and masonry can be defined as frictional-
cohesive materials.

Secondly, a further complication derives from the need of modelling the above
described complex constitutive behaviour with reference to real-scale structures.
The advances perfomed in the last decades in the use of computer methods for the
prediction of mechanical phenomena encourage to replace simplified structural
analysis techniques with more refined tools. Despite the great variety of proposed
approaches, the numerical structural analysis of masonry and concrete structures
still represents an active research field, since in the engineering practice the use of
simplified techniques is usually preferred. The simplification can regard the
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material behaviour, for instance with the recourse to linear elastic analysis, or the
schematization of the resisting structure, which can be intended as the composition
of linear (beam) members. It is worth noting that these simplifications are drastic
especially for masonry structures but can be misleading even for reinforced
concrete structures, when the study regards, for instance, slabs loaded in their own
plane, deep beams or, alternatively, massive concrete structures, without
reinforcement, as gravity dams and retaining walls.

In line with the necessity of refined structural analysis techniques, the objective
of the present thesis is to develop and validate, in a displacement-based finite
element framework, a continuum nonlinear model apt for the study of masonry and
concrete structures under monotonic and cyclic loading. Specifically, the interest
for the cyclic material behaviour is addressed in order to make the proposed
constitutive model suitable for seismic analysis.

1.2 State of the art

Among the several approaches proposed for the structural analysis of masonry and
concrete structures, it is possible to cite finite element or discrete element methods
and limit analysis (Roca et al., 2010).

A complete review of each one of these techniques is far beyond the scope of
the present section, which is, instead, more specifically addressed to provide an
overview of the existing formulations to model quasi-brittle materials in the finite
element method (FEM).

For what regards the modelling of masonry structures according to FEM based
approaches, a distinction between micro- and macro-modelling can be recalled: the
former considers separately units, joints and mortar/unit interfaces while the latter
regards masonry as a fictitious homogeneous continuum. On the one hand, due to
the huge computational effort required and the huge number of necessary
consitutive parameters, micro-modelling approaches are adopted for the study of
small elements or structural details, when the stress distribution in the different
masonry components is of interest (Rots, 1991; Lotfi and Shing, 1994; Gambarotta
and Lagomarsino, 1997; Lourengo and Rots, 1997). On the other hand, for real-
scale structures, the main target of the present thesis, macro-modelling appears the
most suitable choice since it implies advantages related to calculation demand and
meshing procedure, while ensuring acceptable accuracy (Addessi et al., 2014).

In the framework of macro-modelling, some proposals taking into account the
orthotropy of the material in the initial state exist, both in the framework of damage
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mechanics (Papa, 1996; Berto et al. 2002; Pela et al., 2011; Pela et al., 2013) and
plasticity (Lourenco et al., 1998). However, the majority of them renounce to
describe the intrinsic anisotropy of masonry in favour of an isotropic formulation
(Clemente et al., 2006; Mallardo et al., 2008; Pela et al., 2009; Roca et al., 2012;
Toti et al., 2015; Saloustros et al., 2017¢).

In the follow up, masonry is represented by means of a macro-modelling
approach, in order to make the application of the proposed model versatile and apt
for the analysis of brick and stone masonry and also concrete and cementitious
materials in general. Therefore, masonry and concrete indistinctly are considered
as quasi-brittle materials and are studied under the simplyfing assumptions of initial
isotropy and homogeneity.

As mentioned earlier, quasi-brittle materials exhibit a strongly nonlinear
behaviour even for low stress levels, because of tensile cracking. The main
modelling strategies to deal with cracking proposed in the past decades by the
computational solid mechanics’ community can be classified into two main groups,
discontinuous and continuous approaches. For an exhaustive discussion about this
very broad topic, the dissertation presented in (Hofstetter and Meschke, 2011) is
recommended.

At a continuum level, this distinction is explained by means of Figure 1.2. A
crack can be considered as a discontinuity of the displacement field; specifically,
the displacement jump w is the crack opening normal to the fracture line § (2D
problems) or the fracture surface (3D problems). The strains associated to this
displacement field are unbounded and represented by a Dirac’s delta function, as
shown in Figure 1.2.a. The stress tensor can be computed by means of a softening
stress ¢ - separation w law. This approach can be defined with the name of
continuum strong discontinuity. Alternatively, it is possible to smear the jump w on
a localization band /4, in order to have a continuous displacement field and a
bounded strain field, resulting from the gradient of the regularized displacement.
The strain field presents two weak discontinuity at the surfaces S~ and S*, which
delimit the localization band. The stress tensor can be computed by means of a
softening stress ¢ — strain & law. This procedure, displayed in Figure 1.2.b, can be
referred to as continuum weak discontinuities.

Atadiscrete level, i.e. in a finite-element framework, the explicit representation
of separation proper of the continuum strong discontinuity (Figure 1.2.a) is
interpreted in several different procedures named discrete strong discontinuity
approaches.
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Figure 1.2: Crack modelling at a continuum level: (a) continuum strong discontinuity
and (b) continuum localization band and weak discontinuities.

All these procedures are characterized by the necessity of a method to take into
account the kinematics of the cracks and some criteria to establish the length and
the direction of the propagated defect, usually based on fracture mechanics.

Among the first discrete strong discontinuity approaches, it is worth mentioning
the interelement separation methods, which model cracks by separating mesh nodes
initially occupying the same position (Ngo and Scordelis, 1967; Nilson, 1968;
Camacho and Ortiz, 1996; Pandolfi et al., 1999). Such strategies can describe
defects only along the boundaries of the finite elements; hence they are intrinsically
mesh-dependent. To reduce the mesh-objectivity issue, remeshing is proposed with
the aim of including new elements with the boundaries along the progressive crack
directions. The increase in the objectivity of the results is however accompanied by
a non-negligible increase in the complexity and the computational effort, required
by the remeshing procedure.

A progress with respect to the interelement-separation methods is represented
by the embedded finite element methods (EFEM), which allow dealing with strong
discontinuities within the finite elements, withouth the necessity of remeshing. To
do this, the displacement field of the standard displacement-based finite element



1.2 State of the art 7

method is enhanced with a discontinuous displacement function in correspondence
with the crack and the additional enriching variables are condensed at the element
level. In such a form, the method was presented for the first time in (Dvorkin et al.,
1990) but precursor works of this approach can be considered also the ones by Ortiz
and Belytschko (Ortiz et al., 1987; Belytschko et al., 1988). Several formulations
exploiting the embedded finite element methods have been proposed (Oliver et a/.,
1999; Jirasek, 2001), for studying concrete (Sancho et al., 2007) and also masonry
(Reyes et al., 2009).

A more recent numerical method which includes the strong discontinuity within
the finite element is the extended finite element method (XFEM), proposed in 1999
by Belytschko and co-workers (Belytschko and Black, 1999; Moes et al., 1999;
Sukumar et al., 2000). This approach allows for crack propagation withouth
remeshing, by tracking the crack progression through the discretization, and
simultaneously enriching the nodal degrees of freedom with new ones, which
represent either the displacement jumps across the crack or the singular stress field
at the crack tip. The method implies the partition of unity concept and the additional
nodal unknowns in the elements cut by the crack are not condensed at the element
level but solved through the global stiffness matrix. Differently from the EFEM,
the XFEM ensures the crack path continuity, which can be represented either
explicitely, with piecewise straight/planar segments or, in a more elegant way, by
means of level sets. However, crucial features of this method regard the integration
schemes to be adopted in the enriched elements (Ventura, 2006; Gracie et al., 2008;
Ventura and Benvenuti, 2015) and the treatment of the so-called blending elements,
i.e. those elements adjacent to the enriched ones (Chessa, 2003; Fries, 2008). The
accuracy of the results and the robustness of the procedure depend drastically on
these aspects.

The computational strategies just described represent the most popular
techniques to deal with strong discontinuitites in a finite element environment, but
they are not the only ones. For more details about the procedures just mentioned
and for other approaches, as meshless and particle methods, the following reviews
are suggested (Dias-da-Costa, 2010; Rabczuk, 2013; Belytschko et al., 2009).
These discontinuous approaches for modelling cracking in quasi-brittle materials
are characterized by a high degree of complexity and a high number of variables,
which make them not computationally efficient and not practical for large-scale
analyses. In addition, almost all of them require the adoption of local or global crack
tracking schemes (Areias and Belytschko, 2005; Riccardi et al., 2017; Zhang et al.,
2015), in order to describe the advance of the defects avoiding spurious mesh
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dependence. Withouth tracking, the remeshing in the interface-separation elements,
as well as the progressive element enriching in EFEM and XFEM, performed on
the base of not sufficiently accurate information provided by standard displacement
based formulations, would be strongly mesh dependence. This adds complexity to
the finite element method implementation and requires further computational
resources.

The discrete counterpart of the continuum weak discontinuities (Figure 1.2.b)
is represented by continuous approaches for modelling cracking, which can be
named, according to the previous notation, as discrete weak discontinuities
procedures or, as more commonly known, smeared crack approaches. Such a
formulation was first proposed in the late sixties by Rashid (Rashid, 1968) and,
thanks to its intrinsic simplicity of implementation, computational efficiency,
possibility to be adopted in combination with other phenomena (viscosity, thermal
problems, plasticity) has become the one favoured by commercial finite element
codes and practitioners, especially for studying large-scale engineering problems.
Indeed, the smeared crack approaches consider the cracked material as a continuum
and model the deterioration at a constitutive level, reducing the stiffness and the
strength. Consequently, the failure zones are not characterized by a jump in the
displacement field but by the localization of the deformations, which remain
however bounded. Several advantages derive from such a representation of
cracking: the material behaviour can be described in terms of stress-strain
constitutive laws, the failure criteria which identify the formation and the
propagation of the defects can be established in terms of stress and strains, i.e. on
the base of the continuum mechanics theory and the discretization can be used as it
is, withouth the inclusion of discontinuity or remeshing.

In the framework of smeared crack approaches, a lot of constitutive models
were developed in the 1980’s (Bazant and Cedolin, 1983; Rots et al., 1985; Bazant
and Pfeiffer, 1986; Rots and De Borst, 1987; Cervera et al., 1990). They are based
on the decomposition of the strain tensor in an elastic and inelastic contribution:
while the former is related to the stress tensor by means of linear elasticity, the latter
is defined as work-conjugate to the traction vector normal to the crack. After the
achievement of the peak strength, the material is treated as orthotropic, with
different behaviours along the different principal stress directions.

Initially, fixed crack models were formulated, characterized by a frozen crack
direction and by the use of a coefficient, named the retention factor, to deal with the
shear transfers across the crack (Suidan and Schnobrich, 1973). Then, rotating
crack models were proposed, which allow the crack direction to rotate and to be
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always aligned with the current maximum principal strain direction (Cope et al.,
1980; Gupta and Akbar, 1984). Moreover, also the possibility of considering
multiple non-orthogonal fixed cracks was taken into account in the so-called
multidirectional fixed crack models (De Borst and Nauta, 1985).

One of the main drawbacks exhibited by the smeared crack approaches is
represented by the stress locking, which is basically due to the poor kinematic
representation of the discontinuous displacement field across the crack and is
particularly evident when the mesh is misaligned with respect to the macroscopic
crack orientation. Such an issue is more emphasized in fixed crack models with non
null retention factor, because of the presence of shear stresses across the crack
(Rots, 1988). Conversely, in rotating crack models, shear stresses are not produced
across the crack, which is aligned with the maximum principal strain direction;
therefore, such a problem is more limited. A remedy provided to the problem of
stress locking is for instance described in (Jirasek and Zimmermann, 1998) and
consists in the transition from a rotating crack model to a damage one. Although
the damage model is based on a single scalar degradation variable d, the resulting
constitutive matrix is not the one of an isotropic material but preserves the
orthotropy of the smeared crack approach initially adopted.

In view of the above considerations, damage and plasticity models,
incorporating strain softening, can be interpreted as a necessary evolution with
respect to smeared crack procedures, in order to reduce stress locking. An insight
on continuum damage mechanics and on the existing damage formulations,
combined also with plasticity, is provided in Section 1.2.1. Such a deepening is
necessary to understand the framework in which the damage model proposed in the
present thesis for concrete and masonry structures fits in.

Another serious drawback of smeared crack approaches, emerged immediately
after the first applications, is their pathological dependence on the size of the
elements composing the discretization and on their alignement.

For what regards the objectivity of the results with respect to the mesh-size, in
the 1970’s it was noted that the energy dissipated during the cracking process is
inversely proportional to the size of the finite elements: higher is the mesh
refinement, lower is the dissipated energy, more brittle is the behaviour of the
material. The limit case is represented by infinitesimally small elements, which do
not dissipate energy at all as they crack.

Hillerborg and co-workers for the first time faced this problem in 1976, in a
discrete strong discontinuity framework, formulating the fictitious crack model,
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which ensures an objective representation of the dissipated energy by relating the
loss of cohesion in the crack opening to the experimentally measurable fracture
energy Gy (Hillerborg et al., 1976). Then, the same concept was introduced in a
smeared crack approach by Bazant and Oh (Bazant and Oh, 1983), who understood
that, by rescaling the post-localization part of the local softening law on the base of
the discretization length / (related to the size and orientation of the finite elements),
the correct fracture energy Gy can be caught, independently of the mesh refinement.
Hence, according to this formulation, named crack band model, the strain softening
in a discrete environment should not be considered as a material feature only,
because it has to be defined by means of the fracture energy, which is a material
property, and the size of one-element band crossed by the smeared crack. Nowadays
such an approach is well accepted in the research community and is also adopted in
the commercial finite element softwares.

However, a still open issue regards the objectivity of the results with respect to
the mesh-bias. Indeed, the crack band model is not able to prevent the dependence
of the numerical failure pattern on the alignement of the discretization. A short
review of the possible solutions for such a problem is provided in Section 1.2.2 and
1.2.3, which is functional to contextualize the proposed regularitazion technique
adopted in the present thesis in conjunction with the continuum damage model.

1.2.1 Damage models for quasi-brittle materials

Continuum damage models, as smeared crack approaches, are characterized by
their simplicity of implementation, versatility, computational -efficiency,
compatibilities with other theories (such as plasticity) and consistency in the
framework of the thermodynamics of irreversible processes. All these features
make their application to the structural analysis of masonry and concrete structures
particularly adequate.

Continuum damage mechanics is based on the introduction of suitable internal
variables in the constitutive law with the aim of simulating the elastic stiffness
degradation and the strength decrease associated with the growth of microvoids and
microcracks in the material. Starting from the precursor work of Kachanov
(Kachanov, 1958), the study of the structural response of the nominal, real, cracked
solid (nominal configuration) is possible by taking into account the behaviour of a
fictitious one (effective configuration), which represents the intact material between
defects. Such an undamaged solid has an effective resisting section reduced by the
factor (1 — d) with respect to the section of the real solid, with the damage variable
d varying from 0 (undamaged state) to 1 (completely damaged state). Different
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hypotheses exist to relate the nominal and the effective configurations and,
depending on them, the form of the constitutive operator ruling the damage model
changes. Simé and Ju, Mazars and Lemaitre, Caboche, Wu and Li, Faria and
coworkers (Sim6 and Ju, 1987; Mazars and Lemaitre, 1985; Caboche, 1988a;
Caboche, 1988b; Faria et al., 1998; Wu and Li, 2008) assume the strain equivalence
between the effective and the nominal configurations; in (Sim¢6 and Ju, 1987) a
stress-equivalent alternative is proposed. Finally, in (Cordebois and Sidoroff, 1982;
Carol et al., 2001), both the strain and the stress tensors are different between the
nominal and the effective configurations and the equivalence is established in terms
of strain energy.

The essential mechanical features which need to be captured in the modelling
of quasi-brittle materials are the following:

(i) degradation of the elastic stiffness and softening response in the post-peak
regime, with reduction of the peak strength for increasing deformation levels;

(ii) accumulation of permanent deformations associated to intergranular
displacement at a microscopic level;

(iii) non-symmetrical material behaviour between tension and compression due to
different strengths and different fracture energies;

(iv) anisotropy induced in the material by the damage process, due to nucleation and
evolution of planar microvoids “in the planar direction perpendicular to the
maximum tensile strain” (Krajcinovic and Fonseka, 1981). Hence, except for
the case of hydrostatic stress or strain conditions, isotropic models are
incomplete in the description of damage, which is intrinsically an anisotropic
phenomenon (Wu and Li, 2008), and drastically neglects the possibility of a
strut action in the assessment of the structural capacity (De Borst, 2002). In (De
Borst, 2002) it is noticed that, only with the recourse to orthotropic damage
models, the original smeared crack approaches can be considered in the unified
context of damage mechanics;

(v) microcrack closure-reopening (MCR) effects, i.e. partial or total stiffness
recovery in the transition from tension to compression, crucial in cyclic
conditions, experimentally documented for concrete in (Reinhardt, 1984;
Reinhardt and Cornelissen, 1984).

Property (i) is satisfied by any damage model, because stiffness degradation
and strain-softening represent the basis of damage mechanics.

Regarding the fulfillment of property (ii), several formulations combine
damage with plasticity, as the ones proposed in (Sim¢é and Ju, 1987; Lubliner et al.,
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1989; Ju, 1989; Wu et al., 2006; Addessi et al., 2002; Contraffatto and Cuomao,
2006; Voyiadjis et al., 2008).

However, also damage models which do not take into account permanent
deformations, or which define them in a simplified way, are able to provide a
reliable mechanical response for a great variety of loading conditions, as observed
in (Comi and Perego, 2001a), requiring also a reduced number of constitutive
parameters. Among the others, some relevant contributions to the field of pure
damage mechanics are presented in (Ortiz, 1985; Mazars and Pijaudier-Cabot,
1989; Faria et al., 1998; Comi and Perego, 2001a; Papa and Taliercio, 1996; He et
al., 2015).

A general methodology to deal with property (iii) consists in considering
different damage variables in tension and compression and in adopting an interface
for distinguishing the response into tensile and compressive regimes.

Several authors have chosen as separating interface the trace of the strain tensor
I1i(¢) and their proposal results in tensile (d") and compressive (d") isotropic damage
models, depending on the positive or negative sign of /1(¢) (Comi and Perego,
2001a; Contraffatto and Cuomo, 2006; Toti et al., 2015; He et al., 2015). These
procedures take inspiration from the work presented in (Curnier et al., 1995),
addressed to the formulation of constitutive elastic laws for bimodular materials,
1.e. materials, as the cracked concrete or masonry, which have an asymmetric
stiffness if loaded in tension or compression. In that work, the conditions to be
fulfilled in correspondence with the separating interface (chosen as /i(g) = 0) are
established; they regard the continuity of both the strain energy and the constitutive
law. Specifically, it is observed that, to satisfy these conditions, only the volumetric
part of the stiffness constitutive operator can vary across the interface while the
shear component has to be maintained constant.

These necessary conditions are ensured by the damage models proposed by
Comi and Perego, by Contraffatto and Cuomo and by He and collegues, while they
seem to be neglected by Toti and co-workers. This is shown considering, on the one
hand, the constitutive law proposed in (Comi and Perego, 2001a)

{ 6" =2G-(1-d")-(1-d e+ K-(1-d")-(1-d"),(e)] I,(e)20
o= (1.1)

6 =2G-(1-d")-(1-d Ye+K-(1-d ") (e)] L,()<0

and, on the other hand, the constitutive law proposed in (Toti et al., 2015):
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" (1—d+)(2Ge+K-11(8)I) I,(e)20
o= (1.2)
¢t (1—d’)(2Ge+K-Il(a)I) I,(g)<0

where G and K are the shear and bulk moduli of the undamaged material, e is the
deviatoric elastic strain, 7 is the identity second order tensor and, withouth any loss
of generality, irreversible deformations are considered null. While in the
constitutive law expressed in Eq. (1.1), for /1(¢) = 0, 6~ and ¢* always coincide, the
same does not hold in Eq.(1.2) for any stress-strain state, but only in the case of
e=0.

However, it is worth noting that the respect of the conditions set in (Curnier et
al., 1995) induce some non-negligible limitations in the modelling of the
microcrack closure-reopening capabilities; indeed, in the transition from tension to
compression in a uniaxial cyclic load history, only a partial stiffness recovery can
be obtained, because of the necessity of maintaining unaltered the shear part of the
constitutive operator. Moreover, this implies also that unilateral effects in shear
cyclic conditions can not be modelled at all. Being the latter consideration true for
all the d*/d” damage formulations based on the use of /i(¢) = 0 as separating
interface, it is possible to conclude that such a procedure is not adequate to model
quasi-brittle materials accurately. Firstly, any form of damage-induced anisotropy
can not be simulated (feature iv); secondly, microcrack closure reopening effects in
generic cyclic conditions, especially in shear, are absent (feature v).

Conversely, as pointed out by Wu and Xu (Wu and Xu, 2013), those
formulations based on the spectral decomposition of a specific second order tensor
(the stress or the strain one) are able to reproduce contemporarily damage-induced
anisotropy (feature 1v) and unilateral effects (feature v). The separating interface,
in such models, is actually represented by the eigenvalues of the second order
tensor. This approach, used for the first time in the pioneering work of Ortiz (Ortiz,
1985), introduces in the constitutive law two fourth-order projection operators,
which extract the positive and negative tensor counterparts. A classification of these
damage formulations can be performed depending on the nature of the damage
variables used in conjunction with the spectral decomposition: one or more scalar
damage variables are adopted in (Cervera et al., 1995; Cervera et al., 1996; Faria et
al., 1998; Mazars et al., 1990; Wu et al., 2006) whereas models based on second-
or fourth-order tensors are presented in (Ortiz, 1985; Simo and Ju, 1987; Ju, 1989;
Yazdani and Schreyer, 1990; Carol and Willam, 1996; Papa and Taliercio, 1996;
Cicekli et al., 2007; Voyiadjis et al., 2008).
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The use of the second set of damage models is avoided in practical applications,
because they need the monitoring of more variables, due to the anisotropy of
damage itself, requiring a high number of input parameters and significant
computational resources. Consequently, the first set of damage models are usually
preferred in large-scale analysis. However, some limitations derive from the
adoption of scalar damage variables combined with the spectral decomposition
approach and they are highlighted in the following paragraph.

Regarding the topic of damage-induced anisotropy, a restricted form of
orthotropy is described using scalar degradation quantities, since only the projection
operators performing the spectral decomposition are responsible for the
directionality of the stiffness reduction. Moreover, it is worth noting that the
orthotropic constitutive operators proposed in (Cervera et al., 1995; Cervera et al.,
1996; Faria et al., 1998; Wu et al., 2006) are not endowed with both major and
minor symmetries, and this represents a lack of thermodynamic consistency as well
as a shortcoming in computational terms. Very recently, such an issue has been
addressed also in (Wu and Cervera, 2017); there, to achieve the major and minor
symmetries of the constitutive operator, a new projection fourth-order tensor,
defined in energy-norm, is proposed.

Regarding the description of MCR effects, the spectral decomposition approach
combined with the adoption of scalar damage variables is effective only in specific
cyclic conditions, characterized by alternating tensile and compressive regimes.
This can be shown with reference to the illustrative case of a bar cyclically loaded
first in tension and then in compression (Figure 1.3.a). The unilateral effects, visible
in the stress-strain response in Figure 1.3.d, are modelled thanks to the spectral
decomposition which allows one to consider the axial stiffness first affected by d*
in tension and then unaffected in compression, upon loading reversal.

Although the unilateral behaviour is adequately taken into account in a 1D
tension-compression cyclic history or in bending-dominated cyclic problems (as
shown in (Faria et al., 2004)), the stiffness recovery in presence of cyclic shear can
not be captured. This is not due to the necessity of maintaining unaltered the shear
stiffness component across the separating interface, condition which holds only for
the isotropic damage formulations based on the use of /1(¢) = 0. The motivation is
different and is explained by considering the problem shown in Figure 1.4.a,
involving shear cyclic conditions. During the loading stage (Figure 1.4.b), the
internal variable d*, related to the opening of microcracks perpendicularly to the
current maximum tensile direction pmax, grows up to the value d;". After the loading
reversal, at the beginning of the reloading stage (Figure 1.4.c), the value d;" is
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assigned once again to the current pmax, which is actually an intact direction, and,
consequently, no stiffness recovery is exhibited in the structural response (Figure
1.4.d).
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Figure 1.3: Successful modelling of unilateral effects in a 1D cyclic history resulting
from the adoption of scalar damage models combined with spectral decomposition.
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Figure 1.4: Unsuccessful modelling of unilateral effects in presence of cyclic shear
resulting from the adoption of scalar damage models combined with spectral
decomposition.

In other words, due to the scalar nature of the damage variables, the formulation
is not able to associate a damage value to a physical direction and this translates in
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the incapability of dealing with closure and reopening of orthogonal (or however
intersecting) cracks, typical of shear cyclic conditions.

The majority of the existing models tend to neglect the problem of reproducing
MCR effects in generic cyclic conditions, focusing only on the stiffness recovery
capabilities exhibited by the damage models in cyclic uniaxial conditions. Among
the few works aware of such an issue, it is worth mentioning the ones presented in
(Silva et al., 2012; Saloustros et al., 2017a). In the former, the underestimation of
the dissipation capacity and the non-realistic description of the unloading stiffness
deriving from the use of a d/d~ damage model are underlined with reference to
masonry panels under cyclic in-plane shear. In the latter, a procedure to capture the
orthogonal cracks typical of cyclic shear loading by means of enhanced tracking
algorithms is proposed.

1.2.2 Regularized techniques to ensure mesh objectivity

In a displacement-based finite element framework, the use of regularization
techniques in the modelling of quasi-brittle materials with a smeared crack
approach has been proposed to ensure the mesh-objectivity of the results.
Specifically, as mentioned in Section 1.2, the crack band approach is able to
guarantee only mesh-size independence but not mesh-bias independence, hence
alternative (or additional) techniques have been proposed in the last three decades
to solve such an issue.

One of the first developed regularization scheme is represented by the nonlocal
integral procedure, proposed in its initial version for damage formulations in
(Pijaudier-Cabot and Bazant, 1987) and later assimilated also in (Bazant and Lin,
1988; Bazant and Pijaudier-Cabot, 1988). Only subsequently, the nonlocal
procedure has been extended to plasticity, for instance in (Tveergard and
Needleman, 1995; Jirasek and Rolshoven, 2003).

Such an approach consists in replacing inside the mechanical model a variable
evaluated at a given point x with its spatial averaging on a certain neighbourhood
of x, considering the size of the interaction domain defined by means of an internal
length /rc. The variables subjected to the nonlocal averaging can be either scalars,
such as the damage energy release rates or the damage variables themselves, or, less
frequently, tensors, such as the elastic strain tensor or the inelastic strain associated
to cracking. An exhaustive review of nonlocal damage models is proposed in
(Bazant and Jirasek, 2002).
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Contemporarily to the nonlocal integral approach, another procedure, named
gradient-enhanced approach, was identified in the eighties to perform a
regularization of the strain localization, first applied in plasticity (Aifantis, 1984;
De Borst and Muhlhaus, 1992) and then extended to damage (Peerlings et al., 1996;
Geers et al., 1998; Comi, 1999). These gradient-enhanced formulations are based
on the idea of considering the constitutive law affected by higher-order deformation
gradients, which can enter the equilibrium equations explicitely (explicit gradient
enhanced models) or in an implicit way, by means of an additional partial
differential equation (implicit gradient enhanced models).

More recently, phase field models have been introduced (Miehe et al., 2010;
Kuhn and Miiller, 2010; Vignollet et al., 2014); they depart from a strong
discontinuity description of fracture and regularize it by replacing, in a
mathematically consistent way, the zero-width discontinuity with a small finite
zone with sharp gradients.

In all these approaches (nonlocal, gradient-enhanced, phase field formulations)
a length scale is embedded in the continuum, in order to act as “strain localization
limiter” and to avoid an energy dissipation which tends to zero with the progressive
mesh refinement. Besides the correct representation of the dissipated energy, this
implies also the objectivity of the results independently of the mesh-alignement. It
i1s worth noting that the nonlocal integral approach appears the simplest way to
introduce the localization limiter concept. The other two regularized formulations
introduce the length scale in a less transparent way and they have in common the
solution of an additional partial differential equation due to the inclusion of spatial
derivatives in the energy functional (De Borst and Verhoosel, 2016). The higher
mathematical complexity of these formulations with respect to the nonlocal integral
ones does not correspond to clear advantages. On the one hand, as observed in
(Peerlings et al., 2001), the solutions obtained with implicit gradient-enhanced
schemes and nonlocal ones are almost equivalent and this can be explained by the
fact that the former formulation can be rewritten in the integral format proper of the
latter. On the other hand, the use of a phase-field approach is difficult in the case of
generic constitutive laws, characterized by anisotropy, microcrack closure-
reopening effects and distinct degradation variables in tension and compression.

A clear interpretation of the internal length introduced by all these
regularization techniques is not provided by consulting the existing literature. As
stressed in (BaZant and Jirasek, 2002), the majority of the formulations relates it to
the heterogeneity maximum size of the material. However, such a physical
interpretation of the nonlocal length can be argued.
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Firstly, this interpretation could compromise the monitoring of the progressive
loss of cohesion on the bases of the fracture energy. The use of fracture energy as a
material parameter represents one of the foundation of crack modelling (Hillerborg
et al., 1976; Bazant and Oh, 1983) and is a standpoint shared by both fracture
mechanics and continuum mechanics. Secondly, it could limit the application of the
regularized damage models to other materials than concrete. Indeed, if for concrete
a large number of studies have been performed, for instance in (Bazant and
Pijaudier-Cabot, 1989), and a value of approximately 3 times the aggregate size has
been found to be the characteristic one for the internal length, for other materials,
as masonry, likewise data are not available. Moreover, cracking in homogeneous
materials can not be studied in this way, due to the impossibility of finding a
physical definition of the internal length.

Only very recently, the consideration of the nonlocal length as a pure
regularization parameter has been proposed in (Wu, 2017). According to this
reinterpretation, the different formulations (nonlocal, enhanced gradients, phase
fields models) can be seen as regularized versions of the smeared approach, in
which the internal length plays the role of localization limiter acting as a
regularization parameter. This is sketched in Figure 1.5, where the strong
discontinuity of Figure 1.2.a or the localization band of Figure 1.2.b are substituted
by a regularized localization band.

Figure 1.5: Continuum regularized localization band and localization limiter.
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Note that the regularization procedure eliminates both the strong discontinuity
of the displacement field in .S and the two weak discontinuities of the strain field in
S~ and S*. Note also that the regularization length Iz is not equal to the width of
the localization band, as there is not a clear cut band in the regularized approach,
but they are related. The link between the discontinuous (Figure 1.2.a), the smeared
(Figure 1.2.b) and the regularized (Figure 1.5) approaches should be the dissipation
of the fracture energy.

1.2.3 Alternatives to ensure mesh objectivity

An alternative to these regularization techniques consists in the use of tracking
algorithms. These procedures are able to circumvent the problem of mesh-bias
dependence of the numerical strain localizations not only in a strong discontinuity
approach, but also in a weak discontinuities (smeared) one (Cervera and Chiumenti,
2006; Slobbe et al., 2014). Indeed, in a smeared setting, the automatic application
of the crack criteria to define also the direction of propagation leads to unacceptable
errors, due to the fact that the strain and stress fields, in correspondence with the
discontinuity, are far from being exact in a displacement-based finite element
environment. The recourse to tracking algorithms reduces such local errors, while
providing also a realistic representation of cracking, with damage that localizes in
a narrow band of the discretization. A recent application of smeared crack
approaches enriched with tracking algorithms for the structural analysis of masonry
structures is presented in (Saloustros et al., 2017a; Saloustros et al., 2017c), where
2D problems are analyzed. In fact, the main limitation of tracking algorithms lies
in the difficult extension to 3D problems, and this discourages their use in most
engineering problems.

Finally, a completely novel approach to deal with strain localization both using
plasticity and damage constitutive laws has been developed in the recent years by
Cervera and co-workers (Cervera et al., 2010a; Cervera et al., 2010b; Cervera et
al., 2015; Cervera et al., 2017; Barbat et al., 2018). They propose to replace the
displacement-based finite element framework with a mixed displacement-strain
finite element one, where strains are computed independently of the displacement
field in each finite element. The enhancement in the kinematics of standard finite
elements provides more accurate stress and strain fields, and consequently this
results in a reliable prediction of the failure patterns, almost mesh-independent. To
ensure the correct energy dissipation, mesh-size adjusted softening moduli are
adopted, in accordance with the crack band approach. It is noted that a mixed
displacement-strain approach which uses continuous interpolations both for
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displacements and strains derives the local calculation of strains at a point from an
nodal set which is enlarged with respect to the standard approach. In some way, it
is a smeared approach with enhanced continuity, where the localization limiter is
related to the element size.

1.3 Objective of the thesis

On the basis of the State-of-the-Art review proposed in Section 1.2, the present
thesis is addressed to develop a new damage model for the structural analysis of
masonry and concrete structures with a twofold objective: (a) to improve the
modelling of damage-induced orthotropy and microcrack closure-reopening effects
in the framework of scalar damage mechanics and (b) to provide a regularization
technique independent of the definition of a physical internal length.

The starting point of the new formulation is represented by the d*/d~ model
first introduced in (Faria and Oliver, 1993; Cervera et al., 1995; Cervera et al.,
1996), described in depth in (Faria et al., 1998) and then extended to plasticity in
(Wu et al., 2006), hereafter termed the “original” d"/d~ model. It is based on the
split of a second order tensor, specifically the effective stress one, and on the use of
two scalar damage quantities, d* and d, in order to distinguish tension from
compression.

The interest for this model derives from the fact that it combines an adequate
nonlinear structural response and algorithmic efficiency, its implementation and use
in standard finite element codes being relatively easy. Confirmation of its
effectiveness can be found in the several structural applications in which it has been
satisfactorily adopted: for the seismic analysis of concrete dams (Faria et al., 1998),
in the assessment of reinforced concrete structures subjected to cyclic loading (Faria
et al., 2004), for the characterization of the in-plane (Silva et a/., 2017) and out-of-
plane (Petracca et al., 2017) behaviour of masonry panels, in the evaluation of
historical masonry structures (Roca et a/., 2012) and in the macro-modelling of
masonry, combined with a tensor mapping procedure (Pela et al., 2011; Pela et al.,
2013) or with tracking algorithms (Saloustros et al., 2017a; Saloustros et al.,
2017c¢).

On the one hand, despite the abundant research work delving into the topic of
continuum damage mechanics, some specific aspects related to its application to
quasi-brittle materials require further investigation. In fact, as commented in
Section 1.2.1, at a constitutive level, the original damage model could be improved
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both in terms of damage-induced orthotropy and in terms of microcrack-closure
reopening effects.

Regarding the former aspect, thermodynamic and practical reasons require the
constitutive stiffness operator to be positive definite and endowed with both major
and minor symmetries. The fullfilment of these features leads to the formulation of
anew d'/d~ damage model based on the energy equivalence assumption. Such a
choice ensures full thermodynamic consistency, reflects in the formulation of a
stable orthotropic damaged material and allows to adopt a symmetric global
stiffness matrix to solve the algebraic system of equilibrium equations.

Regarding the latter, the lack of information about damage orientation,
resulting in the absence of unilateral effects under cyclic shear conditions (as shown
in Figure 1.4), is comparable to the inability of the rotating crack models (Cope et
al., 1980) to take into account the orientation of previous defects, as observed by
Bazant (1983). To improve the MCR capabilities of the d*/d~ damage formulation,
the local constitutive behaviour of the material needs to incorporate some aspects
which are instead proper of fixed crack models (Rots et al., 1985). To this end, a
“multidirectional” damage procedure is proposed in the present thesis, which
preserves memory regarding degradation directionality while maintaining unaltered
the dependence of the stress tensor from only the scalars d" and . This procedure
ensures the represententation of the microcrack closure reopening effects in generic
cyclic conditions; hence it is suitable also for seismic analysis.

On the other hand, the smeared crack formulation needs to be combined with a
regularization technique to have mesh-independent results at a structural level, in
a standard finite-element framework. Such results have been previously obtained
with the original "/ d~ damage model by adopting tracking algorithms (Pela et al.,
2014; Saloustros et al., 2015; Saloustros et al., 2017b).

Another alternative is here examined, with potential wider application also to
3D structures, which is the nonlocal intergral approach, characterized by its
simplicity of formulation and implementation. The elastic strain tensor is identified
as the variable to be averaged, in order to provide a smoothing of the kinematic
field similar to the one performed by the mixed displacement-strain finite elements
formulations. In this way, damage is driven by the regularized elastic strains and
the dependence of the strain localization on the discretization is circumvented.

Moreover, the thorny issue of the definition of the internal length, discussed in
Section 1.2.2, is faced, in order to show how the evaluation of the correct fracture
energy is possible, independently of /rg. This suggests that the obtained solution
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can be released from the choice of the nonlocal internal length, which can be
interpreted as a regularization parameter more than as a physical constant.

The validation of the proposed formulation is a necessary step in order to assess
its predictive capabilities in terms of ultimate loads, failure patterns, energy
dissipation capacity and also its mesh objectivity. Therefore, experimental tests on
masonry, concrete and reinforced concrete structures subjected to both monotonic
and cyclic loading conditions are numerically reproduced with the adoption of the
new damage model, for establishing its reliability.

1.4 Outline of the thesis

The present thesis is outlined as follows.

In Chapter 2 the salient aspects of the original d*/d~ model are briefly recalled
and different possible definitions for a new consistent constitutive operator in a
strain equivalence framework are explored. Then, the new d*/d~ formulation is
presented in detail and its thermodynamic consistency discussed. The main
novelties of the damage model are put in evidence: the assumption of energy-
equivalence between nominal and effective configuration for the derivation of a
consistent fourth-order constitutive operator, the use of a coupled dissipative
approach to describe the evolution of the internal variables and the proposal of new
evolution laws for both damage and irreversible deformations.

Chapter 3 is devoted to the description of the multidirectional damage
procedure, to be applied in presence of cyclic loadings, providing some parallels
between this new approach and the fixed/rotating smeared crack concepts.
Reflections on how to extend the formulation to the 3D case are however added.
The section is enriched with the introduction of a smoothing function, addressed to
increase the numerical robustness of the multidirectional procedure in the transition
from an open to a close microcrack state (or viceversa). The enhanced microcrack
closure reopening capabilitities are highlighted by solving at a finite element level
the problem of a panel subjected to in-plane cyclic shear, with and without the
multidirectional approach.

In Chapter 4, the nonlocal regularization technique adopted in conjunction with
the new constitutive model is described. Firstly, the choice of the elastic strain
tensor as variable to be averaged is justified and the regularized extension of the
proposed damage model is developed, underling the unaltered thermo-dynamic
consistency of the formulation. Secondly, the issue of identifying the input
parameters of the regularized model is addressed, with the intent of correctly
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estimate the dissipated energy. In this context, particular attention is directed
towards the nature of the internal length /zG, which can be interpreted either as a
regularization parameter or as a physical property.

The algorithmic implementation of the new constitutive law is proposed in
Chapter 5, with the purpose of showing how the new energy-equivalent d*/d~
formulation, combined with the inclusion of permanent deformations, with a
multidirectional treatment of damage and with a regularized approach, allows
following an efficient full strain-driven formalism. In the same chapter, details
about the method chosen to solve the algebraic system of equations, that is the
secant (Picard) one, are provided.

The damage formulation is validated in Chapter 6 and Chapter 7. To assess
separately the enhancements deriving from the new constitutive law and the
regularization technique, in Chapter 6 the new energy-equivalent damage model is
adopted in its local version. Structural problems involving both monotonic and
cyclic loading conditions are considered. Firstly, unreinforced concrete notched
samples are solved under monotonic loading conditions to show the adequacy of
the new damage formulation in fitting experimental results under pure tension, pure
bending and mixed-mode bending. Secondly, a masonry wall and a reinforced
concrete panel, both subjected to in-plane cyclic shear, are analyzed in order to
highlight the enhanced dissipative behaviour ensured by the multidirectional
damage approach in conjunction with permanent deformations. Some quantitative
considerations regarding the numerical robustness of the model are also included.

In Chapter 7, the versatility of the regularized d*/d~ damage model is exhibited
by successfully studying a masonry arch and reinforced and unreinforced concrete
elements. Besides the validation of the numerical results with experimental or
analytical data, each example is exploited to highlight one or more features of the
formulation: the mesh-size and mesh-bias independence of the results, the influence
of the internal length /zc, the effect of the choice of the variable to be averaged and
the possibility to reproduce structural size effects.

Chapter 8 is addressed to investigate the adequacy of the regularized d"/d”
damage model to assess the structural behaviour of a multi-span masonry arch
bridge. The reference solution is represented by the laboratory tests carried out on
a 1:5 scale model of a three-span arch bridge, subjected to a concentrated vertical
load. After a short historical perspective on the structural analysis of masonry arch
bridges, the numerical results are compared with the experimental ones in terms of
load carrying capacity, post-peak response and failure mechanism. Moreover, the
objectivity of the response with respect to the discretization is also verified, in order
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to guarantee the reliability of the regularization technique even in large-scale
applications.

Finally, in Chapter 9, the main contributions of the present thesis and some
suggestions about how to extend the present work are briefly summarised.



Chapter 2

Energy-equivalent d'/d- damage
model for quasi-brittle materials

In the present Chapter, the new continuum mechanical model formulated for
describing the behaviour of quasi-brittle materials, including both the stiffness and
strength degradation due to damage and the presence of irreversible deformations
proper of plasticity, is presented. In order to represent these non-linear features in a
consistent way, the framework of the irreversible thermo-dynamics with internal
variables (Horstemeyer and Bammann, 2010) is taken into account. The internal
scalar variables related to damage, d* and d~ together with the spectral
decomposition of a second order strain tensor, allow to simulate the asymmetrical
behaviour typical of quasi-brittle materials under tension and compression, while
the tensor internal variable ¢, represents the permanent strain accumulated during
the loading history.

As underlined in the Introduction, the formulation of a “new” constitutive law
is addressed to provide an enhancement of the “original” d"/d~ damage formulation
presented in (Faria et al., 1998). Therefore, the first section of this Chapter is
devoted to briefly outline the salient aspects of the original formulation. Then, in
the following sections, the new formulation is described in detail focusing on the
main novelties of the damage model, which regard the assumption of energy-
equivalence between the nominal and effective configurations for the derivation of
a thermo-dynamic consistent fourth-order constitutive operator, the use of a coupled
dissipative approach to describe the evolution of the internal variables d*, d” and g,
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and the proposal of new evolution laws for both damage and irreversible
deformations. Part of the work presented in this Chapter is included in (Cervera and
Tesei, 2017) and in (Cervera et al., 2018).

2.1 Original d"/d- damage formulation

2.1.1 Strain equivalence and constitutive law

The original d*/d~ damage model is based on the notion of effective stress and on
the hypothesis of strain equivalence. The effective stress & and the effective strain
£ are the stress and strain to which the undamaged material between microcracks
is subjected; they are related by the fourth-order elastic tensor Dy:

G=D,:t 2.1

The nominal quantities ¢ and & (e, = &€ — &) refer to an average of the
corresponding effective quantities on the total surface of the material (including
also microcracks); for instance, the nominal stress tensor is related to the effective
one by means of a fourth-order tensor 4 dependent on damage:

c=A:5 2.2)

The strain equivalence assumption, as formulated in (Simé and Ju, 1987,
Lemaitre and Chaboche, 1978) asserts that: “the strain associated with a damage
state under the applied stress ¢ is equivalent to the strain associated with its
undamaged state under the effective stress & ”. In other words, it is considered by
hypothesis that the nominal elastic strain and the effective one are equal (¢, = )
and that only the nominal and the effective stress are different. Consequently, the
effective stress of Eq. (2.1) can be rewritten as:

5=D,:¢, (2.3)

The basic features of concrete that the original model reproduces are the
following ones: (i) the development of irreversible deformations; (ii) the strongly
asymmetrical behaviour under tension and compression; (iii) the microcrack
closure-reopening (MCR) effects visible in the case of uniaxial cyclic actions, i.e.,
the stiffness recovery when passing from tension to compression and vice versa;
and (iv) the anisotropy induced by the damage process in the material.

In order to represent the differences between the stress-strain envelops under
tension and under compression, two independent scalar variables, one for tension
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d" and one for compression d", are introduced. Moreover, to deal with points (ii),
(i11) and (iv), a spectral decomposition of the effective stress tensor (Eq. (2.3)) into
a positive and a negative part is carried out:

o (2.4)

where p; is the eigenvector identifying the principal direction i-th of the effective
stress tensor while the Macaulay brackets act on the i-#h principal value of the

effective stress tensor g; in such a way that: if 0; is positive (tensile principal
stress), (&;) = 0;; else (compressive principal stress) (5;) = 0. The fourth-order

projection operator @, which extracts from the effective stress tensor its positive
part, is:

3
Q:ZH(U_i)Pi@Pi@Pi@Pi (2-5)
i=1
and its explicit expression is given in (Faria et al., 2000). H(0;) is the Heaviside

function, such that, if o, is positive, H(0;) = 1; else, H(g;) = 0.

The constitutive law of the original model is written in terms of the spectral
decomposition of the effective stress tensor (2.4) and has the following expression:

0=Dg 2, =(1-d" )7 +(1-d" )5 (2.6)
where Ds is the fourth-order secant stiffness operator (subscript “s” stands for strain
equivalence), introduced in order to relate the nominal stress tensor & to the nominal
elastic strain tensor &.

The versatility of the model in treating the damage-induced anisotropy is
intrinsic in Eq. (2.6). In fact, depending on the sign of the principal effective
stresses, two different cases can be distinguished:

e G, with concordant sign (=6 or =& ): isotropy is preserved after

damage, and an isotropic (tensile or compressive, respectively) damage model
is recovered.
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e 0; with discordant sign: the damaged material is anisotropic, and the directions

of maximum and minimum axial stiffness are coincident with the principal
directions of the effective stress tensor.

As observed in (Cowin, 1994; Pedersen, 1989), the coaxiality between the
reference system of the anisotropic material and the principal directions of the
nominal strain & is a particular condition in anisotropic elasticity, which
corresponds to the extremization of the strain energy density. In addition, the
maximization or minimization of the strain energy density implies the coaxiality
between the nominal strain tensor & and the nominal stress tensor o. These
observations lead to assert that the d*/d~ formulation can be interpreted within the
rotating smeared crack concept, due to the co-rotation of the axes of material
anisotropy with the principal axes of the strain &., which consequently coincide also
with the principal axes of the stress o.

2.1.2 Discussion on different constitutive operators based on strain
equivalence

In (Faria et al., 1998), the constitutive law (2.6) is provided, but not the definition
of the fourth-order secant stiffness tensor Ds relating the nominal stress ¢ and the
nominal strain &. In this section, this issue is addressed evaluating two different
expressions for the secant stiffness Ds, both derived in the hypothesis of strain
equivalence, i.e., considering the effective stress definition shown in Eq. (2.3). In
order to guarantee thermo-dynamic consistency, two properties have to be fulfilled
by the secant operator: major symmetry (in addition to the minor ones), as stated in
(Faria et al., 1998) with reference to the Schwartz theorem about the equality of the
mixed partial of the potential; positive definiteness, a major requirement in order to
have a damaged orthotropic material with stable behaviour.

The first expression to be considered for the secant stiffness tensor, Dsi, is
obtained by replacing in the constitutive law (2.6) the positive and negative parts of
the effective stress tensor (2.4), expressed in terms of the positive projection
operator Q (2.5):

az(l—d+)a+ +(1—d—)a— :(1-d*)Q.~ D, e, +(1—d‘)(1—Q).-Do g, (2.7)
From Equation (2.7), exploiting the distributive rule, the expression for Dsi is:

Dy =(1-d")Q: Dy +(1-d")(1-0): D, (2.8)
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Considering the constitutive law written in terms of Ds7 (Eq. (2.8)) and referring to
the relationships (2.2) and (2.3) for the nominal and effective stress tensors,
respectively, the definition of the fourth-order operator 4 appearing in Eq. (2.2) is:

A:(l—d*)Q+(1—d‘)(1—Q) (2.9)

Although both the projection operator Q (Eq. (2.5)) and the elastic fourth-order
tensor Do have major symmetry, this does not imply that the fourth-order tensor Ds1
(2.8) resulting from their double contraction is necessarily endowed with major
symmetry. Specifically, besides the undamaged situation (Ds1 = Do), the symmetry
of the secant operator is guaranteed only when the Poisson’s ratio is null or when
an isotropic damage model is recovered, i.e., in the cases of purely tensile regimes
or purely compressive regimes previously discussed.

Since the quadratic form associated with a non-symmetric matrix is equal to
the quadratic form associated with its symmetric part only, the second expression
to be evaluated for the constitutive operator, Ds3, is the symmetric part of the non-
symmetric operator Ds1(2.8):

Dy, = %(DSI + Dy, ) =

| (2.10)

5(1—d+)[Q :D,+D, :Q]+%(1—d‘)[(1—Q) :Dy+Dy: (1-0)]
However, for this second proposal, the positive definiteness cannot be proven. This
i1s shown by resorting to Eq. (2.11), where the matrix form of Ds2 is given in the
principal reference system of orthotropy of the damaged material, in terms of the
Lamé constants and the damage variables; a 3D stress state composed of two tensile
directions and a compressive one is considered in such a way that two eigenvectors
contribute in defining Q (Eq. (2.5)).

(1 —d")2G+A) [(1 ~d)a+ 1 —d‘)/l]/2 (1-a*)a 0 0 0
[(1-a)a+(1-a7)2]r2 (1 -a7)(2G+2) [(1-a)2+ (1-a)2]i2 o 0 0
(1-a%)a [(1-a%)2+ (1-a)2]/2 (1 -a*)(2G+2) 0 0 0
0 0 0 (1-a)c 0 0
0 0 0 0 (1-d)o 0

0 0 0 0 0 1 —d’)G_

2.11)
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Despite the evident symmetry of the matrix (2.11), it is easy to demonstrate its lack
of positive definiteness by adopting Sylvester’s criterion. In fact, analyzing the first
principal minor of order two, equal to:

A2=(1—d+)~(1—d‘)(2G+/1)2—[(1—d+)+(l—d‘)}2i2/4 (2.12)

and considering d'= 1 and d = 0, it follows that the quantity (2.12) is negative.

Therefore, the necessity of formulating a new version of the original d*/d~
model derives mainly from the just described difficulties found in the definition of
a consistent secant stiffness operator in a strain-equivalence framework.
Consequently, in accordance with the discussion provided in (Carol et al., 2001)
for a general anisotropic damage model, in the new d"/d”~ formulation presented
henceforth, the strain equivalence assumption is abandoned in favor of assuming
energy equivalence.

2.2 “New” d7d~ damage model based on energy
equivalence

2.2.1 Symmetric constitutive operator

The hypothesis of energy equivalence (Cordebois and Sidoroft, 1982; Carol et al.,
2001) consists in considering the coincidence between the energy stored in terms
of the nominal quantities and secant stiffness and the elastic energy stored in terms
of the effective quantities and undamaged linear elastic stiffness. This means that
neither the nominal stress, nor the nominal elastic strain are equal to their effective
counterparts; therefore, in addition to the relation (2.2) between the nominal and
the effective stress, a relation between the effective and the nominal elastic strain is
needed. Following the procedure described in (Carol et al., 2001), this relation is
governed by the fourth-order tensor 4 introduced in Eq. (2.2) and is written as:

g=A:e, (2.13)

From the mechanical point of view, this lack of coincidence between the effective
and the nominal strain tensor is essential in representing a fundamental feature of
orthotropic damage models, i.e., the fact that the nominal Poisson’s ratio does not
remain constant throughout the damage process. Due to the adoption of the strain
equivalence assumption, this feature is not taken into account by the original model.
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Exploiting Egs. (2.1) and (2.13), the effective stress tensor, expressed as a
function of the nominal elastic strain &, is:

=D):£=D):A:¢, (2.14)

For the damage model described in (Faria et al., 1998), the operator A4 relating
the nominal and the effective stress is the one expressed in Eq. (2.9). Herein, some
minor modifications with respect to Eq. (2.9) are introduced for the definition of
this fourth-order tensor, even though its fundamental dependence on the damage
variables and on a spectral projection operator is maintained. Firstly, the integrity
quantities in tension and in compression (1 —d") and (1 — d") are replaced by their
square roots, in order to keep comparable the amount of stiffness degradation
between the original model and the new one. Secondly, the quantity on which the
decomposition is performed is no longer the effective stress, as done in Egs. (2.4)
and (2.5): the reason lies in the dependence of & obtained in an energy-equivalence
framework (see Eq. (2.14)) on the fourth-order tensor A4 (hence, on the projection
operator and on the damage variables), which would make the procedure of the
definition of the projection operator iterative. Consequently, the nominal strain
tensor & 1s chosen as the variable object of the spectral decomposition, similarly to
what is done in (Ortiz, 1985); in this way, the algorithmic efficiency related to a
strain-based formulation, one of the attractiveness of the original model, is kept
unchanged. In addition, a definition for the projection operator slightly different
from Eq. (2.5) is here preferred. Specifically, a tensor first introduced in (Carol and
Willam, 1996) and then presented again in (Wu and Xu, 2013) is adopted; its
expression is:

3 3 .. ..
0= ;H(eel-)pi ®p; ®p; ® p; +[;1(H(8ei)+H(8ej ))P’! ® PY 2.15)
Jj>i
j_ pii 1
P’ =P’ =5(p,-®p,~+p,-®1’,-) (2.16)

where ¢.; and p; are the i-th principal value and the eigenvector associated with the
i-th principal direction of the nominal elastic strain tensor &.. H(e.;) is the Heaviside
function, such that, if &.; is positive, H(ee;) = 1; else, H(e.;) = 0.

This projection operator does not alter the positive and negative components
extracted from the strain tensor, which are exactly the same obtained adopting the
conventional @ (2.5). The advantage of using it lies in the fact that, when all the
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strain eigenvalues ¢; are of the same sign, Q (2.15) satisfies the so-called natural
property. For a generic fourth-order projection operator P that performs a spectral
decomposition on a second-order tensor a, this property can be written in the
following way:
+ . :
{P =1 iff 20 (Vi=123) 017
P =1 iffq,<0 (Vi=1,2,3)

The satisfaction of property (2.17) is discussed in (Ju, 1989; Carol and Willam,
1996).

Referring to Eq. (2.9) and applying the mentioned minor modifications, the
proposal A” for the fourth-order tensor 4, appearing in Egs. (2.13) and (2.14), is:

A =1-d"Q+1-d" (I-0) (2.18)

where @ is the one expressed in Eq. (2.15). In view of this definition, the relations
(2.2), (2.13) and (2.14) between the nominal and the effective quantities in an
energy-equivalent framework can be re-written as:

6=A4:G (2.19)
g=A":¢, (2.20)
6=D,:5=D,:A :¢, (2.21)

Making use of relations (2.20) and (2.21), the equality between the strain
energy in the effective and in the real configuration is:

_ % % 1
6.e=—¢g,:A :Dy: A :¢g, =g Dy :¢, (2.22)

1 1
2 2
From Eq. (2.22), the form of the secant stiffness fourth-order tensor Dg (subscript

[

£’ stands for energy equivalence) is derived:
D,=A":D,: A (2.23)

By replacing the definition of 4" in Eq. (2.23), the complete expression for the
secant matrix D is:
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D, :[Jl—d*le—d- (I—Q)} ‘D, [x/l—d*Qﬂ/l—d‘ (I—Q)} (2.24)

A similar secant stiffness operator, obtained under the same assumption of energy
equivalence, can be found in (Voyiadjis et al., 2008): there, the projection operator
is adopted in its classical form (analogously to Eq. (2.5)), and the split is performed
on the nominal stress tensor &, which, as mentioned earlier, makes the definition of
the projection operator iterative.

From Equation (2.24), some immediate considerations can be done. Firstly, in
the absence of damage, the linear elastic stiffness tensor Do is recovered. Secondly,
Eq. (2.23) shows how, due to the major symmetry of the tensor 4%, the hypothesis
of energy equivalence (2.22) induces automatically major symmetry in the secant
stiffness tensor DE.

In addition, the versatility of the original model in treating the damage-induced
anisotropy is preserved in the new formulation. As a matter of fact, in the case of
i with concordant sign (. = &." or €. = &.~), an isotropic damage model is regained,
while in the case of &, with discordant sign, the damaged material is orthotropic,
and the coaxiality between the directions of induced orthotropy and the principal
directions of the strain and stress tensors is assured. The differences between the
decomposition performed by the original formulation and the new one are sketched
in Figure 2.1, where the isotropic model is distinguished by the orthotropic one in
the principal reference system of the elastic stress tensor o:

o,=Dy ¢, (2.25)
@ 4, b 4,

Orthotropic Isotropic Orthotropic Isotropic

e =0, Ge=0¢ E¢ =y Ee=€e'

0 =047 &' =€,

Fel Get
Isotropic Orthotropic Isotropic Orthotropic
Ce=0¢ Uulzﬂ'g)' Ee=Ee Ee =&y
O =6y Eo =)

Figure 2.1: Spectral decompositions (a) of the original damage formulation (Faria et
al., 1998) and (b) of the new one, in plane stress conditions.
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Such a stress quantity coincides with the effective stress tensor only for the original
formulation by (Faria et al., 1998), as confirmed by Eq. (2.3). Contrariwise, for the
new formulation, due to the energy-equivalence assumption, the effective stress
tensor has a different expression (see Eq. (2.21)). Analyzing Figure 2.1, it is clear
that the spectral decomposition on the elastic strain tensor (Figure 2.1.b) allows to
describe the problem of uniaxial loading by means of an orthotropic formulation,
instead of an isotropic one. This fact, combined with the use of the new orthotropic
constitutive operator (2.24), implies that the variation of the nominal Poisson’s
ratio, related to microcracking, can be modelled. This fact is discussed in detail in
Section 2.2.3.

The matrix form of the secant stiffness operator D is given in Eq. (2.26) in the
principal reference system of orthotropy of the damaged material. As done for the
expression of the matrix form of Dy (2.11), a 3D strain state composed of two
elongation directions and a contraction one is considered:

1 -dH26+a) 1 —d’)os(l -d*)o'sz (1-d*)a 0 0 0
1 7d’)°5(1 m*)“x (1-a')ec+2) (1 7d’)°5(1 7d*)0’5/1 0 0 0
(1-da*)a (1-a) (1 -a")" 2 (1-d")2G+4) 0 0 0
0 0 0 {(1 ~a) 41 —d*)US]ZGM 0 0
0 0 0 0 [(1 ~a) 41 -d*)O'STGM 0
0 0 0 0 0 (1 —d*)Gi
(2.26)

First of all, it is interesting to note how the stiffness matrix associated with the
operator D here derived fits perfectly within the framework described in (Carol et
al., 2001), based on the hypotheses of energy equivalence and sum-type
symmetrization. Differently from a generic orthotropic material, which is
characterized by nine independent material properties, the secant stiffness matrix
defined in Eq. (2.26) depends on four variables (the two elastic constants G and 4
of the initial isotropic material and the two damage variables d" and d"). This aspect
is strictly related to one of the particularities of this formulation, i.e., the coaxiality
between directions of induced orthotropy and principal directions of nominal elastic
strain and stress tensors.

Moreover, considering the shear stiffness terms in matrix (2.26), it is possible
to see that the shear modulus G is reduced by the square of the average of both
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(1 —d* )0'5 and (1 —d” )O'S. This constitutes a modification with respect to the

secant operators Ds; and Ds> (see Eq. (2.11)), due to the adoption of the projection
operator @ (2.15) instead of @ (2.5); the main positive implication deriving from
this choice is the recovery not only of the constitutive law, but also of the secant
stiffness matrix of an isotropic damage model, when ¢. = &.* or g. = &.".

Besides an evident symmetry visible in Eq. (2.26), the stiffness operator Dg
(2.24) is also positive definite, and this can be checked, without loss of generality,
by applying Sylvester’s criterion to its matrix form (2.26). In fact, as demonstrated
by the relations (2.27), all of the minors of (2.26) are always positive, provided that
the damage variables range from zero (virgin material) to one (completely damaged
material):

4= Dy =(1-d")(2G+2)20
4y =Dy Dy - Dy =(1-d7)(1-d7)(2G +2) = (1-d")(1-d" ) 4> 20
45 = (DEIIDEZZ -Di) )DE33 - Di»3Dp1; + 2Dp3DiyyDyys - DiysDpa
=(1—d+)2(1—d’)(2G+,1)3 —(1—d+)z(1—d’)(2G+,1)/12 —(1—d+)2(1—d’)(2G+/1)/12 +
+2(1—d+)2(1—d’)/13 —(1—d+)2(1—d’)(2G+,1)/12 >0
2
A, = ADpy, = A3G(O.5(1 —d")+05(1- d‘)) /4 >0
A5 = 4Dy Dpss = 4,G7 (0.5(1-d* ) +0.5(1-d" ))4/16 >0

A5 = 4,Dp4DpssDpss = 4567 (1= )(0.5(1-* ) +0.5((1 —d‘))4/16 >0

(2.27)

Therefore, the new d'/d~ damage model, based on the hypothesis of energy
equivalence, is governed by the secant stiffness operator Dg (2.24), which is
symmetric and positive definite; consequently, it provides an adequate
representation of the damage-induced orthotropy.

To sum up, the relationships between the effective and the nominal
configuration deriving from the energy equivalence assumption, together with the
constitutive laws proper of each space, are summarized in Figure 2.2.
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Figure 2.2: Energy equivalence hypothesis: relationships between effective and
nominal spaces.

A further confirmation of the adequacy of the new constitutive operator (2.24)
can be found in an interesting parallelism between the relationships shown in Figure
2.2, adopted to derive an orthotropic d'/d~ damage model, and the mapping
procedure presented in (Pela et al., 2014) to define a damage model for orthotropic
materials. In (Pela et al., 2014), the stress ¢ and strain &, tensors of the orthotropic
real space are related by means of suitable fourth-order symmetric transformation
tensors to those (6" and &", respectively) of an equivalent isotropic solid:

o= (AG )_1 6 (2.28)

o, (2.29)

Considering the equivalence between the orthotropic real space and the real
damaged material (nominal ¢ and nominal &) and between the mapped isotropic
space and the effective undamaged configuration (& and z ), the similarity of
Egs. (2.28) and (2.29) with Egs. (2.19) and (2.20) is evident. Specifically, in
accordance with (Carol et al., 2001), in the present orthotropic damage model, the
tensor (4°) ! and A¢ are coincident and equal to the mapping operator 4 (2.18). All
the features required for the mapping operators (4°) ! and 4% (fourth-order tensors,
minor and major symmetry, positive definiteness in order to be invertible) are
satisfied by 4™
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2.2.2 Thermo-dynamic consistency

In accordance with the energy equivalence assumption (2.22), the free energy
potential of the orthotropic damage model here presented is the following:

l//(se,d+,d_):%ee Dy e, (2.30)

where the positive definiteness of the constitutive fourth-order tensor Dg (2.24) has
been proven in Section 2.2.1.

In order to assess the thermo-dynamic consistency of the proposed model, the
satisfaction of both the first and the second law of thermo-dynamics needs to be
investigated.

On the one hand, the first law of thermo-dynamics for elastic-degrading
materials demands considering the conservation of energy in the unloading-
reloading regime, for a fixed state of degradation. As pointed out in (Carol and
Willam, 1996; Wu and Xu, 2013), under those conditions and when non-
proportional loadings are applied, damage models including micro-crack closure
reopening (MCR) effects may suffer the problem of energy generation/dissipation
under closed-load cycles. Specifically, only in the presence of anisotropic
degradation, a lack of energy dissipation occurs. The here-formulated damage
model is orthotropic in the sense that a directional degradation in stiffness is
induced in the material after surpassing the linear threshold. From the definition of
A*(2.18), which is the fourth-order operator performing the mapping between the
1sotropic and the orthotropic spaces, it is asserted that the projection operator Q is
responsible for the damage-induced orthotropy, since the damage variables are
scalars. Both in (Carol and Willam, 1996) and in (Wu and Xu, 2013), the term
“anisotropic degradation” is adopted for describing those damage models that
include an anisotropic (or orthotropic) stiffness reduction, beyond the application
of the projection operator Q. Therefore, the here-presented damage model cannot
be classified as anisotropic according to these references, even if an orthotropic
behaviour is induced by the damage process; consequently, it observes the first law
of thermo-dynamics.

On the other hand, the second law of thermo-dynamics states that the total
entropy of an isolated system tends to increase over time, taking into account the
irreversibility of the natural processes. This condition can be expressed by the
Clausius—Duheim inequality (Lubliner, 1972):
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j=—jt+a:620 (231)

Replacing the total derivative of the energy potential (2.30) with its partial
derivatives with respect to the strain ¢ and the internal variables d", d” and &, the
positiveness of the energy damage dissipation can be rewritten in this way:

y'z[ a‘/’j:é—a—‘”-d*—a—‘”-d‘—a—‘”;é >0 (2.32)
od* od~ oe, 7

Since ¢ is a free variable, in order to have the non-negativeness of the dissipated

energy satisfied in the general case, the quantity between round brackets in

Eq. (2.32) has to be null; this results in one of the Coleman’s relations (Coleman

and Gurtin, 1967) and leads to the establishment of the constitutive law:

a:a—W:DE 1€, (2.33)
O

Hence, the Clausius-Duheim inequality (2.32) reduces to:

—a(i;/:-fr—;dw_-d_—sgw 1ep20 (2.34)
p

Y=

From Eq. (2.34), it is evident that the dissipative behaviour of the material is
due to both damage evolution and generation of permanent strains. On the one hand,
the partial derivatives of the potential with respect to d* and d", with signs reversed,
represent the elastic strain energy release rates produced by a unit growth of the
corresponding damage variables; they play the role of thermo-dynamic forces
conjugated to the damage variables. On the other hand, the derivative of the free
energy with respect to &,, with sign reversed, coincides with the nominal stress &
and plays the role of a thermo-dynamic force associated to the permanent strain.
Whilst the non-negativeness of the energy dissipated by permanent strains is treated
in Section 2.4, where two definitions of the permanent strain rate ¢, are provided,

the discussion on the non-negativeness of the energy dissipated due to damage
evolution is here faced. The positiveness of all the terms present in Eq. (2.34) will
allow concluding on the consistency of the proposed damage model for what
regards the second principle of thermo-dynamics.

Since the rates d* and d~ of the damage variables are positive (due to the
choice of the monotonically-increasing damage evolution laws; see Section 2.5),



2.2 “New” d+/d— damage model based on energy equivalence 39

the non-negativeness of the work done by the generalized thermo-dynamic forces
associated to damage is satisfied as long as the damage energy release rates are

positive. The definition for these quantities, referring to the potential y expressed
in Eq. (2.30), is:

U (2.35)
o 2% e
_oy 10D, (2.36)

od 2 aa %

Accounting for Egs. (2.18) and (2.23), the derivatives of the constitutive operator
with respect to the damage variables are:

oD, .oA*

e =0T, A
| (2.37)
- d+[x/l—d+Q:D0.-Q+\/1—d‘Q.-D0:(I—Q)J
Dy 204" p, - A=
od- " od | 038)
- d_[x/l—d(I—Q):Do.'(I—Q)+\/1—d*(I—Q):D0:Q}

Replacing these definitions in Egs. (2.35) and (2.36) and recalling that &.* = Q: &,
and & = (I — Q): &, clearer expressions for the damage energy release rates are
provided:

oy 1| , . Nl=d | -
- =—|¢e D, & + e D, g |=
ad+ 2 e 0 e ﬁ e 0 e:|

T (2.39)

1-d*

(i(trsj )2 +2Ge, &, ) + ltrsjtrse‘}
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N | —
®

_ —
—6—W= g :D,: & + d e :D .'8+}=

o Bia

(i(trs; )2 +2Gg, ¢,

(2.40)

N | —

)*m

The quantities inside round brackets in Eqgs. (2.39) and (2.40) are always
positive while Atre, tre, is zero in the cases of the full tensile regime (g.~ = 0) or full

compressive regime (g° = 0) and negative otherwise. Consequently, the
positiveness of Egs. (2.39) and (2.40) is assured for the situations of full tensile
regime (&, = 0) and full compressive regime (&.* = 0), while having to be proven
in the other cases. In order to do this, three strain states are identified as the most
critical ones for the satisfaction of the second principle of thermo-dynamics; the
non-negativeness of the damage strain energy release rates (2.39) and (2.40) for
these situations allows asserting the consistency of the present model with respect
to the second principle.

e Inpure shear conditions (tre." = —tre.”, e.t 6.7 = (tre" ) =& 6 = (tre)?, d* #0,
d~ # 0), the positiveness of the quantities (2.39) and (2.40) translates in the
following inequalities, respectively:

J1-d 2%\/1—{ (2.41)
-V

1—

J1-d* <——Y1-a (2.42)
\%

Considering the typical mechanical parameters of a quasi-brittle material, such
as concrete or masonry, these relations among the damage variables, strictly
related to the fracture energies in tension and compression (see Section 2.5), are
satisfied.

e In case of uniaxial tensile load in direction 1 (fre." = &1 and tre, =-2veN1-d"
d" #0,d =0), the quantity contained in Eq. (2.39) is always positive and can
be expressed in the following way:

%(zgf (1-2v)+2Ge] )20 (2.43)
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The same results can be obtained for the case of uniaxial compressive load
(d"=0andd #0).

e Although the quantity v1-d* is at the denominator in Eq. (2.39), in the case of
d" close to one, the work done by —dy/8d" in the Clausius-Duheim inequality

(2.34) remains bounded, specifically tends to be null, because in that situation,

d” tends to zero. An analogous consideration holds for the work performed by

~dy/0d”~ when d” is close to one.

2.2.3 Enhanced representation of the damage-induced orthotropy

The proposed energy-equivalent damage model, based on the consistent secant
operator Dg (2.24), represents a step forward with respect to the original
formulation thanks to an adequate consideration of the Poisson effect on the
representation of the damage-induced orthotropy. The implications deriving from
this fact are shown with reference to the plane stress problem of a bar loaded in
tension along the x-axis, with initial Poisson’s ratio equal to 0.2.

Comparing the normalized g, — & curves obtained with the original model and
with the new energy-equivalent one, no significant differences can be found in the
softening response (see Figure 2.3.a). The substantial improvement of the proposed
damage model is instead visible looking at the strain behaviour in the transversal
direction y (see Figure 2.3.b). By plotting in abscissa the longitudinal strain &, and
in ordinate the absolute value of ¢,/¢y, 1.€., the nominal Poisson’s ratio predicted by
the models, completely different trends result. On the one hand, with the original
damage model, the nominal Poisson’s ratio maintains constant throughout the
loading history, meaning that the transversal contractions &, increase unrealistically
throughout the whole loading history, together with the growing of the axial
elongations &. On the other hand, the adoption of the proposed orthotropic
symmetric damage model allows one to take into account a progressive reduction
of the nominal Poisson’s ratio with the development of tensile damage. This is
related to both the strain decomposition adopted, which considers an orthotropic
model associated to the uniaxial loading conditions (see Figure 2.1), and the new
constitutive symmetric operator proposed (2.24). Specifically, by deriving this
constitutive matrix for a uniaxial tensile plane stress problem and by equating to
zero the transversal normal stress g, it is easy to find the expression of the nominal

Poisson’s ratio predicted by the model, which is v =-¢, / e =N1-d"v.
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Figure 2.3: Comparison between the original formulation and the new energy-
equivalent model for the problem of a bar uniaxially loaded in tension: (a) oy-¢&: curves and
(b) nominal Poisson’s ratio trends.

As noticed in (De Borst, 2002), the feature of a constant Poisson’s ratio is
usually typical of isotropic damage models, and it is not coherent within the
framework of the classical smeared crack models (Rashid, 1968; Rots et al., 1985).
In fact, from a mechanical point of view, a crack generation under uniaxial tension
is accompanied by a release of the transversal strains, due to the progressive loss of
coupling between longitudinal and transversal directions induced by the
degradation process.

2.3 Damage criterion for quasi-brittle materials

In accordance with the original d*/d~ damage model (Faria et al., 1998), the
degradation process in tension and in compression is treated separately by means
of independent damage criteria and independent damage evolution laws.

In analogy with (Petracca et al., 2017; Saloustros et al., 2017b), two damage
surfaces, one in tension and one in compression, are defined, taking inspiration from
the failure criterion proposed for concrete in (Lubliner et al, 1989). Their
expressions are the following ones, where 7+ represent the equivalent stress
quantities, monitoring the strain-stress state under tension and under compression
while r + are the internal state variables identifying the tensile and compressive
damage thresholds:

Lt =0 (2.44)

The definitions for the equivalent stress variables 7+ are the following:
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= H () 2 (BT vty Bloune) (2.45)
T = H emzn (\/E_Fall +IB k emax>) (246)

where the material strength parameters o and f, defined accordingly to (Lubliner et
al., 1989), are:

/-1
20/ (2.47)
=<1—a>§§ (2.48)

In expressions (2.45) and (2.46), 1, J>2, Gemax and Gemin are the first invariant, the
deviatoric second invariant, the maximum and minimum principal values referred
to the elastic stress tensor . defined in Eq. (2.25). The choice of o., as the quantity
determining the equivalent variables, is addressed to avoid an iterative procedure
for the computation of d* and d~, which would be otherwise necessary opting for
the effective stress & defined in Eq. (2.21). In fact, the computation of o, is
straightforward and follows directly from the computation of the nominal elastic
strain tensor &..

The other parameters necessary for the definition of the damage criterion,
related to the frictional-cohesive behaviour of the material are the uniaxial tensile
and compressive peak strengths of the material /™ and f~, the biaxial compressive
strength f,~, the parameter k& (k between 0 and 1) which fixes the size of the
compressive surface in the shear quadrants (see Figure 2.4) and the values /. and
fo. These quantities identify the onset of damage in uniaxial tension and
compression respectively, by means of the proportional parameters y." and y.~
0<pex£< 1)

fe=ves” (2.49)

The initial values of the damage thresholds r =+ coincide with £° and

consequently, according to Eq. (2.44), they define the size of the damage surfaces
in the initial undamaged state, i.e. the size of the initial elastic domain:
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=S (2.50)

In Figure 2.4, the limit tensile and compressive surfaces for the activation of
damage in the initial elastic stage, derived by equating " and 7 (Egs. (2.45) and
(2.46)) to ro" and o~ (Eq. (2.50)), are plotted in the elastic stress principal space,
for the plane stress case. In the first and third quadrants, thanks to the presence of
the Heaviside functions in the definitions of 7 +, the limit surfaces are ruled by t*
and 7, separately, meaning that only tensile damage can be activated in the first
quadrant and only compressive damage in the third one. Specifically, in biaxial
compression, the Drucker—Prager criterion is recovered.

In the second and fourth quadrants, two damage surfaces are present, one for
the activation of d" and one for the activation of ¢ . In particular, the shape of the
compressive damage surface is here affected by the parameter £. For values of &
close to 1, the compressive damage surface tends to overlap with the tensile one
and is close to the failure surface proposed in (Lubliner et al., 1989 ). For low values
of k, the compressive damage surface broadens, going to coincide with the
Drucker—Prager criterion for £ = 0. Such a modelling of the failure conditions in the
second and fourth quadrants is a betterment with respect to the damage limit surface
considered in the original model. As a matter of fact, in (Faria et al., 1998), the
behaviour of the material in these quadrants is not represented directly, but is only
considered as the intersection of the two distinct failure criteria in pure tension (first
quadrant) and pure compression (third quadrant).
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Figure 2.4: Initial damage surface in plane stress conditions, for o= 0.121, = 7.667
and for different values of £.

2.4 Simplified definitions of the permanent strain tensor

The modeling of permanent strains is necessary in the prediction of the structural
behaviour of concrete and quasi-brittle materials in general, since during a loading
history irreversible strains accumulate, affecting in a non-negligible way both
strength and stiffness. Moreover, it is essential, in presence of cyclic actions, to
match experimental and numerical results.

Although a plastic-damage theory represents the most accurate way to develop
a constitutive model for quasi-brittle materials, the formulation of “simplified”
evolution laws for permanent deformations can be successfully considered in
conjunction with damage models. This is the procedure adopted for the simulation
of irreversible strains in the follow up. Specifically, the simplification deals with
the consideration of a unique failure criterion to describe the inelastic behaviour of
quasi-brittle materials (Wu and Cervera, 2016), characterized by both damage and
permanent deformations. Assuming the formation of microcracks and microvoids
as the dominant inelastic mechanism, the damage failure criterion is identified as
the governing one. Consequently, the modelling of permanent deformations
becomes possible without the introduction of a plasticity surface and a flow rule. In
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the present section, two different definitions of the permanent strain rate tensor,
based on this simplification, are proposed.

2.4.1 Fundamental kinematic decompositions

First of all, two fundamental decompositions of the total strain tensor are here
recalled, in order to highlight the deformation mechanisms characterizing a quasi-
brittle material. The first is expressed in Eq. (2.51) and is based on the split of the
strain tensor in a reversible (elastic &) and irreversible (permanent &) part:

£E=¢, ¢, (2.51)

The second, shown in Eq. (2.52), deals with the decomposition performed in
the classical smeared crack models (Rots and Blaauwendraad, J., 1989; Armero and
Oller, 2000), according to which the total strain tensor is divided in a contribution
related to the initial elastic compliance matrix Cp and an inelastic contribution &x:

e=Cy.0+¢,=Cy.0+8,+¢,=Cy:0+C :0+¢, (2.52)

From Eq. (2.52), it is clear that the inelastic strain &ix 1s produced by two dissipative
mechanisms, acting in series, which are the development of damage (&),
responsible for the increase of the constitutive compliance matrix C with respect to
the initial undamaged one Cy (Cs = C — Cy) and the evolution of irreversible
deformations (&). Moreover, comparing Eqgs. (2.51) and (2.52), the reversible
elastic strain results equal to:

g,=Cy.0+¢g; (2.53)

According to Egs. (2.51) and (2.52), the rate of the total strains can be expressed
in the two following ways:

=i+, (2.54)
6=Cy:6+¢,=Cy:6+é,+6,=Cy:6+C;:6+C, :06+8,=C:6+éy 2.55
0 in 0 d )4 0 d d )4 dis

In Eq. (2.55), the dissipative strain rate &g is introduced, whose definition is:

édis :C"o-+ép (256)

The just mentioned strain quantities are shown, both in their total and
incremental form, in Figure 2.5, with reference to a 1D softening history.
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Figure 2.5: Total strain decomposition in total and incremental form in a 1D softening
history.

2.4.2 Revisitation of the permanent strain rate proposed in (Faria
et al., 1998)

Following (Faria et al., 1998), the permanent strain rate tensor can be defined as:

i =[b+ H(d* )b -H(d_)}w-ee 2.57)

G, &,

In Eq. (2.57), b" and b~ are two positive material parameters defining the entity of
the permanent strains under tensile and compressive regimes, ranging from 0 (only
damage) to 1; regarding the tensor quantities, & is the total strain rate, & is the
elastic strain and o, is the elastic stress tensor (2.25).The ratio between the elastic
power 6. . & and the double of the elastic strain energy . . & contributes to define
the intensity of the plastic strains.

The main simplification of Eq. (2.57) with respect to a plastic theory is that,
instead of the adoption of a flow rule, the irreversible strain evolves in the direction
of the elastic strain tensor €. and of the elastic stress tensor o.. This is coherent with
the definition of the evolution of damage in terms of the elastic stress values, as
discussed in Section 2.3. In addition, in line with the idea of considering a unique
failure criterion, the same conditions holding for damage progression are taken into
account for the permanent strain evolution and this relation is established by means

of the Heaviside functions H (d’*) and H (d‘).
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With respect to the proposal made in (Faria et al., 1998), the development of
irreversible deformations is not only associated to compressive regimes but the
possibility of permanent strain evolution under tensile regimes is also considered.
This choice is addressed to catch more realistic results both in pure tension and in
case of coexistence of compressive and tensile regimes, i.e. in shear conditions.

Moreover, referring to the definition of & , (2.57), the quantity related to the
permanent strain tensor appearing in the Clausius—Duhem inequality (2.34) can be
expressed in the following way:

_6_1//.. . . '[+. - - . }(ae;é>'
agp.sp 6:¢p,=Dp ¢, :|b H(d )+b H(d ) —y &, (2.58)
=a-Dg:¢g,:6,=2-a-y
where the scalar a is:
+ e\, - <0'e:.é>
a:[b H(d*)+o 1 (d )}— (2.59)

G, &,

Since a (2.59) is non-negative and the free energy potential (2.30) is a quadratic
form ruled by the positive definite secant stiffness DE, the energy dissipated due to
irreversible deformations is non-negative and this ensures the satisfaction of the
Clausius-Duheim inequality (2.34) discussed in Section 2.2.2.

2.4.3 Alternative definition of the permanent strain rate

From the mechanical point of view, the hypothesis of considering the damage
criterion as the unique failure criterion for d*, d~ and g, corresponds to consider the
development of permanent deformations related to the partial irreversibility of the
microcrack opening. This is in accordance with Bazant (Bazant, 1983a) and Ortiz
(Ortiz, 1985), who noticed that the microcracking of concrete is not perfectly brittle.
On the base of this consideration, the alternative definition of &, here proposed

aims to link the irreversible deformations to the kinematic quantity responsible for
the microcracking, which is the damage strain tensor &4 (see Egs. (2.52) and (2.53)).
Specifically, in incremental terms, the permanent strain rate is related to &,, which

is the damage strain rate tensor computed in the hypothesis of a perfectly brittle
material. Such a hypothesis consists in considering the coincidence between the

total strain increment and the reversible strain one (é, =¢) and in freezing the

evolution of the permanent deformations (&, =0):
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*

g :édL_p:O =6-C,:6'=C,:6 +C, 0" (2.60)

In Eq. (2.60), the superscript " is used to identify all those quantities computed in
the hypothesis of a pure damage formulation.

Therefore, the simplified evolution law here proposed for the permanent
deformations is the following one, where ¢ and ¢~ are constitutive parameters,

representing the entity of the permanent deformations as a fraction of &, .

: :<a..[§+.H(52+*)+§—.H(d_*)}s§>'ge 2.60)

c.&,

A discussion on the meaning of & and on its limit values (0 < & < &, with & jim

lower than 1) is provided in Section 2.5.1. Moreover, the presence of the Heaviside
function H ensures that the evolution of permanent deformations occurs only when
the damage variables d*” or d " increase.

To graphically clarify Eq. (2.60), in Figure 2.6 the strain increments associated

to &, (Eq. (2.60)) and ¢, are shown with reference to a 1D loading history.

p

Analogously to the definition of the irreversible deformations (2.57), the new
definition foresees the coincidence, in terms of directions, between the permanent
strain increment and the reversible strain tensor. However, differently from (2.57),
a relation between the permanent deformations and the damage strain rate is set in
(2.61). This relation is explicit in 1D loading conditions, as visible in Figure 2.6,
where:

é, =§-H(d*)é:, (2.62)

In more generic loading conditions, it can be interpreted in energetic terms. In
fact, the magnitude of the irreversible strain increment with respect to the one of
the reversible strain tensor is defined resorting to a ratio between energetic
quantities (see Figure 2.6.b): it is a portion of the energy dissipated by the damage
strain rate, quantified by means of & and/or £, over the potential y doubled.
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Figure 2.6: Clarification of the evolution law (2.61) for the permanent strain tensor:
(a) identification of the quantity (2.60) in the hypothesis of perfectly brittle materials and
(b) correction of all the quantities to describe the real situation with damage and &,.

Repeating the procedure shown in Section 2.4.2, the non negativeness of the
energy dissipated by the permanent strain rate (2.61) can be demonstrated:

RN (2 Lol o e |

% rep=0:¢,=Dpg :¢,: vy e (2.63)

p
=a-Dg:¢,:¢,=2-a-y

where the scalar a is:
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<0' .-[;ﬁ .H(d+*)+§‘ 'H(d_*)}é2> 6

a=

Thanks to the non-negativeness of the potential (2.30) and of a (2.64), the
satisfaction of the Clausius-Duheim inequality (2.34) can be guaranteed with the
new definition of the permanent strain rate tensor (2.61).

It is worth doing some additional considerations about the alternative definition
proposed for the evolution of the reversible strain tensor (2.61). First of all, the

proportionality between ¢, and & is maintained because other choices for the

direction of evolution of the irreversible strains implies non reliable results in
presence of some specific loading conditions. This fact is qualitatively shown in
Figure 2.7 for the problem of pure cyclic shear, adopting a definition for the
permanent strain rate tensor based on the direct proportionality between the

. .o . . ok
tensorial quantities ¢, and é;:

8y=|¢' ~H(d+ )+.§‘ -H(c'l‘ )}"d (2.65)
T
AlKlUNLOAD
J Y
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Figure 2.7: Loading and unloading t-y curve obtained with the adoption of the
orthotropic rotating d*/d~ damage model in conjunction with the permanent strain rate
tensor (2.65).

Looking at Figure 2.7, in the reversal of the loading sign, an unrealistic stiffness
modification is visible, attributable to the transition from one positive and one
negative principal elastic strains to two negative ones. This shows that generic

definitions for ¢, inducing lack of proportionality between the total and the



52 Energy-equivalent d+/d— damage model for quasi-brittle materials

reversible strain tensors are not adequate in conjunction with rotating orthotropic
models, as the one proposed in the present work.

Differently from other simplified evolution laws for the permanent strain tensor
(Faria et al., 1998; Saloustros et al., 2017a), also based on the proportionality

between ¢, and &, the novelty of the definition (2.61) lies in the relation between

permanent and damage deformations. The idea to associate permanent strains to the
partial irreversibility of the crack opening is similar to the idea proposed in (Ortiz,

1985; Wu and Cervera, 2016), where ¢, is considered a fraction of the dissipative

p
strain rate & g4is, defined in Eq. (2.56). The choice of the damage strain rate with
respect to the dissipative strain one for describing the evolution of the irreversible
deformations is related to the higher physical meaning held by the former. As a
matter of fact, the damage strains are present in the decomposition (2.52) of &
whereas the dissipative strains can be expressed only in a rate form and do not
correspond to an actual strain tensor (Armero and Oller, 2000).

2.5 Unified dissipative approach for the evolution of the
internal variables

As commented in Section 2.4, only one failure criterion, the one governing the
progression of damage and described in Section 2.3, rules the evolution of both
damage and permanent deformations. A first implication of this fact is that the
Kuhn-Tucker relations and the persistency conditions, which identify the situations
of loading, unloading and reloading for the progression of the damage variables,
hold also for the evolution of the permanent deformations. As a matter of fact, both
the definitions provided for the permanent strain increment (2.57) and (2.61) show
a direct dependence on the increment of the damage variables. These relations are
expressed in the following, in terms of the equivalent stress variables 7 + and of the
damage thresholds » + :

>0 g =z —rT<0 }"i-gi=0 (2.66)
# gt —0 (2.67)

The damage limit surfaces in tension and compression are g+ = 0 (see
Eq. (2.44)), increasing in size in case of loading (g = = 0,7 £ > 0) and remaining
unchanged during the unloading or in the undamaged situation (g+ <0, 7 £=0).
The definition for the non-decreasing functions r+, representing the damage

]
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thresholds, can be inferred by imposing ¢ + =0, necessary condition for satisfying
Eq. (2.67) in the loading case:

ri = max I’(;t,' max(ri) (2 68)
[0,¢] .

where ro * are defined in Eq. (2.50) and max(z * ) represent the maximum values
of the equivalent quantities in tension and compression until the current instant z.

Besides the necessity of a common criterion for establishing the progression or
not of all the internal variables, there is also the necessity of defining the evolution
laws of damage and irreversible deformations within a unified approach (Cervera
et al., 2018). The combined treatment of the two causes of dissipation (see
Eq. (2.34)) derives from the fact that the fracture energy Gy, usually considered as
a pure fracture parameter ruling only the evolution of damage, is actually composed
of both damage and plastic dissipative contents, as discussed in (Nguyen and
Houlsby, 2008; Bazant, 1996).

In analogy with (Oliver, 2000; Cervera, 2003), the evolution of the damage
variables d £ is defined by means of a stress-like function g(» + ), depending on the
damage thresholds » + :

(2.69)

The parameters affecting the hardening-softening function ¢ are the initial
damage thresholds 7o * and the hardening-softening moduli Hy+ . Specifically,
Hga+ take into account the fracture properties of the material, which are the uniaxial
strengths '+, the fracture energies G+ and the widths of the localization zone / +
(Bazant and Oh, 1983).

The coupling between energy dissipated by irreversible strains and damage is
modelled in the following way. Given a certain stress-like hardening/softening
function ¢(»), the corresponding modulus Hs ruling the growth of damage is
adjusted on the base of the definition of the permanent strain increment, in such a
way to guarantee that the total dissipated energy is coherent with the fracture energy
of the material.

In order to find proper relationships (with general validity) between the
hardening-softening moduli Hs+ and the fracture energies Gr+, a 1D monotonic
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loading history from an initial unstressed state to a complete damaged one is
considered (Cervera, 2003). Since analogous considerations can be done for 1D
tension and in 1D compression, hereafter the superindex * is omitted.

The energy per unit volume gr dissipated in this loading history can be
expressed as the sum of an initial undamaged contribution gr, a contribution related
to damage gw and a contribution related to permanent deformations gp, in
accordance with (Wu and Cervera, 2016; Cervera et al., 2018; Nguyen and
Houlsby, 2008):

0 t, 0 0
g =Ia:é-dl=fa:ée-dt+.[6:ée-dt+.[a:ép-dt=gfe+gfd +&fp (2.70)
0 0 13 13

0 0

In Eq. (2.70), the instant 7y is the one for which the appearance of the nonlinear
behaviour occurs, i.e. that instant for which the damage threshold 7 achieves for the
first time the value 9. According to the crack band theory formulated in (Bazant
and Oh, 1983), the specific fracture energy is equal to the ratio between the fracture
energy per unit surface Gy and the width of the crack band /. Therefore, since Gris
a material property, the dissipation related to damage g and to permanent strains
g5 have to be coupled.

In order to compute g and gy as a function of Hy, the following relations,
holding after the attainment of 7y, are considered:

r=E-¢, .71
ag=q(r) (2.72)
= %e (2.73)
8, =4 (2.74)

Egs. (2.73) and (2.74) represent the 1D counterparts of the permanent strain rate
tensors proposed in Egs. (2.57) and (2.61), respectively. Due to the assumption of
monotonic loading conditions, the Heaviside function A is omitted in both the

expressions. It is worth noting that, whilst in Eq. (2.73) ¢, is not affected by

)4
damage, in Eq. (2.74), the strict dependence of the irreversible strain rate on the

damage evolution is intrinsic in the dependence of ¢, on ¢,. In fact, considering

p
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Eq. (2.72) and the incremental forms of Eq. (2.74) and of Eq. (2.60), the increment
of the permanent deformations from step n—1 to step n can be rewritten in this way:

n-1 p

As, = g[( g - ”‘ld)7+ q* 'Ae} (2.75)

Two types of damage evolution laws are analysed and successively adopted in
the structural applications presented in Chapter 6, Chapter 7 and Chapter 8. The
first is the one proposed in (Cervera, 2003), with a parabolic hardening stage and
an exponential softening one:

2
wrnr(za] s

fp_r()

q(r)=f-exp[2Hd {pT_rB r> [y

The introduction of two further variables f, £ , representing the equivalent quantities

(2.76)

for which the peak strength is attained, is necessary (y, £ = 1), together with the
definition of the parameter 44 (Cervera, 2003):

Iy =vpf" (2.77)

(2.78)

Taking ro = f. (2.49) = f, = f, this damage evolution law can be expressed in the
form:

q(r)=r, exp{ZHd(ro ‘V]} " (2.79)

o

which represents the classical softening exponential law (Cervera et al., 1996).

The second one is a new damage evolution law, inspired by the Gaussian
function. Details about the proposal of this new stress-like hardening-softening
function are presented in Section 2.5.2. Its expression is:
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J(=n exp{Hd[r -7 j,{l_Hd[r -1 H} r2n  (2.80)
7 2r,

In Egs. (2.76), (2.79) and (2.80) the modulus Hy is positive.

In Figure 2.8.a, Figure 2.8.b and Figure 2.8.c, the trend of the hardening-
softening (2.76), softening exponential (2.79) and hardening-softening Gaussian
(2.80) functions, respectively, is displayed in a (r-rg) — q(r) diagram, highlighting
the meaning of the softening and hardening/softening modulus Hy in the three cases.
Moreover, the linear approximations of the three ¢(r) functions, i.e. the first order
Taylor expansions, are plotted in dashed line.
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Figure 2.8: (a) Parabolic-exponential hardening-softening function (2.76); (b)
exponential softening function (2.79) with its linear approximation; (c) new Gaussian
hardening-softening function (2.80) with its bi-linear approximation.

The adjusted moduli H, are computed in the follow up according to the unified
approach. A distinction between the parabolic-exponential softening trend and the
Gaussian trend is performed. For the sake of brevity, the expressions of Hy are
provided only for those combinations of g(r) functions and definitions of ¢,

considered in the structural applications presented in Chapter 6, Chapter 7 and
Chapter 8.

2.5.1 Parabolic-exponential damage evolution law

Firstly, the softening modulus of Eq. (2.76) is computed, considering the definition
of the permanent strain rate provided in Eq. (2.57) and expressed for the 1D case in
Eq. (2.73). In these conditions, the sum of the three contributions present in
Eq. (2.70) can be computed as follows:



2.5 Unified dissipative approach for the evolution of the internal 57
variables

12 L 1 b b ]
Ay +—— 4 .
g5 = E(d_'_ +— d+1—b2Hd (2.81)

v 302 2 o101 - 58

For the single contributions, a detailed computation is provided in (Cervera et al.,
2018).

By equating the fracture energy in the form (2.81) to the ratio Gr/ [, the
expression for the softening modulus is derived:

L1 )[E_Gfl_lf_p_gd_ b gd] 2.82)

Note that for the limit case of ro =f. (2.49) = 1, (2.77) = £, the softening modulus in
Eq. (2.82), associated to the exponential softening law (2.79), reduces to:

2 ( H-
H,=—=- | 2.83

‘ (1—b)(1—H.zJ (259
where 7 is the material property defined as: 7= ?/(2£-G,). From Eq. (2.83), it

is clear that higher is the parameter b, higher is the value of Hy. In addition, for
b = 0, the softening moduli in (2.82) and (2.83) bring to a well-established result
for linear and exponential softening (Cervera et al., 1996; Cervera, 2003):

— = __r_ A, (2.84a)

H, = [—_} (2.84b)

In the structural applications presented in Chapter 6, Chapter 7 and Chapter 8,
where this damage evolution law is adopted, a pure exponential softening behaviour
(fo" = fp" = f") is assumed for d" and a parabolic hardening followed by an
exponential softening is considered for d (fo~ <f <fp).
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Four figures show the qualitative differences between the unified dissipative
approach, based on the adoption of the softening moduli (2.82) or (2.83) here
computed and the uncoupled one, which independently of the modelling or not of
permanent deformations, uses the softening moduli (2.85) or (2.84b).

In each figure, the 1D stress-strain curve in case of » = 0 (null irreversible
deformations) and 0 < b < 1 (non-null permanent deformations) are plotted. In
Figure 2.9.a and Figure 2.9.b, the case of 1D tension is analysed while in Figure
2.10.a and Figure 2.10.b the case of 1D compression, considering the evolution law
for permanent deformations proposed in Eq. (2.57).

@ ®
o 4
olf 5o fﬁ —b=0
e 0< b'<1
) /)

Figure 2.9: 1D tensile behaviour: (a) unified dissipative approach for the computation
of the internal variables adopting Hy; (2.83) and (b) uncoupled dissipative approach,
adopting H, (2.84Db).
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Figure 2.10: 1D compressive behaviour: (a) unified dissipative approach for the
computation of the internal variables adopting Hy (2.82) and (b) uncoupled dissipative
approach, adopting H; (2.84b).
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As evident from Figure 2.9.a and Figure 2.10.a, the energy released with or
without permanent deformations is exactly the same resorting to the coupled
approach, whereas a relevant over-dissipation can be noticed with the adoption of
the uncoupled one (Figure 2.9.b and Figure 2.10.b), passing from the case of b =0
to the case of 0 < b < 1.

Secondly, in conjunction with the new definition of the permanent strain rate
provided in Eq. (2.61) and expressed for the 1D case in Eq. (2.75), the pure
exponential softening function of Eq. (2.79) is considered for computing the
adjusted Hu (ro=f. = f, =f). Specifically, to make the following computations easier,
the linear approximation of the ¢(r) function (2.79), identified with a dash line in
Figure 2.8.a, is taken into account:

* 1
q (r):ZHd (’”0 —r)+r0 ry <r <r, {1+2HdJ (2.85)

Substituting in Eq. (2.75) the damage values obtained considering the linear ¢"(r)
function (2.85) and coming back to a rate form, the expression of the irreversible
strain rate results:

§-(2H, +1)

ép :é(sz +1)é:m8m}

(2.86)

The three different contributions identified in Eq. (2.70) are the following ones:

5 _ i o &(2Hg +1)
8fe=oF 814 = 4EmH, S AEH, 1-&-(2H, +1)

(2.87)

Merging all the contributions and equating the specific fracture energy to the ratio
between the fracture energy per unit surface Gy and the width /, a second degree
equation in the unknown Hyis found:

4EHG —2H, (1-&)+2H =0 (2.88)

where 2H is the following quantity:

2H =[ 1 ] (2.89)
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with the material property 7= r2 / (2£-G,) . In the generic case of ¢ # 0, between

the two possible roots solving Eq. (2.88), the one representing the softening
modulus in the post-peak behaviour is:

(1-8)-(1-¢)° -8¢H (2.90)
4&

Hd:

In Figure 2.11, the different contributions explicitly defined in Eq. (2.87) are
shown, with reference to a linear softening curve. Both the softening modulus
driving damage 2H,, whose definition is provided in Eq. (2.90), and the constitutive

parameter ¢, introduced to identify the portion of &, associated to permanent

deformations, are pointed out. Together with them, the slope of the global softening
behaviour (including damage and irreversible deformations) is indicated with 2EH.

o Ee : €p

Ty

- EEH, (142H,) £

ry/2EH

Figure 2.11: Different dissipative contributions highlighted with reference to a 1D
history ruled by the linear softening function (2.85) and influence of the parameter &

Such a figure allows understanding the limit cases contemplated by the
proposal developed for permanent deformations in Eq. (2.61). For ¢ = 0, the
material behaviour is perfectly reversible, i.e. irreversible strains are absent. In this
case, the modulus 2H, is equal to the quantity expressed in (2.89) since the
dissipative contribution g4 related to permanent deformations is zero and this is
coherent with the linear softening modulus presented in (Cervera et al., 1996;
Cervera, 2003). For growing ¢, the dissipation due to permanent deformations g
increases, while gz, the dissipation related to damage, decreases. This corresponds
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to a growth of the softening modulus H,; and is coherent with the idea of maintaining
unaltered the specific energy g; being this quantity completely defined starting
from a material constant , which is the fracture energy Gr.

From Eq. (2.90), a limit value for & &im, can be found by ensuring the
positiveness of the quantity under square root:

£ =1+4H -4 [H? +% (2.91)

As shown in the following structural applications (for instance in Section 7.1), this
value is sufficiently high to guarantee that the experimental evidence is caught for
quasi-brittle materials as concrete and masonry. Moreover, from Eq. (2.91) it
derives that & is lower than 1 and that increases for decreasing H.

2.5.2 Gaussian damage evolution law

Before computing the hardening-softening modulus of the Gaussian stress-like
function (2.80) according to the unified dissipative approach, some comments about
the derivation of this new ¢(r) function are provided.

By comparing the new damage evolution law to the exponential one (see Figure
2.8), the former is able to reproduce a more realistic softening behaviour than the
latter, especially if compressive loadings are considered. In fact: the linearity is
abandoned before the attainment of the material strength f (9 < 1), and not in
correspondence of it; a non- linear hardening trend precedes the softening one; the
transition from the linear elastic regime to the softening branch is smooth, and a
gradual decrease of the tangent stiffness, from positive to negative values, is
simulated.

Moreover, the attractiveness of the new damage evolution law lies in the fact
that both the hardening and the softening trends can be modelled by means of only
one function, the Gaussian one, and resorting to the same material parameters (Gy,
f, E) needed in the case of linear or exponential softening. Other damage evolution
laws contemplate both a hardening and a softening part and a smoother passage
from the linear elastic range to softening but they generally require more than one
function to describe the complete non-linear behaviour and, consequently, more
input parameters. For instance, in (Petracca, 2016), for compressive damage, an
evolution law including an hardening part, two softening parts and a final constant
residual stress part is described. Another case is the one presented in Egs. (2.76),
which consists in a parabolic hardening followed by an exponential softening.
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The general way of expressing the Gaussian function is the following:

q<r):aexp{_;(gﬂ 292)

where three parameters (a, b and c) appear. In Figure 2.12, the (r-r9) — q(r) curve
associated to (2.92) is displayed and the parameters a, b and ¢ are identified.

q(r)
a=f

b-ry btc-r rry
Figure 2.12: Gaussian hardening/softening law with identification of parameters a, b
and c in Eq. (2.92) and parameters ry and H; in Eq (2.80).

The choice of these parameters depends on three conditions to be ensured:

(i) the maximum stress ¢ in a uniaxial test has to be equal to the material strength;
consequently, since ¢ = g(r) , the maximum value attained by ¢(r) has to be
equal to the peak strength of the material f;

(ii) the energy per unit volume dissipated has to be coincident with the ratio G/

(iii) damage starts at o, so q(rg) = ro = f-exp {—0.5} = 0.60653 f.

Condition (i) can be satisfied considering @, which represents the maximum value
attained by ¢(7), equal to f. Condition (ii) can be guaranteed by varying ¢, which, as
shown in Figure 2.12, controls the width of the bell, i.e. the dissipated energy. It is
important to clarify that condition (iii) is an assumption, meaning that other values
for 9 could be considered. The choice here done for 7y is equivalent to assume:

ry=b —c =f-exp{-0.5} (2.93)

From the relation (2.93) it emerges that b, representing the value of the damage
threshold for which the material strength is attained (see Figure 2.12), is not a free
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parameter but it depends on ¢ and 9. Hence, the softening modulus Hyadopted in
the definition of the Gaussian hardening-softening function (2.80) can be related to
ro and ¢, since it refers to the absolute value of the derivative of ¢(r) in
correspondence of the inflection point » = b+ ¢ (see Figure 2.8 and Figure 2.12).
With reference to (2.92), this quantity can be expressed in the following way:

94

H. =
d@r

1
=1 = (2.94)

r=b+c

Finally, the Gaussian stress-like function in the form (2.80) is obtained by
substituting in (2.92) the parameters a (equal to f), b (Eq. (2.93)) and ¢ (Eq. (2.94))
as functions of Hy and ry.

The computation of the hardening-softening modulus H; of the Gaussian
damage function is performed only considering the new definition of the permanent
strain rate provided in Eq. (2.61) and expressed for the 1D case in Eq. (2.75). To
simplify the procedure, the linear approximation of the ¢(r) function (2.80),
identified with a dash line in Figure 2.8.c, is considered:

d

* 2r, 1 3
P=H,|n +=—"2L—r|+r lle—|<r <ry|1+—
9> () d(o H, } 0 0[ Hd] 0( de

Substituting in Eq. (2.75) the damage values obtained considering the bi-linear ¢ (r)
function (2.95) and coming back to a rate form, the expression of the irreversible
strain rate results:

* H 1
9 (r): d(r—r0)+r0 1y <r <p (1+—j
(2.95)

Wf‘“‘*’”“ﬁr e (”H_d]

. . f 1+ H . 1 3

81)2:5‘(1+Hd)8:1—§(-(TZ[l)r 7 [1+H—d]ﬁr <r [1+H—dJ
(2.96)

The three different contributions identified in Eq. (2.70) are the following ones:



64 Energy-equivalent d+/d— damage model for quasi-brittle materials

2 2
0 _ un
8/ = 2EH,

Efe=F

5 (3 &-(1-Hy) Ly ¢ (1+Hqg)
S T EH \21-E-(1mHy) 1-E-(1-Hy)

(2.97)

Merging all the contributions and equating the specific fracture energy to the ratio
between the fracture energy per unit surface Gy/l, a third degree equation in the

unknown Hyis found:

FHG —Hy[ (1) —&Hg |+ 1-OH =0 (2.98)
where:
| Texp{-1}-H-I

with the material property 7= s2/(2£-G,).

In the generic case of & # 0, among the three possible roots solving Eq. (2.98),
the positive one with value between 0 and 1 must be taken. For & growing with
respect to the null value, the hardening/softening modulus increases.

Analogously to the case of exponential damage, an upper limit & exists but its
direct expression can not be easily provided; therefore, it has to be found
numerically. In case of £ =0, the material is perfectly reversible and from Eq. (2.98),
it is inferable that:

2.55-H-1

_ e (2.100)
1-0.368-H -1

Hg=Hg

The similarity of Eq. (2.100) with the expressions derived for the modulus

ruling the exponential softening (Eq. (2.84b)) is evident. However, despite the same

formalism, a quantitative comparison between them is not univocal and, only on

the base of the width / and of the mechanical properties of the material (# ), the

here proposed Gaussian damage function can be defined steepest in the descending
branch than the exponential one or viceversa.

In the structural applications of the damage model, the hardening behaviour
foreseen by the Gaussian g(7) function is considered only in compression while a
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pure softening behaviour is contemplated in tension, through the adoption of the
exponential function (2.79).

In Figure 2.13, some curves in 1D tension and 1D compression obtained by
considering the new evolution law for the permanent strain tensor (2.61) are
displayed with the intent of showing how, by varying ¢ and keeping fixed the
fracture energy Gy, the softening modulus Hy computed according to the unified
procedure changes in order to maintain unaltered the total specific dissipated
energy. The material parameters considered are collected in Table 2.1 and,
according to Eq. (2.91), the limit value for &' is equal to 0.7.

Table 2.1: Material parameters.

E v A a G/’ Gy !
[MPa] [-] [MPa] [MPa] [N/mm] [N/mm] [mm]

20000 0.0 2.0 -35 0.1 30.00 20

(a) (b)

aft ‘ olf _
.. &'=0,H',=0016 . & =0,H,=0.053
.. &=03,H,=0.024 . E=03,H,-0.071
__ &=0.6,H,=0.047 _ &=06,H ,=0.14

€ €
Figure 2.13: 1D o-¢ curves (a) in tension and (b) in compression for different values
of the parameter ¢ defining ¢, (2.61).
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Chapter 3

Multidirectional d"/d~ damage
model for cyclic loading

Together with the damage-induced anisotropy, another essential feature that needs
to be taken into account in the constitutive behaviour of quasi-brittle materials as
concrete and masonry is the modelling of the microcrack closure-reopening (MCR)
effects (Caboche, 1992). These effects consist in the partial or total recovery of the
material stiffness upon load reversal from tension to compression, related to the
closure of previously generated cracks. The modelling of such a phenomenon is
fundamental when the main interest is to perform the analysis of concrete,
reinforced concrete or masonry structures under wind and seismic actions (Chang
and Mander, 1994; Cervera et al., 1995; Oliveira, 2003; Faria et al., 2004; Xue and
Yang, 2014).

As observed in Section 1.2.1, the “original” d"/d~ damage model by (Faria et
al., 1998) is effective in describing the unilateral behaviour of the material only in
specific cyclic conditions, characterized by alternating full tensile and full
compressive regimes, i.e., for instance, in a 1D tension-compression cyclic history
or in bending dominated problems (Faria et a/., 2004). In presence of shear cyclic
conditions, the stiffness recovery capabilities are instead absent and, as remarked
in correspondence with Figure 1.4, this consideration can be generalized to all those
damage formulations based on the use of spectral decomposition and scalar damage
variables. Therefore, not only the “original” d*/d~ formulation suffers from this
limitation, but also the new energy-equivalent d*/d~ model presented in Chapter 2.
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In order to make the new formulation able to deal with microcrack-closure
reopening effects in generic cyclic conditions, and especially in shear, in the present
chapter the constitutive model is enriched with a “multidirectional damage
procedure” with a twofold goal. On the one hand, memory regarding microcracks
orientation has to be preserved. On the other hand, this has to be achieved
maintaining only two scalar variables in the constitutive law (2.33).

For the sake of clarity and without loss of generality, first of all, the
fundamental aspects of this new approach are described in Section 3.1, referring to
plane problems. The interest is specifically addressed to the case of cyclic loading,
either considered alone or preceded and/or followed by non-cyclic (permanent or
proportionally increasing) loading. Some hints about the possibility of extending
the procedure to 3D problems are however included. An interesting interpretation
of the multidirectional damage approach is proposed in Section 3.2, by establishing
some parallels with the concepts of fixed, multi-directional fixed and rotating crack
models (Rots and Blaauwendraad, 1989). In Section 3.3, the numerical performance
and robustness of the approach is treated, by proposing a regularization technique
able to improve the convergence in correspondence with closure and reopening of
cracks. Finally, in Section 3.4, some examples, solved at the local point-wise level,
are shown to demonstrate the enhancements which derive from the adoption of the
multidirectional damage procedure in terms of histeretic behaviour of the material
under shear cyclic conditions.

Part of the work presented in this chapter is already published in (Cervera and
Tesei, 2017) and in (Cervera et al., 2018).

3.1 Formulation

At the base of the “multidirectional d*/d~ damage model”, there is the idea of
considering two independent damage evolution processes for tension and two
independent damage evolution processes for compression, differing for the
direction in which they act. This translates in the necessity of monitoring separately
two damage values in tension and two damage values in compression and this is
performed by means of a plane partition into two regions for d* and two regions for
d". Each region is endowed with its own (tensile or compressive) degradation
parameter d and damage threshold ». The assignment of a tensile (compressive)
damage value to a certain region occurs on the base of the maximum (minimum)
principal strain direction which has caused it; specifically, the reference tensor
quantity is the elastic strain &, in order not to alter the strain-driven formalism
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followed in the evaluation of the secant matrix and of the internal variables (Section
2.2.1, Section 2.3 and Section 2.4).

The active value of d* (d"), i.e. the one affecting the constitutive law (2.33), is
computed starting from the internal variables d” and " (d~ and ), associated to
the damage region in which the current maximum (minimum) principal strain
direction falls. In order not to compromise the irreversibility of the damage process,
the updating of the active damage values is performed taking into account, within
each region, the Kuhn-Tucker and persistency conditions (2.66) and (2.67) and the
monotonically increasing evolution laws (2.69). The inactive damage values are
however kept in memory with the possibility of being re-activated in
correspondence with a principal directions’ rotation.

The distinction between two families of cyclic loading conditions is herein
considered:

(i) cyclic loading characterized by a fixed principal reference system and by
changes of the principal configuration only in presence of load reversal; this is
the case in a 1D cyclic history or in pure shear cyclic conditions, when the
rotation of the principal directions is represented by a swapping between
minimum and maximum principal directions.

(if) Cyclic loading with continuous rotation of maximum and minimum principal
directions; this is the case of cyclic histories preceded by non negligible not-
cyclic loading.

To clarify this classification, in Figure 3.1, two problems, one belonging to the
category of Load Type (1) (Figure 3.1.a) and the other belonging to the category of
Load Type (i1) (Figure 3.1.b) are displayed: the former represents a problem of pure
cyclic shear, the latter represents a cyclic shear history preceded by a pre-
contraction. The objective is to underline the differences in terms of rotation of the
principal maximum (elastic strain) direction with respect to the horizontal axis,
quantity which is defined by means of the angle #*. While in the case of Load Type
(i) the angle 0" is fixed except at loading reversal (instant #;), when a swapping
between the maximum and minimum principal directions occurs, in the case of
Load Type (i1) this quantity continuously changes during the cyclic history. It is
worth noting that, in the case of Load type (ii), the angle " identifies actually the
rotation between the maximum principal current direction and the maximum
principal direction in the initial configuration, at time #y (which is horizontal, due to
the initial vertical pre-contraction).
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Figure 3.1: Differences between the two types of cyclic loading conditions considered
in the multidirectional damage procedure: (a) Load Type (i) and (b) Load Type (ii).

It is important to underline that the multidirectional concepts above described,
based on the monitoring of damage depending on its orientation, hold for both the
types of loading. As discussed in the follow-up, the differences mainly lie in the
way according to which the damage regions are identified during the loading
history, related to the differences stressed in Figure 3.1. This will affect also the
stiffness recovery capabilities which can be modeled in the two different loading
conditions.

3.1.1 Cyclic Load Type (i)

Regarding load Type (i), since, except swappings in correspondence of load
reversal, the principal directions are fixed during the loading history, also the
damage regions in tension and compression in which the space is divided are
considered fixed. Their bisectors are assumed coincident with the principal
reference system (Pmax o, Pmin_a) in correspondence of which damage occurs for the
first time and their amplitude is equal to 7/2:

bisector; = bisectory = p, . amplitude; , =1/ 2
1 = Pmax_d 2 = Pmin_d /4 12

(3.1)

bisector; = p,;, 4 bisector, =p,.. 4 amplitude;,=n/2

The orthogonality between the bisectors of the tensile (compressive) damage
regions, visible in Eq. (27), allows assuming that the full fracture energy Gr™ (Gy)
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is consumed in each tensile (compressive) region, independently from one other.
When a change of the principal configuration occurs for the first time after the plane
partition, i.e. after appearance of damage, two situations are contemplated. If the
rotation is significant, for instance equal to m/2 in case of swapping between
maximum and minimum principal directions, a complete regain of the initial
stiffness is assured; if the rotation is not relevant, and lower than n/4, there is no
switching from a region to the other one, and no unilateral effects are visible in the
structural response.

The working principles of the multidirectional damage model in case of Load
Type (i) are explained, by means of Figure 3.2, considering the problem of a panel
subjected to a cyclic horizontal displacement u, inducing shear, just commented in
Figure 3.1.a. It is assumed that uxz = txrr = Umax.

(a)
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Figure 3.2: (a) Load Type (i) problem: identification of the damage regions and active
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damage variables (in grey) (b) before and (c) after loading reversal.
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In Figure 3.2 it is shown how two damage values for tension and two damage
values for compression are kept in memory based on the current principal strain
directions (which are p*o->1, p"o->1 in Figure 3.2.b and p*1-2, p~1->2 in Figure 3.2.c).
The active damage values in tension and compression are the ones associated to the
regions highlighted in gray. It is worth noting how, in correspondence with the
instant e (Figure 3.2.b), the degradation tensile (compressive) parameter is
associated only to the tensile (compressive) damage region 1. The absence of
damage in the other tensile (compressive) region allows simulating the recovery of
stiffness in correspondence with the instant #;, i.e., when the swapping between
maximum and minimum principal directions occurs.

The problems which can be treated according to this procedure are mainly
represented by structural elements in which permanent loads are negligible with
respect to the variable loads with cyclic nature, as wind and seismic actions.

3.1.2 Cyeclic Load Type (ii)

Regarding load Type (ii), the continuous rotation of the principal directions and the
oscillation around the initial configuration requires the adoption of a criterion for
defining the activation of a multidirectional damage approach and the consideration
of evolving, non-fixed, damage regions. To do this, the introduction of two sets of
variables is performed, monitoring the deviation of the principal reference system
with respect to the initial conditions; the definition of the first set of variables, the
equivalent deviation quantities 79 =+, is the following:

= cos(é),i) (3.2)

where 6;" (6;) represents the absolute value of the angle between the current
maximum (minimum) principal strain direction and the initial maximum
(minimum) principal strain direction, ranging from 0 to n/2.

The second set of variables is constituted by the threshold deviation quantities
ro £, which can be computed according to the expression:

1 =cos(@f)=min(cos(0min);1[13itr]1(r;)j (3.3)

From Eq. (3.3), it results that 6," (6,") represents the maximum value assumed by
the equivalent angle 6, (6;) until the current time ¢, provided that it is higher than
the minimum threshold deviation 6,,;, This parameter assumes the important role
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of the minimum deviation angle for which an independent treatment of the damage
variable is valid.

The analogy between the definition of the damage threshold » & (2.68) and the
deviation threshold 9 £ (3.3)is evident: as »* (+) rules the evolution of the damage
variable d* (d"), as r¢" (ro") governs the evolution of the damage regions, in terms
of their bisector and their amplitude. Specifically:

bisectorfjL 5= iﬁ;‘r amplitudezz =2. 9;: if 9;: <n/4

. + . + .ot (3'4)
bisectorj , =n/4 amplitude; , =n/2 if 0, >n/4

where bisector” ;> (bisector™ 1 >) refer to the directions evaluated starting from the
initial maximum pmax o (Minimum puin ) principal strain direction. As visible in
Eq. (3.4), the amplitude of each region increases with the evolution of the region’s
bisector: this translates in the fact that two directions initially belonging to the same
damage region continue to be affected by the same degradation parameter during
the whole loading history. Moreover, due to the orthogonality between the
maximum and minimum principal directions, 79" = 75~ and r¢" = ro"; hence, the
activation of the multidirectional procedure and the updating of the damage regions
in tension and in compression, whose conditions are expressed in Egs. (3.5), occur
simultaneously. For this reason, hereafter, the superindex * is dropped.

I:“g <0 gngg—l’g >0 fe-g(g:O l"ggezo (35)

Once again, a similarity between the conditions (3.5) and the Kuhn-Tucker and
persistency conditions (2.66) and (2.67) ruling the updating of the damage variables
is present. According to Egs. (3.5), four different situations can be distinguished:

o g9>0, 7p= 0 and rg = coS(@min): the multidirectional procedure is not active

since the equivalent deviation angle & (3.2) has never overcome the minimum
deviation Gin. The value of d"( d") is the same in both the tensile (compressive)
damage regions. The damage regions are identified according to Eq. (3.4);

o gp=0, 7p<0 and 0, < n/4 (loading conditions): the multidirectional procedure

is active and the bisectors of the damage regions rotate, accompanied by an
increase of the regions’ amplitude, according to Eq. (3.4);

o gp=0, 7p<0 and 0, > w/4 (loading conditions): the multidirectional procedure

is active but the damage regions do not evolve, according to Eq. (3.4), to avoid
overlapping;
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o g9>0, 7p=0 and ro < cos(@min) (unloading conditions): the multidirectional
procedure is active and the damage regions coincide with the ones assumed at
the last loading step.

The essentials of the multidirectional damage model in the presence of
continuously rotating principal directions (Load Type (ii)) are illustrated by means
of Figure 3.3, making reference to the problem of a panel subjected first to pre-
contraction and the to cyclic shear, displayed in Figure 3.1.b. It is assumed that

UxL = UxRL = Uxmax.

It is important to note that, except for the positive and negative sign, the 6" - ¢
curve shown in Figure 3.3.a represents the trend of the equivalent quantity ;" (see
Eq. (3.2)), which coincides with the absolute value of the actual deviation angle 6.
In Figure 3.3.b, no distinction between the values of d"(d") in the two tensile
(compressive) damage regions is visible. In fact, this state (instant ¢ = tins)
corresponds to the activation of the multidirectional procedure; before it, the
deviation has always been lower than Omin, avoiding a directional treatment of

damage (go > 0, 7p= 0 and r9 = cos(Omin)). The adoption of the grey colour to stress

the active damage values is here unuseful, due to the fact that the plane partition in
distinct damage regions is not operative yet. Moreover, Figure 3.3.c describes the
damage distribution in the unloading conditions after the achievement of the peak
displacement in #nax1, in the instant #,i,un. In this case, the damage values and the
damage regions are the ones assumed in correspondence with #u.; and the
multidirectional procedure is active since, only in the regions including the current
principal strain directions (region 1+ and region 1—, the gray ones), the damage

variables have evolved with respect to the values in tninz (g0 > 0, 7p= 0 and
7o < coS(Gmin)).

Similarly to the case of load Type (i), the description of the microcrack closure-
reopening effects is ensured by the transition from a damage region to the other one,
occurring in correspondence with the load sign reversal (instant #;). In fact, from

the active tensile damage value d*; (d /) in Figure 3.3.c, there is the passage to the
active one d"> (d2) in Figure 3.3.d, corresponding to the maximum reloading

instant tmax2 (20 = 0, 79< 0 and 6, < /4).
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Figure 3.3: (a) Load Type (ii) problem: identification of the damage regions and of the
active damage variables (in grey) (b) in correspondence with the activation of the
multidirectional procedure, (c) in unloading conditions and (d) at the maximum reloading.
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Finally, from Figure 3.3, the evolving nature of the damage regions, foreseen
by the multidirectional procedure in case of rotating principal directions, can be
observed. In fact, the amplitude of the damage regions is equal to 26, in Figure
3.3.b while is equal to 26 (<n/4) in Figure 3.3.c and Figure 3.3.d. Specifically, in
Figure 3.3.c, unloading conditions are represented since the bisectors of the damage
regions (identified by 6,) and the principal directions (whose current deviation is ;)
do not coincide. Differently, Figure 3.3.d refers to loading conditions: bisector+,

coincides with the principal direction p.qx while bisector—; coincides with pin.

From the above considerations, the introduction of a minimum threshold G,in
can be better understood: it has the objective of delaying the activation of a
multidirectional damage model, and consequently, it implies the possibility of a
partial stiffness recovery in a generic loading history. The modelling of a partial
stiffness recovery seems adequate for loading conditions of Type (ii): in fact, a
continuous rotation of the principal directions without any brusque variation allows
one to transfer a certain amount of damage accumulated in a direction to the closest
ones. The two limit cases, characterized by no stiffness recovery and by complete
stiffness recovery, are however covered by the present formulation. If the cyclic
history does not generate relevant deviations from the principal reference
configuration of the permanent load, no stiffness recovery occurs; if no damage is
present before the activation of the multidirectional damage procedure, a total
stiffness recovery is obtained.

Conversely to load Type (i), this procedure allows to model situations in which
permanent loads are non-negligible with respect to variable cyclic actions.

3.1.3 3D extension

The 3D extension of the here-described multidirectional damage model has to be
further analyzed, but it seems possible by referring to the same concepts introduced
for plane problems and adopting the same distinction in cyclic load Type (i) and
cyclic load Type (ii). As in 2D, the partition of the space in regions for tensile and
compressive damage is performed, d* (d") is assigned to all of the regions including
an eigenvector associated with a positive (negative) principal strain, and the active
value of the tensile damage variable (compressive damage variable) is computed
considering the current maximum (minimum) principal elastic strain direction.

As regards load Type (i), the multidirectional procedure is considered active from
the beginning of the cyclic loading history, and the space is divided into three
regions for tensile damage and into three regions for compressive damage, each
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region associated to a principal direction. As in 2D, the bisectors of the damage
regions coincide with the principal directions, which are fixed throughout the
loading history, and the amplitude of each region is equal to /2, meaning that each
principal direction that forms an angle 6 with the bisector of a region, such that
|cos(0)| > cos(n/4), belongs to that region.

For load Type (i1), characterized by a continuous rotation of the principal directions,
the activation of the multidirectional procedure and the updating of the damage
regions are ruled by the same conditions holding in 2D, i.e., the conditions
expressed in (3.5). Likewise, the deviation with respect to the initial configuration
is evaluated resorting to definition (3.2), and the threshold quantity is provided by
(3.3). Since the active damage values are computed based on the maximum and
minimum principal directions (not the intermediate principal directions) and the
loading conditions foresee a continuous, and not abrupt, rotation of the principal
reference system, additional damage regions associated with the rotation of the
intermediate principal direction are not necessary. Therefore, as in 2D problems,
two regions for tensile damage, related to the rotation of the maximum principal
direction, and two regions for compressive damage, related to the rotation of the
minimum principal direction, are considered. If the bisector of the tensile damage
region 1, coinciding with the current maximum principal direction (loading
conditions), is inclined by an angle +6°, (or + w/4) with respect to the initial
maximum principal strain direction, the bisector of the tensile damage region 2 is
automatically defined as the direction inclined of an angle —0", (or — w/4) with
respect to the initial maximum principal strain direction and belonging to the plane
in which the maximum principal strain direction has rotated in the loading history.
A direction is included in a region if it forms an angle 6 with the bisector of that
region, such that [cos(8)| > |cos(6 *,)|.

3.2 Parallels among the multidirectional damage model
and fixed/rotating smeared crack concepts

The new damage model proposed in Chapter 2 fits within the framework of the
rotating smeared crack concept, introduced for the first time in (Cope et. al, 1980).
In fact, as outlined in Section 2.2.1, the alignment between the axes of orthotropy
of the damaged material and the principal strain directions is a feature of the
proposed orthotropic damage model. Moreover, the limitations observed in the
modelling of MCR effects in presence of shear cyclic loading (Figure 1.4) are
comparable to the inability of the rotating crack models to take into account the
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orientation of previous defects. The inclusion of the procedure described in Section
3.1 can be interpreted as an enrichement of the constitutive equations with some
properties proper of the fixed crack models (Rots et al., 1985), specifically the
preservation of memory regarding damage orientation. Rather than to a pure fixed
crack model, the present proposal can be assimilated to a multidirectional fixed
crack model (De Borst and Nauta, 1985; Riggs and Powell, 1986; Rots and
Blaauwendraad, 1989).

First of all, a similar use of a threshold angle is present in the multidirectional
damage model and in the multidirectional fixed crack model. As in the former, the
transition between two different damage values is performed only when a rotation
of the principal directions greater than a certain angle occurs, in the latter, a new
crack is initiated only when the inclination of the principal directions with respect
to existing cracks overcomes a certain threshold. Moreover, some specific
hypotheses discussed in (Rots and Blaauwendraad, 1989) for the implementation
of'a multidirectional model are in good agreement with the choices here done in the
modelling of the multidirectional damage. In fact, the assumption to consider the
value of the damage variables evolving in a region independently of what happens
in the other region is analogous to consider the behaviour of each multidirectional
crack as the one of a single crack. In view of this, adequate values for @i, the
minimum threshold deviation appearing in Eq. (3.3), can be chosen in accordance
with (Rots and Blaauwendraad, 1989) and range between n/12 and n/6. In addition,
the choice of considering only one active value of damage in tension and one in
compression is in line with the hypothesis done in multidirectional models of
adopting the most recently initiated defect as the only currently-active crack. This
is supported by experimental evidence: only the most recently initiated crack is
active in a system of non-orthogonal defects (Vecchio and Collins, 1986).

A difference between the multidirectional fixed crack concept and the
multidirectional damage model lies in the fact that the former deals with a collection
of several fixed defects of different orientation while the latter considers only two
independent damage regions (2D problems). Finally, differently from the
multidirectional fixed damage models, the multidirectional damage formulation
maintains during the whole damage process the coaxiality between principal
directions of elastic strains and axes of orthotropy. Hence, it keeps the motivating
feature of the rotating crack models, coaxiality, which reduces stress locking, while
remedying the impossibility of tracking memory of the material defects, the main
objection arisen against the rotating crack concept (Bazant, 1983).
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3.3 Numerical aspects

In the present section, an implementation detail addressed to improve the numerical
robustness of the multidirectional procedure described in Section 3.1 is introduced.

When treating microcrack closure-reopening effects, a further aspect to be
taken into account regards the convergence difficulties arising at structural level.
As pointed out in (Jefferson and Mihai, 2015), these numerical difficulties are
related to the abrupt changes in the secant stiffness going from an open crack state
to a closed one, or vice versa.

The passage from a damage region to the other one, performed on the base of
the current principal strain directions, implies modifications of the active damage
variables d* and d~ affecting the secant stiffness (2.24). Therefore, in analogy with
the considerations provided in (Jefferson and Mihai, 2015), the multidirectional
damage approach described in Section 3.1 may suffer from convergence problems.
Hindrance in achieving convergence on the residual nodal forces has been observed
especially in case of load Type (ii) (Section 3.1.2); in fact, due to the partition
adopted for this kind of loads (see Figure 3.3), at load sign reversal, principal
directions tend to oscillate around the boundary between a damage region and the
other one.

In order to eliminate these convergence difficulties, the introduction of a
transition region, of amplitude 26;, is here proposed, with the purpose of making
the passage between two different damage regions smoother. The working
principles of this smoothing procedure are explained in Figure 3.4, where it is
shown how the transition region has, as bisector, the boundary between the damage
region 1 and the damage region 2. Superindices + and — for identifying the regions
and their corresponding quantities » and d are dropped, since the procedure hereafter
described holds for both tensile and compressive regions, provided that the
principal current elastic strain direction p refers to pmax and pmin, respectively.

When the current principal strain direction p belongs to the transition region,
the active damage threshold quantity  is evaluated according to Eq. (3.6), resorting
to a hyperbolic tangent function:

t

1 1 26
rt:E(rl +r2)+5(7”1_r2)'tanh(7p] (3.6)

where the pedix ¢ stands for transition, 1 and > are the damage threshold values
pertaining to region 1 and 2, respectively, and 6, is the angle between p and the
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boundary. Hence, the active damage value d in the transition region is evaluated
starting from the smoothed damage threshold (3.6) and referring to the evolution
damage law expressed in Egs. (2.69).

The trend of the smoothing transition, operated on the damage threshold
quantity, is plotted in Figure 3.4.b, where the amplitude of the transition region is
also identified. This amplitude, defined by the parameter 6;, is chosen to be
sufficiently small compared to the rotation performed by the principal directions,
which can be, at most, 7/2. In case of p falling outside the transition region, the
active value of the damage variable is computed referring to 71 or 72, according to
the procedure declared in Section 3.1.

The impact that such transition has on the numerical robustness of the
multidirectional damage approach is studied with reference to a structural
application involving cyclic shear conditions in Section 6.3, where convergence
histories for different values of the parameter 6; are compared.

(a) (b)

__E——ezﬂgp

ﬂ Boundary

!

|
Active damage d(r;) -8, G, 8,

Figure 3.4: Smoothing of the multidirectional procedure: (a) identification of the
transition region and (b) hyperbolic tangent function operating the regularization.

3.4 Enhanced microcrack closure-reopening capabilities
under cyclic shear

In order to show the enhanced dissipative capabilities of the multidirectional
damage model in presence of cyclic load conditions, some problems are solved at
a local point-wise level and commented on.

All the numerical analyses are performed considering an exponential damage
evolution law in tension (Eq. (2.76) with ro" = =f,*, i.e. y." = y,") and a parabolic
hardening-exponential softening trend in compression (Eq. (2.76) with
ro <f <fp,ye =0.5andy, =13).
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Initially, the effects of the multidirectional treatment of damage is analyzed in
the hypothesis of null permanent deformations. Then, they are included with the
intent of showing how the combined adoption of the multidirectional approach and
irreversible deformations favorably affects the structural dissipative behaviour
under cyclic shear conditions. The definition used for &, in this section is the one
presented in Eq. (2.57).

The constitutive properties adopted in the numerical analyses are given in
Table 3.1. They are representative of masonry, one of the cohesive-frictional
materials more of interest in civil structural applications.

Table 3.1: Material parameters used in the numerical analyses.

E v A a G’ G flf Kk
[MPa] [-] [MPa] [MPa] [N/mm] [N/mm] [-] [-]

1540 0.2 0.13 -3.9 0.1 10 1.15  0.75

First of all, a cyclic uniaxial load history, characterized by alternating 1D
tension-1D compression, is considered. Since the constitutive behaviours obtained
with or without the adoption of the multidirectional damage procedure are
qualitatively the same in terms of unilateral effects, only one o-¢ curve is shown, in
Figure 3.5.

1 2 eNfEE)
A F

|

Figure 3.5: 1D cyclic loading history.

It refers to the following loading sequence: a loading in tension with an exceeding
of the damage threshold 70" (O-A-B), a partial unloading followed by a reloading
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in tension with further progression of damage (B-C-D), an unloading in
compression with softening (D-O-E-F) and a reloading in tension (F-O-D-G).

It is evident from Figure 3.5 that the initial stiffness recovery in the transition from
tension to compression (D-O-E) is captured. However, as discussed in Section 1.2.1
and at the beginning of this chapter, even the “original” d*/d~ damage model
exhibits such unilateral effects.

Therefore, the advantages of the proposed formulation have to be demonstrated
in more generic loading conditions, as the ones previously commented on and
represented in Figure 3.1.a (Load Type (1)) and in Figure 3.1.b (Load Type (ii)).
Hereafter, it is assumed that the maximum horizontal displacement in the loading
stage is lower than the maximum displacement in the reloading one, i.e., uxr < [uxrz).

Regarding the problem of the panel subjected to pure shear cyclic loading
conditions (Figure 3.1.a), the normalized 7 - y responses obtained without and with
the multidirectional damage procedure are displayed in Figure 3.6.a and Figure
3.6.b, respectively. In this case, the differences in terms of stiffness recovery are
clear: in Figure 3.6.a, no stiffness recovery is visible when the inversion of the
horizontal displacement occurs in the instant #; while in Figure 3.6.b the regain of
the initial stiffness is present. As commented on in Section 3.1.1, the total stiffness
recovery is justified by the orthogonality of the tensile (compressive) directions
between the first loading stage (going from instant O to ¢#1) and the second loading
one (going from #; to t).

7/Tmax 14 T/Tmax 14
(a) (b)
A K s . A K vt
AKinpoan 41' Kunioan
-1 0.87: -1 0.87
. ’Y/ ('Ymax) 1 Y/ (’Ymax)
K pEroap
1
........................... K vz >Kunroap Kreroap K vz > Kunroan
K reroan=Kunroan Kreroan=Kmrrir

Figure 3.6: Structural response of the problem represented in Figure 3.1.a: (a) without
the multidirectional approach and (b) with the multidirectional approach.

As regards the problem of the panel subjected first to a pre-contraction and then
to a shear cyclic loading history (Figure 3.1.b), three combinations of horizontal
and vertical displacement values are analyzed, differing for the ratio m = |uxmax/ts)|
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between the maximum u;, attained (uz.) and the imposed u,. Different values of this
ratio translate into different maximum values assumed in the loading history by the
variable 9 = (Eq. (3.3)). The minimum deviation @i, (Eq. (3.3)) is chosen equal to
/8.

On the one hand, in Figure 3.7, the value 0", is lower than 6,,;,, meaning that
the multidirectional procedure is never activated (m = 1). As a matter of fact, no
differences can be found between the 7 - y curves obtained without (Figure 3.7.a)
and with the multidirectional approach (Figure 3.7.b), both characterized by the
absence of stiffness recovery when the horizontal displacement changes sign. In
these conditions, the lack of MCR capabilities is adequate because the maximum
and minimum principal strain directions responsible for the damage generation do
not deviate significantly from the principal configuration induced by the permanent
vertical displacement. On the other hand, in both Figure 3.8 and Figure 3.9, the
maximum deviation is greater than 6., and the ratios between the horizontal and
vertical displacements considered are m = 1.8 and m = §, respectively. In both these
cases, the enhanced microcrack closure-reopening capabilities of the
multidirectional damage procedure are evident: the curves resulting from the
standard damage formulation (Figure 3.8.a and Figure 3.9.a) do not show any
stiffness recovery while the adoption of the multidirectional approach (Figure 3.8.b
and Figure 3.9.b) simulates the closure effects satisfactorily.
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1 : 1 :
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A K riro4p K reroap=Kunroap : A K rgroap K reroap=Kunroap
1 1
........... 1.0.82 oo los

Figure 3.7: Structural response of the problem represented in Figure 3.1.b, ratio m=1:
(a) without and (b) with the multidirectional approach.



84 Multidirectional d+/d— damage model for cyclic loading

T/Tmax T/Tmax
11.... .. 1
(@) (b)
KI]\ITIAL& KIAITIAL&
K, UMOAD gl KU:NLOAD
1 L os7 -1 L 087
Y/(Ymar) : Y/(Ymar)
K rero AL ST
R TR 1-0.54 1
......... L _0‘85
Kvrrar >Kunroap K virr >Kunzoap
K rEroan=Kunroap Kunroap<Kreroap<K mirir

Figure 3.8: Structural response of the problem represented in Figure 3.1.b, ratio m=1.8:
(a) without and (b) with the multidirectional approach.
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Figure 3.9: Structural response of the problem represented in Figure 3.1.b, ratio m=8:
(a) without and (b) with the multidirectional approach.

Specifically, for m = 1.8, the stiffness recovery is only partial (Figure 3.8.b),
while for m = 8 (Figure 3.9.b), it is complete. The response in Figure 3.9.b is
analogous to the one in Figure 3.6.b in terms of total recovery of the initial stiffness:
this happens because, in \he former case, the vertical displacement is almost
negligible compared with the horizontal one, while in the latter case, it is absent.
This observation translates in the fact that the multidirectional procedure for Load
Type (i1) is able to simulate the same MCR capabilities of the multidirectional
procedure in case of Load Type (i), when the maximum rotation performed by the
strain principal directions is large enough.

Finally, the in-plane cyclic shear problem illustrated in Figure 3.1.a is studied
considering five complete cycles of loading and reloading, with increasing
amplitude. For this problem, permanent deformations are included in the analyses,
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according to the definition (2.57) and adopting b* = 0.15 and b~ = 0.05. The
structural responses obtained without (Figure 3.10.a) and with the multidirectional
procedure (Figure 3.10.b) are compared. Once again, the enhanced MCR
capabilities of the multidirectional procedure are evident. The absence of unilateral
effects in Figure 3.10.a is responsible for a strong asymmetry in the cyclic
dissipative behaviour, which is not supported by experimental evidence on shear
(masonry or reinforced concrete) panels subjected to cyclic conditions (Magenes
and Calvi, 1992; Anthoine and Magonette, 1994; Vecchio, 1999; Silva et al., 2017).
Besides the stiffness recovery appreciable in Figure 3.10.b, another effect strictly
related to the adoption of the multidirectional procedure is the more adequate
representation of the evolution of permanent deformations under cyclic shear. Here,
the possibility of differentiating the damage processes depending on the orientation
of the principal strain directions reflects in realistically taking into account the
energy dissipated in the formation of both the orthogonal cracks.

T/ Tmax T/ Tmax

1

Figure 3.10: Structural response of the problem represented in Figure 3.1.a with
multiple cycles: (a) without and (b) with the multidirectional approach.

This translates in considering the active damage values increasing even after
loading reversal and has, as consequence, the accumulation both in loading and

reloading of the permanent strains (2.57), defined on the base of d* and d~ (see
Figure 3.10.b). Contrarily, in a pure scalar damage formulation, the lack of
unilateral effects in shear conditions implies, due to Eq. (12), an underestimation of
the irreversible deformations in the reloading stages (see Figure 3.10.a). These
enhanced dissipative capabilities under cyclic conditions ensured by the proposed
multidirectional damage model are further underlined in Section 6.3, devoted to
structural applications, where the comparison with experimental data is provided.



86

Multidirectional d+/d— damage model for cyclic loading




Chapter 4

Regularized strain tensor damage
model

The formulation of the nonlocal integral scheme thought for the regularization
of the new d'/d~ damage model is presented in this chapter. Specifically, the
peculiarities of the constitutive model which are, among the others, the
differentiation between compressive and tensile regimes and the coincidence
between the axes of orthotropy of the damage material and the principal directions
of strain and stress, encourage some reflections about the variable or variables to
be averaged. A discussion on this topic is presented in Section 4.1.1, in order to
reduce the arbitrariness in the choice of the nonlocal quantity by relating it to the
particular constitutive model adopted. Then, in Section 4.1.2, the regularized
extension of the proposed damage model is developed, underlying the unchanged
thermo-dynamic consistency of the formulation. Finally, in Section 4.2, the
identification of the input parameters of the regularized damage model is addressed,
resorting to the case of a uniaxially loaded bar. In this context, particular attention
is directed towards the nature of the nonlocal internal length /zg, which is interpreted
either as a regularization parameter or as a material property.

The mesh-size and mesh-bias independence of the results achieved with the
nonlocal damage formulation are studied in Chapter 7, by means of structural
applications involving different quasi-brittle materials as plain concrete, reinforced
concrete and masonry elements.
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4.1 Formulation

4.1.1 Choice of the variable to be averaged

In accordance with (Jirasek, 1998a), the quantities which can be selected as
nonlocal have to satisfy some basic requirements. First of all, the averaging has to
affect only the nonlinear response, while preserving the local character in the initial
elastic phase. Moreover, a reasonable material behaviour has to be obtained in
simple loading situations, not only at the onset of the strain localization but during
the whole degradation process. Under uniaxial tension, for instance, the adequacy
of a formulation is ensured when a localized strain profile and a vanishing stress
state are reproduced at complete failure.

On the base of these criteria, the generic constitutive laws of the eligible
nonlocal approaches are summarized in Egs. (4.1), (4.2) and (4.3) (see (Jirasek,
1998a; Bazant and Jirasek, 2002)), where the quantity on which the averaging
operator is applied is labeled with an overbar:

c=D(2(T(z,))):e, (4.1)
o=(C,+C,(,)) -e, 4.2)
c=D(g,):¢, 4.3)

In all cases, the averaging acts only after the appearance of the nonlinear
behaviour; since the reversible strain &, by which the stiffness operator D is
multiplied, is always present in its local version, a local linear elastic response is
initially ensured.

The nonlocal variable in Eq. (4.1) is the tensor T of the equivalent stress
quantities 7;;, according to which the damage tensor £ is computed. In the damage
model proposed in Chapter 2, the equivalent stress variables necessary to compute
d*and d” are 7" (Eq. (2.45)) and 7~ (Eq. (2.46)). This is an extension to a generalized
constitutive law of the nonlocal isotropic damage models proposed by (Pijaudier-
Cabot and Bazant, 1987) and (Saouridis and Mazars, 1992), based on the averaging
of the equivalent energy release rate and of the equivalent strain, respectively.

The nonlocal version expressed in Eq. (4.2) concerns the averaging of the
inelastic material compliance Cy, which is a generalization of the averaging of the
specific fracturing strain mentioned in (Pijaudier-Cabot and Bazant, 1987).
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Finally, in Eq. (4.3), the nonlocal counterpart of the reversible strain tensor &,
is adopted only in the definition of the stiffness degradation, while the strain in the
stress-strain relation is maintained local, as described for instance in (Bazant and
Lin, 1988).

An interesting aspect to be outlined is that the averaging of the damage variable
Q, suggested in (Bazant and Pijaudier-Cabot, 1988), is not included in the class of
eligible regularized approaches because it fails in exhibiting full tensile stress
relaxation at complete failure.

On the base of these considerations, the nonlocal approach chosen in order to
develop a regularized version of the energy-equivalent d"/d” model is the one based
on the averaging of the elastic strain tensor. Such a strategy is adequate for this
specific damage formulation, because it allows to perform the assessment of the
damage criteria in tension and compression (g + =7+ — £ <(,), which depend on
the positive and negative split of the elastic stress tensor (see Egs. (2.45) and (2.46)),
on the base of the averaged strain ¢, . Conversely, an averaging applied to 7+, in
line with the nonlocal version described in Eq. (4.1), would be weaker since the
distinction between tensile and compressive regimes, inherent in the computation
of the equivalent quantities, would be carried out on the basis of the local strains.
Moreover, the elastic strain tensor as variable to be averaged allows to apply the
multidirectional procedure proposed in Chapter 3 with reference to the principal
directions of the regularized strain, which would be otherwise impossible limiting
the averaging to the scalar equivalent quantities.

However, the averaging of the type expressed in Eq. (4.3) has to be
contextualized, in order to fit with the constitutive operator presented in Eq. (2.24)
and derived under the assumption of energy-equivalence. The direct application of
Eq. (4.3) to D leads to:

Dy =Dy (Ee,cﬁ(r* (&)).a (" (Ee))) -1 (Ee,c?,c?*) Dy A" (Ee,c?,c?*) (4.4)
where the regularized mapping operator A is:

A= (7d" (7 (7)) (7 (@) =\1-d" @) +V1-a [1-0()] @4.5)
and the following equalities have been exploited:

7 =r"(%,) (4.6)
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a* =di(ri(§e )) (4.7)

Actually, the definition of the secant stiffness presented in Eq. (4.4) has to be
avoided because it violates the rotating nature of the local orthotropic damage
model formulated in Chapter 2. As a matter of fact, except for the condition of

homogeneous strains, the nonlocal regularized strain tensor &, is different from the

local strain &, and this implies, for BE # Dy, the lack of coincidence between the

axes of orthotropy of the damaged material and the principal directions of the elastic
strain. Consequently, the coincidence between principal directions of strain and
stress is no more guaranteed. The necessity of maintaining unaltered the rotating
aspect of the model, which is beneficial in terms of stress locking reduction, obliges
to propose a slightly different format of the constitutive regularized operator DE,
as:

Dy =Dy (ge,d*(ﬁ(ge)),d‘(r‘(Ee)))z A (2,,d".d7):Dy: A" (6,.d".d7) (4.8)

—%
In A , only the scalar damage variables are computed starting from the nonlocal
counterpart of the elastic strain tensor, while the projection operator Q depends on
the local elastic strain:

A=A (oo™ (7 @) (7 (&) 1= @(ee) 1= [1-0(e)] (49)

Hence, exploiting Egs. (4.8) and (4.9), the regularized d'/d~ damage model
maintains the same constitutive properties of the local formulation.

These observations can be generalized to the whole class of orthotropic damage
models with rotating material principal directions. Different conclusions can be
drawn for the class of orthotropic damage models with fixed axes of material
orthotropy, for which a nonlocal procedure of the type shown in Eq. (4.3) holds, as
demonstrated by the anisotropic nonlocal damage formulation for composites
presented in (Kennedy and Nahan, 1996).

On the one hand, the choice of resorting to the elastic strain average
distinguishes the present formulation from the majority of nonlocal damage models
existing in the literature and, especially, from other d"/d~ damage models recently
developed to study concrete (He et al., 2015), reinforced concrete (Xenos and
Grassl, 2016) and masonry structures (Toti et al., 2015), all of them characterized
by the averaging of the tensile and compressive equivalent quantities. A comparison
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between the two different regularized approaches is shown in Chapter 7, with
reference to a reinforced concrete beam subjected to a four-point bending test. On
the other hand, a nonlocal d"/d~ damage formulation which can be considered
similar to the present one is the model proposed in (Comi, 2001); in this
formulation, the decomposition between tension and compression is performed
taking into account the invariants of the averaged strain tensor. Differently from
Comi’s approach, where two internal lengths are assumed for tension and
compression, in the present model only one internal length is considered, with the
aim of limiting the number of input parameters.

Finally, it has to be remarked that the permanent strain &, is not regarded as a
variable to be averaged, so that the local reversible strain & is equal to the difference
between the total strain & and the permanent strain &, both in their local version.

Therefore, the expression of the regularized counterpart of the local strain
tensor &, defined in a domain 7V is:

I“0(|x SIRAGIR

g, (x)=L Terl ) & (4.10)

V

where ay is the weight function, chosen, as in the majority of nonlocal models, as
the Gauss distribution function, centred at x and simulating the interaction between
point x and point &. Its definition is strictly related to the aforementioned internal
length of the regularized continuum /zg (see Figure 4.1):

(x-¢)’

oy (| =€) = exp| —— 4.11)

The nonlocal operator in Eq. (4.10) is normalized by the expression at its
denominator to keep an homogeneous distribution of the local variable unaltered.
The Gauss weight function in Eq. (4.9) has an unbounded support, so its interaction
radius, i.e. the largest distance of point ¢ that influences the regularized variable at
X, is infinite. In practice, as shown in Chapter 5, in finite element computations, a
finite value of the interaction radius is considered, equal to 2/zg, in order to compute
the nonlocal integral (4.10) over a finite volume ¥, dependent on x.
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Figure 4.1: Averaging function ay: (a) identification of /z¢ and (b) variation of /zc.

4.1.2 Thermo-dynamic framework

The free energy potential of the regularized damage model is defined with reference

to the constitutive operator Dy presented in Eq. (4.8):

y/(se,d+(r+ (2, )),d_ (r_ (Ee))) =y= %se :Dg :¢g, (4.12)

As visible from Eq. (4.12), ¥ depends only on the local strain tensor and on the

damage variables d*and d ", defined starting from the regularized strain tensor
(4.10). No additional terms related to the regularization procedure are here present
with respect to Eq. (2.30); hence, the standard framework of thermo-dynamics can
be applied.

For what concerns the first principle of thermo-dynamics, its satisfaction can
be stated by referring to (Carol and Willam, 1996) and (Wu and Xu, 2013), where
it 1s affirmed that, in presence of scalar damage variables, the conservation of
energy in the unloading-reloading regime, for a fixed state of degradation, is
guaranteed.

Regarding the second principle of thermo-dynamics, the non-negativeness of
the dissipated energy can be ensured by verifying the Clausius-Duheim inequality,
which is the following:

y=-yta:é20 (4.13)

Replacing the total derivative of the free energy potential (4.12) with its partial
derivatives with respect to the local strain and the internal variables, the inequality
(4.13) becomes:
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, oy . OY 5+ Oy = Oy .
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4 (a 68} & o o e, &p (4.14)

On the one hand, the fulfillment of inequality (4.14) leads to the establishment of
the constitutive law:

=Dy ¢, (4.15)

while on the other hand, it obliges the non-negativeness of each of the three
dissipative quantities present in the following expression:

_aTw'g+_aTW'g__a—w'ép20 (4.16)

od”* od ™ ¢,
Due to the local nature of the permanent deformations, the proof of the non-
negativeness of the dissipated energy related to this quantity coincides with the one
provided in Section 2.4. The same reasoning holds for the derivatives of the free

energy potential with respect to d*and d -, whose non-negativeness can be proven
considering the procedure described in Section 2.2.2. Finally, the only variables

affected by the regularization are the rate of d*and d -, which directly depend on
the rate of the regularized damage thresholds:

) s

‘izad—+-r*izo (4.17)
or=

The regularized damage variables are non-decreasing functions since the

regularized damage thresholds, as their local counterparts, have to satisty the Kuhn-

Tucker and persistency conditions (see Section 2.5). Hence, the second principle of

thermo-dynamics for the regularized d'/d~ damage model is fully satisfied.

As just mentioned, the evolution of the regularized damage is ruled by the
Kuhn-Tucker and persistency conditions, which allow distinguishing between the
situations of loading, unloading and re-loading:

>0 gt=7t*—7*<o0 gt =0 (4.18)

FEEE =0 (4.19)
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According to Egs. (4.18) and (4.19), in the loading case ¥ >0and g =0;in the

unloading or in the initial undamaged situation, 7 =0and g+ <0. The definition

for the non-decreasing regularized damage threshold can be deduced by the
persistency condition (4.19):

7 =max| 1y s max(?i) (4.20)
[0,7]

where the initial value 7, is the same as in the local model (see Eq. (2.50)) while

7" represent the equivalent quantities computed replacing in Egs. (2.45) and (2.46)

the elastic local stress (2.25) with the elastic regularized one 6, :

6,=6,(%,)=Dy &, (4.21)

4.2 Calibration of the parameters of the regularized model

Hereafter, the superscript * used for distinguishing a quantity between tension and
compression is intentionally left out for the sake of brevity.

In order to provide a correct representation of the energy dissipated during the
degradation process, the calibration of the material parameters has to be performed.
In (Bazant and Oh, 1983), it is affirmed that three quantities are sufficient to
describe the material fracture properties, and these quantities are the uniaxial tensile
strength f;, the fracture energy G 'rand the dissipation length /s, which represents
an effective width corresponding to the hypothesis of uniform strain within the
fracture process zone.

In order to obtain the correct energy dissipation, independently of the
discretization, Bazant and Oh proposed the so-called crack band model, which is
based on the principle that the width of the fracture process zone /4is can be replaced
by a discretization length /4 (related to the size and orientation of the finite element)
in the computation of the softening modulus, provided that the correct fracture
energy Gy is however caught. Hence, the crack band model can be defined as a
“local” regularization approach, since the mesh-objectivity is ensured by means of
a rescaling of the post-localization part of the local softening law, and not by means
of a nonlocal spatial averaging over neighbour finite elements. It has to be noted
that, in this way, the regularization of the problem is only partial because the mesh-
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bias dependence is not eliminated. Moreover, the crack band model renounces to
properly describe the width of the fracture process zone: since the localization
occurs in one element, its size depends inevitably on the discretization.

In the case of nonlocal damage models, a reliable identification procedure is
more complex because two sets of parameters affect the structural response: not
only the ones defining the softening law at a local (element-wise) level but also the
regularized internal length /rg, which describes the spatial interaction of material
points by controlling the spread of the averaging functi’on (see Eq. (4.11)). An
intrinsic connection exists between /rg and the local softening law since the width
of the fracture process zone lus, strictly related to /rg, rules the fracture properties
of the material, hence also its softening (local) modulus, in accordance with (Bazant
and Oh, 1983).

The relationship between lis and Irc represents the focus of a regularizedv
nonlocal calibration strategy. In (Bazant and Pijaudier-Cabot, 1989), the
coincidence between Ilrc and lss is imposed a priori and their value, obtained
experimentally by measuring the energy dissipation in concrete specimens in which
damage remains diffused and others in which damage localizes, results equal to 2.7
the maximum aggregate size dmax. The main limitations of such a relationship lie in
the fact that it holds only for the nonlocal approach there adopted (based on the
averaging of the damage variable) and it has not been verified for materials with
other mechanical properties or with different aggregate sizes.

In (Ferrara and di Prisco, 2001), a linear dependence between lis and /zc is
found by assuming the local constitutive law independent of /rs. Fixing the specific
dissipated energy gr, for each value of Iz, a corresponding fracture energy Gy is
computed by performing a numerical structural analysis upon complete failure. The
value of lsis associated to /zc is then determined as G/ g Two main inconsistencies
can be identified in such a procedure: firstly, the dependence of the local
constitutive law on the dissipation length /4 1s neglected; secondly, the fracture
energy Gy is not treated as a mechanical parameter, since it varies with the nonlocal
length Zys.

Contrariwise, the calibration strategy adopted in the present work for the
determination of the parameters of the regualrized damage model is based on the
idea of ensuring the evaluation of the fracture energy Grindependently of the choice
of the internal length /rc. Although such a procedure has been followed in the works
of (Nguyen and Houlsby, 2007), its analogies with the crack band model proposed
by (Bazant and Oh, 1983) have never been outlined. In fact, the majority of the
nonlocal formulations presented in the literature is focused on highlighting the
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differences between the nonlocal model and the crack band model; hereafter, a
different interpretation is proposed, addressed to consider both the approaches
governed by only one ruling parameter, which is the fracture energy Gz In view of
this consideration, in the regularized damage model here proposed, as in the crack
band model, the fracture energy Grdoes not show any size dependence. Therefore,
the possibility of calibrating the internal length by fitting the size effect on the
nominal fracture energy of specimens (Jirasek et al, 2004) is here not
contemplated. Instead, as stated in (Bazant and Jirasek, 2002), if the fracture
process zone is sufficiently smaller than the whole structure, the consideration of
the fracture energy as an intrinsic material property can be considered valid.

In the following subsections, firstly the calibration strategy adopted is described
and its choice justified with respect to other existing calibration approaches. Then,
the problem of a bar uni-axially loaded in tension is exploited with the aim of
showing how the approach works and how it makes the regularized model
comparable with the crack band one by (Bazant and Oh, 1983).

4.2.1 Calibration strategy

In a crack band model, damage localizes in a band of one element-width; therefore,
the dissipated energy per unit area Gy is the area enclosed under the element stress-
strain curve g5, multiplied by the element size 4. The local softening modulus Ha,
derived in Section 2.5 for different types of damage evolution laws, can be defined
by replacing the generic length / used in Egs. (2.82), (2.84b), (2.90) and (2.100)
with the element size /4, whose computation, depending on the size and orientation
of the discretization, can be performed referring to (Oliver, 1989).

In regularized models, two main difficulties appear. Firstly, due to the
introduction of the internal length /zg, the width of the zone in which the dissipation
takes place does not limit to one element; it is broader and not a priori determinable.
Secondly, the specific dissipated energy g whose definition is provided in
Eq. (4.22) for the specific case of uniaxial tensile loading and null permanent
deformations, is not uniform within the dissipation zone.

0

gf(x):]?o':é-dt:I(l—d+(r+(E(X))))-E-g.é,dt (4.22)

0

Although Eq. (4.22) refers to a particular load case, it allows to do some
considerations which hold general validity: from its analysis, it is clear that the
specific dissipated energy evaluated at a point x is affected by the strain values of
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all the points whose distance from x is lower than the interaction radius. Hence, it
varies with x and depends not only on the type of damage evolution law but also on
the specific nonlocal damage model adopted, i.e. on the quantity chosen as nonlocal
(Eq. (4.10)) and on the averaging function oy (Eq. (4.11)).

In order to deal with these difficulties, the procedure hereafter proposed aims
to identify /u;s as the width of a uniformly damaged crack band in a local continuum
which dissipates the same amount of energy of the same band present in the
regularized continuum. To guarantee this energetic equivalence, by exploiting the
correspondence between the cohesive crack model and the crack band model, the
local specific dissipated energy grhas to depend on /4 according to the relation:

G 423
gf_ldis(lRG) (4.23)

Eq. (4.23) is equivalent to compute the local softening modulus of the nonlocal
damage model by replacing the generic length / with [z In Eq. (4.23), the
dependence of the dissipation length /45 on the internal length /z¢ is highlighted, in
order to stress how the local constitutive behaviour is affected by the internal length

IRG.

The analytical evaluation of lu;s starting from Eq. (4.23) is generally unfeasible,
because its value depends on the internal length in a nonlinear way, on the other
parameters, elastic and inelastic, defining the local constitutive law, on the type of
softening law adopted (2.69) and on the nonlocal approach considered (nonlocal
averaging function oy and quantity chosen as nonlocal). In (Zaho et al., 2005) the
specific case of a linear softening law is taken into account to derive the analytical
nonlinear relationship between lus and Izc.

In (Jirasek, 1998b), the idea of providing an analytical solution for /lus is
abandoned in order to extend the applicability of the calibration strategy to a wider
range of softening laws and to a wider range of nonlocal approaches. On the
contrary, the use of predefined trends relating the ductility of the local softening
law # and the ratio luis/Irc are proposed to define /us in an iterative manner. The
iterative procedure is required because 7 depends on /45, according to the following
expression:

n= Gy /lais
122k

(4.24)
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However, the graphs presented in (Jirasek, 1998b) do not cover the case of high
local ductility and include only a limited number of combinations of softening laws,
nonlocal weight functions and nonlocal variables. Specifically, the averaging of the
elastic strain (4.10), in conjunction with the use of the Gauss function for ay(4.11),
as well as the adoption of softening laws different from the exponential and the
linear ones, as the Gaussian damage function proposed in Eq. (2.80) are not
foreseen; therefore, these graphs can not be adopted for the calibration of the present
regularized damage model.

Hence, a different calibration strategy is here preferred, the one proposed in
(Nguyen and Houlsby, 2007), which consists in identifying the nonlinear relation
between l4is and /g, for the material parameters of interest, by performing some
structural analyses upon complete failure of a uniaxially loaded bar (see Figure 4.2).
In order to trigger the strain localization, a defect is considered in the central part
of the bar.

Moreover, to apply this procedure to the d*/d~ damage model here formulated,
the bar is considered under both uniaxial tension (displacement u as plotted in
Figure 4.2) and uniaxial compression (displacement u with opposite sign with
respect to the one plotted in Figure 4.2). In this way, starting from a unique value
of the internal length /g, two values of lus are obtained, one for tension /"4 and
one for compression [ 4, respectively.

defect
u \J/ t u
U |
u L u

Figure 4.2: Bar under uniaxial loading, considered for the calibration of the nonlocal
parameters.

Referring indistinctly to tension or compression, the main steps, which
characterize this approach, are summarized in Table 4.1. The procedure starts from
the known material constants £ and v, the uniaxial strength f, the fracture energy
Gy, the parameter ¢ defining the intensity of ¢, according to Eq. (2.61) and the
internal length /zg.
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Table 4.1: Calibration strategy adopted in the regularized damage model.

(i) Assume kais'? such that Luis'V = kais (Y Irg.

(ii) Compute the specific dissipated energy g/, the local ductility parameter 5
and the local softening modulus H4, using lus'", according to Eq. (4.23),
Eq. (4.24) and one of Egs. (2.82), (2.84b), (2.90) and (2.100), respectively.

(ii1) Perform the numerical analyses of a bar uni-axially loaded with imposed
displacement u at both ends (see Figure 4.2), adopting g/ (or, equivalently,
H/Y or V) as local constitutive parameter.

(iv) Compute the fracture energy Gr ¥, by dividing the area subtended by the
force F' - displacement u resulting curve for the ligament area ¢ x H (see
Figure 4.2).

(v) Compute ks @ as Gr P/ (g/VIrg), such that L@ = kuis® Irg.

(vi) Repeat n times the steps from (i) to (v), starting from a different value of
kais'V, in order to obtain a different value of k 4.

(vii) Plot two curves in a graph representing in abscissae the local ductility
parameter # and in ordinates the kuis parameter defining /u;s: one curve is given
by the n couples of (1, kais'"), the other by the n couples of (Y, kuis®).

(viii) Evaluate the intersection of the two curves found in the step (vii), which
represents the dissipation length /4 able to dissipate the correct fracture
energy Gr.

The calibration strategy here presented is very versatile. because it can be
applied to any set of material parameters and to any kind of constitutive law
(isotropic, orthotropic, with or without irreversible strains).

4.2.2 Application of the calibration strategy: nonlocal damage
approach compared with the crack band model

In this section, the steps described in Table 4.1 are followed to calibrate the
regularized damage model for a specific set of mechanical parameters, which are
collected in Table 4.2. The calibration strategy is performed only under tension, i.e.
to find /* 4is. The procedure to identify /™4 is analogous and it has been omitted.



100 Regularized strain tensor damage model

Table 4.2: Set of material parameters adopted in the calibration.

E v f A Gr* Gr ¢ IrG
[MPa] [-] [MPa] [MPa] [N/mm] [N/mm] [-] [mm]

38000  0.21 2.8 -42.3 0.037 30.00 0.00 6.00

The problem considered for carrying the structural analysis under complete
failure is the bar subjected to an imposed elongation at both ends, as shown in
Figure 4.2, with the following geometric sizes: L = 101 mm, /=10 mm, = 1 mm.
The defect is modelled considering a section reduction equal to 10% in the central
part of the bar. A mesh of 101 bilinear quadrilateral finite elements is considered.

The two curves obtained according to the steps of Table 4.2 are plotted in
Figure 4.3.a. The intersection occurs in correspondence with the value kus = 3.73,
which defines the dissipation length /s = 3.73-/rc = 22.4 mm able to ensure the
correct fracture energy Gy', as visible from the force F — displacement u curve
displayed in Figure 4.3.b.

kais=lais / G F[N]

(@) 30} b)
5 !
4.5 o V- kgD
7] = Vg,
n dis 2014
4 d
373 T
3.5t
10 1]
3 1
2.5 4 t ! 4 " 4 '
10 125 15 17.5 20 i 0 0.02 0.04 0.06 u[mm]

Figure 4.3: (a) Calibration procedure for material parameters in Table 4.2; (b) F-u
curve obtained with the calibrated dissipation length.

In order to assess the objectivity of the calibration procedure, a check omitted
in (Nguyen and Houlsby, 2007), the entity and the kind of the defect in the central
element are varied (Figure 4.4.) together with the mesh refinement (Figure 4.5),
maintaining fixed the dissipation length obtained from the calibration procedure
shown in Figure 4.3.a.
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Figure 4.4: Response of the bar under tension for different defects.
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Figure 4.5: Response of the bar under uniaxial tension for different mesh refinements:
(a) F - u curves; (b) maximum principal strain localization.

The almost full coincidence between the different curves in Figure 4.4 and
Figure 4.5.a allows to conclude that neither the choice of the defect nor the
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discretization affect the results of the calibration procedure, performed by means of
the bar under uniaxial loading conditions.

Moreover, the effect of & is considered, referring to the new definition
proposed in Eq. (2.61), replacing the value & = 0 with £ = 0.3. As commented in
Section 2.5, irreversible strains are modelled within a coupled dissipative
framework, meaning that their inclusion affects damage evolution (see Eq. (2.70))
in such a way to maintain unaltered the specific energy dissipated with respect to
the case of null permanent deformations. For this reason, the consideration of &,
does not modify the calibration procedure shown in Figure 4.3.a for the case of
¢ = 0. In fact, as expected, the calibrated dissipation length and the corresponding
force F'— displacement u curve for £ = 0.3, shown in Figure 4.6, are identical to the
ones presented in Figure 4.3.

To analyse the dependence of the results on the parameter /zc, the calibration
shown in Figure 4.3.a for /rc = 6 mm is repeated for different values of the internal
length, in particular for /rc = 3 mm and /rc = 9 mm. The values of the relative
dissipation length k4;s obtained are 4.09 and 3.80, respectively. In Figure 4.7, the
results of the uniaxial problem adopted for the calibration by varying /rc are
exhibited, in terms of ' — u curves (Figure 4.7.a) and maximum principal strain
localization (Figure 4.7.b).

kais=lais / G F[N]

(@) 30} b)
5 !
4.5 o V- kD
i = 50k, @
4 4
373} B
3.57
3 1
2.5 4 t ! 4 " 4 '
10 125 15 175 20 i 0 0.02 0.04 0.06 u[mm]

Figure 4.6: (a) Calibration procedure for £ = 0.3; (b) £ - u curve obtained with the
calibrated dissipation length.
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Figure 4.7: Response of the bar under uniaxial tension for different internal lengths:
(a) F - u curves; (b) maximum principal strain localization.

It is worth remarking that the independence of the structural response from the
internal length (Figure 4.7.a) is obtained thanks to the calibration procedure
adopted, which ensures the representation of the fracture energy Gf', by properly
identifying the value of the dissipation length /4, related to /rc. On the contrary,
the width of the localization band (Figure 4.7.b) is affected by the nonlocal
parameter, and increases with it.

Finally, the problem of the bar uniaxially loaded in tension, previously studied
with the regularized approach, is solved with the local crack band model,
considering three different mesh refinements: 35, 101 and 203 finite elements. The
results, in terms of global response curves and strain localization, are displayed in
Figure 4.8.a and Figure 4.8.b, respectively.
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Figure 4.8: Response of the bar under uniaxial tension with a local approach for
different mesh refinements: (a) F - u curves; (b) maximum principal strain localization.

With the local approach, on the one hand, the mesh-size independence of the
solution in terms of dissipated energy (see Figure 4.8.a) is guaranteed, because of
the adoption of a softening modulus adjusted according to the size % of the finite
element (Bazant and Oh, 1983). On the other hand, the width of the localization
band (Figure 4.8.b) depends drastically on the mesh refinement, coinciding with 4.

The majority of the nonlocal formulations, such as, for instance, the recent work
by (Xenos, and Grassl, 2016), is focused on the differences between a nonlocal
approach and a local one in case of different mesh refinements: specifically, the
capability of the nonlocal approach to maintain unaltered the localization band
width (Figure 4.5.b.) is usually opposed to the corresponding incapability of the
local one (Figure 4.8.b). Here, the main interest is different and is addressed to
stress the analogies, and not the divergences, between the regularized model here
proposed and the crack band model by BaZzant and Oh. As a matter of fact, by
comparing Figure 4.7 with Figure 4.8, a parallel between the internal length /z¢ and
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the mesh size / can be found: both these terms do not affect the /-4 curves but their
variation influences clearly the localization bandwidth.

Broadening the discussion, it is possible to affirm that the regularized damage
model here presented does not require the identification of an internal length on the
base of physical reasons. In fact, the procedure shown in Table 4.1 ensures the
correct representation of the fracture energy Gy, independently of the value of the
internal length, as proven in Figure 4.7.a. Hence, it holds the same versatility of the
crack band approach, which needs only the standard material properties (elastic
constants, fracture energies and strengths) for the identification of all the model
components. Contrariwise, as discussed in (Bazant and Jirasek, 2002), the main
cause of nonlocality is usually associated to the material heterogeneity and,
consequently, the nonlocal length has to be representative of such material
heterogeneity. This fact obliges to find a relation between the internal length and
the heterogeneity maximum size. If for concrete a large number of studies have
been performed on this topic, for instance in (Bazant and Pijaudier-Cabot, 1989),
and a value of approximately 3 times the aggregate size has been found to be the
characteristic one, for other materials, as masonry, likewise data are not available.
Moreover, in line with these reasoning, homogeneous materials can not be studied
with a nonlocal approach, due to the impossibility of finding a valid definition of
the nonlocal length.

Together with the advantages, the regularized model here presented has in
common with the local approach one of its drawbacks. In fact, if, on the one hand,
an arbitrary choice of the internal length allows to correctly describe the dissipated
energy, on the other hand, as visible from Figure 4.7.b, it does not allow a detailed
description of the width of the fracture process zone.

Although not very common, the interpretation of the internal length as a
regularization parameter more than a physical constant can be found in the phase
field model proposed in (Wu, 2017). There, exploiting mode I and mixed mode
problems, it is proven that the variation of the internal length negligibly affects the
global overall response, except for the localization bandwidth.

Despite the analogies found between the regularization damage model and the
crack band model, the motivating reason for which the former is here proposed as
positive evolution of the latter is its widely recognized better performance in terms
of mesh-bias objectivity of the results.
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Chapter 5

Numerical implementation of the
damage model

The algorithmic implementation of the damage model developed in Chapter 2,
Chapter 3 and Chapter 4 is described in the present chapter, with the intent of
showing that the new energy-equivalent d'/d~ formulation, combined with the
inclusion of permanent deformations, with a multidirectional treatment of damage
and with a regularized approach, follows an efficient fully strain-driven formalism.

The contents are organized as follows. First of all, the algebraic system of
equations which defines the global equilibrium in a displacement-based finite
element code is recalled. Then, the numerical algorithms of the constitutive law are
provided. For the sake of clarity, the problems characterized by the simultaneous
presence of permanent deformations and damage and by the use of a
multidirectional damage procedure are addressed separately. Specifically, both an
explicit and an implicit computation of the permanent deformations is considered.
Finally, the implementation details necessary to include in the code the regularized
procedure are described and commented.

Part of the topics proposed in the present chapter is already published in
(Cerveraet al., 2018).



108 Numerical implementation of the damage model

5.1 Algebraic implementation

The damage formulation is implemented in a displacement-based finite element
code written in a FORTRAN environment. In order to face the material non-
linearity, the numerical algorithm works in an incremental-iterative way.

Within a generic load increment, going from the step n—1 to the step n, the
equilibrium global equations at each iteration i are solved using the Picard method,
based on the adoption of the global secant stiffness matrix . The algebraic system
to be solved assumes the following form:

S(i_,:u)5,fu=—R(i_,1]u) (5.1)

where 6 ‘,u is the iterative displacement vector correction adopted to compute the
iterative displacement vector ‘,u

g .

au="u+s, u 5.2)

and the residual force vector R is expressed in terms of the internal P and external
F force vectors:

R("u)=P("u)= ,F=("u) Ju—,F (5.3)

The choice of a Picard method has two main reasons. On the one hand, it is
addressed to avoid the computation of the consistent tangent stiffness matrix
necessary for the application of the Newton Raphson method. In fact, in the case of
the constitutive d"/d~ damage model here presented, this matrix is non-symmetric
and requires the evaluation of the derivative of the projection operator (2.15), which
is not straightforward, as demonstrated in (Faria et al., 2000) for the original d*/d~
damage formulation.

On the other hand, it allows taking advantage, from a computational point of
view, of the symmetric constitutive stiffness operator Dg (2.24). In fact, the global
stiffness matrix § is obtained by assembling the local secant operator Dyec, deriving
from the following equality:

Dy, £=Dg:(c-¢,) (5.4)

Although Dy is not uniquely defined, it can be easily expressed as:
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(Dg -£,)®(Dg - 5p)
3:(DE :ap)

(5.5)

As visible from Eq. (5.5), a non symmetric local secant matrix is obtained if the
constitutive local operator is not symmetric. Thanks to the recourse to the energy-
equivalence assumption, a symmetric Dsec is ensured by the constitutive symmetric
operator D (2.24) and this guarantees a symmetric algebraic system to be solved

(Eq. (5.1)).

In all the structural analyses shown in Chapter 6, Chapter 7 and Chapter 8, the
convergence in a time step # is attained when both the ratio between the norm of
the iterative residual forces R and the external forces F (see Eq. (5.3)) and the ratio
between the norm of the iterative displacement increments J ‘»u and the total
displacements ‘,u (see Eq. (5.2)) are lower than 1%.

5.2 Numerical algorithm of the constitutive law

5.2.1 Standard scalar damage model with permanent deformations

The objective of the numerical algorithms hereafter proposed is to provide the
solution at time #, in terms of stresses ("@), strains ("¢, "e.) and damage variables
("d £,"r ), starting from the converged known quantitites at time n — 1.

In purely elasto-degrading formulations, i.e. when irreversible deformations are
not considered, the algorithm is straightforward, since the elastic strain tensor &,
coincides with the total strain tensor &, which is a known quantity at the beginning
of each iteration i in a standard displacement-based finite element environment. In
presence of elasto-plastic damage models, such a coincidence does not hold
anymore and efficient computational algorithms are required to avoid a further
iterative procedure for defining the internal variables within each global
equilibrium iteration i.

A first possibility consists in performing the updating of the permanent strain
tensor explicitely, using a forward Euler algorithm. This means that "*'g, is
computed only once, at the end of the load step n-th, after the attainment of the
convergence. This allows to evaluate, within each iteration, the elastic strain tensor
& directly from the iterative displacements (5.2) and to define, on the basis of it,
the damage variables d" and d ", the projection operator Q (2.15), the secant stiffness
Dg (2.24) and, finally, the nominal stress tensor & (2.33).
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A second possibility is to use an implicit backward Euler scheme and consists
in evaluating the permanent strain tensor ™ ‘g, at each iteration i of the n-th step
exactly as it is done for all the other quantities (elastic strain, damage thresholds,
damage variables, stress).

An explicit computation of the permanent strain tensor increases the robustness
of the numerical procedure, but it is accurate only if sufficiently small time steps
are adopted. On the other side, an implicit approach is more accurate but it can
suffer from convergence difficulties.

While the permanent strain evolution law (2.57) can be evaluated explicitely or
implicitely, the permanent strain increment defined in (2.61), due to its intrinsic

dependence on the quantity &, (2.60), fits better for an implicit computation.
However, it would be possible to assess it explicitely, simply replacing the quantity

&,, evaluated in the hypothesis of null permanent deformations, with the actual

quantity &,. For these reasons, in the present section, the numerical algorithm

including the explicit computation of ¢, refers to the permanent strain evolution law
(2.57) while the one contemplating the implicit computation of g, is developed
considering the definition (2.61).

The numerical algorithm of the d*/ d~ damage model with the explicit
computation of the irreversible deformations is synthetized in Table 5.1.

In implicit algorithms for elasto-plastic damage models, the recourse to the
operator split method, described in (Ju,1989; Simé and Huges, 1998), is frequently
adopted (Lee and Fenves, 2001; Wu et al., 2006; Tagieddin and Voyiadjis, 2009).
This approach is not adequate for the constitutive law here proposed because the
decoupling between the elasto-plastic behaviour and damage, proper of the operator
split method, does not hold for the present formulation, which is founded on the
assumption of a unique failure criterion to completely describe the inelastic
phenomena. Hence, the numerical algorithm of the constitutive law is performed
through the adoption of a prediction-correction strategy, able to maintain the
efficiency of a full strain-driven algorithm even in presence of implicitly computed
irreversible deformations. This strategy is characterized by a damage predictor
phase and a plastic-damage corrector one and results naturally from the definition
itself of the permanent strain evolution law (2.61), as clarified also by Figure 2.6.



5.2 Numerical algorithm of the constitutive law 111

Table 5.1: Numerical algorithm of the constitutive law for the d'/d~ damage model
with an explicit computation of the permanent strains (2.57).

Load increment n:

Known quantities:

- - - Qg a1 E
nls,nlo_, nlgp,nld ,nlr

Iteration i:

@
(i)
(iii)
@iv)
™)

(vi)

(vii)

(viii)

Compute the nominal elastic strain tensor ™ ‘¢, from the known total iterative
strain " 'g: " ‘g, =" 'g — " g,

Compute the projection operators " ‘Q and I — " 'Q by means of the spectral
decomposition of the nominal strain tensor ™ ‘g, (Eq. (2.15)).

Compute the elastic stress tensor " ‘. (Eq. (2.25)).

Compute the equivalent stress quantities ™ 't * (Egs. (2.45) and (2.46)).

If mip ™ > update damage thresholds "' *—nir® and update " 'd *
by Eq. (2.69).

If "2 <" no updating is required, " ' F oy andnigt =g
Compute the operator "'A"(Eq. (2.18)):

ni g% _ ll_n,id+ .n’iQ+ ll_n,id* '(I—n’iQ)'

Compute the nominal stress " ‘¢ (Eq. (2.33)): "o =""4":Dy: "™ 4" : "¢,
Check convergence at a global level:

NO convergence: go to the iteration i+1 and start again from (i).

YES convergence:

+

i i + e + .4+
Update: " ="'¢, "6 ="¢,"d = =""'d~ ,"r = =" .

Update the permanent strain tensor (Eq. (2.57)) and the elastic strain tensor:
<n,io_ . ng_n—18> '
Anb’p=[b+'H(nd+—n_ld+)+b_'H(nd_—n_ld_)} e' ( i ) ‘n’l{;‘

n,i L ni
o g,

e
v

n. _ n-l n, n, _n,_n
Ep=" &, tATey; g =T8¢y,

Go to the next load increment n+1.

In the first phase, a purely elasto-degrading material behaviour is assumed. This
means that the total iterative strain increment ™ ‘Ag, which is a known quantity at

the beginning of each iteration, is considered completely reversible, while the
irreversible deformations are fixed to the last converged value "’g, All the
quantities (stress, strains, internal variables) associated to this predictive state are
identified by their corresponding symbols with the apex *, in analogy with the
quantities provided in Eq. (2.60).
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Then, a plastic-damage corrector phase is necessary, in order to return back the
predictive stresses and the internal variables to the damage surface, due to the
development of permanent deformations together with the increase of damage. In
this stage, the dependence of the permanent strain increment (2.61) on the reversible
strain & and on the stress ¢ imposes a further consideration to be done. Taking
inspiration from the procedure described in (Faria et a/, 1998) for the numerical
computation of the effective stress tensor and adjusting it to the present damage
formulation and to the permanent strain evolution law (2.61), the following
relations can be exploited in order to adopt an efficient numerical algorithm.

e, =¢ —[§+H(Ad+*)+ g-H(Ad—*)] <6 : Ag"> P (5.6)

. e
cg,

Inverting Eq. (5.6) in order to have an expression for the predictive reversible
strain ¢, and exploiting the coaxiality (Eq. (5.7)) between the stress ¢ and the elastic

strain & (Section 2.2.1), according to which
I=1, o, =[o| L, :[e]Z; =|lo]-[e] (5.7)

it is possible to write:

o o e e R R 55)

el le]

Eq. (5.8) reveals the coaxiality between the elastic strain tensor and the predictive

&

elastic strain ¢, , whose definition can be provided in the following way:

* *

&, =&, || L l.=1,
(5.9
e[ =leell+ [ & H (A" )+ & H (8d7) |1, : 0y )
Form Eq.(5.9), the elastic strain tensor can be expressed as a function of &, :
[§+H AT+ EH(AT J L:Agg) |, .
%= 1= ) e |l (5.10)

*
88




5.2 Numerical algorithm of the constitutive law 113

In the end, by considering the coaxiality expressed in Eq. (5.7), valid in terms of
predictive stress/elastic predictive strain tensors, the expression of the elastic strain,
completely defined in terms of predictive quantities, is:

[<§+H(Ad**)+ {H(Ad—*)](a* e )

g =|1- . & (5.11)

*
&, |lo

The plastic damage corrector phase for the integration of the d*/d~ constitutive law
starts from the expression (5.11) for the elastic strain. The complete numerical
algorithm, thought for taking into account the implicit computation of the
irreversible deformations (2.61), is summarized in Table 5.2 and Table 5.3, by
distinguishing between the damage predictor and the plastic-damage corrector
phases.

Table 5.2: Numerical algorithm of the constitutive law for the d'/d~ damage model
with an implicit computation of the permanent strains (2.61): damage predictor phase.

Load increment n:

Known quantities:

- Qs 4 E
o,,n]gp,nld nlr

’

n-lg, n-1

Iteration i, Damage predictor phase:

6)] Compute the predictive elastic strain tensor ™ ‘g, in the assumptions of
"iNg, =""Ae," 'Ag," =0and " 'g," =""g,: Mg, =" e "¢,

(i1) Compute the projection operators " ‘Q" and I — " ‘Q" by means of the spectral
decomposition of the nominal strain tensor " ‘e,” (Eq. (2.15)).

(iii)  Compute the elastic stress tensor " ‘e, = Dy : "¢, (Eq. (2.25)).

(iv) Compute the equivalent stress quantities " 'z + (Egs. (2.45) and (2.46)).

W) ifri ™t >t update damage thresholds ™' F_ni ™ and update
. *
g™ by Eq. (2.69).
1t ieE <mE updating is required, " 'r o E and
n, idi* — n—ld:l:

(vi)  Compute the operator "'4"(Eq. (2.18)):

n,iA* :m_ n,iQ* +W'(1_ n’iQ*) .
ni *

(vii)  Compute the nominal stress " 'c* (Eq. (2.33)): "o ="4" Dy "4 M,
(viii) Compute the inelastic strain increment according to the strain increment
decomposition (2.55): " 'Aes" =" 'Ae — Cp:(" '6*""0).
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Table 5.3: Numerical algorithm of the constitutive law for the d'/d~ damage model
with an implicit computation of the permanent strains (2.61): plastic-damage corrector
phase.

Load increment n:

Iteration i, plastic damage corrector phase:
Known quantities:

*

~ - ~ ~ + 4+ - . . . 4%
nlg’nlo.,nlgp,nld ,nlr ,n'lgg,n'lO'*,n'lASd,n'lAd )

Plastic correction

(ix)  Compute the elastic strain tensor " ‘¢, (Eq. (5.11)):
[f*H("’iAd+*)+ EH("ad )} (et )

I
n,i
&,

ni *
e

I’l,i = 1_
e n,i *

x) Compute the permanent strain tensor according to the total strain
decomposition (2.51): " 'g,=""e — " 'g,.

Damage correction

(xi)  Compute the projection operators " ‘Q and I " ‘0 by means of the spectral
decomposition of the nominal strain tensor ™ ‘g (Eq. (2.15)).
(xii)  Compute the elastic stress tensor " ‘e, (Eq. (2.25)).

(xiii) Compute the equivalent stress quantities " 'z * (Egs. (2.45) and (2.46)).
(xiv) If"'r S update damage thresholds ™'r *—nir® and update " ‘d * by
Eq. (2.69).
£ g

" L . ;
If” 't~ <™~ :no updating is required, ™ 'r r~ and

n,idi :n-ldi

(xv)  Compute the operator “'4"(Eq. (2.18)):

ni g :m.",iQ+m~(1—"’iQ).
n,i

(xvi) Compute the nominal stress ‘o (Eq. (2.33)): "o = A" D, : A & -
(xvii) Check convergence at a global level:
NO convergence: go to the iteration i+1 and start again from (i) of Table 5.1.
YES convergence:

. . + o4
e Update: "e=""¢,"6 =""'6,"d” ="'d™,"r
increment load n+1.

+

ni

+
7~ and go to the next
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5.2.2 Multidirectional damage model

In the present section, the numerical algorithm of the d*/d~ multidirectional damage
model is described, with reference to plane problems, combining it with an explicit
updating of the permanent strain tensor (2.57), analogously to the scheme presented
in Table 5.1. It is synthetized in Table 5.4.

Three subroutines are adopted in order to make clearer the working principles
of the multidirectional procedure. They are:

e Damage multidirectional updating (e, d],zi, m,zi, ¢t ; di, d* , rE ). it

provides the active damage value d* (d"), its rate d* (d~) and the active
damage threshold 7" (+) on the basis of the current damage equivalent stress
quantity z* (") which is compared with the damage threshold »1* or " (71~ or
r2"), saved in the region where the principal maximum (minimum) strain (&)
direction falls (input parameters &, d; > i, rz,zi, ri; output parameters d i,

d* and ri);

e Damage multidirectional saving (d t 7 * , &e; d12 t , 712 + ): the converged

d" (d") damage value is saved as d1" or d>" (di~ or d»") in a region, depending

on the maximum (minimum) strain (&) direction which has generated it (input
+ = . + *5.

parameters d —, r—, & output parameters dip—, 7127 );

e Damage regions updating: in loading conditions, for load Type (ii), it
changes the bisectors and the amplitudes of the damage regions, with reference
to (3.4).

Analyzing Table 5.4 and comparing it with the numerical algorithm in the case
of a standard scalar damage formulation (see Table 5.1), it is easy to identify the
differences in two main stages. The first is the updating of the tensile (compressive)
damage within the iteration, which is performed with reference to the current
maximum (minimum) direction of &.

The second is the saving of the damage variables after the attainment of the
global equilibrium convergence, which maintains these information about damage
directionality.

Finally, in presence of Load Type (i1), there is the necessity of monitoring the
rotation of the principal directions, and, consequently, to update the damage
regions, which have an evolving nature.



116

Numerical implementation of the damage model

Table 5.4: Numerical algorithm of the multidirectional d+/d— damage model with an
explicit computation of the permanent strains (2.57).

Load increment n:

Known quantities:

n-1

&

+ n-1

o nl. + ol
"o, gy, "diy~  "'ria ; only for load Type (ii): "7y

Iteration i:

(1)
(i1)
(iii)
(iv)
v)

(vi)

(vii)

(viii)

(ix)

n i n i n-1

Compute the nominal elastic strain tensor * & Ve =""e-""g.
Compute the projection operators " 'Q and I — " 'Q for " ‘¢, (Eq. (2.15)).
Compute the elastic stress tensor " ‘a. (Eq. (2.25)).

Compute the equivalent stress quantities "™ i (Egs. (2.45) and (2.46)).

Only for load Type (ii): compute the equivalent deviation quantity ’7’irgi
(Eq. (3.2)) on the base of " ‘g;

B S & o+ : .
if ™y~ <™y~ "y~ =" and call “Damage regions updating”;
conii E ol E opi g £
lfn’l‘[@ >n ll"g : n’ll"g —n 17‘9
e . ol E o *
Call “Damage multidirectional updating( ™ 'ge, "'d1o = "'rip "

n,iT + ; n, id + ,n, idi, n, il"i)”
Compute the operator " ‘4" (Eq. (2.18)):

n,iA* _ ,l—n’id+ n,iQ+ ll_n,id— (I—n’iQ),

Compute the nominal stress ‘o (Eq. (2.33)): Me="A" D, : A"
Check convergence at a global level:
NO convergence: go to the iteration i+1 and start again from (i).
YES convergence:

n,i
g, .

i —ni

Update: "g = "¢, "o = "gr; only for load Type (ii): "ro = ="irs
Update permanent strain tensor (Eq. (2.57)) and elastic strain tensor:

A, :[lﬁ -H(nd+ - "_1d+)+b_ -H(nd_ - n_]d_)}<n’lae‘:(ng_-n_18)> P

e

+

n, _ n-l n n, _n,_n
&y = 8p+A € 6= &= &),
+

i)

n i

For load Type (i): call “Damage multidirectional saving (" 'd * S
+ +

nge; ndl,Z ) nrl’2 )”.

For load Type (ii): if "ry * < c0S(Omin): call “Damage multidirectional saving

- - + +
(n, i ’ n, i ’nge,, nd1,2 , nrl,2 )7’;

. + . _ . . _ -
lfnl”{y _ COS(emm): nd1,2+ = migt : nd1,2 = nmig- : nr1,2+ = Mipt : nl/,L2 = My

Go to the next increment load n+1.
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5.3 Implementation details of the regularized formulation

5.3.1 Symmetry and sparsity of the secant stiffness matrix

The adoption of the Picard method described in Section 5.1 with respect to the
Newton Raphson for the solution of the algebraic system of equilibrium equations
is particularly advantageous in nonlocal regularized damage analyses, although this
fact is scarsely recognized. One of the few examples related to the adoption of a
secant method combined with nonlocality dates back to the work by Bazant and Lin
(Bazant and Lin, 1988).

As noticed in (Jirasek and Patzak, 2002), the nonlocal tangent stiffness matrix
is always non symmetric and this fact is intrinsically related to the interactions
between close finite elements imposed by the nonlocal approach. Only in (Comi
and Perego, 2001b) there is the proposal of a symmetric tangent stiffness matrix to
be used in nonlocal analyses, but it is obtained through a computationally expensive
procedure, by performing a double averaging both on the damage energy release
rate and then on the damage variables. Contrariwise, the secant stiffness matrix .S
(see Eq. (5.1)) ruling the Picard method is symmetric both in a local approach and
in anonlocal one, the only difference being that in a regularized approach the secant
constitutive operator Dsec expressed in Eq. (5.5) has to be replaced by its regularized
counterpart:

(D -¢,)0(D - 2,)
s (Dg - 5,)

D,,.=Dg - (5.12)

where D is the regularized constitutive operator defined in Eq. (4.8).

Moreover, the use of a secant stiffness matrix eliminates a drawback proper of
nonlocality, which is the increase in the bandwidth of the sparse stiffness matrix
(Jirasek and Patzak, 2002). In fact, the distribution of non-zero entries in the matrix
varies in nonlocal analyses with respect to local ones because of the inclusion of
the tangent stiffness component, which takes into account the nonlocal interaction
among close finite elements.

Hence, the adoption of the Picard method for the numerical implementation of
the regularized damage model described in Chapter 4 allows to save computational
resources thanks to the use of a symmetric stiffness matrix which maintains the
same degree of sparsity held in a local analysis.
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5.3.2 Algorithmic extension for the regularized model

The numerical algorithm, which allows computing the constitutive law in a
regularized nonlocal damage model, does not undergo substantial changes from the
one adopted in a local formulation and shown, in different versions, in Section 5.2.
As a matter of fact, the regularization procedure does not affect the algorithmic
efficiency seen in Table 5.1, Table 5.2, Table 5.3 and Table 5.4 and similarly
permits an evaluation of the stress tensor by means of a full-strain driven procedure.

The only additional step required by the regularized approach consists in
computing the averaging of the elastic strain tensor by means of Eq. (4.10), in order
to obtain its nonlocal counterpart. The integral present in the definition of the
regularized strain (4.10) of element i is computed numerically by Gaussian
quadrature including in the summation only the Gauss points belonging to the set
Q; of interacting elements. The following discrete version of expression (4.10) is
considered, referring to the generic component & of the elastic strain tensor:

Ni
2 Wi (\xc,- - xj‘)'gek, (xj)
j=1

M
J=1

e (xCi)=
kl

(5.13)

where w;are the integration weights, x¢; and x; the spatial coordinates of the centroid
of element i and of the Gauss point j, respectively, and N; the number of Gauss
points included in €;. As visible from Eq. (5.13), the damage variables (and all the
related quantities) employ a reduced integration scheme and are evaluated at the
centroid of the finite element with spatial coordinates xc. For each element i, the
neighbouring set of interacting elements €; i1s determined by means of a purely
geometric criterion: all elements whose centroid has a distance lower or equal to
two times the internal length /zg (see Eq. (4.11)) with respect to the centroid of the
element i belong to this set. This works better when the internal length is large
compared to the dimension of the finite elements. The adopted procedure is
illustrated in Figure 5.1.
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Set of FEs Circle of radius 2/, centred
belonging to €23 in the centroid C; of element i

' ' ' ' FE i with
centroid C;

— + C!
i1

7 A\ )

== 7
+ 4
- FE belonging to
+ Q, with Gauss
points G |

g++

-

TN ) A

+ |+
_I_

Figure 5.1: Evaluation of the interaction nonlocal domanin £; highlighting the
interactions taken into account in the computation of the nonlocal integral quantity.

The interaction information is computed only once, in the initialization
procedure before the beginning of the incremental iterative procedure. Specifically,
for each element 7, the set of interacting elements €; is saved. This allows to keep
low the additional computational costs required by the regularized model with
respect to a local one. The evaluation of the regularized quantity is performed at
each iteration, before the evaluation of the equivalent stress variables. In order to
avoid storage overload, the data concerning the weight function are not stored in
the initial step; consequently, they have to be computed every time, starting from
the distance between the centroid of element i x¢; and of the Gauss point j x;.

The complete numerical algorithm for the regularized damage model, in
presence of the implicit computation of the permanent strain tensor (2.61), is
summarized in Table 5.5 and Table 5.6, by distinguishing between the damage
predictor phase and the plastic-damage corrector one.
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Table 5.5: Numerical algorithm of the constitutive law for the regularized d'/d”
damage model with an implicit computation of the permanent strains (2.61): damage
predictor phase.

Load increment n:

Known quantities:

n-1

&

n-1 — n-1 n-1 7+ n-1—==%
,dT T

G, &

Iteration i/, Damage predictor phase:

(1)
(i1)
(iii)
(iv)
v)

(vi)

(vii)

(viii)

(ix)

n,

Compute the predictive elastic strain tensor ™ ‘g, in the assumptions of
Ae,"="Ag,"Ag," =0and " g,  ="gy Mg, =" g - "¢,

Compute the projection operators " ‘Q" and I —"'Q" by means of the spectral
decomposition of the nominal strain tensor " ‘e,” (Eq. (2.15)).

*
g -

Compute the regularized averaging of " ‘g,” by means of Eq. (5.13),
Compute the elastic stress tensor "' . =Dy : "'z, . (Eq. (4.21)).

e

Compute the regularized equivalent stress quantities ™’ 7+ (Egs. (2.45) and

(2.46)).
If" 7" > 7% . ypdate damage thresholds "7+ ="'7*" and update

"1 g by Eq. (2.69).
—_t

P -1 —+ . . . i 4% _
If» 7% <™!'7=:no updating is required, ‘7= ="17~ and

n, igi* — n-1 d_i

Compute the operator 4 (Eq. (4.9)):

migt _ W”’IQ* +W(1— "’iQ*).
ni *

Compute the nominal stress (Eq. (2.33)): Mg ="A D, : A -
Compute the inelastic strain increment according to the strain increment
decomposition (2.55): " 'Aes =" 'Ae — Cp:("'& *""5).
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Table 5.6: Numerical algorithm of the constitutive law for the regularized d'/d”
damage model with an implicit computation of the permanent strains (2.61): plastic-
damage corrector phase.

Load increment n:

Iteration i, plastic damage corrector phase:
Known quantities:

_ 1 ~ 1=+ 1+ - P . % . _i*
nlg’nlo_ nlgp’nld_,nlr_’n,zge n,zo_ *,n’lAsd,n’lAd .

b b

(x) Compute the elastic strain tensor " ‘g, (Eq. (5.11)):
[g*H("’l’AJ+*)+ EH("Ad )Ma " Agy)

*

;%
n,i
&,

n’lg = 1_

e

ni *

ni—=
&,

o

(xi)  Compute the permanent strain tensor according to the total strain

ni

decomposition (2.51): " 'g,=""e — " 'g,.

(xii)  Compute the projection operators " ‘Q and I —" ‘0 by means of the spectral
decomposition of the nominal strain tensor ™ ‘e, (Eq. (2.15)).

(xiii)  Compute the regularized averaging of " ‘e, by means of Eq. (5.13), " 'z, .
(xiv) Compute the elastic stress tensor " '& .= Dy : " 'z, . (Eq. (4.21)).
(xv)  Compute the regularized equivalent stress quantities "' 7= (Egs. (2.45) and

(2.46)).

. P —+ | —+ P —+ | —+
(xvi) If*'z* >"ly*.update™ 7= =""7+

and update " 'd* by Eq. (2.69).

| —+ -1 —+ . . . P+ 1 — e =+
If" "7 <™ 7= :no updating is required, "' 7~ ="17= and " 'd* ="1d ™.

(xvii) Compute the operator ™4 (Eq. (4.9)):

n,i;l*: ll_n,i67+ n,iQ + ll_n,ig— (I_n,iQ )

(xviii) Compute the nominal stress (Eq. (2.33)): ME="A Dy A M,
(xix) Check convergence at a global level:
NO convergence: go to the iteration i+1 and start again from (i) of Table 5.5.
YES convergence:
e Update:"e=" "g ="'g,"d*=""d%,"7* =""7*% and go to the next

increment load n+1.
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Chapter 6

Validation of the damage model
under monotonic and cyclic load
conditions

In this chapter, the energy-equivalent damage model described in Chapter 2 and the
multidirectional procedure specifically thought for cyclic loadings (Chapter 3) are
validated by means of comparisons between experimental and numerical results,
considering 2D plane stress problems. Parts of the numerical results hereafter
presented are already published in (Cervera et al., 2018).

In Section 6.1, the capability of the new d*/d~ damage model to describe the
asymmetrical behaviour of quasi-brittle materials under tension and compression is
proven, considering concrete samples subjected to uniaxial and biaxial tension,
uniaxial and biaxial compression and biaxial shear. Not only monotonic loading
conditions are considered but also cyclic conditions and conditions of loading and
unloading. In this way, the performance of the different new ingredients
characterizing the proposed damage formulation are investigated: the new
constitutive operator (2.24), the unified dissipative approach according to which
damage and permanent strains are treated, the new Gaussian hardening/softening
law in compression (Section 2.5) and the new definition for the permanent strain
tensor (2.61). The numerical algorithm adopted for studying these problems
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includes the implicit computation of the irreversible deformations, detailed in Table
5.2 and Table 5.3.

In Section 6.2, three examples involving unreinforced concrete elements are
solved in order to investigate the adequacy of the new d'/d~ damage model at a
structural level, specifically the effects produced by the adoption of the constitutive
secant stiffness operator, derived within an energy-equivalence framework. For this
purpose, only monotonically increasing loadings are analysed.

Conversely, in Section 6.3, the potentialities of the multidirectional damage
procedure described in Chapter 3 are shown with reference to a masonry wall and
a reinforced concrete wall, both subjected to cyclic shear conditions. Finally, the
efficiency of the smooth transition proposed in Section 3.3 for crack closure and
reopening is discussed in a quantitative way. For all these structural applications,
the numerical algorithm preferred uses the explicit calculation of the permenant
strains, because of its higher robustness. Specifically, the numerical schemes
described in Table 5.1 and Table 5.4 are taken into accoun in case of monotonic
and cyclic loading conditions, respectively.

All the analyses presented in this chapter are performed by resorting to a local
approach, in order to focus the attention on the constitutive aspects of the
formulation rather than on the aspects related to the regularization procedure.
Therefore, to ensure mesh-size objective results, in the follow up the local damage
formulation is combined with the crack band theory (BaZant and Oh, 1983). This
consists in computing the local softening moduli in tension and compression
(Section 2.5) starting from the finite element size A: for equilateral triangles

h* = 4/ \J3 4. while for quadrilateral elements 4> = A., with 4. area of the finite
element. The application of the regularized damage model is extensively discussed
in Chapter 7.

6.1 Monotonic and cyclic validation examples at a local
level

6.1.1 Uniaxial tension test on concrete with loading and unloading
stages (Gopalaratnam and Shah, 1985)
The present example validates the ability of the model to describe the softening

behaviour, the stiffness degradation and the irreversible deformations of concrete
under uniaxial tension. The dissipative behaviour is modelled by means of the
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exponential softening law (2.79) for describing the evolution of d*, and by the new
definition (2.61) for representing the permanent strain tensor increment. An
effective specimen size is adopted to represent the concrete sample, equal to
100 mm x 100 mm, with thickness 1 mm. The material constants considered in the
numerical analysis are summarized in Table 6.1 and the comparison between
experimental and numerical results is shown in Figure 6.1.

Table 6.1: Material parameters for concrete under uniaxial cyclic tension.

E \ f Gr &
[MPa] [-] [MPa] [N/mm)] [-]
34500 0.2 3.5 0.105 0.51

o[MPa]
——— Numerical
35 4

30 1 _____ Experimental
25 1
20 +
1.5 ¢
1.0 1
0.5 ——';

g[mm/m]

00 01 02 03 04 05

Figure 6.1: Concrete under uniaxial tension with unloading: comparison between
numerical and experimental (Gopalaratnam and Shah, 1985) results.

Although a slight underestimation of the permanent deformations and of the
softening behaviour is visible in Figure 6.1, the correspondence between numerical
predictions and experiment is satisfactory, especially in terms of unloading stiffness
in the first cycles.

6.1.2 Uniaxial compression test on concrete with loading and
unloading stages (Sinha et al., 1964)
The performance of the model under uniaxial compression is studied adopting

the new softening Gaussian function (2.80), in conjunction with the new definition
of the permanent strain tensor (2.61). The concrete sample has a length equal to



126 Validation of the damage model under monotonic and cyclic load
conditions

305 mm and a resisting section equal to 135 mm % 135 mm. The compressive
material properties used in the numerical analysis are summarized in Table 6.2,
while the comparison between numerical and experimental results is presented in
Figure 6.2.

Table 6.2: Material parameters for concrete under cyclic compression.

E Y A Gr <
[MPa] [-] [MPa] [N/mm] [-]
29500 0.2 -31.5 38.0 0.45

o[MPa]
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hd ] )
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_15 1 4 /:/ ; ’/, / /I I/'/,’,
VAR B // cy
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Figure 6.2: Concrete under uniaxial compression with unloading: comparison between
numerical and experimental (Sinha et al., 1964) results.

As visible in Figure 6.2, the overall response is properly described by the
damage model, in terms of strength reduction, stiffness degradation and progressive
accumulation of permanent deformations. This constitutes a proof of the adequacy
of the Gaussian softening function to describe the behaviour of concrete (and quasi-
brittle materials in general) under uniaxial compressive regime. Specifically, the
hypothesis of fixing the end of the linearity in correspondence with a stress value
equal to f-exp(—0.5) (see Section 2.5.2 and Eq. (2.93)) fits adequately with the
experimental trend, as well as the assumption of defining the width of the Gaussian
bell on the basis of the fracture energy.
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6.1.3 Uniaxial cyclic tension-compression test on concrete
(Ramtani, 1990)

In this section, the crack-closure effects typical of concrete, visible in a uniaxial
cyclic loading history characterized by two loading-unloading stages in tension and
a further reloading in compression, are reproduced with the d*/d~ damage model.

Due to the adequate fit obtained under uniaxial tension (Section 6.1.1) and
uniaxial compression (Section 6.1.2), the softening function adopted in tension is
the exponential one while in compression the Gaussian softening law is preferred.

In accordance with (He et al., 2015), an effective concrete specimen is
considered, 1 mm thick and with dimensions 80 mm X 80 mm. The material
parameters are collected in Table 6.3 and the numerical results, compared with the
experimental ones, are shown in Figure 6.3.a. Moreover, in Figure 6.3.b, a zoom on
the tensile response is provided.

Table 6.3: Material parameters for concrete under uniaxial alternate cyclic

conditions.
E v f f Gr' G &+
[MPa] [-] [MPa] [MPa] [N/mm] [N/mm] [-]
16400 0.2 1.2 -18 0.02 7.50 0.4
(@) o[MPa] (b)
20 -16 -12 08 -04 e[mm/m] o[MPa]
—— Numerical
—— Numerical 7 1.5+
Ak Experimental
) 1 0 1 /T~ @ Xperimen
----- Experimental / 13
’ 0.5+ .
12 0.0 = elmm/m]
0.2 0.25
-16 -0.5
-20 1

Figure 6.3: Concrete under uniaxial cyclic conditions: comparison between numerical
and experimental (Ramtani, 1990) results in (a) compression and (b) tension.
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The experimental behaviour of the material under alternate cyclic conditions is
fairly simulated by the damage model; specifically, the crack closure is represented
thanks to the spectral decomposition of the elastic strain tensor &, combined with
the use of two damage variables, one for tension and one for compression.

6.1.4 2D tests on concrete in biaxial tension, combined tension and
compression and biaxial compression (Kupfer et al., 1969)

The material behaviour under biaxial stress-strain conditions is validated by
referring to the experimental tests described in (Kupfer et al., 1969) on several
concrete samples, subjected to different stress combinations, in the regimes of
biaxial tension, combined tension-compression and biaxial compression.

The softening functions adopted in tension and in compression are the
exponential and the Gaussian one, respectively. The specimens have dimensions
200 mm x 200 mm % 50 mm. The set of experiments herein simulated is the one
related to a concrete with compressive strength equal to 32.8 MPa. All the input
material properties considered in the numerical analyses are synthetized in Table
6.4. With respect to the previous examples, two additional parameters are here
specified, which are the ratio between the biaxial and the axial compressive
strengths, useful in biaxial compression, and the parameter k, defining the
amplitude of the compressive damage surfaces in the 2™ and 4™ quadrants (see
Figure 2.4).

Table 6.4: Material parameters for concrete under biaxial stress.

E v f f Gs' G Al k &+
[MPa]  [-] [MPa] [MPa] [N/mm] [N/mm] [-] [-] [-]

32000 0.2 266 -32.8  0.105 26.00 .16 075  0.22

The normalized longitudinal stress — longitudinal strain curves obtained in
biaxial compression, combined tension-compression and biaxial compression for
different stress ratios are shown in Figure 6.4, Figure 6.5 and Figure 6.6. The
longitudinal direction indicates the direction in which the maximum stress o is
applied. According to the decomposition on the elastic strain tensor, dispalyed in
Figure 2.1.b, the cases of biaxial compression and biaxial tension are treated with
an isotropic damage model, since the ratio between the transversal and the
longitudinal imposed stresses is higher than the Poisson’s ratio v. The cases of
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uniaxia tension, uniaxial compression and combined tension-compression imply
instead the adoption of an orthotropic damage model.

olf”

14 ] o2
-1/-0.52
12 1 TN
,.;:»"’4/ _ N 01/,

10 1 S S N
08 + /,/:'/ \ 61/0-2

0 -1/0
0.6 + [
04 + — Numerical
o2 L Experimental

. . ) : 81[mm/m]

-1.0 -2.0 -3.0 -4.0

Figure 6.4: Stress-strain relationships of concrete under biaxial compression, with
stress normalized with respect to compressive strength: comparison between numerical and
experimental (Kupfer et al., 1969) results.
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Figure 6.5: Stress-strain relationships of concrete under combined tension-
compression, with stress normalized with respect to compressive strength: comparison
between numerical and experimental (Kupfer et al., 1969) results.
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Figure 6.6: Stress-strain relationships of concrete under biaxial tension, with stress
normalized with respect to 29.5 MPa: comparison between numerical and experimental
(Kupfer et al., 1969) results.

The satisfactory fit among experimental and numerical results, especially in
terms of peak loads, confirms the adequacy of the damage formulation for the
analyses of concrete structures under generic biaxial conditions.

6.2 Monotonic loads: validation of the energy-equivalent
d'/d- damage model

Three different structural applications are studied with the new energy-equivalent
d'/d~ damage model: a wedge-splitting test performed on a concrete specimen in
the experimental program described in (Trunk, 2000), a three-point bending test
shown in (Kormeling and Reinhardt, 1983) and a mixed-mode three-point bending
test documented in (Galvez et al., 1998), both on single-edged-notched concrete
beams.

The geometry, the boundary and the loading conditions for the just mentioned
examples are illustrated in Figure 6.7, Figure 6.8 and Figure 6.9, respectively. In all
the problems, the increasing forces P are applied by imposing increasing
displacements of the application points.
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Figure 6.7: Wedge-splitting test set-up (dimensions in mm).

P

I ”

HG
450 ' "T100

Figure 6.8: Three-point bending test set-up.(dimensions in mm).
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Figure 6.9: Mixed mode three-point bending test (dimensions in mm).

All the numerical analyses are performed considering an exponential damage
evolution law in tension (Eq. (2.76) with ro" = =f,*, i.e. y." = y,") and a parabolic
hardening-exponential softening trend in compression (Eq. (2.76) with
ro <f <fp,7e =0.33andy, =1.33). The permanent strains are taken into account
by means of Eq. (2.57).

The mechanical properties assumed for concrete in each case are summarized
in Table 6.5, Table 6.6 and Table 6.7.
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Table 6.5: Concrete parameters for the wedge-splitting test.

E v G G flf b+ b- k
[MPa] [-] [MPa] [MPa] [N/mm] [N/mm] [-] [-] [-] [-]

28300 0.2 159  -25 0.35 35 1.16 005 030 0.8

Table 6.6: Concrete parameters for the three-point bending test.

E v G G Sl b+ b- k
[MPa] [-] [MPa] [MPa] [N/mm] [N/mm] [-] [-] [-] [-]

20000 0.2 240 -24 0.133 30 .16 005 030 0.8

Table 6.7: Concrete parameters for the mixed mode three-point bending test.

E v f f G G il bt b k
[MPa]  [-] [MPa] [MPa] [N‘mm] [N/mm] [-]  [-] =[] [-]

38000 0.2 3.00 -54  0.069 38 1.16 0.05 030 0.8

The mesh has been generated taking care of refining the discretization where
the propagation of the crack is expected; for the wedge-splitting test, a mesh of 3353
quadrilateral elements is adopted with a representative length in the proximity of
the cracking zone equal to 17.5 mm. In the three-point bending and in the three-
point mixed-mode bending tests, the concrete beams are discretized with 2752 and
13336 elements, respectively: in the regions around the notch, triangular elements
with an average size of 2.5 mm are used while the other zones are discretized with
larger quadrilateral meshes.

The adequacy of the proposed orthotropic d"/d~ damage model in capturing the
nonlinear behaviour is proven by comparing the numerical and the experimental
results in terms of deformed configurations, damage distribution, applied load
P — crack mouth opening displacement CMOD and/or applied load
P — displacement of relevant points.

Regarding the wedge-splitting test, as expected due to the problem symmetry,
the localization of the tensile damage occurs in correspondence of the notched zone
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(see Figure 6.10.a and Figure 6.10.b) and is vertical, in accordance with the vertical
crack path found experimentally.

(b)

Figure 6.10: Wedge-splitting test: (a) deformed configuration (x 100) (in mm) and (b)
tensile damage distribution.

The numerical P - CMOD curve is compared in Figure 6.11 with the
experimental one: both the peak-load and the post-peak behaviour are satisfactorily
described with the proposed model.
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Figure 6.11: Load P — CMOD curve for the wedge-splitting test: comparison between
numerical and experimental results.
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The accordance of the results obtained numerically with the experimental ones
is evident also for the three point bending test, as confirmed by the deformed
configuration of the beam and by the d" distribution (Figure 6.12.a and Figure
6.12.b), which show the Ilocalization of the maximum deformations in
correspondence of the mid-span, above the notch. The agreement between
experimental and numerical results is evident also in Figure 6.13, where the load
P — mid-point displacement ¢ curve obtained with the proposed damage model falls
in between the maximum and minimum experimental envelopes.

a 0.132 0.264 0.3%6 0529 0661 0793 0925 1.08 119 132

i 0.1 02 03 04 05 08 07 08 04 1
I -

Figure 6.12: Three point bending beam: (a) deformed configuration (x 100, in mm)
and (b) tensile damage distribution map.

1.60 [P [kN]

— Numerical results-
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0.80 | --— Numerical results-

Strain-equivalent model

0.40 |

Figure 6.13: Load P — & curve for the three-point bending test: comparison between
numerical and experimental results.



6.2 Monotonic loads: validation of the energy-equivalent d+/d— 135
damage model

Finally, as regards the three-point mixed-mode bending test, the deformed
configuration (Figure 6.14.a) and the distribution of the tensile damage
(Figure 6.14.b) are in perfect agreement with the crack trajectory found in the
experiment, which has an inclined direction of propagation, as accurately
documented in (Galvez et al., 1998). The structural curves obtained with the
proposed orthotropic model, in terms of applied load P — CMOD (Figure 6.15.a)
and applied load P — displacement of point B (Figure 6.15.b), fit satisfactorily with
the experimental results, except for a slight overestimation of the dissipated energy
in the post peak regime.

0 00782 0156 0235 0313 0381 0463 0548 0626 0.704 0782
[

Figure 6.14: Three-point mixed-mode bending test: (a) deformed configuration (x 100,
in mm) and (b) tensile damage distribution map.
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Figure 6.15: (a) Load P — CMOD curve and (b) load P — up curve for the three-point
mixed-mode bending test: comparison between numerical and experimental results.



136 Validation of the damage model under monotonic and cyclic load
conditions

All the problems just described are solved also with the constitutive law
presented in (Faria et al., 1998), derived in the framework of strain-equivalence,
but resorting to the same permanent strain rate (2.57), damage criterion (Egs. (2.45)
and (2.46)) and damage evolution laws (Eq. (2.79) in tension and Eq. (2.76) in
compression) here considered. The corresponding numerical curves are plotted in
Figure 6.11, Figure 6.13 and Figure 6.15, together with the experimental ones and
the ones obtained with the new d*/d~ damage model described in Section 2.2. The
objective is to discuss the effects of the energy-equivalence assumption, here
adopted for the derivation of the constitutive operator (2.24), compared with the
strain-equivalence hypothesis, whose constitutive equation is expressed in
Eq. (2.6).

On the one hand, it is possible to note how the differences between the two
different formulations are substantially slight in the structural response, being both
of them able to reproduce satisfactorily the laboratory results. Hence, although the
choice of energy-equivalence ensures a gain in thermodynamic consistency with
respect to the strain-equivalence one, as observed in Section 2.2, both the
formulations are adequate in describing the strain-softening response typical of
quasi-brittle materials.

However, the adoption of the constitutive symmetric operator Dg (Eq. (2.24))
is convenient in computational terms because it allows solving the algebraic system
of equations referring to a symmetric secant stiffness matrix, as explained in
Section 5.1. Looking at the CPU time necessary to complete the numerical analyses,
collected in Table 6.8, this fact is confirmed. The maximum beneficial effect
consists in a saved time equal to 51%, which results from the adoption of the new
energy-equivalent damage model with respect to the original one. It is worth
remarking that such an high saving of computational resources has to be ascribed
not only to the assemblage and inversion of a symmetric stiffness matrix with
respect to a non-symmetric one but also to the fact that, with the use of a symmetric
matrix, the convergence is found in a lower number of iterations.
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Table 6.8: Comparison in terms of CPU’s time between the new energy-equivalent
damage formulation and the original strain-equivalent one (Faria et al., 1998).

Number CPU time CPU time Saved CPU
Problem . . : s
of FEs Energy equivalence Strain equivalence time
Wedge-splitting 3359 1042.95 s 1223.85 s 14.7%
Three-point 597y 8813.53 s 17996.26 s 51.0%
bending
Mixed-mode 345 5452.77 s 10393.5 s 47.5%
bending

6.3 Cyclic shear loads: validation of the multidirectional
d/d” damage model

6.3.1 Masonry shear panel under cyclic conditions

The first problem analyzed with the model presented in Chapter 2 enriched with the
multidirectional procedure described in Chapter 3 is an unreinforced brick masonry
wall under in-plane quasi-static shear loading conditions. The reference solution is
represented by the results of laboratory tests provided in (Anthoine et al., 1994) and
(Magenes and Calvi, 1997), dealing with a laboratory campaign addressed to
investigate the seismic behaviour of masonry existing buildings. The loading
conditions of the analyzed problem are representative of the ones sustained by
vertical structural elements during a seismic event, i.e. permanent vertical loads and
double bending moments.

According to the experimental set-up (Anthoine et al., 1994), the wall, with an
height H-width ratio equal to 1.35, width B 1000 mm and thickness 250 mm, is first
subjected to a vertical compressive force of 150 kN (p = 0.6 N/mm?) and then to
cyclic horizontal displacements u, of increasing amplitudes applied on the top
boundary. The base of the panel is completely constrained and the vertical
displacements of its top side are prevented, forcing the bottom and top panel
sections to remain parallel. Both the geometry and the loading conditions adopted
in the numerical analyses are summarized in Figure 6.16.
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1,35m

B=1,00m

Figure 6.16: Geometry, boundary and loading conditions for the masonry shear wall.

All the numerical analyses are performed considering an exponential damage
evolution law in tension (Eq. (2.76) with ro" =" =1,", i.e. 7" =7,") and a parabolic
hardening-exponential softening trend in compression (Eq. (2.76) with
ro <f <f,,y. =0.5and y,” =1.5). The permanent strains are taken into account
by means of Eq. (2.57). Regarding the mechanical parameters, except for the
Young’s modulus and the compressive uniaxial strengths f~, inferable from
(Anthoine et al., 1994), the majority of the other values have been chosen in
accordance with the experimental data expressed in (Berto et al., 2002; Magenes
and Calvi, 1992) for brick masonry panels with mechanical features comparable
with the ones of the analyzed wall and belonging to the same research program. The
input values for the constitutive parameters adopted in the numerical simulations
are collected in Table 6.9.

Table 6.9: Masonry parameters for the wall under in-plane cyclic shear.

E v f f G G S bt bk
[MPa] [-] [MPa] [MPa] [Nmm] [N'mm] [] [1 []  []

1500 0.15 026 -62 025 28 .15 0.1 030 0.8

Due to the presence of a non-negligible constant vertical force in addition to
the cyclic actions, the problem is solved by resorting to the multidirectional
procedure specifically devised for Load Type (ii) (Section 3.1.2), i.e. taking into
account the evolution of the damage regions related to the continuous rotation of
the principal directions. The two additional deviation parameters required by the
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multidirectional damage procedure, 0, (Eq. (3.3)) and 6: (Eq. (3.6)), are assumed
equal to /8 and /36, respectively.

The response of the panel obtained in the laboratory test is plotted in Figure
6.17.a, in terms of the horizontal shear force F) recorded at the top side versus the
imposed horizontal displacement wu;. The Fi - up curves deriving from the
application of the multidirectional damage model, considering three quadrilateral
mesh configurations with different refinement, are shown in Figure 6.17.b, Figure
6.17.c and Figure 6.17.d. For comparison purposes, each numerical curve is plotted
together with the envelope of the experimental one.
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Figure 6.17: Masonry wall under in-plane cyclic shear: (a) experimental results; (b),
(c) and (d) numerical results obtained with the multidirectional procedure for different
mesh refinements.
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The experimental response (Figure 6.17.a) is typical of a brittle failure
mechanism dominated by shear, where the peak load, equal to 84 kN in
correspondence of a drift of 0.20 %, corresponds to the formation of diagonal cracks
in the center of the panel; the pre-cracking behaviour is characterized by a modest
hysteresis behaviour while, after the attainment of the maximum carrying capacity,
rapid strength and stiffness degradation and high energy dissipation are visible. The
cyclic conditions are responsible for a trapezoidal cracking pattern which presents
two sets of intersecting cracks in the mid-height of the panel, as well as horizontal
flexural ones in correspondence of the corners.

Analyzing the numerical curves (Figure 6.17.b, Figure 6.17.c, Figure 6.17.d),
firstly it is evident how the dependence of the results on the discretization, ensured
by the adoption of the mesh-adjusted softening moduli in tension and compression,
is very small and can be considered negligible. Secondly, it can be noticed that the
numerical results reproduce satisfactorily the overall structural response of the
shear panel: both the peak load, achieved at a drift of 0.22 % (un = —3 mm) and
equal to 84,8 kN (curve in Figure 6.17.d), and the post-peak softening trend are well
approximated. Moreover, the effect of the multidirectional procedure is visible in
the similarity of the response in terms of ultimate load, ultimate displacement and
softening behaviour between positive and negative displacements. This is simulated
thanks to the stiffness recovery capabilities of the multidirectional model in
correspondence of loading reversal; in fact, going from negative to positive
displacements, an increase in stiffness is visible in the numerical response,
particularly evident in the unloading stage after the attainment of the maximum
carrying capacity (cycle 2, amplitude 3 mm): here, the closure of a set of diagonal
cracks just opened translates in almost the total recovery of the initial stiffness,
since the generation of the diagonal cracks in the orthogonal direction is not
occurred yet. In the subsequent cycles, this phenomenon, although present, is less
evident because the closure of a set of cracks coincides with the re-activation of the
other set of cracks previously originated.

To make clearer how this stiffness regain is simulated, the contour plots of the
active tensile damage value d* corresponding to different stages of cycle 2 are
shown in Figure 6.18. In Figure 6.18.a, Figure 6.18.b and Figure 6.18.c, the contour
plots refer to the situations of maximum loading (#sm«= —3 mm), loading reversal
(Unmax=10.12 mm) and maximum reloading (#pminy= +3 mm).
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Figure 6.18: Active d* contour plots in cycle 2: (a) uy=—3mm, (b) u,=+0.12mm and (c)
up=13mm.

In Figure 6.18.a, the high values of damage at the center of the panel and at the
two corners identify the formation of the shear and flexural cracks, respectively,
induced by a horizontal displacement towards the right. Just after loading reversal,
in Figure 6.18.b, the closure of the previously generated cracks is represented by
making inactive the damage values displayed in Figure 6.18.a: in fact, due to the
rotation of the principal directions, the transition from a damage region to the other
one has occurred and the active damage values coincide with the maximum ones
attained during the reloading in cycle 1. Starting from this damage configuration,
due to the increase of the horizontal displacement towards the left, the active
damage distribution in Figure 6.18.c is obtained, almost symmetric with respect to
the one in Figure 6.18.a.

A further confirmation that the collapse mechanism captured by the numerical
analysis is governed by shear is given in Figure 6.19 and Figure 6.20, where the
maximum tensile strains exqx are displayed in cycle 2 and in cycle 5, respectively,
at the end of loading and at the end of the reloading stages. The contour plots in
Figure 6.19 confirm the formation of the dominant cracking mechanism in the
center of the panel. In Figure 6.20, the results refer to the end of the analysis, when
the crack propagation towards the corners has occurred, causing the maximum
strain values to leave the central part. Although the adoption of a smeared approach
does not allow identifying with accuracy the strain localization, the numerical
solutions shown in Figure 6.19 and Figure 6.20 are in good agreement with the
cracking pattern observed in laboratory and documented in (Anthoine et al., 1994).
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Figure 6.19: Maximum tensile strain contour plots in cycle 2: (a) uy= —3 mm and (b)
up=+3 mm.
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Figure 6.20: Maximum tensile strain contour plots in cycle 5: (a) uy=—7.5 mm and (b)
w=+7.5 mm.

For comparison purposes, the F) - u, curve obtained by the adoption of the
damage model without a multidirectional treatment of damage is shown in Figure
6.21.a. Even though the peak load and the envelope of the experimental curve are
basically captured, the lack of wunilateral effects reflects in a relevant
underestimation of the dissipated energy. This can be noticed both in the unrealistic
shape of the hysteretic cycles and in the evolution of permanent deformations,
which accumulate mainly in the positive loading stages, and not in the reloading
ones (in accordance with the observations provided in Section 3.4). Differently, in
the response obtained with the multidirectional damage model (see Figure 6.17.d),
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although the permanent strains are somewhat underestimated, their evolution is
qualitatively correct, as permanent deformations are generated both in the loading
and in the reloading stages.

In order to provide a quantitative proof of the beneficial role of the
multidirectional damage approach in terms of representation of the dissipative
behaviour, the equivalent viscous damping coefficients are computed for each load
cycle, referring to the numerical response with and without enhanced MCR
capabilities, Figure 6.17.d and Figure 6.21.a, respectively. The equivalent viscous
damping is evaluated as the ratio between the energy dissipated in a cycle W, and
the elastic energy W, at the maximum displacement #max:

Wy

(6.1)

In Figure 6.21.b, these quantities are plotted as a function of the drift (usma/H)
and compared with the ones derived from the experimental response (data provided
in (Magenes and Calvi, 1997)).
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Figure 6.21: Masonry shear wall under in-plane cyclic shear: (a) numerical results
without the multidirectional procedure; (b) comparison in term of viscous damping
coefficients between the numerical response obtained with and without the multidirectional
procedure.

On the one hand, Figure 6.21.b shows the adequacy of the multidirectional
model in treating the cyclic shear failure: after cracking, the numerical trend of the
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equivalent viscous damping is close to the experimental one, meaning that the
growth of the dissipated energy due to increasing damage and increasing
displacement demand is well reproduced. The slightly lower values obtained in the
analyses can be attributed to the slight underestimation of the permanent strains. On
the other hand, Figure 6.21.b confirms the incapability of a pure scalar damage
formulation in describing the real dissipative behaviour under shear cyclic
conditions, because independent degradation processes along different directions
can not be represented.

As mentioned above, a slight underestimation of the permanent deformations
is visible in the numerical response from Figure 6.17.d. This deserves some further
consideration on the adequacy of the simplified definition (2.57) here adopted for
the irreversible strain tensor &, and the importance of this model component in
cyclic loading conditions. To do this, two additional analyses are carried out,
varying the values of the material parameters b" and b~ with respect to the ones
indicated in Table 6.9. Specifically, both the case of high permanent deformations
(b'=0.17 and b= 0.45) and null permanent deformations (b"= 0 and b = 0) are
considered. The resulting F - u; curves, obtained using the finer mesh, are plotted
in Figure 6.22. Moreover, these solutions are also re-elaborated in terms of damping
coefficients-drift trends in Figure 6.23, in order to directly evaluate the variation of
energy dissipation associated to the variation of &,

Numerical curve
- mesh 825 FEs

n (tom],

b*=0.17 5=0.00
b=0.45 57=0.00

_____ Experimental _.___ Experimental /
envelope

Numerical curve
- mesh 825 FEs
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;

i (tmm],

1l | | l
75 %-453-150 1.5 3 4

56 75

—7.5 —

453150 15 3 45 & 7

S

Figure 6.22: Masonry shear wall under in-plane cyclic shear: F}, - uj, curves in case of
(a) high permanent deformations and (b) absent permanent deformations.
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Figure 6.23: Masonry shear wall under in-plane cyclic shear: numerical responses with
different levels of permanent deformations compared in terms of viscous damping
coefficients.

Some relevant aspects emerge from the analysis of these figures. Firstly,
although the inclusion of permanent deformations in the damage model is perfomed
in a simplified manner, it results adequate for describing the experimental evidence,
both in terms of residual deformations at complete unloading (Figure 6.22.a) and in
terms of energy dissipation capacity (Figure 6.23). Secondly, a less pronounced
softening response is obtained when the permanent deformations are not included
(Figure 6.22.b); this is not surprising because, according to the coupled definition
of the softening modulus proposed in Section 2.5 (Eq. (2.84b)), a reduction of the
permanent deformations implies a reduction of the softening modulus, hence a
slower evolution of damage. Moreover, the unrealistically low values of &
obtained with null &, (Figure 6.23) are very similar to the ones derived without the
multidirectional procedure, in case of b'= 0.1 and b= 0.3 (Figure 6.21.b). It is
concluded that the modelling of permanent deformations is important as the
modelling of microcrack closure-reopening effects for a correct representation of
the behaviour of quasi-britttle structures under cyclic loading.

6.3.2 Reinforced concrete wall under cyclic shear

The second problem studied with the multidirectional procedure described in
Chapter 3 is a reinforced concrete wall subjected to horizontal cyclic shear forces,
tested within the French national research project CEOS.fr (Rospars and Chauvel,
2014). The specimen analyzed is the one identified in the experimental campaign
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with the acronym SHW2 and represents a 1/3 reduced-scale model of reinforced
concrete thick shear walls employed in industrial buildings to resist seismic
loadings.

In the numerical analysis, the experimental set-up, detailed in (Rospars and
Chauvel, 2014; Bisch et al., 2014), is reproduced as shown in Figure 6.24: the
reinforced concrete specimen (Zone 1, Zone 2), of overall dimensions
42 m x 1.05 m x 0.15 m, is connected on the top and on the bottom to highly
reinforced thick horizontal beams (Zone 3 and Zone 4), which allow redistributing
the shear loading on the panel. The horizontal action, in the laboratory test assigned
by means of hydraulic actuators placed on each side of the top beam, 100 mm over
the wall, is provided in terms of horizontal imposed displacements u;, alternated on
the Surfaces 1 and 2. Moreover, the constraint represented by the steel frame in
which the whole test body is installed is modelled by preventing horizontal
displacements on Surfaces 3 and 4 and vertical displacements on Surfaces 5 and 6.
Rebars ¢ 10, spaced 100 mm in both vertical and horizontal directions on both faces
of the wall (Zone 1) are considered while vertical rebars ¢ 25 and ¢ 32 are added in
the left and right sides of the wall (Zone 2), in order to control the opening of cracks
due to bending.

02m
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Figure 6.24: Geometry, boundary and loading conditions for the reinforced concrete
shear wall.
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In the highly reinforced zones, specifically the top and bottom beams (Zone 3,
Zone 4) and the left and right parts of the wall (Zone 2), it is assumed that the
concrete behaviour is elastic. Hence, the damage formulation developed in
Chapter 2 and Chapter 3 is applied only to Zone 1, considering the definition for
permanent strains (2.57), an exponential softening law in tension (Eq. (2.76) with
ro' =f =f,",i.e. 7. =7,") and a parabolic-exponential damage evolution law in
compression (Eq. (2.76) withrg” <f <f,”, y. =0.4and y, =1.6). The mechanical
parameters adopted for concrete, class C40, are collected in Table 6.10. They are
chosen in accordance to (Rospars and Chauvel, 2014; Vassaux et al., 2015) and, in
absence of data availability, calibrated in order to optimize the fitting between
numerical and experimental results.

Table 6.10: Concrete parameters for the problem of the R.C. wall under cyclic shear.

E v f I G G il bt b k
[MPa]  [-] [MPa] [MPa] [N/mm] [N/'mm] [-]  [-]  [] [-]

22000 0.2 39 -42 0.7 45 1.16 0.1 0.35 0.8

The reinforcement is modeled as follows, exploiting the fact that it is oriented
along the Cartesian directions x and y. Assuming the hypothesis of perfect
adherence between concrete and rebars, the axial forces sustained by steel in the
horizontal and vertical direction, Py and Py, are computed starting from the
deformations ¢ and &, in the concrete, taking into account the percentage of
horizontal and vertical reinforcement p. and p,. The uniaxial constitutive law
chosen to represent the cyclic behaviour of the reinforcement is the one proposed
in (Menegotto and Pinto, 1973) and illustrated in Figure 6.25. The expression for
the steel stress gy is explicited in (Faria et al., 2004).

Figure 6.25: Constitutive law of the reinforcement under uniaxial cyclic history.
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The parameters adopted in the analyses for the characterization of the
reinforcement are synthetized in Table 6.11, where Es is the Young’s elastic
modulus, Ej; is the hardening modulus, f; is the yielding stress and a1, a2 and a3 are
three constants chosen to fit the Baushinger effect observed experimentally.

Table 6.11: Reinforcement constitutive parameters for the problem of the R.C. wall
under cyclic shear.

E; Eq f ai as as
[MPa] [MPa] [MPa]  [-] [-] [-]

210000 2100 420 185 0.15 20

The percentages of steel reinforcement considered in the different Zones
highlighted in Figure 6.24 are summarized in Table 6.12, together with the
thickness of each Zone.

Table 6.12: Percentage of the reinforcement and thickness for each Zone of the R.C.
shear wall body test.

Dx Dy Thickness
Zone
[-] [-] [mm]
Zone 1 0.011 0.011 150
Zone 2 0.025 0.243 150
Zone 3 0.043 0.005 450
Zone 4 0.048 0.155 450

Due to the absence of vertical loads, except for the self-weight which is
negligible compared to the horizontal cyclic action, the multidirectional approach
is applied referring to load Type (i), considering non-evolving damage regions
during the loading history (Section 3.1.1). Therefore, the only additional parameter
required by the multidirectional procedure is 6; (Eq. (3.6)), assumed equal to n/36.

In Figure 6.26, the experimental results in terms of global horizontal force
Fy — horizontal displacement ux4 of point A on the top side of the specimen (see
Figure 6.24) are plotted (Bisch et al., 2014). In Figure 6.27, four different numerical
predictions are shown: Figure 6.27.a and Figure 6.27.b exhibit the force-
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displacement curves obtained by means of the multidirectional procedure,
considering two different quadrilateral mesh refinements; Figure 6.27.c represents
the numerical response derived by applying the standard scalar damage
formulation, without a multidirectional treatment of damage; finally, in Figure
6.27.d the results are obtained with the multidirectional procedure and increasing
the intensity of the permanent deformations with respect to the values presented in
Table 6.10 ("= 0.18 and b= 0.45).

Experimental
cyclic response

3

o6 12 15 214
Figure 6.26: R.C. wall under in-plane cyclic shear: experimental results.

First of all, comparing Figure 6.27.a and Figure 6.27.b, a very low dependence
of the results on the discretization can be appreciated. Secondly, good
representativeness of the experimental curve is noticed. Specifically, the
progressive evolution of degradation with the development of cracking is captured,
as well as the lateral resistance of the structure (4.07 MN against 4.3 MN). Even in
terms of displacement capacity, the numerical and observed results are in good
agreement: the slightly greater deformability visible in Figure 6.26 for high load
cycles is attributable to the assumption of elastic behaviour for the Zones 2, 3 and
4 displayed in Figure 6.24.
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Figure 6.27: R.C. wall under in-plane cyclic shear: (a) and (b) numerical results
obtained with the multidirectional procedure for two different mesh refinments; (c)
numerical results without the multidirectional procedure; (d) numerical results obtained
with the multidirectional procedure and with an higher level of permanent deformations.

In addition, comparing Figure 6.27.b and Figure 6.27.d, it is worth noting that
the level of permanent deformations experimentally observed is better modelled by
increasing the parameters b" and b™. This represents a further confirmation of the
adequacy of Eq. (2.57) for describing the evolution of &p.

For what concern the effects of the alternating loadings, the global response
obtained with the adoption of the multidirectional procedure (Figure 6.27.a, Figure
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6.27.b and Figure 6.27.d) is essentially symmetric. This proves an appropriate
consideration of the microcracks closure-reopening phenomena. In fact, the same
peak loads and the same dissipative trends can be obtained in the loading and
reloading stages only by means of appropriate stiffness recovery capabilities upon
loading reversal. These features are absent in the response obtained without the
multidirectional procedure (Figure 6.27.c), in which the full conservation of
damage from the loading to the reloading stages is evident and is due to the
impossibility of distinguishing between two sets of defects with different
orientations. In addition, as discussed in Section 3.4, the lack of unilateral
capabilities have consequences even on the evolution of permanent strains, which
unrealistically accumulate only for positive thrusts.

The only notable discrepancy between numerical and observed results lies in
the pinched shape of the hysteresis cycles, which is evident in Figure 6.26 and is
not appreciable in Figure 6.27.a, Figure 6.27.b and Figure 6.27.d. Pinching is
associated to the bond slip between concrete and rebars (Vecchio, 1999), neglected
in the analysis due to the hypothesis of perfect adherence. Removing such an
assumption would add significant complexity to the model and it is not in line with
the objective of the present example of application, which is to show the enhanced
unilateral capabilities of concrete ensured by the application of the multidirectional
procedure.

In order to demonstrate how the multidirectional approach allows reproducing
the stiffness recovery, the contour plots of the active tensile damage at the end of
the loading (144 = 1.55 mm) and at the end of the reloading (1,4 = —1.35 mm) in the
fourth cycle of the curve plotted in Figure 6.27.b are displayed in Figure 6.28.a and
Figure 6.28.b, respectively. The approach is based on the deactivation of some
values of damage (the one referred to the closed cracks) and on the reactivation of
other values (the one referred to the open ones).

(b)
0 00936 0187 0.281 0374 0468 0.562 0.655 0.749 0.842 0.936
I |

Figure 6.28: Contour plots of the active tensile damage value d"for the R.C. wall
under in-plane cyclic shear: (a) s = 1.55 mm and (b) us4 = —1.35 mm.
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Finally, the symmetry found in the active damage contour plots (Figure 6.28)
between the two sets of alternating active cracks reflects in a symmetric distribution
of the longitudinal strains &, between the situation uzs = 2.35 mm and upy = —2.2
mm, as shown in Figure 6.29.a and Figure 6.29.b respectively. These contour plots
reproduce satisfactorily the two symmetric sets of cracks observed in the laboratory
test (Rospars and Chauvel, 2014) and confirm the adequacy of the proposed
mechanical model in dealing with cyclic shear actions.
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Figure 6.29: Contour plots of the longitudinal strains &, for the R.C. wall under in-
plane cyclic shear: (a) usg = 2.35 mm and (b) upg = —2.2 mm.

6.3.3 Numerical robustness of the multidirectional damage
procedure

In Section 3.3, a smooth transition between different damage regions is proposed
with the aim of alleviating the convergence difficulties expected when cracks close
and reopen. Here, the effects of this procedure on the numerical performance of the
multidirection damage approach are investigated and quantified with reference to
the problem of the masonry shear panel studied in Section 6.3.1. This is carried out
by varying the value of the parameter 6; which identifies the amplitude of the
transition region (see Eq. (3.6) and Figure 3.4) for each level of permanent
deformations considered in the numerical analyses (Figure 6.23). The variable used
to quantify the numerical performance is the number of iterations necessary to
achieve convergence in a load step.

The convergence data discussed in the following regards the unloading-
reloading stages after the achievement of the maximum load (cycle 2, amplitude
3 mm). As previously discussed, this is in fact the situation in which stiffness
recovery is more emphasised and hence convergence difficulties are expected to be
greater. Specifically, the load increments around crack-closure, which require the
highest number of iterations to converge, are thirteen. For these thirteen load steps,
the number of necessary iterations is indicated in Figure 6.30.a, Figure 6.30.b and
Figure 6.30.c, which refer to the case of high permanent deformations (b"= 0.17
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and b = 0.45), intermediate permanent deformations (5"= 0.1 and ™= 0.3) and null
permanent deformations (b"= 0.0 and b = 0.0), respectively.

In each graph, different values of 6, are taken into account: from 6;= /180 (1°)
to ;= m/36 (5°). Higher is 6;, smoother is the modelling of the crak closure.
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Figure 6.30: Numerical convergence in correspondence with crack closure for varying
6 (a) high permanent deformations, (b) intermediate permanent deformations, (c) zero
permanent deformations and (d) effects of 6; on the structural response.

Moreover, Figure 6.30.d shows the structural responses obtained with different
values of 0;, in case of 5'=0.1 and b =0.3.

Analysing Figure 6.30, it is possible to observe that passing from 6,= n/180 to
6:= m/36 there is a non-negligible reduction of the total number of iterations, which
is of 22% in the case of high &, and 24% in the case of intermediate &,. However,
the beneficial effect of the smoothing procedure is more significant in the case of
zero permanent deformations, where the inclusion of a sufficiently wide transition
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region (6= m/36) allows to obtain convergence in 57 iterations, while, with the
adoption of 6= n/180, lack of covergence has been encountered. For this reason the
curve associated to 6= n/180 is not present in Figure 6.30.c. This consideration is
in agreement with another trend inferable from Figure 6.30: permanent
deformations improve the numerical performance as they mitigate the abrupt
stiffness changes in correspondence of crack closure. Finally, Figure 6.30.d shows
that the structural response is unaffected by the transition parameter 6;, confirming
that its role is only the one of improving the robusteness of the multidirectional
damage procedure.



Chapter 7

Validation of the regularized strain
tensor damage model

In the present chapter, different structural problems are solved with the regularized
d'/d~ damage model presented in Chapter 4. The versatility of such a formulation
is proven by studying a masonry arch and reinforced and unreinforced concrete
elements. Besides the validation of the numerical results with experimental or
analytical data, each example highlights one or more features of the regularized
formulation: the mesh-size and mesh-bias independence of the results, the influence
of the nonlocal internal length /zc, the effect of the choice of the nonlocal variable
to be averaged, the possibility to reproduce structural size effects. The numerical
algorithm adopted for studying these problems is the one detailed in Table 5.5 and
Table 5.6.

7.1 Masonry arch subjected to a vertical point load

The first problem solved with the regularized damage model is a masonry arch
subjected to a vertical cyclic point-load located at one quarter of the span.

On the one hand, the example is addressed to show the applicability of the
proposed damage model to a common typology of masonry structures under gravity
loads. In these loading conditions, a damage criterion in compression can be
omitted because crushing is far from being attained. Therefore, with respect to the
general formulation, the further assumption of d = 0 is here considered. Although
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the choice of a linear elastic behaviour in compression does not reproduce
accurately the reality, it is undertaken also in (Heyman, 1995) for applying limit
analysis to masonry structures and in (Cuomo and Ventura, 2000), for describing
the masonry mechanical behaviour in combination with a no-tension material
model.

On the other hand, the problem discusses the negligible dependence of the
regularized solution on the mesh-size. As mentioned at the end of Section 4.1.1, the
averaging is applied to the elastic strain tensor & whilst the permanent strain tensor
& 1s always considered in its local version. Therefore, the capability of the
regularized approach to ensure objective results with respect to the discretization
has to be investigated in presence of irreversible deformations. For this reason, such
an example, characterized by loading and reloading stages, is taken into account for
validating the mesh-size independence of the regularized formulation.

The reference solution is represented by the results of a static cyclic laboratory
test illustrated in (Ramos et a/., 2010) and (Ramos, 2007). A comparison between
these experimental results and the numerical solution obtained by means of a
unilateral nonlocal damage model is also developed in (Toti et al., 2014).

The arch, made of brick masonry, has a semicircular shape with a radius of
0.77 m, a span of 1.5 m and a cross section equal to 0.05 m (thickness) x 0.45 m
(depth). The geometry and loading conditions are considered with reference to a
plane stress problem. Both vertical and horizontal displacements are restrained at
the arch springers, simulating as infinitely stiff the concrete abutments present in
the experimental configuration. The applied point load at the quarter span is
modelled by means of a prescribed displacement history in order to capture the post-
peak structural response. The material properties are reported in Table 7.1.

Although damage in compression is not taken into account, the value of the
compressive strength is provided because the damage surface in tension depends
on the ratio between the tensile and compressive uniaxial strengths, as shown in
Figure 2.4.a and in the expression of the positive equivalent stress quantity (2.45).

Table 7.1: Material parameters for the analysis of the masonry arch.

E v f f G & lrG Vm
[MPa] [-] [MPa] [MPa] [N/mm] [-] [mm] [kN/m’]

4000 0.2 0.11 -3 0.0085 0.5 21 16




7.1 Masonry arch subjected to a vertical point load 157

The elastic material properties as well as the masonry specific weight are chosen
according to (Ramos, 2007) and (Toti et al., 2014): E = 4000 MPa, v = 0.2 and
ym = 16 KN/m>. In (Toti et al., 2014), these parameters are calibrated by means of
an inverse procedure, taking into account the modal structural properties derived by
the dynamic tests carried out on the arch in (Ramos et al., 2010). The parameters
governing the damage propagation and the development of irreversible
deformations are assumed in order to obtain a response curve as close as possible
to the experimental one: ;= 0.11 MPa, G/'= 0.0085 N/mm and &= 0.5. The use of
the parameter ¢ indicates that the new definition of the permanent deformations,
expressed in Eq. (2.61), is here considered. Finally, according to the calibration
procedure commented in Section 4.2, a relative dissipation length k45 equal to 2, is
associated to the internal length /ze= 21 mm.

As done in the laboratory test, the numerical analysis is performed under a
cyclic load history, in order to validate the capability of the proposed constitutive
law to catch the experimental response in terms not only of carrying capacity and
strain localization but also stiffness degradation and permanent deformations. The
numerical cyclic structural response is shown in Figure 7.1 in a diagram whose axes
are the vertical applied displacement u and measured reaction force F as abscissae
and ordinates, respectively. The numerical solution for a structured triangular mesh
of 1563 finite elements is plotted together with the experimental envelope. The
unloading braches obtained in the cyclic experimental test are omitted and only the
loading stages are shown.
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Figure 7.1: Concentrated force F - vertical displacement u curve for the arch:
comparison between experimental and numerical results with a mesh of 1563 FEs.
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The numerical results are satisfactory: the decrease of the initial stiffness at the
elastic limit, the ascending stage up to the peak load as well as the softening regime
are well captured by the model. In particular, the approximation of the peak load is
excellent, with a negligible difference between the numerical (1424.7 N) and the
measured (1424.9 N) values.

In terms of failure mechanism, the opening of the four experimentally observed
cracks is well reproduced. The crack sequence, not registered in the laboratory test,
can be positively compared with some preliminary numerical results provided in
(Ramos, 2007). In Figure 7.2, the tensile damage distribution shows how strain
localization appears first just below the concentrated load at the intrados (Figure
7.2.a), then at the intrados of the right support (Figure 7.2.b), then again at a
symmetrical position with respect to the first crack but at the extrados (Figure 7.2.c)
and lastly at the extrados of the left support (Figure 7.2.d; here damage
concentration is only slightly displayed).

The map of the maximum principal permanent strains at the end of the analysis,
plotted in Figure 7.3, constitutes a further evidence of the fact that the expected
resistant mechanism based on four hinges is numerically well reproduced.
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Figure 7.2: Numerical crack localization and opening crack sequence: first crack at a
vertical displacement of 0.3 mm (a), second crack at 0.51 mm (b), third at 0.79 mm(c),
fourth at 0.86 mm.
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Figure 7.3: Contour plots of maximum principal permanent strains at the end of
the analysis.
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A detailed comparison between the numerical F - u trends in the loading and
unloading stages and the four cycles observed in the laboratory test is provided in
Figure 7.4 in order to verify the adequacy of the new definition of permanent strains
introduced in Eq. (2.61). From the analysis of Figure 7.4, it can be inferred that
relating the evolution of permanent deformations to the partial irreversibility of the
microcrack opening through Eq. (2.61) finds experimental confirmation: except for
the first load cycle, in all the other cases a fair correspondence is found in terms of

residual deformations at complete unloading.
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Figure 7.4: Comparison between numerical and experimental cyclic response.
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This allows to conclude that the new simplified definition of the permanent
deformations (2.61) is effective, as well as the one proposed by (Faria et al., 1998)
and reconsidered in the form (2.57), but has a stronger mechanical basis, which is
the plastic microcracking.

A further confirmation of the adequacy of the constitutive law is provided by
its capability of representing faithfully the stiffness degradation during the loading
history. This is shown in Figure 7.5, where the evolution of the numerical relative
secant unloading stiffness is compared with the corresponding experimental value.

Finally, the example of the masonry arch subjected to a point load is exploited
to investigate the positive consequences of a regularized approach in terms of
dependence of the solutions on the mesh refinement. Three different degree of mesh
refinements are considered, all of them characterized by the use of triangular
structured finite eclements: the coarse mesh has 1072 finite elements, the
intermediate 1536 finite elements while the finer 2112 finite elements. The global
response curves for the different discretizations are collected in Figure 7.6.

The mesh objectivity study proves the capability of the regularized damage
model to provide solutions negligibly affected by the discretization. In particular,
higher is the refinement, lower are the differences visible in the response curve, as
confirmed by the almost perfect superimposition between the F - u curves obtained
with the intermediate and the fine mesh.

F[N] Ku/Ku,
1600+ 1 4
0.875 + Experimental
1200+ 0.75 1 O Numerical
0.625
8001 / 0.5 1
. A ’ 0.375
4001 [ || Kuy 0.251
i AlKW 0.125
02 04 0.6 0.8 ujmm] [T I 1 IV cycle

Figure 7.5: (a) Identification of unloading secant stiffness and (b) comparison
between numerical and experimental unloading relative stiffness values.
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Figure 7.6: Dependence on the mesh refinement of the results obtained with the
regularized damage model for the problem of the arch subjected to a vertical point wise
load.

It is worth noting that not only the load values are not influenced by the choice
of the mesh refinement, but also the irreversible strains. This allows concluding that
the averaging of only the elastic strain tensor &, performed in accordance with the
calibration procedure explained in Section 4.2, is sufficient to ensure the mesh-
objectivity of the results; consequently, the permanent strains, introduced by means
of a unified dissipative framework, can be treated as local variables.

7.2 Perforated slab under uniaxial tension

The present section highlights the capability of the regularized approach described
in Chapter 4 to provide strain localization results independent of the mesh
alignment, comparing it with the performance of the corresponding local approach.

The reference solution considered to verify the adequacy of the regularized
model is represented by the analytical results obtained with the strain localization
analysis proposed in (Wu and Cervera, 2017). In this paper, the strain localization
analysis is applied to some classical isotropic damage models, among which there
is the “1 — & damage model described in (Sim6 and Ju, 1987). For such damage
formulation, a closed form solution for the discontinuity orientations is provided in
(Wu and Cervera, 2017), strongly dependent on the Poisson ratio v.

Therefore, to validate the mesh-bias objectivity of the regularized strain tensor
approach, firstly the Simo and Ju isotropic damage model is considered, in order to
use known analytical results as comparison. Then, the strain localization analysis
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proposed in (Wu and Cervera, 2017) is extended to the new constitutive operator
presented in its regularized version in Eq. (4.8) (for the case of d = 0). This allows
to study the effect of the orthotropy on the discontinuity inclination as well as to
verify the reliability of the regularized procedure in conjunction with the new
constitutive orthotropic stiffness operator (4.8).

The problem chosen to develop this topic is a singly perforated slab loaded in
uniaxial tension by means of imposed vertical displacements at top and bottom
ends. The slab, with dimensions 20 m X 40 m X 1 m, holds a slanted perforation of
diameter 1 m, introduced in order to avoid symmetric solutions. The imposed
vertical displacement u, at both ends is equal to 0.1 m. This is the same example of
application adopted in (Wu and Cervera, 2017) to validate numerically the proposed
strain localization analysis. However, there the mesh-bias independence of the
results is ensured by the adoption of the mixed strain/displacement finite element
method (Cervera et al.,, 2011). The material properties used in the numerical
analyses are summarized in Table 7.2.

Table 7.2: Material parameters for the analysis of the perforated slab.

E v f Gr* ¢
[MPa] [-] [MPa]  [N/mm] [-]
10 0.0-0.15-03 0.01 0.5 0.0

The absence of the material properties related to compression in Table 7.2 is
justified by the fact that the damage criteria adopted in the follow-up in the isotropic
and orthotropic cases are not dependent on them, in accordance with the
formulation proposed by (Simo6 and Ju, 1987).

Three values for the Poisson ratio v are considered since the discontinuity angle
is affected by v, as demonstrated in (Wu and Cervera, 2017). In fact, the strategy to
validate the mesh-bias objectivity of the model is different from the one usually
adopted, consisting in changing the mesh alignment and monitoring the variation
of the numerical solution. Here, the mesh is maintained fixed and the capability of
the regularized approach to catch the analytical solution is assessed by varying the
Poisson ratio. Actually, to test further the regularized approach, two different
triangular meshes are adopted, both with an average size of 0.3 m in correspondence
with the perforation: an unstructured mesh is adopted in case of v= 0 (Figure 7.7.a)
and a structured one in case of v # 0 (Figure 7.7.b), since horizontal and inclined
discontinuities are expected from the analytical results, respectively.
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(a) (b)

Figure 7.7: (a) Triangular unstructured mesh adopted for v = 0 with 9694 finite
elements and (b) triangular structured mesh adopted for v # 0 with 7684 finite elements.

7.2.1 Isotropic model

The isotropic model considered is the strain-based one proposed in (Simé and Ju,
1987), whose salient aspects (constitutive law and damage criterion) are
summarized in Egs. (7.1), (7.2) and (7.3).

c=(1-d)a=(1-d)D, ¢, (7.1)

g=7-r<0 (7.2)

t=\Je:D,:¢ rzmax(ro;max(r)J (7.3)
[0.4]

In Egs. (7.1), (7.2) and (7.3), t and r represent the equivalent and the damage

threshold quantities; in particular, ¢ is equal to 7/ JE . An exponential softening
law of the type expressed in Eq. (2.79) is adopted to define d starting from .
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In the local analyses, in accordance with the crack band theory, the softening
modulus Hy is adjusted according to the size /4 of the discretization (/4 replaces the
generic length / present in Eq. (2.84b)). In the regularized analyses, the internal
length /rc is assumed equal to 0.215 m (i.e, the interaction radius is 0.43 m) and the
relative dissipation lengths kuis, which vary slightly with the Poisson’s ratio,
computed according to the calibration procedure described in Section 4.2, are:
kais=2.11 for v= 0.0, kgis = 2.09 for v=0.15 and kuis = 2.06 for v=0.3.

The vertical force F- vertical displacement u, curves obtained with the
regularized approach, for the three different values of the Poisson’s ratio, are shown
in Figure 7.8, together with a comparison between the global response obtained
with the local and with the regularized approach for the representative case of

v=0.3.
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Figure 7.8: (a) Force F - vertical displacement u, curves with the regularized isotropic
damage model for different values of v; (b) local and regularized approaches for v=0.3.

As shown in Figure 7.8, the structural response is slightly affected by the Poisson
ratio. The comparison between the curve obtained with the local and with the
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nonlocal approach highlights the fact that, thanks to the calibration procedure, the
two models are able to dissipate the same amount of energy, being the damage
evolution ruled by the common fracture energy Gy'.

In addition, the vertical displacements at the end of the analysis obtained with
the local approach and with the r one are plotted for the different values of the
Poisson’s ratio in Figure 7.9 and Figure 7.10, respectively. These figures clearly
show how v strongly affects the discontinuity orientation and how significantly
different results are achieved with a local approach and with a regularized one.

The analytical localization angle in case of plane stress problems, derived in
(Wu and Cervera, 2017) for the Sim¢ and Ju isotropic damage model, is:
l-v o0,+0,

cos2, =— ———= 74
1+V 0-1_0-2 ( )

where 6. is the angle (clockwise verse) between the principal direction associated

to o1 and the normal to the discontinuity. Due to the uniaxial loading conditions

(o1 #0, 02 = 0), the localization angle for the perforated slab under study becomes:
1-v

0820, =—— (7.5)
l1+v

(a) (b) (c)
-101 ' 0o ' 101
. B

Figure 7.9: Contour plots of the vertical displacements (mm) with the isotropic local
damage model for (a) v=0, (b) v=0.15 and (¢) v=0.3.
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(a) (b) (c)
-101 - 0 - 101
[ B

Figure 7.10: Contour plots of the vertical displacements (mm) with the isotropic
regularized damage model for (a) v=10, (b) v=0.15 and (c) v=0.3.

The comparison between the analytical results, the local (Figure 7.9) and
regularized (Figure 7.10) localization angles is provided in Table 7.3.

Table 7.3: Comparison between analytical, local and regualrized discontinuity angles
for the perforated slab under uniaxial tension studied with an isotropic damage model.

Poisson’s ratio Analytical Numerical-local ~ Numerical-Regularized
v=20.0 0.00° 10.60° 0.00°
v=0.15 21.17° 0.00° 21.80°
v=03 28.71° 34.31° 28.9°

On the one hand, the agreement between the discontinuity orientations obtained
with the regualrized approach and the analytical values is remarkable, proving the
independence of the proposed model from the mesh alignment. On the other hand,
the local results are strongly affected by the mesh-bias. For v = 0.0 the horizontal
crack is not represented due to use of the unstructured mesh (Figure 7.7.a), while
for v = 0.15 and v = 0.3 the discontinuities tend to follow the two preferential
directions induced by the structured mesh (Figure 7.7.b), which are the horizontal
direction and the one inclined of 45°, respectively.
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7.2.2 Orthotropic model

The Simo6 and Ju isotropic damage model exhibits a dependence of the strain
localization on the lateral deformation behaviour which is inconsistent with the
hypotheses at the base of the smeared and discrete crack models and that can be
ascribed to its constitutive secant stiffness (see Eq. (7.1)).

In the present section, the adoption of the new energy-equivalent d'/d~
constitutive operator D (see Eq. (4.8)) is investigated to discuss the effect of the
orthotropy on the strain localization orientations. For the sake of clarity, the
assumption of d = 0 is done. Moreover, in order to make the results comparable to
the ones obtained in the previous section, the strain-driven damage criterion
adopted in (Sim6 and Ju, 1987) and expressed in Egs. (7.2) and (7.3) is considered,
together with a damage evolution law of the exponential type. Only regularized
analyses are performed with the orthotropic model, adopting the same internal
length and the same dissipation lengths previously introduced for the isotropic
formulation.

The structural responses obtained with the regularized orthotropic damage
model, for the three different values of the Poisson ratio, are displayed in Figure
7.11. Although some slight differences between the curves plotted in Figure 7.11 are
visible, they are smaller than the ones characterizing Figure 7.8.a, meaning that the
effect of v is mitigated by the damage-induced orthotropy. The same consideration
arises from the analysis of the vertical displacements, shown in Figure 7.12.

F[kN]

200 1 . v=03
175 | \
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125 |
100 |
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Figure 7.11: Vertical force F - vertical displacement u, curves obtained with the
regularized orthotropic damage model for different v.
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(b) (c)
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Figure 7.12: Contour plots of the vertical displacements (mm) with the orthotropic
regularized damage model for (a) v=10, (b) v=0.15 and (c) v=0.3.

In order to compare the discontinuity angles found numerically with some
analytical values, a strain localization analysis is carried out, following the
procedure described in (Wu and Cervera, 2017) for plane stress problems. Such a
procedure identifies the discontinuity angle 6. by setting appropriate kinematic
constraints on the characteristic second order tensor A, which has the following
definition:

A= i (7.6)

In Eq. (7.6), w is the alternative scalar damage variable d*/(1—d") while Cy is the
damage compliance. Referring to the specific loading conditions of the perforated
slab, the principal reference system of stresses coincides with the Cartesian
reference system. The damage compliance Cgq derived by the inverse of the
constitutive stiffness Dg, the stress ¢ and the characteristic tensor A in the principal
reference system of the stress tensor are defined according to the Voigt notation in
Egs. (7.7), (7.8) and (7.9).
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| 1 _v'\/l—d*'(l—x/l—d*)_
C,=0 £ £ (1.7)
yl-d* -(1—\/1—d+)
L E 0 |
62{01} (1.8)
0
o
A= E (7.9)

—v-ﬁ-(l—ﬁ).%

The kinematic condition to be set in order to identify the discontinuity angle 6.,
(clockwise verse) between the first principal direction (associated to the principal
stress value 1) and the normal to the discontinuity is expressed in the following:

(7.10)

By replacing in Eq. (7.10) the principal components of the characteristic tensor
defined in Eq. (7.9), the discontinuity inclination obtained with the orthotropic
damage ruled by the constitutive operator D results:

1—1/(\/1—d+ —1+d+)
1+v(\/1—d+ —1+d+)

Eq. (7.11) 1s fully comparable to Eq. (7.5): they have the same formalism but in the

c0s26,, =

(7.11)

former the undamaged Poisson ratio is reduced by the positive damage quantity

(ﬁ—ud*),

The dependence of 6. on d'in Eq. (7.11) implies that the orientation of the
discontinuity depends on the damage value for which the strain localization occurs.
Since the strain localization occurs for d" < 1 in case of exponential softening, a
complete independence of the localization angles from the Poisson ratio is not
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achieved with the present orthotropic model. However, the fact that the nominal
Poisson ratio does not remain constant throughout the damage process is
responsible for a reduction of the inclination of the discontinuity with respect to the
horizontal direction. Such a consideration is in agreement with the numerical results
obtained with the regularized orthotropic damage model, plotted in Figure 7.12: a
certain dependence on the Poisson ratio is still visible but it is smaller than for the
isotropic damage formulation (see Figure 7.10).

The comparison between the numerical localization angles and the analytical
ones, computed from Eq. (7.11) assuming that the complete crack propagation
happens for a damage value equal to 0.95, is provided in Table 7.4. From these data,
the objectivity of the regularized approach with respect to the mesh-bias, even in
conjunction with the orthotropic constitutive stiffness operator Dg, is validated.

Table 7.4: Comparison between analytical and regularized discontinuity angles for the
perforated slab under uniaxial tension studied with an orthotropic damage model.

Poisson ratio Analytical Numerical-Regularized
v=10.00 0.00° 0.00°
v=0.15 9.19° 8.98°
v=0.30 12.9° 13.3°

Finally, the evolution of the tensile damage obtained with the regularized
orthotropic damage formulation in case of v =0.3 is plotted in Figure 7.13, in order
to show the reliability of the hypothesis of d* = 0.95 as value for which the strain
localization completely occurs.

0
| |

1

Figure 7.13: Evolution of tensile damage with the regularized orthotropic damage
model, for the case of v=0.3.
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7.3 Longitudinally-reinforced concrete beam under four
point bending test

The example of application analysed in the present section is a longitudinally-
reinforced concrete beam subjected to a four point bending test, experimentally
tested in (Leonhardt and Walther, 1962) and numerically reproduced in (Xenos and
Grassl, 2016). The geometry, the loading and the boundary conditions of the plane
stress problem are illustrated in Figure 7.14.a. To avoid stress concentrations, steel
plates are placed in correspondence with the loading points and the supports. The
loading conditions are modelled assigning a prescribed vertical displacement to the
central points of the loading surfaces; consequently, the point force P is evaluated
as reaction at the support.

Due to the absence of transversal reinforcement, the observed failure, displayed
in Figure 7.14, is governed by shear and consists in a set of cracks which, getting
away from the mid-span, abandon the verticality and incline towards the supports.
The study of this structural problem, characterized by multiple cracks and by an
arch-resistant mechanism, with the proposed d'/d~ regularized damage model is
interesting because here the damage criterion in compression plays a fundamental
role as well as the one in tension.
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Figure 7.14: Geometry [mm], loading and boundary conditions of the four point
bending test and (b) experimental cracking pattern documented in (Leonhardt and Walther,
1962).
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Moreover, the example discusses in a quantitative way two fundamental aspects
of the regularized damage model, extensively commented, in a qualitative way, in
Section 4.1 and Section 4.2. On the one hand, the choice of the elastic strain tensor
as variable to be averaged is compared to another, more common choice, based on
the averaging of the equivalent quantity 7+, other than to the local crack band
approach. The comparison among the regularized strain tensor approach, the
regularized approach based on the averaging of 7+, hereafter named “regularized
scalar approach”, and the crack band model is developed in terms of mesh-
objectivity and numerical performance. On the other hand, the influence of the
internal length /zc on the structural response is investigated. Interesting
considerations are expected regarding this topic because of the multiple localization
zones characterizing the example.

The material parameters considered in the numerical analyses for concrete are
collected in Table 7.5. The majority of them, and in particular the elastic constants,
the uniaxial strengths and G/, are chosen in perfect agreement with the values
provided in (Xenos and Grassl, 2016). They allow to identify the damage surfaces
in tension and compression (note that £= 0.8 is chosen in the definition of 7 (2.46)),
the damage evolution laws (an exponential softening (2.79) is adopted in tension
and a “Gaussian” hardening-softening (2.80) in compression) and the entity of the
permanent deformations, according to Eq. (2.61).

Table 7.5: Material parameters for concrete.

E v f A G/ G- S+ il
[MPa] [-] [MPa] [MPa] [N/mm] [N/mm] [-] [-]

30500 0.2 2.18 -28.5 0.133 10.00 0.1 1.16

Five different values of the internal length /rc are considered in the numerical
simulations. Their values, together with the corresponding relative dissipation
lengths in tension and compression, evaluated by means of the calibration
procedure described in Section 4.2, are synthetized in Table 7.6.
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Table 7.6: Internal lengths adopted in the numerical simulations of the reinforced
concrete beam under four point bending test.

Irc  Interaction radius k" ais k dis
[mm] [mm] [-] [-]
5.7 11.4 4.09 8.09
7.8 15.6 4.14 6.22
11.3 22.6 4.16 4.40
14.1 28.2 4.18 3.78
17.0 34 4.04 3.37

In addition, the hypothesis of linear elastic behaviour is considered for the steel
of the reinforcement and of the loading plates, whose material constants are
specified in Table 7.7. Specifically, the longitudinal reinforcement’s behaviour is
modelled as uniaxial (hence, the Poisson ratio shown in Table 7.7 is actually
neglected), under the assumption of perfect adherence between concrete and steel.
Exploiting the orientation of the rebars along the Cartesian direction x, the axial
forces sustained by the reinforcement are evaluated by the total deformation &x in
the concrete, taking into account the percentage of horizontal reinforcement px,
equal to 1.75%.

Table 7.7: Material parameters for the steel plates and the steel reinforcement.

E %
[MPa] [-]
198000 0.3

Finally, the triangular unstructured meshes adopted in the simulations (Figure
7.15) have an average size, from the coarser to the finer, equal to: 20 mm (5462
FEs), 15 mm (10052 FEs), 12 mm (15168 FEs) and 7 mm (54065 FEs).
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Figure 7.15: Discretization refinements (half beam) from the coarsest to the finest.

7.3.1 Comparison among regularized strain tensor, regularized
scalar and crack band models

The first aspect analyzed for comparative purposes regards the mesh-objectivity
exhibited by the different approaches. In order to limit the computational effort,
only the discretizations with average size 20 mm (coarse mesh), 15 mm
(intermediate mesh) and 12 mm (fine mesh) are here taken into account. The force
P - mid span (point A in Figure 7.14.a) deflection v curves resulting from the
adoption of the regularized strain tensor approach, regularized scalar approach and
crack band model are plotted in Figure 7.16, accompanied by the experimental
response. All the regularized results are obtained with the adoption of the same
internal length, equal to /rg= 7.8 mm (see Table 7.6).
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Figure 7.16: Mesh-size objectivity studies: (a) regularized elastic strain tensor
approach, (b) regularized scalar approach and (c¢) crack band (local) approach.

The first consideration with emerges from the analysis of the results is that the
experimental structural response is satisfactorily described by the regularized
formulations as well as by the local one. The correspondence between numerical
and experimental values is evident in terms of load carrying capacity and this is a
confirmation of the adequacy of the damage surfaces considered for " and d". It is
worth noting that, by neglecting the damage in compression, an overestimation of
the observed shear carrying capacity would be obtained. In terms of stiffness
degradation, the numerical curves show a slightly lower deformability than the
response observed in the laboratory; this can be ascribed to the simplifying
assumptions of linear-elasticity and perfect adherence considered for the
reinforcement.

To study the dependence of the results plotted in Figure 7.16 on the
discretization in a quantitative manner, the peak load differences are evaluated, for
each approach, and shown, in percentage, in Table 7.8.
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Table 7.8: Percentage differences [%] among peak loads obtained with different
approaches.

Compared Regulanzed Regularized Crack band
meshes strain tensor scalar approach approach
approach

Coarse -
Intermediate 0.66 2.34 1.50
Intermediate - 0.86 1.66 1.35

Fine

Coarse - Fine 1.52 4.00 2.85

Among the approaches, the lowest variation with respect to the mesh
refinement is provided by the regularized procedure applied to the elastic strain
tensor &.. Further confirmation of this comes from comparing, for each formulation,
the maximum total strain contour plots resulting by the adoption of different
meshes. The strain localization maps, displayed in Figure 7.17, Figure 7.18 and
Figure 7.19 refer to the end of the analysis, once the shear resistance is attained.
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Figure 7.17: Maximum principal strain localization obtained with the regularized
elastic strain tensor approach: (a) coarse mesh, (b) intermediate mesh and (c¢) fine mesh.
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Figure 7.18: Maximum principal strain localization obtained with the regularized
scalar approach: (a) coarse mesh, (b) intermediate mesh and (c) fine mesh.
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Figure 7.19: Maximum principal strain localization obtained with the crack band
approach: (a) coarse mesh, (b) intermediate mesh and (c¢) fine mesh.
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Some considerations are drawn by these figures. First of all, the well-known
mesh-bias dependence of the local approach is proven, together with the mesh-bias
independence of the nonlocal formulations. As a matter of fact, the orientation of
the cracks, their number, their position and their width strongly differ passing from
the coarser to the finer mesh in Figure 7.19 whilst similar solutions are obtained
both in Figure 7.17 and Figure 7.18.

Moreover, differences between the two regularized formulations are not very
evident, but present: although the localization orientation at rupture is almost
identical, the maximum strain values plotted in Figure 7.17 and Figure 7.18 show
that their variation with the mesh refinement is less significant with the nonlocal
strain tensor approach than with the nonlocal scalar one.

On the basis of all these observations, it is concluded that, in terms of mesh
independence,the regularized model ensures an higher reliability than a local one;
more specifically, within the regularized formulations, the averaging of the elastic
strain tensor is preferable, even if not crucial, with respect to the averaging of the
scalar equivalent stress quantities.

Finally, the local and the two regularized approaches are compared in terms of
numerical performance, i.e. number of iterations necessary to find the convergence
of the residuals on the global level. The displacement is applied at the two
application points in 40 load steps. The data concerning the total number of
iterations performed adopting the three different procedures and an average number
of iterations for each load step are collected in Table 7.9, with reference to solutions
obtained with the intermediate mesh.

Table 7.9: Comparison among the three different approaches in terms of numerical
performance.

Regularized strain Regularized scalar Crack band
tensor approach approach approach
Total number of 192 234 287

iterations

Average number
of iterations for 4.8 5.85 7.18
each load step
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Despite the higher number of iterations, the local approach is the fastest one in
terms of computational time, since it does not require any averaging to be computed
among neighbour elements. However, the data suggest that a regularized approach
is able to achieve convergence to equilibrium in a lower number of iterations, due
to the higher smoothness introduced with the averaging. Specifically, comparing
the regularized “tensor” approach and the regularized “scalar” one, an improved
convergence rate is obtained with the former with respect to the latter.
Consequently, the reduced number of iterations necessary to achieve convergence
compensates the increased numerical effort deriving from the averaging of a tensor
quantity.

7.3.2 Dependence of the regularized solutions on the internal length
Ir

In Section 4.2 it is explained that the use of the particular calibration procedure
ensures the independence of the response from the internal length for the problem
of a bar loaded in uniaxial tension (see Figure 4.7.a). The objective of the present
section is to investigate the influence of the parameter /r¢ on the structural
behaviour of the reinforced concrete beam under four point bending and to assess
if the results obtained in uniaxial conditions can be extended to more complex
stress-strain states.

It is worth noting that, in the nonlocal framework, such a sensitivity analysis is
usually considered secondary with respect to the mesh dependency study, usually
conducted to prove mesh-bias objectivity. This is for instance the case of the work
presented in (Xenos and Grassl, 2016), where the same structural application is
treated but only a marginal part is devoted to assess the influence of the internal
length on the results.

The dependence of the regularized formulation on the length /z¢ is studied
adopting the intermediate triangular unstructured discretization (see Figure 7.15),
whose average size 4 is equal to 15 mm. The numerical simulations are performed
considering all the values of the internal length collected in Table 7.6, except
[ré = 5.7 mm, because an interaction radius smaller than the average size of the
finite elements corresponds to this internal length, and consequently, the nonlocal
interaction between elements is not guaranteed uniformly in the whole structure.
The force P - mid span deflection v curves resulting from the adoption of the
regularized strain tensor damage model with different nonlocal lengths are
displayed in Figure 7.20.
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Figure 7.20: Structural responses of the reinforced concrete beam under four point
bending test with the adoption of the regularized strain tensor formulation, for different /z¢.

The curves plotted in Figure 7.20 show that the dependence of the regularized
formulation on the choice of the internal length is substantially low. As a matter of
fact, the structural responses corresponding to /rg= 14.1 mm and /rg= 17 mm are
almost coincident and differ only slightly (2.6% in terms of peak loads) from the
one obtained with /rg= 11.3 mm. A more significant variation, in any case small
(3.4% in terms of peak loads), can be observed between the solutions with
[rG=11.3 mm and /zrg= 7.8 mm.

These data confirm that the dependence of the regularized strain tensor
formulation on the internal length, in terms of response curves, is small, fully
comparable with the dependence exhibited by the same model on the mesh
refinement (see Figure 7.16.a), and negligible when high values of /zG with respect
to the discretization are considered. For this specific mesh refinement (average size
15 mm), an internal length equal to 11.3 mm, characterized by a nonlocal
interaction radius equal to 22.6 mm, seems to be sufficient.

Despite these considerations, it is proper to observe that the perfect coincidence
of the results obtained with different internal lengths for the uniaxial case (Figure
4.7) 1s not reproduced for this structural application (Figure 7.20). This is due to the
fact that the calibration, addressed to obtain the relative dissipative lengths k"4 and
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k™ ais collected in Table 7.6, is performed considering a particular stress-strain state,
which does not coincide with the one experienced in the beam. Similar comments
on this topic are discussed in (Nguyen and Houlsby, 2007).

To extend this sensitivity analysis, the maximum principal strain contour plots
obtained with the different values of /zg, just before the attainment of the maximum
carrying capacity, are displayed in Figure 7.21. It is worth noting that the effect of
the internal length is not negligible in the maximum strain distributions.
Specifically, a higher length /rc implies a higher width of the strain localization
zones, as well as the concentration of close localization zones in a unique failure
area. This second aspect, in particular, is proper of damaged structures
characterized by multiple failure zones.

The results collected about the influence of the internal length parameter on the
solution (Figure 7.20 and Figure 7.21) lead to find analogies between the role
played by the mesh size in the crack band approach and the role played by /zg in
the regularized formulation. Firstly, as the crack band approach is able to ensure the
correct description of the dissipated energy independently of the mesh size,
similarly the regularized damage model does the same independently of the internal
length, thanks to the adoption of the calibration procedure described in Section 4.2
(Figure 7.20). Secondly, analogously to the mesh size in the crack band approach
(Figure 7.19), Irc influences not only the width of the localization band but also the
number of resulting failure zones. All these observations allow to interpret the
length /rG as a regularization parameter, as it is the mesh size in the crack band
approach. Moreover, in problems characterized by multiple failure zones, it
emerges that the internal length has to be kept sufficiently low to capture the
interspace between cracks, as the mesh refinement has to be chosen sufficiently
high in the crack band approach, in order to achieve the same goal.

In order to visualize with the regularized approach the single cracks present in
the laboratory tests (Figure 7.14), a lower value of /rc with respect to the ones
adopted in Figure 7.21, accompanied by a higher mesh refinement, is used in the
follow up. In order to visualize with the regularized approach the single cracks
present in the laboratory tests (Figure 7.14), a lower value of /z¢ with respect to the
ones adopted in Figure 7.21, accompanied by a higher mesh refinement, is used in
the follow up. Specifically, the lowest value of /rc in Table 7.6 is adopted
(Ire= 5.7 mm) in conjunction with the finest mesh present in Figure 7.15, to show
how the numerical nonlocal strain localization approaches qualitatively the
experimental cracking pattern (Figure 7.22 ).
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Figure 7.21: Maximum principal strain contour plots before the attainment of the peak
load in case of: (a) lrgg= 7.8 mm, (b) /zg = 11.3 mm, (¢) /r¢ = 14.1 mm and (a) lzg= 17 mm.
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Figure 7.22: Maximum principal strain contour plots before the attainment of the peak
load in case of /zc= 5.7 mm and average mesh size equal to 7 mm.

Finally, to confirm the reliability of the regularized damage model to represent
the failure arch-mechanism, the contour plots of the minimum principal stresses at
the end of the analysis is provided in Figure 7.23.



184 Validation of the regularized strain tensor damage model

-30 -268 236 204 -17.2 -14 -108 18 44 -12 2
I - T

Figure 7.23: Minimum principal stress contour plot at the end of the analysis in case
of Irg= 5.7 mm and average mesh size equal to 7 mm.

7.4 Size effect for notched and unnotched plain concrete
beams under three-point bending test

An important aspect of damage models for quasi-brittle materials is that they should
be able to represent the structural size effect, i.e. the dependence of the nominal
strength on the structural size.

Size effect derives from the fact that the elastic stored energy is proportional to
the total volume while the energy dissipation by fracture is proportional to the
fracture surface. Defining a brittleness index br as the ratio between the stored
energy and the dissipated energy:

2)s
br = SN E— (7.12)
Gf-S (Z'E'GfJ lmat
72

it is possible to note how, as the generic structural size S increases with respect to
the material fracture length /s, brittleness increases too.

Hence, as commented in (Bazant and Planas, 1998), the behaviour of
geometrically similar specimen is not geometrically similar, because the fracture
surface maintains constant whilst the structural size changes and this implies
different energy redistributions from the remaining part of the structure to the
fracture process zone.

Numerically, such effect can be reproduced thanks to the use of a procedure
which dissipates Grthrough a surface. Therefore, nonlocal formulations, as well as
enhanced gradient models, phase field models and also crack band models (Cervera
and Chiumenti, 2009) are able to represent the size effect.
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In the present section, the capability of the proposed regularized damage model
to describe the size effect is explored. The experimental data taken as reference
solution are the ones presented in (Grégoire et al., 2013), where the results of three
point bending tests on notched and unnotched concrete beams, made of the same
material, are collected. The specimens are characterized by a span L-to-depth D
ratio equal to 2.5, a constant width b of 50 mm, various depths and various notch-
to-depth ratios (see Figure 7.24).

3.5D 3.5D 3.5D
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D I h D h
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D =400 mm A=200 mm D =400 mm /=320 mm D =400 mm /=400 mm
D =200 mm A=100 mm D =200 mm A=160 mm D =200 mm /=200 mm
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D=50mm A=25mm D=50mm /=40 mm D=50mm /=50 mm

Figure 7.24: Different geometries and different sizes considered in the three point
bending tests on concrete beams documented in (Grégoire et al., 2013).

For each geometry, four depths D are considered: 400 mm, 200 mm, 100 mm
and 50 mm. Moreover, the three geometries are designated as: half notched (notch-
to-depth ratio equal to 0.5), fifth notched (notch-to-depth ratio equal to 0.2) and
unnotched (notch-to-depth ratio equal to 0).

The numerical description of the structural size effects for various geometries
is an ambitious objective, as commented in (Grégoire et al., 2013). As a matter of
fact, the capability of nonlocal models to capture the size effect on beams with a
single specific geometry is quite common, as shown for instance in (BaZant and
Lin, 1988) and (Jirasek et al., 2004), but the extension to other geometries, with the
adoption of the same set of input parameters, is not obvious. For instance, in
(Krayani et al., 2009), the impossibility of adopting the same model parameters for
fitting data regarding notched and unnotched beams with a nonlocal damage model
is pointed out. Moreover, in (Grégoire et al., 2013), some numerical simulations
with the damage model presented originally in (Pijaudier-Cabot and BaZant, 1987)
show the same difficulties, compared with the experimental results. In fact, the
procedure there followed, described in detail in (Le Bellégo et al., 2003), consists
in calibrating the nonlocal length and the material parameters governing the local
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tensile softening behaviour in order to obtain a good fit with the results associated
to three different sizes (50 mm, 100 mm and 200 mm) of the same geometry (fifth
notched beams). The numerical results show that the calibrated material parameters
are able to describe accurately the structural response for those specific sizes and
for that specific geometry but they are not likewise good in describing the results
for the largest specimen (400 mm) with that geometry and for the other geometries.
In particular, the correspondence is poor in the case of the unnotched specimens.

The regularized damage model proposed in Chapter 4 is used for studying the
structural response of the concrete beams under three point bending tests shown in
Figure 7.24. For the sake of simplicity, permanent deformations are neglected in
the present example. The parameters adopted in the numerical analyses, for all the
sizes and all the geometries, are collected in Table 7.10.

Table 7.10: Parameters adopted in the analyses of notched and unnotched concrete
beams.

E v f f G Gr E+ IrG
[MPa] [-] [MPa] [MPa] [N/mm] [N/mm] [-] [mm]

38000  0.21 2.8 -42.3 0.037 30.00 0.00 6.00

The elastic properties, as well as the compressive strength’s values, are chosen in
accordance with the measured ones, documented in (Grégoire et al., 2013). For
what regards the tensile material parameters, a lower value is here adopted with
respect to the one specified in (Grégoire et al., 2013) and measured by means of a
splitting test. This is in line with the fact that the direct tensile strength, which is the
one considered in the damage criterion (see Figure 2.4 and Eq. (2.45)), is usually
lower than the splitting tensile strength of, at least, 10% - 15%. The fracture energy
in tension Gy' is similar to the value computed in (Grégoire et al., 2013) from a
load-deflection curve, according to RILEM recommendations (around
0.045 N/mm). G is assumed as a typical value for concrete because of its null
influence in the present structural application.

Finally, the internal length of the regularized model is chosen in order to
guarantee a sufficiently high ratio between the interaction radius (2:/rg= 12 mm)
and the triangular mesh average size, maintained fixed in the fracture process zone
for all the geometries and equal to 1.5 mm. Thanks to the application of the
calibration procedure, starting from this value of /rc, a tensile dissipation length
equal to 22.4 mm is obtained, which is reasonable if compared to the experimental
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value of approximately 3 times the maximum aggregate size proposed in (BaZant
and Oh, 1983) and (Bazant and Pijaudier-Cabot, 1989). Hence, with the use of this
dissipation length in place of the generic length / in the softening modulus (2.84b),
the local softening law is calibrated in order to describe the correct fracture energy.

The numerical predictions, together with the experimental envelopes, are
plotted in terms of force F - crack mouth opening displacements CMOD curves in
Figure 7.25, Figure 7.26 and Figure 7.27 for the half notched, fifth notched and
unnotched beams, respectively. The CMOD is evaluated as the relative
displacement between points A and B at the intrados of the beams (see Figure 7.24).
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Figure 7.25: Size effect results for the half notched beams with the nonlocal model.
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Figure 7.26: Size effect results for the fifth notched beams with the nonlocal model.
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Figure 7.27: Size effect results for the unnotched beams with the nonlocal model.

Good agreement between experimental and numerical results can be observed
for all the geometries, especially in terms of peak loads.

For each geometry, the trend of the numerical nominal strength as a function of
the structural size is shown in Figure 7.28, compared with the experimental values
(maximum and minimum) documented in (Grégoire et al., 2013). The nominal
strength is computed in its simplest form for three point bending tests (Bazant and
Planas, 1998):

3 FL
oy = 2 (7.13)
where L is the distance between the supports, b is the width of the beam and 4 is the

ligament height.

In terms of softening behaviour, a more emphasized decrease in load is visible
in the post peak numerical regimes. However, the higher deviation with respect to
the experimental softening is visible in the unnotched beams (Figure 7.27),
especially in the largest one, and can be ascribed to numerical issues, deriving from
the imposed increasing displacements conflicting with the snap-back in the
experimental data. The difficulties in achieving convergence, shown by the fact that
all the curves stop at a CMOD approximately equal to 0.2 mm, have to be probably
related to these problems.

Finally, it is important to note that the only significant discrepancy between
experimental and numerical peak loads regards the smallest half notched beam
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(Figure 7.25). This is not surprising because this is the beam, among the ones
numerically verified, which has the smallest ligament, equal to 50 mm. The
overestimation of the peak load obtained numerically can be explained considering
that the assumption of constant fracture energy Gy holds, provided that the
structural size is large enough with respect to the process zone size (Bazant and
Jirasek, 2002). For a ligament 50 mm long, the nonlocal damage formulation
proposed does not provide reliable results and for this reason, the set of beams with
a depth equal to 50 mm (Figure 7.24) is not studied numerically.
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Figure 7.28: Comparison between experimental and numerical size effect laws: (a) half
notched beams, (b) fifth notched beams and (c) unnotched beams (Dy= 400 mm).
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Chapter 8

Large-scale application: masonry
multi-span arch bridge

8.1 Introduction to the structural analysis of masonry arch
bridges

Masonry arch bridges represent one of the most diffused construction typologies
for railway and road networks in Europe. The majority of these structures were built
in the nineteenth century, as a consequence of the birth and expansion of the railway
system, and had a further impulse after the II World War. Multi-span bridges were
usually preferred to single-span arches because of their easier construction,
especially when long distances had to be covered.

As noticed in (Melbourne et al., 1997), the structural behaviour of a multi-span arch
bridge, similarly to the one of a multi-bay portal frame with fixed base, foresees a
degree of redundancy equal to 3-m, where m is the number of the spans. In order to
have a complete failure hinged mechanism, 3m + 1 hinges are required while, in
case of partial collapse which involves only a number of spans n < m, the necessary
hinges are 3n + 1. Finally, four hinges generate the failure of a single span. The
formation of a complete, partial or single-span mechanism depends on several
factors, which include not only the arches themselves but also the other resisting
elements, such as piers and spandrel walls if present, and their interaction.
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In this regard, in (Harvey and Smith, 1991), the role of the flexibility of the
piers is underlined. In fact, Harvey and Smith observe that, in intact conditions, the
loaded span of a multi-span arch bridge behaves as an active arch which tends to
move apart its abutments; contemporarily, the close unloaded span resists this
movement as a passive arch. In case of collapse of one span, the interruption of this
resisting system occurs and the piers have to counterbalance the actions exerted by
the remaining structure.

On the one hand, piers are defined stocky when they are able to behave as
abutments, i.e., they are able, in case of collapse of an arch span, to sustain the
others preventing the rest of the structure to go down. The case of the medieval
bridge in Boroughbridge, which failed under the passage of a train of about 160
tons in 1945 can be classified within the category of stocky pier collapse.

On the other hand, piers are identified as slender when they are involved in the
mechanism, causing the collapse of more arches, because of their incapability to
equilibrate the thrusts of the remaining parts. This behaviour was observed in 1989
at Balnacraig in Deeside, where the removal of an arch span in a disused railway
bridge caused the progressive collapse of the whole viaduct.

However, as remarked in (Melbourne et al., 1997), it is not possible to predict
the kind of mechanism on the base of those geometrical features which are usually
adopted to define the slenderness of vertical structural elements. As a matter of fact,
the height-width ratio does not provide complete information because even other
factors, as the type of interaction between piers and arches, the geometrical features
of arches and the presence or not of collaborating spandrel walls intervene
drastically.

In the past decades, several assessment procedures have been proposed for the
study of masonry arch bridges, which can be classified into two wide sets of
structural analysis techniques.

On the one hand, limit analysis is applied to masonry constructions with its
basis on the formulation originally provided by Heyman (Heyman, 1969; Heyman,
1985). The adoption of the static (lower bound) theorem of plasticity for assessing
the behaviour of masonry multi-span arch bridges is present, for instance, in
(Harvey and Smooth, 1991; Cavicchi and Gambarotta, 2007). The kinematic (upper
bound) theorem is instead used in (Gilbert and Melbourne, 1994; Huges, 1995).
From these contributions, it is inferable that inevitably the identification of the
thurstline in the static approach, as well as the definition of a sufficient number of
hinges in the kinematic one, become more complex in case of multi-span bridges
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than in single-span ones (Brencich and De Francesco, 2004a; Brencich and De
Francesco, 2004b). Moreover, if the assumption of null tensile strength is
conservative, the other one at the base of the limit analysis, related to the infinite
compressive strength of masonry, can lead to overestimate the load-carrying
capacity, especially in case of degraded materials and severe loading conditions.

In addition, even if a failure criterion and a maximum ductility are set to
describe the nonlinear compressive behaviour of masonry, as done in (Crisfield and
Packham, 1988), some other intrinsic limitations of the formulation can not be
eliminated. They regard the possibility of having only information about the load-
carrying capacity of the structure whilst disregarding displacement and strain
quantities. This implies that the structural displacement capacity can not be
assessed, and this is a restriction especially in case of time-varying loadings, as
earthquakes. It is worth noting that the lack of information about the kinematic
quantities is a drawback especially in the study of multi-span arch bridges, since it
does not allow considering the influence of the pier flexibility, above discussed, on
the structural response.

On the other hand, there is the possibility of studying arch bridges by means of
finite element method based approaches, in conjunction with nonlinear constitutive
laws appropriate for masonry. The main advantage of an incremental finite element
analysis, with respect to a limit analysis, lies in the fact that the former provides
more information than the latter: not only the load-carrying capacity can be
evaluated, but also the displacement capacity at failure and the stress-strain states
of all the significant parts of the structure during the incremental loading history.

Differently from other typologies of masonry structures, masonry arch bridges
can be studied also with one-dimensional models. A lot of one-dimensional models
exist, because of their computational advantages. Among the first models
developed for studying arch bridges with the finite element method, there is the
contribution by Crisfield and Wills (Crisfield and Wills, 1985), which consists in a
no tension material model implemented in uni-dimensional and bi-dimensional
finite elements. Another approach, presented in (Choo et al., 1991), uses uni-
dimensional elements to represent the arch rings, whose thickness is progressively
modified in order to take into account cracking and crushing phenomena.

More recent are the works by Molins and Roca (Molins and Roca, 1998) and
by Brencich and De Francesco (Brencich and De Francesco, 2004a; Brencich and
De Francesco, 2004b). In the former, a numerical model for the study of curved and
spatial structures by means of uni-dimensional elements is proposed, assuming an
elastic-perfectly brittle behaviour in tension and an elasto-plastic constitutive
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response in compression and shear. In the latter, the behaviour of single and multi-
span bridges is studied considering no tensile resistance and an elasto-plastic
behaviour with limited strength and limited ductility in compression. Finally, De
Felice addresses the evaluation of the load carrying capacity of multi-span masonry
arch bridges by means of a model based on the adoption of nonlinear beam elements
with fibre cross section (De Felice, 2009).

Despite the adequacy of the results obtained with these simplified uni-
dimensional formulations, 2D and 3D models allow to perform more complete
analyses. First of all, they permit to deal with the geometry complexity
characterizing this kind of structures, which are usually curved and with varying
cross sections. Moreover, they allow modelling the interaction between the arch
barrel and the infill and the presence of cooperating spandrel walls, whose influence
is not negligible as stressed in the experimental programme described in
(Melbourne et al., 1997).

Among the first interesting contributions of two-dimensional finite elements
for the study of masonry arch bridges, there is the work in (Gong et al., 1993),
where a no tension material model for masonry is combined with a discrete crack
modelling. In this approach, cracks can be generated only at the boundaries of the
finite elements, both in radial and tangential direction (separation between adjacent
rings). Besides the problems related to the use of a simple no-tension material
model for describing cracking, such a model suffers from the limitations proper of
micro-modelling approaches when applied to describe large structures. In fact, it
requires a very high computational effort and a non-automatic mesh generation, due
to the necessity of reproducing with the discretization the masonry pattern.

A more effective 2D procedure is proposed in (Loo and Yang, 1991), where, in
the context of a macro-modelling approach for masonry, cracking and crushing
phenomena are both considered, assuming a softening behaviour in tension and an
elastic-perfectly plastic behaviour in compression. However, the formulation is
validated considering only single-span arches.

More recently, Boothbly et al. (Boothbly et al., 1998) and Fanning and Boothby
(Fanning and Boothby, 2001) performed 2D and 3D numerical analyses for
studying the service load conditions of masonry arch bridges using a commercially
available finite element package. Among the few examples of application of non-
commercial finite element codes for the analysis of masonry arch bridges, it is worth
remembering the work by Milani and Lourengo (Milani and Lourenco, 2012),
where it is observed that a full 3D analysis has a clear advantage with respect to a
2D one only when skewed geometry and 3D loading conditions have to be
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investigated. The approach adopted consists in assuming an infinitely rigid
behaviour for the eight-node brick elements and in localizing elastic and inelastic
deformations in interface quadrilateral elements.

The overview of existing assessment methods just described can be a reference
for the study of masonry arch bridges not only subjected to vertical (permanent and
vehicular) loads but also to horizontal (seismic) actions, in the framework of
nonlinear static approaches.

In view of the above discussion, it can be affirmed that the adoption of a non-
linear mechanical model with softening in tension and compression for the 2D finite
element analysis of masonry multi-span arch bridges have been rarely adopted in
literature. In fact, the assumptions of no-tension material and elasto-plastic
behaviour in compression are generally preferred and this results in the fact that the
application of damage mechanics to study the non-linear behaviour of such
structures has not been sufficiently explored. Therefore, the following sections of
this chapter are addressed to investigate the adequacy of the regularized d*/d”
damage model to assess the structural behaviour of multi-span masonry arch
bridges. In order to prove the reliability of the proposed formulation, the objectivity
of the response with respect to the discretization is also verified. Such a study is
generally skipped in the analysis of large structures but it is fundamental to evaluate
the actual predictive capabilities of the numerical model. Finally, to gain further
insight on the potentialities of the proposed approach, the results obtained with the
d"/d~ damage model are compared with the ones deriving from limit analysis.

8.2 Numerical study of a large-scale three-span bridge
model under vertical loads

8.2.1 Experimental programme and modelling assumptions

The structural problem studied in the follow up is a 1:5 scale model of a three-span
arch bridge, tested under concentrated vertical loads in laboratory within the
experimental programme described in (Melbourne et al., 1995; Melbourne et al.,
1997). The same problem has been previously assessed, by means of 1D finite
element formulations, by Brencich and De Francesco (Brencich and De Francesco,
2004b) and De Felice (De Felice, 2009).

The geometry of the structure is plotted in Figure 8.1. Each span is 3 m long
and is characterized by a span-rise ratio equal to 4. The thickness of the single ring
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is equal to 0.215 m. All the elements composing the bridge, i.e. the piers, the
abutments, the arch barrels, the spandrel walls, present typical geometries for multi-
span brickwork arch bridges.

As visible from the central section of the central span displayed in Figure 8.1.b,
the spandrel walls are not collaborating with the arches, despite they lie on the same
piers and abutments. The resisting width of the arch barrels is in fact equal to
2.88 m. In fact, the bridge considered in the following numerical analysis,
schematically named “bridge 2 in (Melbourne et al., 1997), differs from the other
two bridges experimentally studied because of its detached spandrel walls.
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Figure 8.1: Geometry [mm] of the large-scale model of the multi-span masonry arch
bridge described in (Melbourne et al., 1995; Melbourne et al., 1997): (a) longitudinal
profile and (b) central section of the central span.

The masonry used to build the large-scale model of the bridge is composed of
solid, class 4 clay “engineering” bricks and cement-lime-sand (1:2:9) mortar. In
Table 8.1, the material properties available in (Melbourne et al., 1995; Melbourne
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et al., 1997) for the brickwork are collected, together with the data for the backfill
placed in the spandrel void.

Table 8.1: Parameters of masonry and backfill material for the problem of the multi-
span masonry arch bridge as indicated in (Melbourne et al., 1995; Melbourne et al., 1995).

Masonry Backfill
E A Vm ¢ Angle of friction Vbdry
[MPa] [MPa] [kN/m’] [MPa] [°] [N/mm)]
17000  -26.8 22.4 0 60.5 24.0

It is worth noting how the mechanical performance of the brickwork is really high,
having a compressive strength value which is usually proper of concrete and not of
masonry. No information about the tensile strength and the tensile fracture energy
of the material is provided in (Melbourne et al., 1995; Melbourne et al., 1997).

The problem is studied in plane stress conditions. The loading and boundary
conditions used in the numerical analyses are synthetized in Figure 8.2. As visible
from this figure, the backfill and the spandrel walls are not included in the numerical
model, nor the concrete basement which supports piers and abutments.

Due to the fact that the spandrel walls are not attached to the arch vaults, they
do not collaborate in the resisting mechanism. Therefore, their stiffness, together
with the stiffness of the backfill, is neglected. The stabilizing effect of their weight
1s however taken into account, by applying, in the first load step of the analyses, a
distributed load at the extrados of the barrels and of the abutments together with the
dead load of the structural elements (arches, piers and abutments).

In order to avoid superposition wih the concentrated load, in Figure 8.2 this
distributed load is not plotted at the extrados of the central span, but it is obviously
included in the numerical analysis. A specific weigth equal to 23 kN/m’ is
considered for the backfill while the specific weight for the masonry of the
structural elements is equal to 22.4 kN/m?.
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Figure 8.2: Boundary and loading conditions in the numerical analyses of the three-
span masonry arch bridge.

A dispersion angle 0 is used to identify the loaded surface at the extrados of the
central arch, starting from the concentrated force applied at the quarter span on the
top of the bridge. On this curved surface, the action is applied uniformly in terms
of imposed vertical displacements. For what regards the concrete basement, it is
considered infinitely stiff: hence, piers and abutments clamped at the base are
assumed.

By performing the numerical analysis, it is found that the angle of load
dispersion € defined in Figure 8.2 has a non-negligible influence on the structural
overall strength: higher is 6, wider is the surface of load application at the extrados
and higher is the load carrying capacity, given that all the other input parameters
are fixed. In addition, it is also noted that the material quantities which affect most
the estimated load-carrying capacity of the bridge are the tensile strength and the
tensile fracture energy, which are not available in (Melbourne et al., 1995;
Melbourne et al., 1997). This consideration is in agreement with the observations
done in (Loo, 1995), where indications on the reliable values to assign to /* and to
the ultimate strain in a local linear softening curve are provided.

In order to show the dependence of the results on 6, the structural behaviour of
the arch bridge is studied considering a very low value of load dispersion (6 = 5°)
and a standard value of load dispersion (6 = 25°). Only by adopting two different
sets of material properties, with different uniaxial tensile strengths, it is possible to
reproduce the maximum peak load observed in laboratory for both the values of 6.
These two groups of input parameters are summarized in Table 8.2.
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Table 8.2: Two sets of input parameters used for the numerical analysis of the multi-
span masonry arch bridge.

Set 0 E v f A G Gr lrG k
© [°] [MPa] [-] [MPa] [MPa] [N/mm] [N/mm] [mm] [-]

I 5 17000 0.2 021 -26.8 0.58 30.00 35.00 0.0

Ir 25 17000 0.2 0.14 -26.8 0.58 30.00 35.00 0.0

From Table 8.2, it is inferable that, higher is 6, lower is the chosen tensile
strength in order to have an appropriate fit with the experimental results, while the
rather high value for the tensile fracture energy is maintained equal. Starting from
the value of the nonlocal length, by means of the calibration procedure detailed in
Section 4.2, the dissipation lengths in tension and compression can be defined and
are: lzs' = 147 mm for /'= 0.21 MPa and /s = 148 mm for /= 0.14 MPa,
lais. = 100 mm. The local softening behaviour of the material is represented
according to these values; by comparing it with the recommended softening trends
proposed in (Loo, 1995), lower values of tensile strengths and a slightly higher
specific dissipated energy gr * are here adopted. The absence of the parameters &*
and ¢ in Table 8.2 is justified by the simplifying assumption here done to consider
the permanent deformations absent.

Finally, the damage evolution laws adopted in the numerical analyses foresee
an exponential softening behaviour in tension (softening modulus in Eq. (2.84b))
and a Gaussian damage evolution law in compression (softening modulus in
Eq. (2.100)).

8.2.2 Numerical results

On the base of the boundary and loading conditions described in Figure 8.2, the
structural analyses of the three-span masonry arch bridge are performed considering
as input parameters of the nonlocal d"/d~ damage model the values collected in
Table 8.2.

The unstructured triangular mesh used is composed of 19360 finite elements,
with an average size of 24 mm which is sufficiently smaller than the interaction
radius 2-/gg = 70 mm.
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The numerical responses are shown in Figure 8.3 in terms of applied
concentrated force — radial displacement of point A (see Figure 8.2) curves, where
the comparison with the experimental trend is also provided. Figure 8.3.a refers to
the solution obtained adopting the set I of input parameters whilst Figure 8.3.b
refers to the one obtained with the set II (see Table 8.2).

Thanks to the proper calibration of the tensile strength associated to the
dispersion angle 6, the load-carrying capacity of the structure is well captured in
both cases. In fact, in Figure 8.3.a, the peak load is equal to 316.5 kN while in
Figure 8.3.b it is equal to 317.5 kN, against an experimentally measured failure load
of 320 kN. In the post-peak regime, the numerical trend derived with the value of
6 = 25° appears to be more faithful to the the experimental trend than the one
obtained with 6 = 5°, which is, actually, an excessively low dispersion angle. Both
the numerical curves show a slightly lower deformability than the experimental one,
which can be mainly ascribed to the assumption of excluding from the structural
model the backfill and its interaction with the arches.
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Figure 8.3: Comparison between numerical and experimental concentrated load-radial
displacement of point A curves: (a) set of input paramters I and (b) set of input parameters
II (see Table 8.2).
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In order to check the mesh-independence of the proposed nonlocal damage
approach, the same analyses are repeated adopting a less refined discretization. By
modifying the number of finite elements both in the radial and tangential directions
of the arches, a mesh with an almost halved number of finite elements, equal to
10419, is used. Even with this mesh, the average size of the finite elements (34 mm)
is sufficiently smaller than the nonlocal interaction radius (70 mm). The mesh
objectivity study is shown in Figure 8.4, where both the sets of input parameters
collected in Table 8.2 are considered.

From Figure 8.4, it can be seen that the variations induced by the adoption of a
different mesh are only minimal, and negligible in engineering terms. In fact, in
both cases they are less than 3%. This proves that the regularized damage
formulation provides solutions almost unaffected by the discretization even in
large-scale applications.
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Figure 8.4: Mesh objectivity study considering a fine (19360 FEs) and a coarse
(10419 FEs) discretization: (a) set of input parameters I and (b) set of input parameters 11
(see Table 8.2).



202 Large-scale application: masonry multi-span arch bridge

Hereafter, the analysis performed with the higher, and more realistic, angle of
dispersion is detailed to show how the damage formulation is able not only to
describe the load-carrying capacity of the bridge and its post-peak regime but also
its failure mechanism.

In the laboratory, a collapse involving two spans, the central and the south ones,
is observed, generated by the formation of seven hinges. Hence, according to the
classification provided in Section 8.1, the south pier is flexibile and is not able to
counterbalance the thrusts coming from the south span, once the central one has
collapsed.

The numerical results are in perfect agreement with the experimental
behaviour: in fact, the spans involved in the failure mechanisms are the central and
the south one and seven hinges can be identified, three for each span plus one at the
base of the south “flexible” pier. This is confirmed by the deformed configuration
and the contour plots of the maximum principal strains obtained at the end of the
analysis, displayed in Figure 8.5 and Figure 8.6, respectively.

Specifically, the distribution of maximum principal strains is exhibited both
with the fine and with the coarse mesh, in order to show the independence from the
discretization, even in terms of strain localization.

A further proof of the accuracy of the numerical results is represented by the
concentrated load - top south pier radial displacement (point B in Figure 8.2) curve,
shown in Figure 8.7.

_

Figure 8.5: Deformed configuration (X 10) of the three-span masonry arch bridge at
the end of the analysis.
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Figure 8.6: Contour plots of the maximum principal strains of the three-span masonry
arch bridge at the end of the analysis: (a) fine mesh and (b) coarse mesh.
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Figure 8.7: Comparison between numerical and experimental concentrated load-radial
displacement of point B curves.

The position of the hinges, identifiable from the position of the predicted cracks
in Figure 8.6, coincides with the experimental observation. The loads for which the
cracks are generated in the laboratory and in the numerical analyses are summarized
in Table 8.3. In the same table, information about the placement of the cracks are
reported, in order to compare the experimental and the numerical sequence. In the
numerical solution, the formation of a crack is associated to a value of tensile
damage equal or higher to 0.95. The experimental load values are recorded in
(Melbourne et al., 1995; Melbourne et al., 1997).
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Table 8.3: Comparison between experimental and numerical loads [kN] of crack
generation.

Results 1 2 3 4 5 6 7 Failure

130 230 250 265 270 270 270 320

Exp. under base of south loaded loaded south south
load south span; span; span; span; span; -

pier  north north south crown south

1299 181.2 236.0 2453 2534 2663 290.6 317.5
Num.

loaded south baseof loaded south south
span;  span; south span; span; span; -
north north  pier south south crown

under
load

As visible from Table 8.3, there is adequate agreement between the
experimental and the numerical predicted loads of crack generation; this agreement
is remarkable if only the loads in correspondence with the formation of the first
hinge and the failure are considered. Also the formation of the hinges is satisfactory,
with the only discrepancy lieing in the fact that the south pier and the south span
are involved in the collapse mechanism later than in the experimental test.

Finally, it has to be noted that no compressive damage is present at the end of
the analysis, meaning that the masonry crushing is not reached in any point of the
structure. This is reasonable due to the very high strength exhibited by the material
in the compressive tests (see Table 8.1).

8.2.3 Comparison with limit analysis

The three-scale masonry arch bridge under concentrated vertical load described in
(Melbourne et al., 1995; Melbourne et al., 1997) is studied with the commercial
software RING 1.5 (LimitState, 2014). This is a software specifically developed to
study the collapse state of masonry arch bridges, based on the adoption of
computational limit analyses methods.

To do this, the geometry and the loading conditions described in Figure 8.1 and
Figure 8.2 are imported in RING 1.5. The material input parameters required by the
software and adopted in the non-linear finite element analyses are the compressive
strength, the specific weights for masonry and for the backfill. As additional
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information, the software needs the definition of the radial and tangential
coefficient of frictions for masonry (assumed as the default values) and of the load
dispersion type (uniform or Boussinesq) for backfill. In accordance with the
modelling assumptions done in Section 8.21, the horizontal backfill pressure is
disregarded and the load dispersion is assumed uniform, although the value of the

dispersion angle can not be defined by the user but is automatically computed by
the software.

The solution of the limit analysis appears to be excessively conservative for this

specific problem; in fact, a load-carrying capacity equal to 192 kN is obtained. This
value, together with the collapse mechanism, is plotted in Figure 8.8, where a
screen-shot of the software results is reported.

The high discrepancy between the results provided by RING 1.5 and the
experimental ones has to be ascribed to the hypothesis of no tension material at the
base of the limit analysis. In fact, the brickwork composing the scale bridge model
has non negligible tensile strengths and high values of fracture energies, coherently

with the high compressive performance of the material tested in laboratory
(Melbourne et al., 1995; Melbourne et al., 1997)
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Figure 8.8: Collapse solution for the multi-span masonry arch bridge provided by the
limit analysis software RING 1.5.
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To prove this, the FE analyses performed in Section 8.22 are repeated by
diminuishing G/ and f/* with respect to the values indicated in Table 8.2 (material
set II). By simulating a material which is close to the condition of null tensile
resistance and null dissipated energy in tension, the load-carrying capacity
evaluated with the damage formulation is a good estimation of the ultimate load
derived by limit analysis (see Figure 8.9). The former is higher than the latter
because a certain tensile strength and a certain fracture energy are considered.

It is important to note that, even including in RING 1.5 the presence of a passive
uniform horizontal backfill pressure (50 kN/m?), whose contribution is observed in
laboratory, the maximum strength of the structure remains far below the
experimental failure load (231 kN against 320 kN).

Finally, the absence of crushing numerically detected with the d*/d~ damage
model is confirmed with the use of RING 1.5. In fact, the ultimate capacity of the
bridge varies from 192 kN to 194 kN, considering the actual compressive strength
of the material or assuming it as infinite, respectively.

It is worth specifying that the over-conservative feature of the limit analysis
observed in this specific case can not be generalized. In fact, in the evaluation of
existing bridges, in which the materials have been subjected to degradation
processes, the assumption of no tensile resistance is not so far from the actual
behaviour as here instead found (Figure 8.9).
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Figure 8.9: Tendency of the damage formulation to recover the ultimate load provided
by RING 1.5 for small values of G/ and f".



Chapter 9

Conclusions

9.1 Summarizing considerations

In the present thesis, a new d'/d~ damage model apt for the nonlinear analysis of
masonry, unreinforced and reinforced concrete structures under monotonic and
cyclic loading conditions is proposed. The formulation, implemented in a
displacement-based finite element environment, aims to be a reliable structural
assessment tool which could provide accurate results at an affordable computational
cost.

In these concluding remarks, the different stages described in the previous
chapters, i.e. formulation, implementation in a finite element code and validation,
are retraced to put in evidence the salient aspects of the damage model and its
capabilitites to describe the response of structures made of concrete- and masonry-
like materials.

To take into account the several distinctive mechanical features proper of these
materials, the following aspects characterize the new d'/d~ damage formulation at
a constitutive level:

e the pronounced non-symmetrical behaviour under tension and compression, due
to different strengths and different fracture energies, is simulated by the
adoption of two independent scalar damage variables, d” and ¢, which describe
the softening and the degradation of the elastic stiffness under tensile and
compressive regimes, respectively. Similarly, two damage surfaces, one for
tension and one for compression, inspired from the failure criterion proposed
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for concrete in (Lubliner et al., 1989), are considered to assess, separately, the
evolution of d" (Figure 2.4.a) and d~ (Figure 2.4.b).

The damage-induced orthotropy is represented thanks to the spectral
decomposition of the elastic strain tensor (see Figure 2.1). Specifically, the
strain equivalence assumption between nominal and effective configurations,
considered in the original model, is abandoned in favor of an energy-
equivalence framework, with the consequent derivation of a new constitutive
operator (Eq. (2.24)), which is positive definite and symmetric. In
thermodynamic terms, its adoption allows proving the consistency of the
constitutive law with respect to the Schwartz theorem about the equality of the
mixed partial derivatives of the potential (2.30) and the 1 and 2" principles of
thermo-dynamics (Section 2.2.2). In addition, from a mechanical point of view,
it permits simulating a reduction of Poisson’s ratio throughout the damage
process, rather than considering it unrealistically constant (Section 2.2.3).
Analogously to the original formulation, the new one can be classified within
the orthotropic rotating models due to the coincidence between the material axes
of orthotropy and the principal reference systems of the stress and the elastic
strain tensors.

The development of permanent deformations &, is taken into account in a
simplified as well as effective way, without introducing concepts proper of a
plasticity theory. This is achieved considering the evolution of & only when
there is progression of damage and occuring in the direction of the elastic strain
tensor. Two different definitions of the permanent strain rate tensor, based on
this simplification, are proposed: the first (Eq. (2.57)) is a revisitation of the
expression for &, proposed in (Faria et al., 1998) while the second (Eq. (2.61))
finds its mechanical basis on the plastic micro-cracking.

The evolution of all the internal variables (d°, d” and &) is treated within a
unified dissipative approach since Gr™ and Gy, the material constants ruling the
energy dissipation under tension and under compression, are not pure fracture
parameters but they are actually composed of both damage and plastic
dissipative contents. This leads to a modification of the softening modulus
usually adopted for exponential damage evolution laws, with the aim of taking
into account the simultaneous presence of both the dissipation mechanisms
(Section 2.5). Moreover, a new damage evolution law, exhibiting a Gaussian
trend (Section 2.5.2), is proposed, suitable to describe the hardening-softening
response of quasi-brittle materials under compression.
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To deal with microcrack closure-reopening effects, crucial under cyclic loading,
a multidirectional damage approach is adopted, especially effective in case of
orthogonal, or however intersecting, sets of cracks, typical of cyclic shear
conditions. The procedure consists in enriching at a constitutive level the
orthotropic rotating scalar damage model with some features proper of fixed
crack models, in order to maintain memory about the degradation directionality.
This is done, in plane problems, by performing a partition into two damage
regions for d" and two damage regions for d , with the intent of monitoring and
saving during the loading history two damage values in tension and two damage
values in compression (Section 3.1). The opening and the closure of cracks can
be simulated by activating or deactivating, respectively, a damage value on the
base of the current principal directions of &. Moreover, the distinction between
two different cyclic conditions, i.e., cyclic loadings considered alone (Type
Load (1)) or preceded by not-cyclic permanent loads (Type Load (ii)), and the
proposal of an ad-hoc procedure for each of them, add versatility to the
formulation. In fact, after loading reversal, a complete stiffness recovery, partial
stiffness recovery and no stiffness recovery can be modelled, as shown with
reference to the problem of the panel subjected to in-plane cyclic shear without
or with a precompression (Section 3.4).

In order to circumvent the convergence difficulties in correspondence with

crack closure and reopening and the dependence of the results on the discretization,
the formulation is enriched according to the following points:

the modelling of unilateral effects incorporates a smoothing procedure in the
transition from an unloading stiffness to a reloading one, in order to improve
the robustness and performance of the multidirectional approach in the
numerical analyses (Section 3.3).

A regularized nonlocal integral approach is adopted to ensure the mesh-
objectivity of the results. Specifically, the variable chosen to be averaged is not
a scalar, as done in the majority of nonlocal damage models, but is the elastic
strain tensor &. The regularized counterpart of & is used to define the evolution
of the internal variables whilst, in the constitutive law (2.33), the local elastic
strain tensor is maintained. The local strain is also the quantity with reference
to which the spectral decomposition is performed, in order to keep the
coincidence between the axes of orthotropy of the damage material and the
principal directions of elastic strains and stresses unaltered even in the nonlocal
formulation.
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e The calibration strategy chosen to define the parameters affecting the softening
behaviour, inspired by the work presented in (Nguyen and Houlsby, 2007),
consists in the modification of the local softening law on the basis of the internal
length [z, with the intent of ensuring the evaluation of the correct fracture
energy G5 independently of /zs. Such a calibration strategy is preferable
because it makes the fracture energy the only ruling material parameter while
releasing the obtained solution from the choice of the internal length, whose
assessment is one of the most debated aspects of regularized damage models.

The new d'/d” formulation here summarized has been efficiently implemented,
thanks to its full strain driven formalism, in a displacement-based finite element
code which works incrementally and iteratively. To solve the algebraic system of
equations, the Picard (secant) method has been preferred to the Newton Raphson
one, since the use of the new symmetric constitutive operator ensures the adoption
of a symmetric global secant stiffness matrix.

Several structural applications are presented as validation of the predictive
capabilitites of the new damage model. From these numerical analyses and their
comparison with experimental (or analytical) solutions, the following
considerations can be drawn:

e the response of concrete samples under cyclic uniaxial tension, cyclic uniaxial
compression and biaxial stresses, studied at a local level, can be satisfactorily
reproduced by the model, proving the adequacy of the constitutive operator, of
the damage criteria and of the evolution laws for the internal variables (see
Section 6.1).

e At a structural level, the performance of the new mechanical model, and
specifically, the effect of the new energy-equivalent constitutive operator
(2.24), compared with the strain-equivalent original one (2.8), is analyzed with
reference to unreinforced concrete notched elements subjected to pure tension,
pure bending and mixed-mode bending (Section 6.2). Despite the gain in
thermo-dynamic consistency ensured by the former, no significant differences
are appreciable in the structural responses obtained with the two formulations,
being both of them able to fit adequately the experimental results. However, the
adoption of the constitutive symmetric operator Dg is convenient in
computational terms. In fact, saving in CPU time ranging from 14.7 % to 51 %
are found adopting the new symmetric contitutive operator with respect to the
non-symmetric original one (see Table 6.8).

e The microcrack closure-reopening capabilities are ensured in cyclic shear
conditions, as demonstrated in the problems of a masonry and a reinforced



9.1 Summarizing considerations 211

concrete wall subjected to in-plane cyclic shear (Section 6.3). In both the
examples, the experimental evidence is satisfactorily reproduced in terms of
lateral resistance and also hysteretic behaviour and symmetry in the response
between loading and reloading. This is obtained thanks to the multidirectional
procedure, which gives the possibility of differentiating the damage processes
on the basis of the orientation of the principal strain directions, taking into
account, realistically, the energy dissipated in the formation of both the sets of
orthogonal cracks typical of these loading conditions. To quanitify the
beneficial effects of the new approach on the simulated hysteretic behaviour,
the results coming from the multidirectional procedure and a standard scalar
damage formulation are compared with the experimental ones in terms of
viscous damping coefficients, for the case of the masonry shear panel. While
with the former the energy dissipation capacity of the wall is fairly reproduced,
with the latter it is strongly underestimated (Figure 6.21).

Both the definitions for the permanent deformations here formulated, although
simplified, are able to adequately fit the experimental results, as visible in the
problem of the masonry arch subjected to loading and unloading stages
(Section 7.1) and in the problems of the masonry and reinforced concrete walls
under cyclic in-plane shear (Section 6.3). In the latter case, its effect on the
structural response is investigated (Figure 6.23) by varying the intensity of the
permanent strain tensor with the conclusion that an adequate modelling of
permanent deformations is essential, as an adequate modelling of unilateral
effects, for the correct representation of the hysteretic behaviour of these
structures under cyclic loadings.

The problem of the masonry wall subjected to in-plane cyclic shear is also
exploited to quantify the improved numerical robustness guaranteed by the
adoption of the smoothing procedure in correspondence with closure and
reopening of cracks (Section 3.3). Data related to the convergence histories,
evaluated for different intensities of the permanent strain tensor and for different
amplitudes 6, of the transition region, are collected. They suggest two main
observations. On the one hand, the higher is 6, the smoother is the modelling
of the crak closure and the faster is the convergence; actually, for null permanent
deformations, it is found that with ; = n/36 the convergence in correspondence
with the crack-closure is achieved with 57 iterations while, with 8, = /180, it is
not found. On the other hand, the smoothing procedure is more effective when
irreversible strains are not considered, because they tend to naturally mitigate
the abrupt stiffness changes in presence of unilateral effects.
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e The adoption of the regularized approach is able to guarantee objectivity of the
results with respect to the size and the alignment of the discretization. The mesh-
size independence is proven both in the case of the masonry arch subjected to a
vertical point load and of a reinforced concrete beam under four-point bending
test, solving the problems with different discretization refinments. Specifically,
in the former case, the averaging applied to the elasic strain tensor & only, is
however capable of describing the objectivity of the residual deformations at
complete unloading, although the irreversible strain tensor is considered as a
local variable (Figure 7.6). In addition, the independence of the results on the
mesh bias is demonstrated in Section 7.2, with reference to the case of a
perforated slab under uniaxial tension. For this problem, the analytical
inclination of the discontinuity is known by a strain localization analysis and it
strongly depends on the Poisson ratio v. By varying v, the solutions coming
from the regularized approach are able to reproduce the analytical ones (Figure
7.10), differently from the ones obtained with the local approach, which are
influenced by the mesh alignment (Figure 7.9).

e For this specific constitutive law, within the regularized formulations, the
averaging of the elastic strain tensor is preferable with respect to the averaging
of the scalar equivalent stresses. This is shown in the example of application
regarding the reinforced concrete beam under four point bending test
(Section 7.3.1), where a slightly higher level of mesh-objectivity is observed
(Table 7.8), together with an improved convergence speed (Table 7.9), adopting
the regularized strain tensor approach instead of the regularized “scalar” one.

e The dependence of the regularized solutions on the internal length in terms of
force-displacement curves is almost null in uniaxial loading conditions (Figure
4.7.b) and substantially slight in general stress-strain states (Figure 7.20), thanks
to the calibration strategy adopted to define the energy dissipation. In terms of
strain localization, the internal length influences the localization bandwidth in
problems characterized by a single failure zone (Figure 4.7.b) and the number
and width of the damaged areas in problems characterized by multiple failure
zones (Figure 7.21). All these considerations can be interpreted finding a
significant analogy between the regularized approach and the local crack band
approach proposed in (Bazant and Oh, 1983), with a parallelism intervening
between the role played by the internal length /zc and the mesh size.

e The proposed regularized strain-tensor approach, in combination with the
adopted calibration strategy, appears to be able to describe the structural size
effect for different geometries, with the same set of input parameters
(Section 7.4). In fact, experimental results coming from three-point bending
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tests on notched and unnotched beams, with different scales, are fairly
reproduced in the numerical analyses, especially in terms of peak loads. Other
nonlocal formulations applied to the same set of specimens are not likewise
good in catpturing the structural size effect on different geometries, i.e., on
different notch-to-depth ratios.

The application of the regularized d"/d” damage model to the study of a three-
span masonry arch bridge subjected to a vertical point-wise load is satisfactory
and encourages the adoption of finite element nonlinear analysis based on
damage mechanics for the study of masonry arch bridges with a single or more
spans. In fact, the results obtained with the proposed model are able to estimate
the load-carrying capacity of the structure, its post-peak response and the failure
mechanism which involves the collapse of two of the three spans, due to the
piers’ flexibility. In addition, the reliability of the numerical results is proven
by performing a mesh objectivity study. The material constants which affect
most the structural response are the ones related to the tensile behaviour of
masonry, i.e. the uniaxial strength f"and the fracture energy G/, hence the
accuracy of the results depends on the reliable characterization of the material
parameters. It is however shown that, for the specific problem analyzed, by
performing a limit analysis with the commercial software RING 1.5, an
excessive underestimation of the structural resistance is found, suggesting that
the assumption of a null tensile strength and a null fracture energy is not always
a valid option.

9.2 Main contributions

The main contributions of the present thesis to the field of the structural analysis of
masonry and concrete structures by means of damage mechanics-based finite
element codes are summarized in the following points:

the proof that a new version of the original d*/d~ damage model (Faria et al.,
1998) is necessary and derives from the difficulties found in defining a
consistent consitutive operator (positive-definite and endowed with major and
minor symmetries) under the assumption of strain equivalence between the
effective and the nominal configurations.

The adoption of tensor mapping procedures existing in literature to describe an
orthotropic material starting from an isotropic one (Pela et al., 2014) to
represent the orthotropy induced by the degradation process in an initially
isotropic material. Indeed, the use of the energy-equivalence assumption to
derive the new constitutive operator is equivalent to consider a mapping tensor
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which relates the effective, isotropic, configuration of the undamaged material
between microcracks, to the nominal, orthotropic, configuration of the damaged
material (see Figure 2.2). The d'/d~ damage model deriving from this
assumption is thermo-dynamically consistent and is governed by a constitutive
operator which is positive definite and endowed with both major and minor
symmetries.

The cognition that the d*/d~ damage models in the existing literature are not
able to describe the unilateral effects in generic cyclic conditions, but only in
alternating full tensile - full compressive regimes. This represents a strong
limitation because the modelling of microcrack closure-reopening is not
possible, for instance, in shear cyclic conditions, which are the ones typically
induced during an earthquake in resisting vertical panels.

The formulation of a multidirectional damage approach, which allows to
preserve memory regarding degradation directionality while maintaining
unaltered the dependence of the stress tensor from only the scalars d" and d".
This procedure is based on the incorporation of aspects proper of fixed crack
models in a constitutive law which has, instead, a rotating nature, due to the
split of the elastic strain tensor into its positive and negative counterparts.
Therefore, the application of the multidirectional damage approach is versatile
and all those orthotropic damage models based on the use of scalar damage
variables and on the spectral decomposition of a second order tensor can take
advantage from it.

The consideration of the microcrack closure-reopening effects also from a
numerical point of view, with the proposal of a smoothing procedure to alleviate
convergence difficulties in correspondence with loading reversal. This topic has
not received by the existing literature the same degree of attention of other
numerical issues, as the ones related to the spurious mesh dependence in
simulating cracking and strain-softening.

The application of the multidirectional approach to the study of masonry and
reinforced concrete walls under in-plane cyclic shear, with the successful
description of the structural response, in terms of lateral resistance but also
hysteretic behaviour and symmetry between loading and reloading. The
experimental energy dissipation capacity of the structure, related to the
formation of intersecting sets of cracks, is well reproduced by the proposed
model, thanks to the correct representation of unilateral effects and to the
development of permanent deformations.

The identification of the elastic strain tensor as the variable to be regularized, in
order to optimize the mesh-objectivity of the formulation while maintaining the
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coincidence between the axes of material orthotropy and the principal directions
of elastic strains and stresses, typical of the local constitutive model.

The notion that the nonlocal integral damage model has not to be opposed
drastically to the crack band approach proposed in (Bazant and Oh, 1983).
Indeed, by considering the internal length as a pure regularization parameter, it
is possible to establish a parallelism between its role in nonlocal damage models
and the mesh size’s role in crack band approaches. Both these parameters affect
the local softening law in such a way that, independently of their value, the
correct fracture energy is represented at a structural level. In terms of strain
localization, both of them influence the width (and even the number in case of
multiple failure zones) of the damage areas. The essential advantage of a
nonlocal model with respect to a crack band one mainly lies in its mesh-bias
objectivity.

The attention dedicated to the dependence of the regularized formulations on
the choice of the internal length. Such a sensitivity analysis is often neglected
in the existing literature, usually addressed to show only the independence of
the nonlocal results from the discretization.

The adoption of the Picard (secant) method to solve the algebraic system of
equations, which leads to a symmetric global stiffness matrix in the local as well
as in the regularized version of the damage formulation, with the consequent
saving of computation resources.

The application of the regularized d"/d~ damage model for the structural
assessment of a multi-span masonry arch bridge. Both the load carrying
capacity and the global failure mechanisms are well caught by the proposed
formulation. Numerical issues, usually neglected in large-scale applications, are
also addressed proving the reliability of the nonlocal damage approach, due to
its capacity to provide mesh-independent results.

9.3 Topics for further research

Being the field of the structural assessment of masonry, reinforced and unreinforced
concrete structures by means of damage mechanics-based formulations very wide,
the possibilities to extend the present work are several.

To widen the typologies of structures and the loading configurations to be
studied, the application of the d"/d~ damage formulation to 3D problems has to
be performed. It is worth noting that the formulation of the damage model, as
well as the formulation of its regularized version, do not need additional
ingredients to be applied to three-dimensional cases. Therefore, only their
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validation is required. Regarding the 3D extension of the multidirectional
approach, it does not appear conceptually difficult, as described in Chapter 3,
but it requires a certain implementation effort, due to the necessity of
partitioning the space into solid regions.

At a constitutive level, to explore the possibilities of modelling different types
of damage-induced orthotropy, other forms for the tensor 4", which defines the
dependence of the constitutive operator on the scalar variables and on the
operator @Q performing the spectral decomposition of the elastic strain tensor
(2.23) can be analyzed. For instance, Q can be fixed at a certain degradation
level, interrumpting the rotation of the directions of material orthotropy, in order
to switch from a rotating crack model to a fixed one. This has beneficial effects
in terms of stiffness recovery capabilitites under cyclic loadings, making the
multidirectional procedure unnecessary, but it requires to face another essential
issue, typical of fixed crack models, which is the stress locking. An alternative
to describe an higher degree of damage-induced orthotropy is to monitor three
distinct tensile damage variables and three distinct compressive damage
variables, each one associated to a principal direction. The main complication
arising from such a procedure regards the definition of the equivalent stress
variables, which have to be representative of a directional stress-strain state.
To increase the accuracy of the results at the expense of an higher number of
necessary material parameters, a plastic theory can be considered for the
evaluation of the irreversible deformations and creep effects can be modelled as
another source of material degradation.

The application of the d"/d~ damage model to the study of masonry arch bridges
by means of 2D finite elements can be deepened, introducing suitably the
resisting contribution of the spandrel walls and the fill-arch interaction.

A natural continuation of this work can be also the extension to seismic analysis,
which deals with the formulation in a finite element framework of the dynamic
balance equation and the refinement of the constitutive laws in order to take into
account the fatigue behaviour and the strain-rate sensitivity of the material
properties. The proper modelling of the unilateral effects, achieved with the
multidirectional damage procedure conceived in the present thesis, is obviously
essential in this kind of analysis.

The capability of the multidirectional damage approach to provide a reliable
response under cyclic actions can be exploited to extract, for some recurrent
typologies of structures, the characteristic value of some input parameters of
less-refined seismic analysis techniques. For instance, thanks to the possibility
of describing with accuracy the hysteretic behaviour, the proposed damage
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model, enriched with the multidirectional procedure, can be adopted in the
definition of the viscous damping coefficient in dynamic linear analyses.
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