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Abstract 

A rigorous structural analysis is fundamental in the safety assessment of the built 
heritage and in its efficient conservation and rehabilitation. In line with the 
necessity of refined techniques, the objective of the present thesis is to develop and 
validate, in a displacement-based finite element framework, a nonlinear model apt 
for the study of masonry and concrete structures under monotonic and cyclic 
loading.  

The proposed constitutive law adopts two independent scalar damage variables, 
d+ and d−, in combination with the spectral decomposition of the elastic strain 
tensor, to simulate the pronounced dissimilar response under tension and 
compression, typical of these materials. The assumption of energy-equivalence 
between the damaged solid and the effective (undamaged) one is considered for 
representing the orthotropy induced in the material by the degradation process, with 
the consequence that a thermodynamically consistent constitutive operator, positive 
definite, symmetric and strain-driven, is derived.  

The formulation is integrated with a multidirectional damage procedure, 
addressed to extend the microcrack closure-reopening (MCR) capabilities to 
generic cyclic conditions, especially shear cyclic conditions, making the model 
suitable for dealing with seismic actions. Maintaining unaltered the dependence of 
the constitutive law from d+ and d−, this approach activates or deactivates a tensile 
(compressive) damage value on the base of the current maximum (minimum) 
principal strain direction. In correspondence with damage activation (crack 
opening) or deactivation (crack closure), a smooth transition is introduced, in order 
to avoid abrupt changes in stiffness and enhance the numerical performance and 
robustness of the multidirectional procedure.  

Moreover, the mesh-objectivity of the numerical solutions is ensured by 
resorting to a nonlocal regularization technique, based on the adoption of damage 
variables driven by an averaged elastic strain tensor. To perform the averaging of 
the strain tensor, an internal length lRG is considered in the continuum. The strategy 
chosen to define the parameters affecting the softening behaviour consists in the 



  

 
modification of the local softening law on the base of the internal length, with the 
intent of ensuring the proper evaluation of the correct fracture energy Gf.  

The adequacy of the proposed constitutive model in reproducing experimental 
results is proven for both monotonic and cyclic loading conditions. Under 
monotonic loads, unreinforced concrete notched elements subjected to pure tension, 
pure bending and mixed-mode bending are studied. The two examples of 
application involving cyclic loads, a masonry and a reinforced concrete wall under 
in-plane cyclic shear, constitute a validation of the multidirectional damage 
approach, showing how the suitable representation of unilateral effects and 
permanent deformations is essential to model the observed structural response in 
terms of maximum resistance and dissipation capacity.  

The effectiveness of the regularized damage formulation is proven by 
successfully studying a masonry arch and reinforced and unreinforced concrete 
elements. Besides the validation of the numerical results with experimental or 
analytical data, each application is exploited to highlight one or more features of 
the formulation: the mesh-size and mesh-bias independence of the results, the effect 
of the choice of the variable to be averaged, the possibility to reproduce structural 
size effects, the influence of the internal length lRG. On this latter aspect, the almost 
null dependence of the regularized solutions on the internal length in terms of force-
displacement curves, achieved thanks to the calibration strategy adopted to define 
the energy dissipation, suggests the interpretation of the internal length as a 
regularization parameter. On the one hand, this implies an analogy between the role 
played by the nonlocal internal length in a nonlocal model and the one’s of the mesh 

size in the crack band approach (Bažant and Oh, 1983). On the other hand, this 
translates in the versatility of the regularized damage model, which requires only 
the identification of the standard material properties (elastic constants, fracture 
energies and strengths). 

Finally, the d+/d− damage model is successfully applied to the study of a three-
span masonry arch bridge subjected to a concentrated vertical load, in order to 
evaluate its carrying capacity and its failure mechanism. Numerical issues, usually 
neglected in large-scale applications, are also addressed proving the reliability of 
the regularized approach to provide mesh-independent results and its applicability. 
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Chapter 1 

Introduction 

1.1 Motivation 
The engineering modelling of traditional building materials, such as masonry and 
concrete, and its implementation in computer-based structural analysis tools, has 
undergone a raised interest in the last decades. The necessity of an accurate 
structural analysis for the assessment and conservation of the built heritage is 
nowadays present, as it was in the past. By means of it, the determination of the 
structural safety as well as the design of the intervention measures is possible with 
respect to a variety of actions (gravity, soil settlements, earthquakes and also actions 
of anthropogenic nature such as architectural modifications or effects related to the 
construction stages). 

Such a need becomes stronger over time because the built heritage suffers an 
ageing process whose consequences on the structural state are not completely 
understood. On the one hand, the built heritage is composed of masonry structures, 
the majority of which were erected centuries ago and can be classified as historical 
constructions. If their longevity reassures, their vulnerability against seismic 
actions can not be neglected. In addition, these structures are nowadays subjected 
to service loads which are usually heavier than the ones foreseen in the original 
design. In this respect, the most significant example is represented by the masonry 
arch bridges, which constitute a relevant part of the current Italian and European 
railway and road infrastructures.  
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On the other hand, there are reinforced concrete structures, whose advent in the 

construction sector dates back to the beginning of the twentieth century and whose 
great expansion in Italy, both in the residential buildings and in the infrastructures, 
is associated to the sixties. These structures can be considered only relatively recent 
and their durability over time is somehow uncertain.  

Considering the Italian case, the age of the built heritage can be quantified 
taking into account a survey performed in 2001 on masonry and reinforced concrete 
residential buildings by the National Institute of Statistics (ISTAT). On a total of 
11 226 595 buildings, it resulted that more than 60% were erected before the 1971 
(Pasca, 2012). These data suggest another important reflection, which is the meager 
adequacy of the Italian built heritage in terms of the modern anti-seismic 
requirements. The last time this fact was dramatically evidenced is very recent and 
refers to the seismic sequence which hit the centre of Italy in 2016, causing almost 
300 deaths, the destruction of several villages and the ruin of a vast cultural heritage.  

 
Figure 1.1: Effects of the earthquake in the centre of Italy in 2016: (a) Pescara del 

Tronto completely destroyed; (b) shear cracks in a masonry building at Amatrice; (c) plastic 
hinge and overturning of a masonry wall in a reinforced concrete building at Pescara del 
Tronto. (b) and (c) are images from (Celano et al., 2016). 
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Some images, attesting the severity of this event, are plotted in Figure 1.1. 

Together with the wider picture of a village totally leveled by the earthquake, some 
details on the typical damages induced by earthquakes on masonry and reinforced 
concrete structures are also provided. 

On the basis of these considerations, reliable analysis techniques are 
indispensable in the hands of structural engineers to predict the behaviour of a 
construction and hold the potentialities of saving human lifes and economic 
resources. Therefore, the development of methods able to suitably simulate the 
response of masonry and concrete elements represents nowadays a stimulating and 
open challenge in the structural engineering field.  

Firstly, the difficulties related to such a task derive from the constitutive 
behaviour of these materials, which is far from the one of an isotropic linear elastic 
homogeneous material. Indeed, masonry is a composite material that consists of 
units (bricks, ashlars, blocks, stones) and joints (mortar, clay, bitumen, glue), whose 
mechanical properties and geometrical rearrangement can be very different. Hence, 
it is characterized by marked anisotropy and inhomogeneity. Concrete, as well, is 
composed of different constituents (cement, water and aggregates), although the 
directionality of the mechanical performance and the lack of homogeneity are much 
less accentuated. Moreover, some distinctive aspects that can be identified both in 
the different masonry tipologies and in the concrete are the pronounced asymmetry 
between tension and compression and the occurrence of cracking even for low 
stress levels, due to the scarse tensile strength. In terms of fracture behaviour, 
concrete and masonry can be both classified as quasi-brittle materials, i.e. materials 
characterized by a stress reduction after the attainment of the maximum strength 
(softening). Differently from a pure brittle response, a quasi-brittle material shows 
a measurable deformation prior to failure, which is not associated to a dislocation 
motion, as in plasticity, but is related to the nucleation and stable growth of defects. 
In terms of failure criterion, both concrete and masonry can be defined as frictional-
cohesive materials. 

Secondly, a further complication derives from the need of modelling the above 
described complex constitutive behaviour with reference to real-scale structures. 
The advances perfomed in the last decades in the use of computer methods for the 
prediction of mechanical phenomena encourage to replace simplified structural 
analysis techniques with more refined tools. Despite the great variety of proposed 
approaches, the numerical structural analysis of masonry and concrete structures 
still represents an active research field, since in the engineering practice the use of 
simplified techniques is usually preferred. The simplification can regard the 
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material behaviour, for instance with the recourse to linear elastic analysis, or the 
schematization of the resisting structure, which can be intended as the composition 
of linear (beam) members. It is worth noting that these simplifications are drastic 
especially for masonry structures but can be misleading even for reinforced 
concrete structures, when the study regards, for instance, slabs loaded in their own 
plane, deep beams or, alternatively, massive concrete structures, without 
reinforcement, as gravity dams and retaining walls.  

In line with the necessity of refined structural analysis techniques, the objective 
of the present thesis is to develop and validate, in a displacement-based finite 
element framework, a continuum nonlinear model apt for the study of masonry and 
concrete structures under monotonic and cyclic loading. Specifically, the interest 
for the cyclic material behaviour is addressed in order to make the proposed 
constitutive model suitable for seismic analysis.  

1.2 State of the art 
Among the several approaches proposed for the structural analysis of masonry and 
concrete structures, it is possible to cite finite element or discrete element methods 
and limit analysis (Roca et al., 2010).  

A complete review of each one of these techniques is far beyond the scope of 
the present section, which is, instead, more specifically addressed to provide an 
overview of the existing formulations to model quasi-brittle materials in the finite 
element method (FEM).  

For what regards the modelling of masonry structures according to FEM based 
approaches, a distinction between micro- and macro-modelling can be recalled: the 
former considers separately units, joints and mortar/unit interfaces while the latter 
regards masonry as a fictitious homogeneous continuum. On the one hand, due to 
the huge computational effort required and the huge number of necessary 
consitutive parameters, micro-modelling approaches are adopted for the study of 
small elements or structural details, when the stress distribution in the different 
masonry components is of interest (Rots, 1991; Lotfi and Shing, 1994; Gambarotta 
and Lagomarsino, 1997; Lourenço and Rots, 1997). On the other hand, for real-
scale structures, the main target of the present thesis, macro-modelling appears the 
most suitable choice since it implies advantages related to calculation demand and 
meshing procedure, while ensuring acceptable accuracy (Addessi et al., 2014).  

In the framework of macro-modelling, some proposals taking into account the 
orthotropy of the material in the initial state exist, both in the framework of damage 
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mechanics (Papa, 1996; Berto et al. 2002; Pelà et al., 2011; Pelà et al., 2013) and 
plasticity (Lourenço et al., 1998). However, the majority of them renounce to 
describe the intrinsic anisotropy of masonry in favour of an isotropic formulation 
(Clemente et al., 2006; Mallardo et al., 2008; Pelà et al., 2009; Roca et al., 2012; 
Toti et al., 2015; Saloustros et al., 2017c).  

In the follow up, masonry is represented by means of a macro-modelling 
approach, in order to make the application of the proposed model versatile and apt 
for the analysis of brick and stone masonry and also concrete and cementitious 
materials in general. Therefore, masonry and concrete indistinctly are considered 
as quasi-brittle materials and are studied under the simplyfing assumptions of initial 
isotropy and homogeneity.  

As mentioned earlier, quasi-brittle materials exhibit a strongly nonlinear 
behaviour even for low stress levels, because of tensile cracking. The main 
modelling strategies to deal with cracking proposed in the past decades by the 
computational solid mechanics’ community can be classified into two main groups, 

discontinuous and continuous approaches. For an exhaustive discussion about this 
very broad topic, the dissertation presented in (Hofstetter and Meschke, 2011) is 
recommended.  

At a continuum level, this distinction is explained by means of Figure 1.2. A 
crack can be considered as a discontinuity of the displacement field; specifically, 
the displacement jump w is the crack opening normal to the fracture line S (2D 
problems) or the fracture surface (3D problems). The strains associated to this 
displacement field are unbounded and represented by a Dirac’s delta function, as 
shown in Figure 1.2.a. The stress tensor can be computed by means of a softening 
stress σ - separation w law. This approach can be defined with the name of 
continuum strong discontinuity. Alternatively, it is possible to smear the jump w on 
a localization band h, in order to have a continuous displacement field and a 
bounded strain field, resulting from the gradient of the regularized displacement. 
The strain field presents two weak discontinuity at the surfaces S− and S+, which 
delimit the localization band. The stress tensor can be computed by means of a 
softening stress σ – strain ε law. This procedure, displayed in Figure 1.2.b, can be 
referred to as continuum weak discontinuities. 

At a discrete level, i.e. in a finite-element framework, the explicit representation 
of separation proper of the continuum strong discontinuity (Figure 1.2.a) is 
interpreted in several different procedures named discrete strong discontinuity 
approaches.  
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Figure 1.2: Crack modelling at a continuum level: (a) continuum strong discontinuity 

and (b) continuum localization band and weak discontinuities.  

All these procedures are characterized by the necessity of a method to take into 
account the kinematics of the cracks and some criteria to establish the length and 
the direction of the propagated defect, usually based on fracture mechanics.  

Among the first discrete strong discontinuity approaches, it is worth mentioning 
the interelement separation methods, which model cracks by separating mesh nodes 
initially occupying the same position (Ngo and Scordelis, 1967; Nilson, 1968; 
Camacho and Ortiz, 1996; Pandolfi et al., 1999). Such strategies can describe 
defects only along the boundaries of the finite elements; hence they are intrinsically 
mesh-dependent. To reduce the mesh-objectivity issue, remeshing is proposed with 
the aim of including new elements with the boundaries along the progressive crack 
directions. The increase in the objectivity of the results is however accompanied by 
a non-negligible increase in the complexity and the computational effort, required 
by the remeshing procedure.  

A progress with respect to the interelement-separation methods is represented 
by the embedded finite element methods (EFEM), which allow dealing with strong 
discontinuities within the finite elements, withouth the necessity of remeshing. To 
do this, the displacement field of the standard displacement-based finite element 
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method is enhanced with a discontinuous displacement function in correspondence 
with the crack and the additional enriching variables are condensed at the element 
level. In such a form, the method was presented for the first time in (Dvorkin et al., 
1990) but precursor works of this approach can be considered also the ones by Ortiz 
and Belytschko (Ortiz et al., 1987; Belytschko et al., 1988). Several formulations 
exploiting the embedded finite element methods have been proposed (Oliver et al., 
1999; Jirásek, 2001), for studying concrete (Sancho et al., 2007) and also masonry 
(Reyes et al., 2009).  

A more recent numerical method which includes the strong discontinuity within 
the finite element is the extended finite element method (XFEM), proposed in 1999 
by Belytschko and co-workers (Belytschko and Black, 1999; Möes et al., 1999; 
Sukumar et al., 2000). This approach allows for crack propagation withouth 
remeshing, by tracking the crack progression through the discretization, and 
simultaneously enriching the nodal degrees of freedom with new ones, which 
represent either the displacement jumps across the crack or the singular stress field 
at the crack tip. The method implies the partition of unity concept and the additional 
nodal unknowns in the elements cut by the crack are not condensed at the element 
level but solved through the global stiffness matrix. Differently from the EFEM, 
the XFEM ensures the crack path continuity, which can be represented either 
explicitely, with piecewise straight/planar segments or, in a more elegant way, by 
means of level sets. However, crucial features of this method regard the integration 
schemes to be adopted in the enriched elements (Ventura, 2006; Gracie et al., 2008; 
Ventura and Benvenuti, 2015) and the treatment of the so-called blending elements, 
i.e. those elements adjacent to the enriched ones (Chessa, 2003; Fries, 2008). The 
accuracy of the results and the robustness of the procedure depend drastically on 
these aspects. 

The computational strategies just described represent the most popular 
techniques to deal with strong discontinuitites in a finite element environment, but 
they are not the only ones. For more details about the procedures just mentioned 
and for other approaches, as meshless and particle methods, the following reviews 
are suggested (Dias-da-Costa, 2010; Rabczuk, 2013; Belytschko et al., 2009). 
These discontinuous approaches for modelling cracking in quasi-brittle materials 
are characterized by a high degree of complexity and a high number of variables, 
which make them not computationally efficient and not practical for large-scale 
analyses. In addition, almost all of them require the adoption of local or global crack 
tracking schemes (Areias and Belytschko, 2005; Riccardi et al., 2017; Zhang et al., 
2015), in order to describe the advance of the defects avoiding spurious mesh 
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dependence. Withouth tracking, the remeshing in the interface-separation elements, 
as well as the progressive element enriching in EFEM and XFEM, performed on 
the base of not sufficiently accurate information provided by standard displacement 
based formulations, would be strongly mesh dependence. This adds complexity to 
the finite element method implementation and requires further computational 
resources.  

The discrete counterpart of the continuum weak discontinuities (Figure 1.2.b) 
is represented by continuous approaches for modelling cracking, which can be 
named, according to the previous notation, as discrete weak discontinuities 
procedures or, as more commonly known, smeared crack approaches. Such a 
formulation was first proposed in the late sixties by Rashid (Rashid, 1968) and, 
thanks to its intrinsic simplicity of implementation, computational efficiency, 
possibility to be adopted in combination with other phenomena (viscosity, thermal 
problems, plasticity) has become the one favoured by commercial finite element 
codes and practitioners, especially for studying large-scale engineering problems. 
Indeed, the smeared crack approaches consider the cracked material as a continuum 
and model the deterioration at a constitutive level, reducing the stiffness and the 
strength. Consequently, the failure zones are not characterized by a jump in the 
displacement field but by the localization of the deformations, which remain 
however bounded. Several advantages derive from such a representation of 
cracking: the material behaviour can be described in terms of stress-strain 
constitutive laws, the failure criteria which identify the formation and the 
propagation of the defects can be established in terms of stress and strains, i.e. on 
the base of the continuum mechanics theory and the discretization can be used as it 
is, withouth the inclusion of discontinuity or remeshing. 

In the framework of smeared crack approaches, a lot of constitutive models 
were developed in the 1980’s (Bažant and Cedolin, 1983; Rots et al., 1985; Bažant 
and Pfeiffer, 1986; Rots and De Borst, 1987; Cervera et al., 1990). They are based 
on the decomposition of the strain tensor in an elastic and inelastic contribution: 
while the former is related to the stress tensor by means of linear elasticity, the latter 
is defined as work-conjugate to the traction vector normal to the crack. After the 
achievement of the peak strength, the material is treated as orthotropic, with 
different behaviours along the different principal stress directions.  

Initially, fixed crack models were formulated, characterized by a frozen crack 
direction and by the use of a coefficient, named the retention factor, to deal with the 
shear transfers across the crack (Suidan and Schnobrich, 1973). Then, rotating 
crack models were proposed, which allow the crack direction to rotate and to be 
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always aligned with the current maximum principal strain direction (Cope et al., 
1980; Gupta and Akbar, 1984). Moreover, also the possibility of considering 
multiple non-orthogonal fixed cracks was taken into account in the so-called 
multidirectional fixed crack models (De Borst and Nauta, 1985).  

One of the main drawbacks exhibited by the smeared crack approaches is 
represented by the stress locking, which is basically due to the poor kinematic 
representation of the discontinuous displacement field across the crack and is 
particularly evident when the mesh is misaligned with respect to the macroscopic 
crack orientation. Such an issue is more emphasized in fixed crack models with non 
null retention factor, because of the presence of shear stresses across the crack 
(Rots, 1988). Conversely, in rotating crack models, shear stresses are not produced 
across the crack, which is aligned with the maximum principal strain direction; 
therefore, such a problem is more limited. A remedy provided to the problem of 
stress locking is for instance described in (Jirásek and Zimmermann, 1998) and 
consists in the transition from a rotating crack model to a damage one. Although 
the damage model is based on a single scalar degradation variable d, the resulting 
constitutive matrix is not the one of an isotropic material but preserves the 
orthotropy of the smeared crack approach initially adopted.  

In view of the above considerations, damage and plasticity models, 
incorporating strain softening, can be interpreted as a necessary evolution with 
respect to smeared crack procedures, in order to reduce stress locking. An insight 
on continuum damage mechanics and on the existing damage formulations, 
combined also with plasticity, is provided in Section 1.2.1. Such a deepening is 
necessary to understand the framework in which the damage model proposed in the 
present thesis for concrete and masonry structures fits in. 

Another serious drawback of smeared crack approaches, emerged immediately 
after the first applications, is their pathological dependence on the size of the 
elements composing the discretization and on their alignement.  

For what regards the objectivity of the results with respect to the mesh-size, in 
the 1970’s it was noted that the energy dissipated during the cracking process is 
inversely proportional to the size of the finite elements: higher is the mesh 
refinement, lower is the dissipated energy, more brittle is the behaviour of the 
material. The limit case is represented by infinitesimally small elements, which do 
not dissipate energy at all as they crack. 

Hillerborg and co-workers for the first time faced this problem in 1976, in a 
discrete strong discontinuity framework, formulating the fictitious crack model, 
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which ensures an objective representation of the dissipated energy by relating the 
loss of cohesion in the crack opening to the experimentally measurable fracture 
energy Gf (Hillerborg et al., 1976). Then, the same concept was introduced in a 
smeared crack approach by Bažant and Oh (Bažant and Oh, 1983), who understood 

that, by rescaling the post-localization part of the local softening law on the base of 
the discretization length h (related to the size and orientation of the finite elements), 
the correct fracture energy Gf  can be caught, independently of the mesh refinement. 
Hence, according to this formulation, named crack band model, the strain softening 
in a discrete environment should not be considered as a material feature only, 
because it has to be defined by means of the fracture energy, which is a material 
property, and the size of one-element band crossed by the smeared crack. Nowadays 
such an approach is well accepted in the research community and is also adopted in 
the commercial finite element softwares.  

However, a still open issue regards the objectivity of the results with respect to 
the mesh-bias. Indeed, the crack band model is not able to prevent the dependence 
of the numerical failure pattern on the alignement of the discretization. A short 
review of the possible solutions for such a problem is provided in Section 1.2.2 and 
1.2.3, which is functional to contextualize the proposed regularitazion technique 
adopted in the present thesis in conjunction with the continuum damage model. 

1.2.1 Damage models for quasi-brittle materials 
Continuum damage models, as smeared crack approaches, are characterized by 
their simplicity of implementation, versatility, computational efficiency, 
compatibilities with other theories (such as plasticity) and consistency in the 
framework of the thermodynamics of irreversible processes. All these features 
make their application to the structural analysis of masonry and concrete structures 
particularly adequate.  

Continuum damage mechanics is based on the introduction of suitable internal 
variables in the constitutive law with the aim of simulating the elastic stiffness 
degradation and the strength decrease associated with the growth of microvoids and 
microcracks in the material. Starting from the precursor work of Kachanov 
(Kachanov, 1958), the study of the structural response of the nominal, real, cracked 
solid (nominal configuration) is possible by taking into account the behaviour of a 
fictitious one (effective configuration), which represents the intact material between 
defects. Such an undamaged solid has an effective resisting section reduced by the 
factor (1 − d) with respect to the section of the real solid, with the damage variable 
d varying from 0 (undamaged state) to 1 (completely damaged state). Different 
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hypotheses exist to relate the nominal and the effective configurations and, 
depending on them, the form of the constitutive operator ruling the damage model 
changes. Simó and Ju, Mazars and Lemaitre, Caboche, Wu and Li, Faria and 
coworkers (Simó and Ju, 1987; Mazars and Lemaitre, 1985; Caboche, 1988a; 
Caboche, 1988b; Faria et al., 1998; Wu and Li, 2008) assume the strain equivalence 
between the effective and the nominal configurations; in (Simó and Ju, 1987) a 
stress-equivalent alternative is proposed. Finally, in (Cordebois and Sidoroff, 1982; 
Carol et al., 2001), both the strain and the stress tensors are different between the 
nominal and the effective configurations and the equivalence is established in terms 
of strain energy.  

The essential mechanical features which need to be captured in the modelling 
of quasi-brittle materials are the following: 

(i) degradation of the elastic stiffness and softening response in the post-peak 
regime, with reduction of the peak strength for increasing deformation levels; 

(ii) accumulation of permanent deformations associated to intergranular 
displacement at a microscopic level; 

(iii) non-symmetrical material behaviour between tension and compression due to 
different strengths and different fracture energies; 

(iv) anisotropy induced in the material by the damage process, due to nucleation and 
evolution of planar microvoids “in the planar direction perpendicular to the 

maximum tensile strain” (Krajcinovic and Fonseka, 1981). Hence, except for 
the case of hydrostatic stress or strain conditions, isotropic models are 
incomplete in the description of damage, which is intrinsically an anisotropic 
phenomenon (Wu and Li, 2008), and drastically neglects the possibility of a 
strut action in the assessment of the structural capacity (De Borst, 2002). In (De 
Borst, 2002) it is noticed that, only with the recourse to orthotropic damage 
models, the original smeared crack approaches can be considered in the unified 
context of damage mechanics; 

(v) microcrack closure-reopening (MCR) effects, i.e. partial or total stiffness 
recovery in the transition from tension to compression, crucial in cyclic 
conditions, experimentally documented for concrete in (Reinhardt, 1984; 
Reinhardt and Cornelissen, 1984). 

Property (i) is satisfied by any damage model, because stiffness degradation 
and strain-softening represent the basis of damage mechanics.  

Regarding the fulfillment of property (ii), several formulations combine 
damage with plasticity, as the ones proposed in (Simó and Ju, 1987; Lubliner et al., 
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1989; Ju, 1989; Wu et al., 2006; Addessi et al., 2002; Contraffatto and Cuomo, 
2006; Voyiadjis et al., 2008).  

However, also damage models which do not take into account permanent 
deformations, or which define them in a simplified way, are able to provide a 
reliable mechanical response for a great variety of loading conditions, as observed 
in (Comi and Perego, 2001a), requiring also a reduced number of constitutive 
parameters. Among the others, some relevant contributions to the field of pure 
damage mechanics are presented in (Ortiz, 1985; Mazars and Pijaudier-Cabot, 
1989; Faria et al., 1998; Comi and Perego, 2001a; Papa and Taliercio, 1996; He et 
al., 2015). 

A general methodology to deal with property (iii) consists in considering 
different damage variables in tension and compression and in adopting an interface 
for distinguishing the response into tensile and compressive regimes.  

Several authors have chosen as separating interface the trace of the strain tensor 
I1(ε) and their proposal results in tensile (d+) and compressive (d−) isotropic damage 
models, depending on the positive or negative sign of I1(ε) (Comi and Perego, 
2001a; Contraffatto and Cuomo, 2006; Toti et al., 2015; He et al., 2015). These 
procedures take inspiration from the work presented in (Curnier et al., 1995), 
addressed to the formulation of constitutive elastic laws for bimodular materials, 
i.e. materials, as the cracked concrete or masonry, which have an asymmetric 
stiffness if loaded in tension or compression. In that work, the conditions to be 
fulfilled in correspondence with the separating interface (chosen as I1(ε) = 0) are 
established; they regard the continuity of both the strain energy and the constitutive 
law. Specifically, it is observed that, to satisfy these conditions, only the volumetric 
part of the stiffness constitutive operator can vary across the interface while the 
shear component has to be maintained constant.  

These necessary conditions are ensured by the damage models proposed by 
Comi and Perego, by Contraffatto and Cuomo and by He and collegues, while they 
seem to be neglected by Toti and co-workers. This is shown considering, on the one 
hand, the constitutive law proposed in (Comi and Perego, 2001a)  
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and, on the other hand, the constitutive law proposed in (Toti et al., 2015): 
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where G and K are the shear and bulk moduli of the undamaged material, e is the 
deviatoric elastic strain, I is the identity second order tensor and, withouth any loss 
of generality, irreversible deformations are considered null. While in the 
constitutive law expressed in Eq. (1.1), for I1(ε) = 0, σ− and σ+ always coincide, the 
same does not hold in Eq.(1.2) for any stress-strain state, but only in the case of 
ε = 0.  

However, it is worth noting that the respect of the conditions set in (Curnier et 
al., 1995) induce some non-negligible limitations in the modelling of the 
microcrack closure-reopening capabilities; indeed, in the transition from tension to 
compression in a uniaxial cyclic load history, only a partial stiffness recovery can 
be obtained, because of the necessity of maintaining unaltered the shear part of the 
constitutive operator. Moreover, this implies also that unilateral effects in shear 
cyclic conditions can not be modelled at all. Being the latter consideration true for 
all the d+/d− damage formulations based on the use of I1(ε) = 0 as separating 
interface, it is possible to conclude that such a procedure is not adequate to model 
quasi-brittle materials accurately. Firstly, any form of damage-induced anisotropy 
can not be simulated (feature iv); secondly, microcrack closure reopening effects in 
generic cyclic conditions, especially in shear, are absent (feature v). 

Conversely, as pointed out by Wu and Xu (Wu and Xu, 2013), those 
formulations based on the spectral decomposition of a specific second order tensor 
(the stress or the strain one) are able to reproduce contemporarily damage-induced 
anisotropy (feature iv) and unilateral effects (feature v). The separating interface, 
in such models, is actually represented by the eigenvalues of the second order 
tensor. This approach, used for the first time in the pioneering work of Ortiz (Ortiz, 
1985), introduces in the constitutive law two fourth-order projection operators, 
which extract the positive and negative tensor counterparts. A classification of these 
damage formulations can be performed depending on the nature of the damage 
variables used in conjunction with the spectral decomposition: one or more scalar 
damage variables are adopted in (Cervera et al., 1995; Cervera et al., 1996; Faria et 
al., 1998; Mazars et al., 1990; Wu et al., 2006) whereas models based on second- 
or fourth-order tensors are presented in (Ortiz, 1985; Simo and Ju, 1987; Ju, 1989; 
Yazdani and Schreyer, 1990; Carol and Willam, 1996; Papa and Taliercio, 1996; 
Cicekli et al., 2007; Voyiadjis et al., 2008).  
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The use of the second set of damage models is avoided in practical applications, 

because they need the monitoring of more variables, due to the anisotropy of 
damage itself, requiring a high number of input parameters and significant 
computational resources. Consequently, the first set of damage models are usually 
preferred in large-scale analysis. However, some limitations derive from the 
adoption of scalar damage variables combined with the spectral decomposition 
approach and they are highlighted in the following paragraph. 

Regarding the topic of damage-induced anisotropy, a restricted form of 
orthotropy is described using scalar degradation quantities, since only the projection 
operators performing the spectral decomposition are responsible for the 
directionality of the stiffness reduction. Moreover, it is worth noting that the 
orthotropic constitutive operators proposed in (Cervera et al., 1995; Cervera et al., 
1996; Faria et al., 1998; Wu et al., 2006) are not endowed with both major and 
minor symmetries, and this represents a lack of thermodynamic consistency as well 
as a shortcoming in computational terms. Very recently, such an issue has been 
addressed also in (Wu and Cervera, 2017); there, to achieve the major and minor 
symmetries of the constitutive operator, a new projection fourth-order tensor, 
defined in energy-norm, is proposed. 

Regarding the description of MCR effects, the spectral decomposition approach 
combined with the adoption of scalar damage variables is effective only in specific 
cyclic conditions, characterized by alternating tensile and compressive regimes. 
This can be shown with reference to the illustrative case of a bar cyclically loaded 
first in tension and then in compression (Figure 1.3.a). The unilateral effects, visible 
in the stress-strain response in Figure 1.3.d, are modelled thanks to the spectral 
decomposition which allows one to consider the axial stiffness first affected by d+ 
in tension and then unaffected in compression, upon loading reversal.  

Although the unilateral behaviour is adequately taken into account in a 1D 
tension-compression cyclic history or in bending-dominated cyclic problems (as 
shown in (Faria et al., 2004)), the stiffness recovery in presence of cyclic shear can 
not be captured. This is not due to the necessity of maintaining unaltered the shear 
stiffness component across the separating interface, condition which holds only for 
the isotropic damage formulations based on the use of I1(ε) = 0. The motivation is 
different and is explained by considering the problem shown in Figure 1.4.a, 
involving shear cyclic conditions. During the loading stage (Figure 1.4.b), the 
internal variable d+, related to the opening of microcracks perpendicularly to the 
current maximum tensile direction pmax, grows up to the value dI

+. After the loading 
reversal, at the beginning of the reloading stage (Figure 1.4.c), the value dI

+ is 
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assigned once again to the current pmax, which is actually an intact direction, and, 
consequently, no stiffness recovery is exhibited in the structural response (Figure 
1.4.d).  

 
Figure 1.3: Successful modelling of unilateral effects in a 1D cyclic history resulting 

from the adoption of scalar damage models combined with spectral decomposition. 

 
Figure 1.4: Unsuccessful modelling of unilateral effects in presence of cyclic shear 

resulting from the adoption of scalar damage models combined with spectral 
decomposition. 

In other words, due to the scalar nature of the damage variables, the formulation 
is not able to associate a damage value to a physical direction and this translates in 
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the incapability of dealing with closure and reopening of orthogonal (or however 
intersecting) cracks, typical of shear cyclic conditions.  

The majority of the existing models tend to neglect the problem of reproducing 
MCR effects in generic cyclic conditions, focusing only on the stiffness recovery 
capabilities exhibited by the damage models in cyclic uniaxial conditions. Among 
the few works aware of such an issue, it is worth mentioning the ones presented in 
(Silva et al., 2012; Saloustros et al., 2017a). In the former, the underestimation of 
the dissipation capacity and the non-realistic description of the unloading stiffness 
deriving from the use of a d+/d− damage model are underlined with reference to 
masonry panels under cyclic in-plane shear. In the latter, a procedure to capture the 
orthogonal cracks typical of cyclic shear loading by means of enhanced tracking 
algorithms is proposed. 

1.2.2 Regularized techniques to ensure mesh objectivity  
In a displacement-based finite element framework, the use of regularization 
techniques in the modelling of quasi-brittle materials with a smeared crack 
approach has been proposed to ensure the mesh-objectivity of the results. 
Specifically, as mentioned in Section 1.2, the crack band approach is able to 
guarantee only mesh-size independence but not mesh-bias independence, hence 
alternative (or additional) techniques have been proposed in the last three decades 
to solve such an issue.  

One of the first developed regularization scheme is represented by the nonlocal 
integral procedure, proposed in its initial version for damage formulations in 
(Pijaudier-Cabot and Bažant, 1987) and later assimilated also in (Bažant and Lin, 

1988; Bažant and Pijaudier-Cabot, 1988). Only subsequently, the nonlocal 
procedure has been extended to plasticity, for instance in (Tveergard and 
Needleman, 1995; Jirásek and Rolshoven, 2003).  

Such an approach consists in replacing inside the mechanical model a variable 
evaluated at a given point x with its spatial averaging on a certain neighbourhood 
of x, considering the size of the interaction domain defined by means of an internal 
length lRG. The variables subjected to the nonlocal averaging can be either scalars, 
such as the damage energy release rates or the damage variables themselves, or, less 
frequently, tensors, such as the elastic strain tensor or the inelastic strain associated 
to cracking. An exhaustive review of nonlocal damage models is proposed in 
(Bažant and Jirásek, 2002).  
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Contemporarily to the nonlocal integral approach, another procedure, named 

gradient-enhanced approach, was identified in the eighties to perform a 
regularization of the strain localization, first applied in plasticity (Aifantis, 1984; 
De Borst and Muhlhaus, 1992) and then extended to damage (Peerlings et al., 1996; 
Geers et al., 1998; Comi, 1999). These gradient-enhanced formulations are based 
on the idea of considering the constitutive law affected by higher-order deformation 
gradients, which can enter the equilibrium equations explicitely (explicit gradient 
enhanced models) or in an implicit way, by means of an additional partial 
differential equation (implicit gradient enhanced models). 

More recently, phase field models have been introduced (Miehe et al., 2010; 
Kuhn and Müller, 2010; Vignollet et al., 2014); they depart from a strong 
discontinuity description of fracture and regularize it by replacing, in a 
mathematically consistent way, the zero-width discontinuity with a small finite 
zone with sharp gradients.  

In all these approaches (nonlocal, gradient-enhanced, phase field formulations) 
a length scale is embedded in the continuum, in order to act as “strain localization 

limiter” and to avoid an energy dissipation which tends to zero with the progressive 
mesh refinement. Besides the correct representation of the dissipated energy, this 
implies also the objectivity of the results independently of the mesh-alignement. It 
is worth noting that the nonlocal integral approach appears the simplest way to 
introduce the localization limiter concept. The other two regularized formulations 
introduce the length scale in a less transparent way and they have in common the 
solution of an additional partial differential equation due to the inclusion of spatial 
derivatives in the energy functional (De Borst and Verhoosel, 2016). The higher 
mathematical complexity of these formulations with respect to the nonlocal integral 
ones does not correspond to clear advantages. On the one hand, as observed in 
(Peerlings et al., 2001), the solutions obtained with implicit gradient-enhanced 
schemes and nonlocal ones are almost equivalent and this can be explained by the 
fact that the former formulation can be rewritten in the integral format proper of the 
latter. On the other hand, the use of a phase-field approach is difficult in the case of 
generic constitutive laws, characterized by anisotropy, microcrack closure-
reopening effects and distinct degradation variables in tension and compression. 

A clear interpretation of the internal length introduced by all these 
regularization techniques is not provided by consulting the existing literature. As 
stressed in (Bažant and Jirásek, 2002), the majority of the formulations relates it to 
the heterogeneity maximum size of the material. However, such a physical 
interpretation of the nonlocal length can be argued.  
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Firstly, this interpretation could compromise the monitoring of the progressive 

loss of cohesion on the bases of the fracture energy. The use of fracture energy as a 
material parameter represents one of the foundation of crack modelling (Hillerborg 
et al., 1976; Bažant and Oh, 1983) and is a standpoint shared by both fracture 
mechanics and continuum mechanics. Secondly, it could limit the application of the 
regularized damage models to other materials than concrete. Indeed, if for concrete 
a large number of studies have been performed, for instance in (Bažant and 
Pijaudier-Cabot, 1989), and a value of approximately 3 times the aggregate size has 
been found to be the characteristic one for the internal length, for other materials, 
as masonry, likewise data are not available. Moreover, cracking in homogeneous 
materials can not be studied in this way, due to the impossibility of finding a 
physical definition of the internal length.  

Only very recently, the consideration of the nonlocal length as a pure 
regularization parameter has been proposed in (Wu, 2017). According to this 
reinterpretation, the different formulations (nonlocal, enhanced gradients, phase 
fields models) can be seen as regularized versions of the smeared approach, in 
which the internal length plays the role of localization limiter acting as a 
regularization parameter. This is sketched in Figure 1.5, where the strong 
discontinuity of Figure 1.2.a or the localization band of Figure 1.2.b are substituted 
by a regularized localization band.  

 
Figure 1.5: Continuum regularized localization band and localization limiter. 
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Note that the regularization procedure eliminates both the strong discontinuity 

of the displacement field in S and the two weak discontinuities of the strain field in 
S− and S+. Note also that the regularization length lRG is not equal to the width of 
the localization band, as there is not a clear cut band in the regularized approach, 
but they are related. The link between the discontinuous (Figure 1.2.a), the smeared 
(Figure 1.2.b) and the regularized (Figure 1.5) approaches should be the dissipation 
of the fracture energy. 

1.2.3 Alternatives to ensure mesh objectivity  
An alternative to these regularization techniques consists in the use of tracking 

algorithms. These procedures are able to circumvent the problem of mesh-bias 
dependence of the numerical strain localizations not only in a strong discontinuity 
approach, but also in a weak discontinuities (smeared) one (Cervera and Chiumenti, 
2006; Slobbe et al., 2014). Indeed, in a smeared setting, the automatic application 
of the crack criteria to define also the direction of propagation leads to unacceptable 
errors, due to the fact that the strain and stress fields, in correspondence with the 
discontinuity, are far from being exact in a displacement-based finite element 
environment. The recourse to tracking algorithms reduces such local errors, while 
providing also a realistic representation of cracking, with damage that localizes in 
a narrow band of the discretization. A recent application of smeared crack 
approaches enriched with tracking algorithms for the structural analysis of masonry 
structures is presented in (Saloustros et al., 2017a; Saloustros et al., 2017c), where 
2D problems are analyzed. In fact, the main limitation of tracking algorithms lies 
in the difficult extension to 3D problems, and this discourages their use in most 
engineering problems. 

Finally, a completely novel approach to deal with strain localization both using 
plasticity and damage constitutive laws has been developed in the recent years by 
Cervera and co-workers (Cervera et al., 2010a; Cervera et al., 2010b; Cervera et 
al., 2015; Cervera et al., 2017; Barbat et al., 2018). They propose to replace the 
displacement-based finite element framework with a mixed displacement-strain 
finite element one, where strains are computed independently of the displacement 
field in each finite element. The enhancement in the kinematics of standard finite 
elements provides more accurate stress and strain fields, and consequently this 
results in a reliable prediction of the failure patterns, almost mesh-independent. To 
ensure the correct energy dissipation, mesh-size adjusted softening moduli are 
adopted, in accordance with the crack band approach. It is noted that a mixed 
displacement-strain approach which uses continuous interpolations both for 
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displacements and strains derives the local calculation of strains at a point from an 
nodal set which is enlarged with respect to the standard approach. In some way, it 
is a smeared approach with enhanced continuity, where the localization limiter is 
related to the element size. 

1.3 Objective of the thesis 
On the basis of the State-of-the-Art review proposed in Section 1.2, the present 
thesis is addressed to develop a new damage model for the structural analysis of 
masonry and concrete structures with a twofold objective: (a) to improve the 
modelling of damage-induced orthotropy and microcrack closure-reopening effects 
in the framework of scalar damage mechanics and (b) to provide a regularization 
technique independent of the definition of a physical internal length. 

The starting point of the new formulation is represented by the d+/d− model 
first introduced in (Faria and Oliver, 1993; Cervera et al., 1995; Cervera et al., 
1996), described in depth in (Faria et al., 1998) and then extended to plasticity in 
(Wu et al., 2006), hereafter termed the “original” d+/d− model. It is based on the 
split of a second order tensor, specifically the effective stress one, and on the use of 
two scalar damage quantities, d+ and d−, in order to distinguish tension from 
compression.  

The interest for this model derives from the fact that it combines an adequate 
nonlinear structural response and algorithmic efficiency, its implementation and use 
in standard finite element codes being relatively easy. Confirmation of its 
effectiveness can be found in the several structural applications in which it has been 
satisfactorily adopted: for the seismic analysis of concrete dams (Faria et al., 1998), 
in the assessment of reinforced concrete structures subjected to cyclic loading (Faria 
et al., 2004), for the characterization of the in-plane (Silva et al., 2017) and out-of-
plane (Petracca et al., 2017) behaviour of masonry panels, in the evaluation of 
historical masonry structures (Roca et al., 2012) and in the macro-modelling of 
masonry, combined with a tensor mapping procedure (Pelà et al., 2011; Pelà et al., 
2013) or with tracking algorithms (Saloustros et al., 2017a; Saloustros et al., 
2017c). 

On the one hand, despite the abundant research work delving into the topic of 
continuum damage mechanics, some specific aspects related to its application to 
quasi-brittle materials require further investigation. In fact, as commented in 
Section 1.2.1, at a constitutive level, the original damage model could be improved 
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both in terms of damage-induced orthotropy and in terms of microcrack-closure 
reopening effects.  

Regarding the former aspect, thermodynamic and practical reasons require the 
constitutive stiffness operator to be positive definite and endowed with both major 
and minor symmetries. The fullfilment of these features leads to the formulation of 
a new d+/d− damage model based on the energy equivalence assumption. Such a 
choice ensures full thermodynamic consistency, reflects in the formulation of a 
stable orthotropic damaged material and allows to adopt a symmetric global 
stiffness matrix to solve the algebraic system of equilibrium equations.  

Regarding the latter, the lack of information about damage orientation, 
resulting in the absence of unilateral effects under cyclic shear conditions (as shown 
in Figure 1.4), is comparable to the inability of the rotating crack models (Cope et 
al., 1980) to take into account the orientation of previous defects, as observed by 
Bažant (1983). To improve the MCR capabilities of the d+/d− damage formulation, 
the local constitutive behaviour of the material needs to incorporate some aspects 
which are instead proper of fixed crack models (Rots et al., 1985). To this end, a 
“multidirectional” damage procedure is proposed in the present thesis, which 

preserves memory regarding degradation directionality while maintaining unaltered 
the dependence of the stress tensor from only the scalars d+ and d−. This procedure 
ensures the represententation of the microcrack closure reopening effects in generic 
cyclic conditions; hence it is suitable also for seismic analysis. 

On the other hand, the smeared crack formulation needs to be combined with a 
regularization technique to have mesh-independent results at a structural level, in 
a standard finite-element framework. Such results have been previously obtained 
with the original d+/ d− damage model by adopting tracking algorithms (Pelà et al., 
2014; Saloustros et al., 2015; Saloustros et al., 2017b).  

Another alternative is here examined, with potential wider application also to 
3D structures, which is the nonlocal intergral approach, characterized by its 
simplicity of formulation and implementation. The elastic strain tensor is identified 
as the variable to be averaged, in order to provide a smoothing of the kinematic 
field similar to the one performed by the mixed displacement-strain finite elements 
formulations. In this way, damage is driven by the regularized elastic strains and 
the dependence of the strain localization on the discretization is circumvented. 

Moreover, the thorny issue of the definition of the internal length, discussed in 
Section 1.2.2, is faced, in order to show how the evaluation of the correct fracture 
energy is possible, independently of lRG. This suggests that the obtained solution 
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can be released from the choice of the nonlocal internal length, which can be 
interpreted as a regularization parameter more than as a physical constant. 

The validation of the proposed formulation is a necessary step in order to assess 
its predictive capabilities in terms of ultimate loads, failure patterns, energy 
dissipation capacity and also its mesh objectivity. Therefore, experimental tests on 
masonry, concrete and reinforced concrete structures subjected to both monotonic 
and cyclic loading conditions are numerically reproduced with the adoption of the 
new damage model, for establishing its reliability. 

1.4 Outline of the thesis 
The present thesis is outlined as follows.  

In Chapter 2 the salient aspects of the original d+/d− model are briefly recalled 
and different possible definitions for a new consistent constitutive operator in a 
strain equivalence framework are explored. Then, the new d+/d− formulation is 
presented in detail and its thermodynamic consistency discussed. The main 
novelties of the damage model are put in evidence: the assumption of energy-
equivalence between nominal and effective configuration for the derivation of a 
consistent fourth-order constitutive operator, the use of a coupled dissipative 
approach to describe the evolution of the internal variables and the proposal of new 
evolution laws for both damage and irreversible deformations.  

Chapter 3 is devoted to the description of the multidirectional damage 
procedure, to be applied in presence of cyclic loadings, providing some parallels 
between this new approach and the fixed/rotating smeared crack concepts. 
Reflections on how to extend the formulation to the 3D case are however added. 
The section is enriched with the introduction of a smoothing function, addressed to 
increase the numerical robustness of the multidirectional procedure in the transition 
from an open to a close microcrack state (or viceversa). The enhanced microcrack 
closure reopening capabilitities are highlighted by solving at a finite element level 
the problem of a panel subjected to in-plane cyclic shear, with and without the 
multidirectional approach. 

In Chapter 4, the nonlocal regularization technique adopted in conjunction with 
the new constitutive model is described. Firstly, the choice of the elastic strain 
tensor as variable to be averaged is justified and the regularized extension of the 
proposed damage model is developed, underling the unaltered thermo-dynamic 
consistency of the formulation. Secondly, the issue of identifying the input 
parameters of the regularized model is addressed, with the intent of correctly 
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estimate the dissipated energy. In this context, particular attention is directed 
towards the nature of the internal length lRG, which can be interpreted either as a 
regularization parameter or as a physical property. 

The algorithmic implementation of the new constitutive law is proposed in 
Chapter 5, with the purpose of showing how the new energy-equivalent d+/d− 
formulation, combined with the inclusion of permanent deformations, with a 
multidirectional treatment of damage and with a regularized approach, allows 
following an efficient full strain-driven formalism. In the same chapter, details 
about the method chosen to solve the algebraic system of equations, that is the 
secant (Picard) one, are provided. 

The damage formulation is validated in Chapter 6 and Chapter 7. To assess 
separately the enhancements deriving from the new constitutive law and the 
regularization technique, in Chapter 6 the new energy-equivalent damage model is 
adopted in its local version. Structural problems involving both monotonic and 
cyclic loading conditions are considered. Firstly, unreinforced concrete notched 
samples are solved under monotonic loading conditions to show the adequacy of 
the new damage formulation in fitting experimental results under pure tension, pure 
bending and mixed-mode bending. Secondly, a masonry wall and a reinforced 
concrete panel, both subjected to in-plane cyclic shear, are analyzed in order to 
highlight the enhanced dissipative behaviour ensured by the multidirectional 
damage approach in conjunction with permanent deformations. Some quantitative 
considerations regarding the numerical robustness of the model are also included.  

In Chapter 7, the versatility of the regularized d+/d− damage model is exhibited 
by successfully studying a masonry arch and reinforced and unreinforced concrete 
elements. Besides the validation of the numerical results with experimental or 
analytical data, each example is exploited to highlight one or more features of the 
formulation: the mesh-size and mesh-bias independence of the results, the influence 
of the internal length lRG, the effect of the choice of the variable to be averaged and 
the possibility to reproduce structural size effects. 

Chapter 8 is addressed to investigate the adequacy of the regularized d+/d− 
damage model to assess the structural behaviour of a multi-span masonry arch 
bridge. The reference solution is represented by the laboratory tests carried out on 
a 1:5 scale model of a three-span arch bridge, subjected to a concentrated vertical 
load. After a short historical perspective on the structural analysis of masonry arch 
bridges, the numerical results are compared with the experimental ones in terms of 
load carrying capacity, post-peak response and failure mechanism. Moreover, the 
objectivity of the response with respect to the discretization is also verified, in order 
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to guarantee the reliability of the regularization technique even in large-scale 
applications. 

Finally, in Chapter 9, the main contributions of the present thesis and some 
suggestions about how to extend the present work are briefly summarised.  

 



  
 

Chapter 2 

Energy-equivalent d+/d− damage 
model for quasi-brittle materials 

In the present Chapter, the new continuum mechanical model formulated for 
describing the behaviour of quasi-brittle materials, including both the stiffness and 
strength degradation due to damage and the presence of irreversible deformations 
proper of plasticity, is presented. In order to represent these non-linear features in a 
consistent way, the framework of the irreversible thermo-dynamics with internal 
variables (Horstemeyer and Bammann, 2010) is taken into account. The internal 
scalar variables related to damage, d+ and d−

, together with the spectral 
decomposition of a second order strain tensor, allow to simulate the asymmetrical 
behaviour typical of quasi-brittle materials under tension and compression, while 
the tensor internal variable εp represents the permanent strain accumulated during 
the loading history.  

As underlined in the Introduction, the formulation of a “new” constitutive law 
is addressed to provide an enhancement of the “original” d+/d−

 damage formulation 
presented in (Faria et al., 1998). Therefore, the first section of this Chapter is 
devoted to briefly outline the salient aspects of the original formulation. Then, in 
the following sections, the new formulation is described in detail focusing on the 
main novelties of the damage model, which regard the assumption of energy-
equivalence between the nominal and effective configurations for the derivation of 
a thermo-dynamic consistent fourth-order constitutive operator, the use of a coupled 
dissipative approach to describe the evolution of the internal variables d+, d−

 and εp 
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and the proposal of new evolution laws for both damage and irreversible 
deformations. Part of the work presented in this Chapter is included in (Cervera and 
Tesei, 2017) and in (Cervera et al., 2018). 

2.1 Original d+/d− damage formulation  

2.1.1 Strain equivalence and constitutive law 
The original d+/d− damage model is based on the notion of effective stress and on 
the hypothesis of strain equivalence. The effective stress σ  and the effective strain 
ε  are the stress and strain to which the undamaged material between microcracks 
is subjected; they are related by the fourth-order elastic tensor D0: 

: 0σ D ε  (2.1) 

The nominal quantities σ  and εe (εe = ε − εp) refer to an average of the 
corresponding effective quantities on the total surface of the material (including 
also microcracks); for instance, the nominal stress tensor is related to the effective 
one by means of a fourth-order tensor A dependent on damage: 

:σ A σ  (2.2) 

The strain equivalence assumption, as formulated in (Simó and Ju, 1987; 
Lemaitre and Chaboche, 1978) asserts that: “the strain associated with a damage 
state under the applied stress σ is equivalent to the strain associated with its 
undamaged state under the effective stress σ ”. In other words, it is considered by 
hypothesis that the nominal elastic strain and the effective one are equal (εe = ε ) 
and that only the nominal and the effective stress are different. Consequently, the 
effective stress of Eq. (2.1) can be rewritten as: 

: 0 eσ D ε  (2.3) 

The basic features of concrete that the original model reproduces are the 
following ones: (i) the development of irreversible deformations; (ii) the strongly 
asymmetrical behaviour under tension and compression; (iii) the microcrack 
closure-reopening (MCR) effects visible in the case of uniaxial cyclic actions, i.e., 
the stiffness recovery when passing from tension to compression and vice versa; 
and (iv) the anisotropy induced by the damage process in the material. 

In order to represent the differences between the stress-strain envelops under 
tension and under compression, two independent scalar variables, one for tension 
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d+ and one for compression d−, are introduced. Moreover, to deal with points (ii), 
(iii) and (iv), a spectral decomposition of the effective stress tensor (Eq. (2.3)) into 
a positive and a negative part is carried out: 

:
3

i
i 1

σ


  +
i iσ p p Q σ  

 
  :

= =
+

σ σ σ I Q σ   

(2.4) 

where pi is the eigenvector identifying the principal direction i-th of the effective 
stress tensor while the Macaulay brackets act on the i-th principal value of the 
effective stress tensor iσ  in such a way that: if iσ  is positive (tensile principal 

stress), iσ  = iσ ; else (compressive principal stress) iσ  = 0. The fourth-order 
projection operator Q, which extracts from the effective stress tensor its positive 
part, is: 
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and its explicit expression is given in (Faria et al., 2000). H( iσ ) is the Heaviside 

function, such that, if iσ  is positive, H( iσ ) = 1; else, H( iσ ) = 0. 

The constitutive law of the original model is written in terms of the spectral 
decomposition of the effective stress tensor (2.4) and has the following expression:  

   1 1: d d     +
S eσ D ε σ + σ  (2.6) 

where DS is the fourth-order secant stiffness operator (subscript “S” stands for strain 

equivalence), introduced in order to relate the nominal stress tensor σ to the nominal 
elastic strain tensor εe.  

The versatility of the model in treating the damage-induced anisotropy is 
intrinsic in Eq. (2.6). In fact, depending on the sign of the principal effective 
stresses, two different cases can be distinguished: 

 iσ  with concordant sign ( σ = +
σ  or σ = 

σ ): isotropy is preserved after 
damage, and an isotropic (tensile or compressive, respectively) damage model 
is recovered. 
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 iσ  with discordant sign: the damaged material is anisotropic, and the directions 

of maximum and minimum axial stiffness are coincident with the principal 
directions of the effective stress tensor.  

As observed in (Cowin, 1994; Pedersen, 1989), the coaxiality between the 
reference system of the anisotropic material and the principal directions of the 
nominal strain εe is a particular condition in anisotropic elasticity, which 
corresponds to the extremization of the strain energy density. In addition, the 
maximization or minimization of the strain energy density implies the coaxiality 
between the nominal strain tensor εe and the nominal stress tensor σ. These 
observations lead to assert that the d+/d− formulation can be interpreted within the 
rotating smeared crack concept, due to the co-rotation of the axes of material 
anisotropy with the principal axes of the strain εe, which consequently coincide also 
with the principal axes of the stress σ. 

2.1.2 Discussion on different constitutive operators based on strain 
equivalence 
In (Faria et al., 1998), the constitutive law (2.6) is provided, but not the definition 
of the fourth-order secant stiffness tensor DS relating the nominal stress σ and the 
nominal strain εe. In this section, this issue is addressed evaluating two different 
expressions for the secant stiffness DS, both derived in the hypothesis of strain 
equivalence, i.e., considering the effective stress definition shown in Eq. (2.3). In 
order to guarantee thermo-dynamic consistency, two properties have to be fulfilled 
by the secant operator: major symmetry (in addition to the minor ones), as stated in  
(Faria et al., 1998) with reference to the Schwartz theorem about the equality of the 
mixed partial of the potential; positive definiteness, a major requirement in order to 
have a damaged orthotropic material with stable behaviour. 

The first expression to be considered for the secant stiffness tensor, DS1, is 
obtained by replacing in the constitutive law (2.6) the positive and negative parts of 
the effective stress tensor (2.4), expressed in terms of the positive projection 
operator Q (2.5): 

        1 1 1 1d d d : : d : :           +
0 e 0 eσ σ + σ Q D ε I Q D ε  (2.7) 

From Equation (2.7), exploiting the distributive rule, the expression for DS1 is: 

    1 1d : d :     S1 0 0D Q D I Q D  (2.8) 
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Considering the constitutive law written in terms of DS1 (Eq. (2.8)) and referring to 
the relationships (2.2) and (2.3) for the nominal and effective stress tensors, 
respectively, the definition of the fourth-order operator A appearing in Eq. (2.2) is: 

    1 1d d     A Q I Q  (2.9) 

Although both the projection operator Q (Eq. (2.5)) and the elastic fourth-order 
tensor D0 have major symmetry, this does not imply that the fourth-order tensor DS1 
(2.8) resulting from their double contraction is necessarily endowed with major 
symmetry. Specifically, besides the undamaged situation (DS1 = D0), the symmetry 
of the secant operator is guaranteed only when the Poisson’s ratio is null or when 

an isotropic damage model is recovered, i.e., in the cases of purely tensile regimes 
or purely compressive regimes previously discussed. 

Since the quadratic form associated with a non-symmetric matrix is equal to 
the quadratic form associated with its symmetric part only, the second expression 
to be evaluated for the constitutive operator, Ds2, is the symmetric part of the non-
symmetric operator Ds1 (2.8): 
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T
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Q D D Q I Q D D I Q
 (2.10)  

However, for this second proposal, the positive definiteness cannot be proven. This 
is shown by resorting to Eq. (2.11), where the matrix form of DS2 is given in the 
principal reference system of orthotropy of the damaged material, in terms of the 
Lamé constants and the damage variables; a 3D stress state composed of two tensile 
directions and a compressive one is considered in such a way that two eigenvectors 
contribute in defining Q (Eq. (2.5)). 
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Despite the evident symmetry of the matrix (2.11), it is easy to demonstrate its lack 
of positive definiteness by adopting Sylvester’s criterion. In fact, analyzing the first 

principal minor of order two, equal to: 

        
22 2

2 1 1 2 1 1 4d d G d d              
 

 (2.12) 

and considering d+= 1 and d−= 0, it follows that the quantity (2.12) is negative. 

Therefore, the necessity of formulating a new version of the original d+/d− 
model derives mainly from the just described difficulties found in the definition of 
a consistent secant stiffness operator in a strain-equivalence framework. 
Consequently, in accordance with the discussion provided in (Carol et al., 2001) 
for a general anisotropic damage model, in the new d+/d− formulation presented 
henceforth, the strain equivalence assumption is abandoned in favor of assuming 
energy equivalence. 

2.2 “New” d+/d− damage model based on energy 
equivalence 

2.2.1 Symmetric constitutive operator  
The hypothesis of energy equivalence (Cordebois and Sidoroff, 1982; Carol et al., 
2001) consists in considering the coincidence between the energy stored in terms 
of the nominal quantities and secant stiffness and the elastic energy stored in terms 
of the effective quantities and undamaged linear elastic stiffness. This means that 
neither the nominal stress, nor the nominal elastic strain are equal to their effective 
counterparts; therefore, in addition to the relation (2.2) between the nominal and 
the effective stress, a relation between the effective and the nominal elastic strain is 
needed. Following the procedure described in (Carol et al., 2001), this relation is 
governed by the fourth-order tensor A introduced in Eq. (2.2) and is written as: 

: eε = A ε  (2.13) 

From the mechanical point of view, this lack of coincidence between the effective 
and the nominal strain tensor is essential in representing a fundamental feature of 
orthotropic damage models, i.e., the fact that the nominal Poisson’s ratio does not 

remain constant throughout the damage process. Due to the adoption of the strain 
equivalence assumption, this feature is not taken into account by the original model. 
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Exploiting Eqs. (2.1) and (2.13), the effective stress tensor, expressed as a 

function of the nominal elastic strain εe, is: 

: : :0 0 eσ = D ε = D A ε  (2.14) 

For the damage model described in (Faria et al., 1998), the operator A relating 
the nominal and the effective stress is the one expressed in Eq. (2.9). Herein, some 
minor modifications with respect to Eq. (2.9) are introduced for the definition of 
this fourth-order tensor, even though its fundamental dependence on the damage 
variables and on a spectral projection operator is maintained. Firstly, the integrity 
quantities in tension and in compression (1 − d+) and (1 − d−) are replaced by their 
square roots, in order to keep comparable the amount of stiffness degradation 
between the original model and the new one. Secondly, the quantity on which the 
decomposition is performed is no longer the effective stress, as done in Eqs. (2.4) 
and (2.5): the reason lies in the dependence of σ  obtained in an energy-equivalence 
framework (see Eq. (2.14)) on the fourth-order tensor A (hence, on the projection 
operator and on the damage variables), which would make the procedure of the 
definition of the projection operator iterative. Consequently, the nominal strain 
tensor εe is chosen as the variable object of the spectral decomposition, similarly to 
what is done in (Ortiz, 1985); in this way, the algorithmic efficiency related to a 
strain-based formulation, one of the attractiveness of the original model, is kept 
unchanged. In addition, a definition for the projection operator slightly different 
from Eq. (2.5) is here preferred. Specifically, a tensor first introduced in (Carol and 
Willam, 1996) and then presented again in (Wu and Xu, 2013) is adopted; its 
expression is: 

      
3 3

1 1
ei ei e j

i= i, j=
j>i

H ε H ε H ε       ij ij
i i i iQ p p p p P P

 

 (2.15) 

 
1
2

    ij ji
i j j iP P p p p p  (2.16) 

where εei and pi are the i-th principal value and the eigenvector associated with the 
i-th principal direction of the nominal elastic strain tensor εe. H(εei) is the Heaviside 
function, such that, if εei is positive, H(εei) = 1; else, H(εei) = 0. 

This projection operator does not alter the positive and negative components 
extracted from the strain tensor, which are exactly the same obtained adopting the 
conventional Q (2.5). The advantage of using it lies in the fact that, when all the 
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strain eigenvalues εi are of the same sign, Q (2.15) satisfies the so-called natural 
property. For a generic fourth-order projection operator P that performs a spectral 
decomposition on a second-order tensor a, this property can be written in the 
following way: 

 

 

0 1,2,3

0 1,2,3
i

i

iff a i =

iff a i =

   


 

+P I  

P I  <
 (2.17) 

The satisfaction of property (2.17) is discussed in (Ju, 1989; Carol and Willam, 
1996). 

Referring to Eq. (2.9) and applying the mentioned minor modifications, the 
proposal A* for the fourth-order tensor A, appearing in Eqs. (2.13) and (2.14), is: 

 * 1 1+d d    A Q I Q  (2.18) 

where Q is the one expressed in Eq. (2.15). In view of this definition, the relations 
(2.2), (2.13) and (2.14) between the nominal and the effective quantities in an 
energy-equivalent framework can be re-written as: 

: *
σ A σ  (2.19) 

:*
eε = A ε  (2.20) 

: : :*
0 0 eσ = D ε = D A ε  (2.21) 

Making use of relations (2.20) and (2.21), the equality between the strain 
energy in the effective and in the real configuration is: 

1 1 1
2 2 2

: : : : : : :* *
e 0 e e E eσ ε = ε A D A ε = ε D ε  (2.22) 

From Eq. (2.22), the form of the secant stiffness fourth-order tensor DE (subscript 
“E” stands for energy equivalence) is derived: 

: :* *
E 0D = A D A  (2.23) 

By replacing the definition of A* in Eq. (2.23), the complete expression for the 
secant matrix DE is: 
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   1 1 1 1+ +d d : : d d           
      E 0D Q I Q D Q I Q  (2.24) 

A similar secant stiffness operator, obtained under the same assumption of energy 
equivalence, can be found in (Voyiadjis et al., 2008): there, the projection operator 
is adopted in its classical form (analogously to Eq. (2.5)), and the split is performed 
on the nominal stress tensor σ, which, as mentioned earlier, makes the definition of 
the projection operator iterative. 

From Equation (2.24), some immediate considerations can be done. Firstly, in 
the absence of damage, the linear elastic stiffness tensor D0 is recovered. Secondly, 
Eq. (2.23) shows how, due to the major symmetry of the tensor A*, the hypothesis 
of energy equivalence (2.22) induces automatically major symmetry in the secant 
stiffness tensor DE. 

In addition, the versatility of the original model in treating the damage-induced 
anisotropy is preserved in the new formulation. As a matter of fact, in the case of 
εei with concordant sign (εe = εe+ or εe = εe−), an isotropic damage model is regained, 
while in the case of εei with discordant sign, the damaged material is orthotropic, 
and the coaxiality between the directions of induced orthotropy and the principal 
directions of the strain and stress tensors is assured. The differences between the 
decomposition performed by the original formulation and the new one are sketched 
in Figure 2.1, where the isotropic model is distinguished by the orthotropic one in 
the principal reference system of the elastic stress tensor σe: 

:e 0 eσ D ε    (2.25) 

 
Figure 2.1: Spectral decompositions (a) of the original damage formulation (Faria et 

al., 1998) and (b) of the new one, in plane stress conditions. 
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Such a stress quantity coincides with the effective stress tensor only for the original 
formulation by (Faria et al., 1998), as confirmed by Eq. (2.3). Contrariwise, for the 
new formulation, due to the energy-equivalence assumption, the effective stress 
tensor has a different expression (see Eq. (2.21)). Analyzing Figure 2.1, it is clear 
that the spectral decomposition on the elastic strain tensor (Figure 2.1.b) allows to 
describe the problem of uniaxial loading by means of an orthotropic formulation, 
instead of an isotropic one. This fact, combined with the use of the new orthotropic 
constitutive operator (2.24), implies that the variation of the nominal Poisson’s 

ratio, related to microcracking, can be modelled. This fact is discussed in detail in 
Section 2.2.3.  

The matrix form of the secant stiffness operator DE is given in Eq. (2.26) in the 
principal reference system of orthotropy of the damaged material. As done for the 
expression of the matrix form of Ds2 (2.11), a 3D strain state composed of two 
elongation directions and a contraction one is considered:  
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(2.26) 

First of all, it is interesting to note how the stiffness matrix associated with the 
operator DE here derived fits perfectly within the framework described in (Carol et 
al., 2001), based on the hypotheses of energy equivalence and sum-type 
symmetrization. Differently from a generic orthotropic material, which is 
characterized by nine independent material properties, the secant stiffness matrix 
defined in Eq. (2.26) depends on four variables (the two elastic constants G and λ 
of the initial isotropic material and the two damage variables d+ and d−). This aspect 
is strictly related to one of the particularities of this formulation, i.e., the coaxiality 
between directions of induced orthotropy and principal directions of nominal elastic 
strain and stress tensors. 

Moreover, considering the shear stiffness terms in matrix (2.26), it is possible 
to see that the shear modulus G is reduced by the square of the average of both 
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0.5

1 d   and  
0.5

1 d  . This constitutes a modification with respect to the 

secant operators DS1 and DS2 (see Eq. (2.11)), due to the adoption of the projection 
operator Q (2.15) instead of Q (2.5); the main positive implication deriving from 
this choice is the recovery not only of the constitutive law, but also of the secant 
stiffness matrix of an isotropic damage model, when εe = εe+ or εe = εe−.  

Besides an evident symmetry visible in Eq. (2.26), the stiffness operator DE 
(2.24) is also positive definite, and this can be checked, without loss of generality, 
by applying Sylvester’s criterion to its matrix form (2.26). In fact, as demonstrated 
by the relations (2.27), all of the minors of (2.26) are always positive, provided that 
the damage variables range from zero (virgin material) to one (completely damaged 
material): 
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(2.27) 

Therefore, the new d+/d− damage model, based on the hypothesis of energy 
equivalence, is governed by the secant stiffness operator DE (2.24), which is 
symmetric and positive definite; consequently, it provides an adequate 
representation of the damage-induced orthotropy.  

To sum up, the relationships between the effective and the nominal 
configuration deriving from the energy equivalence assumption, together with the 
constitutive laws proper of each space, are summarized in Figure 2.2. 
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Figure 2.2: Energy equivalence hypothesis: relationships between effective and 

nominal spaces. 

A further confirmation of the adequacy of the new constitutive operator (2.24) 
can be found in an interesting parallelism between the relationships shown in Figure 
2.2, adopted to derive an orthotropic d+/d− damage model, and the mapping 
procedure presented in (Pelà et al., 2014) to define a damage model for orthotropic 
materials. In (Pelà et al., 2014), the stress σ and strain εe tensors of the orthotropic 
real space are related by means of suitable fourth-order symmetric transformation 
tensors to those (σ* and ε*, respectively) of an equivalent isotropic solid:  

 
1

:


 *
σ A σ  (2.28) 

:*
eε = A ε  (2.29) 

Considering the equivalence between the orthotropic real space and the real 
damaged material (nominal σ and nominal εe) and between the mapped isotropic 
space and the effective undamaged configuration ( σ  and ε ), the similarity of 
Eqs. (2.28) and (2.29) with Eqs. (2.19) and (2.20) is evident. Specifically, in 
accordance with (Carol et al., 2001), in the present orthotropic damage model, the 
tensor (Aσ)−1 and Aε are coincident and equal to the mapping operator A* (2.18). All 
the features required for the mapping operators (Aσ)−1 and Aε (fourth-order tensors, 
minor and major symmetry, positive definiteness in order to be invertible) are 
satisfied by A*.  
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2.2.2 Thermo-dynamic consistency  
In accordance with the energy equivalence assumption (2.22), the free energy 
potential of the orthotropic damage model here presented is the following: 

  1
2

ψ ,d ,d : :  e e E eε ε D ε  (2.30) 

where the positive definiteness of the constitutive fourth-order tensor DE (2.24) has 
been proven in Section 2.2.1. 

In order to assess the thermo-dynamic consistency of the proposed model, the 
satisfaction of both the first and the second law of thermo-dynamics needs to be 
investigated. 

On the one hand, the first law of thermo-dynamics for elastic-degrading 
materials demands considering the conservation of energy in the unloading-
reloading regime, for a fixed state of degradation. As pointed out in (Carol and 
Willam, 1996; Wu and Xu, 2013), under those conditions and when non-
proportional loadings are applied, damage models including micro-crack closure 
reopening (MCR) effects may suffer the problem of energy generation/dissipation 
under closed-load cycles. Specifically, only in the presence of anisotropic 
degradation, a lack of energy dissipation occurs. The here-formulated damage 
model is orthotropic in the sense that a directional degradation in stiffness is 
induced in the material after surpassing the linear threshold. From the definition of 
A*(2.18), which is the fourth-order operator performing the mapping between the 
isotropic and the orthotropic spaces, it is asserted that the projection operator Q is 
responsible for the damage-induced orthotropy, since the damage variables are 
scalars. Both in (Carol and Willam, 1996) and in (Wu and Xu, 2013), the term 
“anisotropic degradation” is adopted for describing those damage models that 

include an anisotropic (or orthotropic) stiffness reduction, beyond the application 
of the projection operator Q. Therefore, the here-presented damage model cannot 
be classified as anisotropic according to these references, even if an orthotropic 
behaviour is induced by the damage process; consequently, it observes the first law 
of thermo-dynamics.  

On the other hand, the second law of thermo-dynamics states that the total 
entropy of an isolated system tends to increase over time, taking into account the 
irreversibility of the natural processes. This condition can be expressed by the 
Clausius–Duheim inequality (Lubliner, 1972): 
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γ ψ : 0   σ ε  (2.31) 

Replacing the total derivative of the energy potential (2.30) with its partial 
derivatives with respect to the strain ε and the internal variables d+, d−

 and εp, the 
positiveness of the energy damage dissipation can be rewritten in this way: 

: 0ψ ψ ψ ψ
γ d d :

d d
 

 

    
        

    
p

p
σ ε ε

ε ε
 (2.32) 

Since ε is a free variable, in order to have the non-negativeness of the dissipated 
energy satisfied in the general case, the quantity between round brackets in 
Eq. (2.32) has to be null; this results in one of the Coleman’s relations (Coleman 

and Gurtin, 1967) and leads to the establishment of the constitutive law: 

:ψ
 


E eσ D ε
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   (2.33) 

Hence, the Clausius-Duheim inequality (2.32) reduces to: 
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γ d d :

d d
 

 

  
      

 
p

p
ε

ε
   (2.34) 

From Eq. (2.34), it is evident that the dissipative behaviour of the material is 
due to both damage evolution and generation of permanent strains. On the one hand, 
the partial derivatives of the potential with respect to d+ and d−, with signs reversed, 
represent the elastic strain energy release rates produced by a unit growth of the 
corresponding damage variables; they play the role of thermo-dynamic forces 
conjugated to the damage variables. On the other hand, the derivative of the free 
energy with respect to εp, with sign reversed, coincides with the nominal stress σ 

and plays the role of a thermo-dynamic force associated to the permanent strain. 
Whilst the non-negativeness of the energy dissipated by permanent strains is treated 
in Section 2.4, where two definitions of the permanent strain rate pε  are provided, 

the discussion on the non-negativeness of the energy dissipated due to damage 
evolution is here faced. The positiveness of all the terms present in Eq. (2.34) will 
allow concluding on the consistency of the proposed damage model for what 
regards the second principle of thermo-dynamics.  

Since the rates d  and d  of the damage variables are positive (due to the 
choice of the monotonically-increasing damage evolution laws; see Section 2.5), 
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the non-negativeness of the work done by the generalized thermo-dynamic forces 
associated to damage is satisfied as long as the damage energy release rates are 
positive. The definition for these quantities, referring to the potential ψ expressed 
in Eq. (2.30), is: 

1
2

ψ : :
d d 
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e e
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ε ε  (2.35) 
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e e
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Accounting for Eqs. (2.18) and (2.23), the derivatives of the constitutive operator 
with respect to the damage variables are:  

 

2

1 1 1
1

: :
d d

d : : d : :
d

 

 



 
 

 

     
 

E
0

0 0

D A D A

Q D Q Q D I Q

*
*

 (2.37) 

     

2

1 1
1

: :
d d

d : : d : :
d

 

 



 
 

 

       
 

E
0

0 0

D A D A

I Q D I Q I Q D Q

*
*

1
 (2.38) 

Replacing these definitions in Eqs. (2.35) and (2.36) and recalling that εe+ = Q: εe 
and εe

− = (I − Q): εe, clearer expressions for the damage energy release rates are 
provided: 

  

1 1
2 1

12 :
2 1

2

ψ d: : : :
d d

d
λ tr G λtr tr

d


   

 


    



  
    
   

 
  

  

1

e 0 e e 0 e

e e e e e

ε D ε ε D ε

ε ε ε ε ε  
(2.39) 
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The quantities inside round brackets in Eqs. (2.39) and (2.40) are always 
positive while λ  tr tre eε ε  is zero in the cases of the full tensile regime (εe− = 0) or full 
compressive regime (εe+ = 0) and negative otherwise. Consequently, the 
positiveness of Eqs. (2.39) and (2.40) is assured for the situations of full tensile 
regime (εe− = 0) and full compressive regime (εe+ = 0), while having to be proven 
in the other cases. In order to do this, three strain states are identified as the most 
critical ones for the satisfaction of the second principle of thermo-dynamics; the 
non-negativeness of the damage strain energy release rates (2.39) and (2.40) for 
these situations allows asserting the consistency of the present model with respect 
to the second principle. 

 In pure shear conditions (trεe+ = −trεe−, εe+:εe+ = (trε+)2 = εe−:εe− = (trε−)2, d+ ≠ 0, 
d− ≠ 0), the positiveness of the quantities (2.39) and (2.40) translates in the 
following inequalities, respectively: 

1 1
1
νd d
ν

   


 (2.41) 

11 1νd d
ν

 
    (2.42) 

 Considering the typical mechanical parameters of a quasi-brittle material, such 
as concrete or masonry, these relations among the damage variables, strictly 
related to the fracture energies in tension and compression (see Section 2.5), are 
satisfied. 

 In case of uniaxial tensile load in direction 1 (trεe+ = ε1 and 2 1tr ν d   1εeε , 
d+ ≠ 0, d− = 0), the quantity contained in Eq. (2.39) is always positive and can 
be expressed in the following way: 

  2 2 0
2

2 2
1 1λε ν Gε  

1
1  (2.43) 
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 The same results can be obtained for the case of uniaxial compressive load 

(d+ = 0 and d− ≠ 0). 

 Although the quantity 1 d   is at the denominator in Eq. (2.39), in the case of 
d+ close to one, the work done by ψ d    in the Clausius-Duheim inequality 
(2.34) remains bounded, specifically tends to be null, because in that situation, 
d  tends to zero. An analogous consideration holds for the work performed by 
ψ d    when d− is close to one. 

2.2.3 Enhanced representation of the damage-induced orthotropy  
The proposed energy-equivalent damage model, based on the consistent secant 
operator DE (2.24), represents a step forward with respect to the original 
formulation thanks to an adequate consideration of the Poisson effect on the 
representation of the damage-induced orthotropy. The implications deriving from 
this fact are shown with reference to the plane stress problem of a bar loaded in 
tension along the x-axis, with initial Poisson’s ratio equal to 0.2. 

Comparing the normalized σx − εx curves obtained with the original model and 
with the new energy-equivalent one, no significant differences can be found in the 
softening response (see Figure 2.3.a). The substantial improvement of the proposed 
damage model is instead visible looking at the strain behaviour in the transversal 
direction y (see Figure 2.3.b). By plotting in abscissa the longitudinal strain εx and 
in ordinate the absolute value of εy/εx, i.e., the nominal Poisson’s ratio predicted by 

the models, completely different trends result. On the one hand, with the original 
damage model, the nominal Poisson’s ratio maintains constant throughout the 

loading history, meaning that the transversal contractions εy increase unrealistically 
throughout the whole loading history, together with the growing of the axial 
elongations εx. On the other hand, the adoption of the proposed orthotropic 
symmetric damage model allows one to take into account a progressive reduction 
of the nominal Poisson’s ratio with the development of tensile damage. This is 

related to both the strain decomposition adopted, which considers an orthotropic 
model associated to the uniaxial loading conditions (see Figure 2.1), and the new 
constitutive symmetric operator proposed (2.24). Specifically, by deriving this 
constitutive matrix for a uniaxial tensile plane stress problem and by equating to 
zero the transversal normal stress σy, it is easy to find the expression of the nominal 

Poisson’s ratio predicted by the model, which is 1y x d       . 
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Figure 2.3: Comparison between the original formulation and the new energy-

equivalent model for the problem of a bar uniaxially loaded in tension: (a) σx-εx curves and 
(b) nominal Poisson’s ratio trends. 

As noticed in (De Borst, 2002), the feature of a constant Poisson’s ratio is 
usually typical of isotropic damage models, and it is not coherent within the 
framework of the classical smeared crack models (Rashid, 1968; Rots et al., 1985). 
In fact, from a mechanical point of view, a crack generation under uniaxial tension 
is accompanied by a release of the transversal strains, due to the progressive loss of 
coupling between longitudinal and transversal directions induced by the 
degradation process.  

2.3 Damage criterion for quasi-brittle materials 
In accordance with the original d+/d− damage model (Faria et al., 1998), the 
degradation process in tension and in compression is treated separately by means 
of independent damage criteria and independent damage evolution laws.  

In analogy with (Petracca et al., 2017; Saloustros et al., 2017b), two damage 
surfaces, one in tension and one in compression, are defined, taking inspiration from 
the failure criterion proposed for concrete in (Lubliner et al., 1989). Their 
expressions are the following ones, where τ   represent the equivalent stress 
quantities, monitoring the strain-stress state under tension and under compression 
while r  are the internal state variables identifying the tensile and compressive 
damage thresholds: 

0g r      (2.44) 

The definitions for the equivalent stress variables τ   are the following: 
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where the material strength parameters α and β, defined accordingly to (Lubliner et 
al., 1989), are: 
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In expressions (2.45) and (2.46), I1, J2, σemax and σemin are the first invariant, the 
deviatoric second invariant, the maximum and minimum principal values referred 
to the elastic stress tensor σe defined in Eq. (2.25). The choice of σe, as the quantity 
determining the equivalent variables, is addressed to avoid an iterative procedure 
for the computation of d+ and d−, which would be otherwise necessary opting for 
the effective stress σ  defined in Eq. (2.21). In fact, the computation of σe is 
straightforward and follows directly from the computation of the nominal elastic 
strain tensor εe.  

The other parameters necessary for the definition of the damage criterion, 
related to the frictional-cohesive behaviour of the material are the uniaxial tensile 
and compressive peak strengths of the material f+ and f−, the biaxial compressive 
strength fb

−, the parameter k (k between 0 and 1) which fixes the size of the 
compressive surface in the shear quadrants (see Figure 2.4) and the values fe

+ and 
fe

−. These quantities identify the onset of damage in uniaxial tension and 
compression respectively, by means of the proportional parameters γe

+ and γe
− 

(0 < γe    1): 

± ± ±
e ef = γ f  (2.49) 

The initial values of the damage thresholds r  coincide with ±
ef  and 

consequently, according to Eq. (2.44), they define the size of the damage surfaces 
in the initial undamaged state, i.e. the size of the initial elastic domain: 
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0
± ±

er = f  (2.50) 

In Figure 2.4, the limit tensile and compressive surfaces for the activation of 
damage in the initial elastic stage, derived by equating τ+ and τ– (Eqs. (2.45) and 
(2.46)) to r0

+ and r0
– (Eq. (2.50)), are plotted in the elastic stress principal space, 

for the plane stress case. In the first and third quadrants, thanks to the presence of 
the Heaviside functions in the definitions of τ  , the limit surfaces are ruled by τ+ 
and τ–, separately, meaning that only tensile damage can be activated in the first 
quadrant and only compressive damage in the third one. Specifically, in biaxial 
compression, the Drucker–Prager criterion is recovered.  

In the second and fourth quadrants, two damage surfaces are present, one for 
the activation of d+ and one for the activation of d−. In particular, the shape of the 
compressive damage surface is here affected by the parameter k. For values of k 
close to 1, the compressive damage surface tends to overlap with the tensile one 
and is close to the failure surface proposed in (Lubliner et al., 1989 ). For low values 
of k, the compressive damage surface broadens, going to coincide with the 
Drucker–Prager criterion for k = 0. Such a modelling of the failure conditions in the 
second and fourth quadrants is a betterment with respect to the damage limit surface 
considered in the original model. As a matter of fact, in (Faria et al., 1998), the 
behaviour of the material in these quadrants is not represented directly, but is only 
considered as the intersection of the two distinct failure criteria in pure tension (first 
quadrant) and pure compression (third quadrant). 
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Figure 2.4: Initial damage surface in plane stress conditions, for α= 0.121, β= 7.667 

and for different values of k. 

2.4 Simplified definitions of the permanent strain tensor 

The modeling of permanent strains is necessary in the prediction of the structural 
behaviour of concrete and quasi-brittle materials in general, since during a loading 
history irreversible strains accumulate, affecting in a non-negligible way both 
strength and stiffness. Moreover, it is essential, in presence of cyclic actions, to 
match experimental and numerical results.  

Although a plastic-damage theory represents the most accurate way to develop 
a constitutive model for quasi-brittle materials, the formulation of “simplified” 

evolution laws for permanent deformations can be successfully considered in 
conjunction with damage models. This is the procedure adopted for the simulation 
of irreversible strains in the follow up. Specifically, the simplification deals with 
the consideration of a unique failure criterion to describe the inelastic behaviour of 
quasi-brittle materials (Wu and Cervera, 2016), characterized by both damage and 
permanent deformations. Assuming the formation of microcracks and microvoids 
as the dominant inelastic mechanism, the damage failure criterion is identified as 
the governing one. Consequently, the modelling of permanent deformations 
becomes possible without the introduction of a plasticity surface and a flow rule. In 
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the present section, two different definitions of the permanent strain rate tensor, 
based on this simplification, are proposed.  

2.4.1 Fundamental kinematic decompositions 
First of all, two fundamental decompositions of the total strain tensor are here 
recalled, in order to highlight the deformation mechanisms characterizing a quasi-
brittle material. The first is expressed in Eq. (2.51) and is based on the split of the 
strain tensor in a reversible (elastic εe) and irreversible (permanent εp) part: 

e p= ε ε ε  (2.51) 

The second, shown in Eq. (2.52), deals with the decomposition performed in 
the classical smeared crack models (Rots and Blaauwendraad, J., 1989; Armero and 
Oller, 2000), according to which the total strain tensor is divided in a contribution 
related to the initial elastic compliance matrix C0 and an inelastic contribution εin: 

in= : = : : :    0 0 d p 0 d pε C σ ε C σ ε ε C σ C σ + ε  (2.52) 

From Eq. (2.52), it is clear that the inelastic strain εin is produced by two dissipative 
mechanisms, acting in series, which are the development of damage (εd), 
responsible for the increase of the constitutive compliance matrix C with respect to 
the initial undamaged one C0 (Cd = C − C0) and the evolution of irreversible 
deformations (εp). Moreover, comparing Eqs. (2.51) and (2.52), the reversible 
elastic strain results equal to: 

= : e 0 dε C σ ε  (2.53) 

According to Eqs. (2.51) and (2.52), the rate of the total strains can be expressed 
in the two following ways: 

e p= ε ε ε  (2.54) 

in= : = : : : : :       0 0 d p 0 d d p disε C σ ε C σ ε ε C σ C σ + C σ ε C σ ε  (2.55) 

In Eq. (2.55), the dissipative strain rate disε  is introduced, whose definition is: 

= : dis pε C σ ε  (2.56) 

The just mentioned strain quantities are shown, both in their total and 
incremental form, in Figure 2.5, with reference to a 1D softening history.  
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Figure 2.5: Total strain decomposition in total and incremental form in a 1D softening 

history. 

2.4.2 Revisitation of the permanent strain rate proposed in (Faria 
et al., 1998) 
Following (Faria et al., 1998), the permanent strain rate tensor can be defined as: 

   
:

b H d b H d
:

        
  

e
p e

e e

σ ε
ε ε

σ ε
   (2.57) 

In Eq. (2.57), b+ and b− are two positive material parameters defining the entity of 
the permanent strains under tensile and compressive regimes, ranging from 0 (only 
damage) to 1; regarding the tensor quantities, ε is the total strain rate, εe is the 
elastic strain and σe  is the elastic stress tensor (2.25).The ratio between the elastic 
power σe : ε and the double of the elastic strain energy σe :  εe contributes to define 
the intensity of the plastic strains. 

The main simplification of Eq. (2.57) with respect to a plastic theory is that, 
instead of the adoption of a flow rule, the irreversible strain evolves in the direction 
of the elastic strain tensor εe and of the elastic stress tensor σe. This is coherent with 
the definition of the evolution of damage in terms of the elastic stress values, as 
discussed in Section 2.3. In addition, in line with the idea of considering a unique 
failure criterion, the same conditions holding for damage progression are taken into 
account for the permanent strain evolution and this relation is established by means 
of the Heaviside functions  H d   and  H d  . 
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With respect to the proposal made in (Faria et al., 1998), the development of 

irreversible deformations is not only associated to compressive regimes but the 
possibility of permanent strain evolution under tensile regimes is also considered. 
This choice is addressed to catch more realistic results both in pure tension and in 
case of coexistence of compressive and tensile regimes, i.e. in shear conditions. 

Moreover, referring to the definition of ε p (2.57), the quantity related to the 
permanent strain tensor appearing in the Clausius–Duhem inequality (2.34) can be 
expressed in the following way: 

   

2

:
: : : : b H d b H d

:

a : : a






          
  

    

e
p p E e e

p e e

E e e

σ ε
ε σ ε D ε ε

ε σ ε
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 (2.58) 

where the scalar a is: 

   
:

a b H d b H d
:

       
  

e

e e

σ ε

σ ε
 (2.59) 

Since a (2.59) is non-negative and the free energy potential (2.30) is a quadratic 
form ruled by the positive definite secant stiffness DE, the energy dissipated due to 
irreversible deformations is non-negative and this ensures the satisfaction of the 
Clausius-Duheim inequality (2.34) discussed in Section 2.2.2. 

2.4.3 Alternative definition of the permanent strain rate 
From the mechanical point of view, the hypothesis of considering the damage 
criterion as the unique failure criterion for d+, d− and εp corresponds to consider the 
development of permanent deformations related to the partial irreversibility of the 
microcrack opening. This is in accordance with Bažant (Bažant, 1983a) and Ortiz 
(Ortiz, 1985), who noticed that the microcracking of concrete is not perfectly brittle. 
On the base of this consideration, the alternative definition of pε  here proposed 

aims to link the irreversible deformations to the kinematic quantity responsible for 
the microcracking, which is the damage strain tensor εd (see Eqs. (2.52) and (2.53)). 
Specifically, in incremental terms, the permanent strain rate is related to *

dε , which 
is the damage strain rate tensor computed in the hypothesis of a perfectly brittle 
material. Such a hypothesis consists in considering the coincidence between the 
total strain increment and the reversible strain one ( *

e ε ε ) and in freezing the 
evolution of the permanent deformations ( * 0p ε ): 
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00p
d d d= = : = : :


 * * *

d ε
ε ε ε C σ C σ + C σ

 (2.60) 

In Eq. (2.60), the superscript * is used to identify all those quantities computed in 
the hypothesis of a pure damage formulation. 

Therefore, the simplified evolution law here proposed for the permanent 
deformations is the following one, where ξ+ and ξ − are constitutive parameters, 
representing the entity of the permanent deformations as a fraction of *

dε . 

   * **
d: H d H d

:

       
  

 p e
e

σ ε

ε ε
σ ε

 
(2.61) 

A discussion on the meaning of   and on its limit values (0 < ξ < ξ lim with ξ lim 
lower than 1) is provided in Section 2.5.1. Moreover, the presence of the Heaviside 
function H ensures that the evolution of permanent deformations occurs only when 
the damage variables d+* or d−* increase.  

To graphically clarify Eq. (2.60), in Figure 2.6 the strain increments associated 
to *

dε  (Eq. (2.60)) and pε  are shown with reference to a 1D loading history. 

Analogously to the definition of the irreversible deformations (2.57), the new 
definition foresees the coincidence, in terms of directions, between the permanent 
strain increment and the reversible strain tensor. However, differently from (2.57), 
a relation between the permanent deformations and the damage strain rate is set in 
(2.61). This relation is explicit in 1D loading conditions, as visible in Figure 2.6, 
where: 

 * *
p dε H d ε   (2.62) 

In more generic loading conditions, it can be interpreted in energetic terms. In 
fact, the magnitude of the irreversible strain increment with respect to the one of 
the reversible strain tensor is defined resorting to a ratio between energetic 
quantities (see Figure 2.6.b): it is a portion of the energy dissipated by the damage 
strain rate, quantified by means of ξ+ and/or ξ –, over the potential ψ doubled.  
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Figure 2.6: Clarification of the evolution law (2.61) for the permanent strain tensor: 

(a) identification of the quantity (2.60) in the hypothesis of perfectly brittle materials and 
(b) correction of all the quantities to describe the real situation with damage and εp. 

Repeating the procedure shown in Section 2.4.2, the non negativeness of the 
energy dissipated by the permanent strain rate (2.61) can be demonstrated: 
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where the scalar a is: 
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(2.64) 

Thanks to the non-negativeness of the potential (2.30) and of a (2.64), the 
satisfaction of the Clausius-Duheim inequality (2.34) can be guaranteed with the 
new definition of the permanent strain rate tensor (2.61). 

It is worth doing some additional considerations about the alternative definition 
proposed for the evolution of the reversible strain tensor (2.61). First of all, the 
proportionality between pε  and εe is maintained because other choices for the 

direction of evolution of the irreversible strains implies non reliable results in 
presence of some specific loading conditions. This fact is qualitatively shown in 
Figure 2.7 for the problem of pure cyclic shear, adopting a definition for the 
permanent strain rate tensor based on the direct proportionality between the 
tensorial quantities pε  and *

dε : 

   * **
dH d H d        

  pε ε  (2.65) 

 
Figure 2.7: Loading and unloading τ-γ curve obtained with the adoption of the 

orthotropic rotating d+/d− damage model in conjunction with the permanent strain rate 
tensor (2.65). 

Looking at Figure 2.7, in the reversal of the loading sign, an unrealistic stiffness 
modification is visible, attributable to the transition from one positive and one 
negative principal elastic strains to two negative ones. This shows that generic 
definitions for pε  inducing lack of proportionality between the total and the 
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reversible strain tensors are not adequate in conjunction with rotating orthotropic 
models, as the one proposed in the present work.  

Differently from other simplified evolution laws for the permanent strain tensor 
(Faria et al., 1998; Saloustros et al., 2017a), also based on the proportionality 
between pε  and εe, the novelty of the definition (2.61) lies in the relation between 

permanent and damage deformations. The idea to associate permanent strains to the 
partial irreversibility of the crack opening is similar to the idea proposed in (Ortiz, 
1985; Wu and Cervera, 2016), where pε  is considered a fraction of the dissipative 

strain rate ε dis, defined in Eq. (2.56). The choice of the damage strain rate with 
respect to the dissipative strain one for describing the evolution of the irreversible 
deformations is related to the higher physical meaning held by the former. As a 
matter of fact, the damage strains are present in the decomposition (2.52) of ε 
whereas the dissipative strains can be expressed only in a rate form and do not 
correspond to an actual strain tensor (Armero and Oller, 2000).  

2.5 Unified dissipative approach for the evolution of the 
internal variables 
As commented in Section 2.4, only one failure criterion, the one governing the 
progression of damage and described in Section 2.3, rules the evolution of both 
damage and permanent deformations. A first implication of this fact is that the 
Kuhn-Tucker relations and the persistency conditions, which identify the situations 
of loading, unloading and reloading for the progression of the damage variables, 
hold also for the evolution of the permanent deformations. As a matter of fact, both 
the definitions provided for the permanent strain increment (2.57) and (2.61) show 
a direct dependence on the increment of the damage variables. These relations are 
expressed in the following, in terms of the equivalent stress variables τ   and of the 
damage thresholds r  : 

0±r               0± ± ±g τ r               0± ±r g   (2.66) 

0± ±r g   (2.67) 

The damage limit surfaces in tension and compression are g   = 0 (see 
Eq. (2.44)), increasing in size in case of loading (g  = 0, r  > 0) and remaining 
unchanged during the unloading or in the undamaged situation (g   < 0, r  = 0). 
The definition for the non-decreasing functions r  , representing the damage 
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thresholds, can be inferred by imposing g  = 0, necessary condition for satisfying 
Eq. (2.67) in the loading case: 

 0
[0, ]

max max± ± ±

t

r = r ; τ

 
 
  
   

(2.68) 

where r0  are defined in Eq. (2.50) and max(τ  ) represent the maximum values 
of the equivalent quantities in tension and compression until the current instant t.  

Besides the necessity of a common criterion for establishing the progression or 
not of all the internal variables, there is also the necessity of defining the evolution 
laws of damage and irreversible deformations within a unified approach (Cervera 
et al., 2018). The combined treatment of the two causes of dissipation (see 
Eq. (2.34)) derives from the fact that the fracture energy Gf , usually considered as 
a pure fracture parameter ruling only the evolution of damage, is actually composed 
of both damage and plastic dissipative contents, as discussed in (Nguyen and 
Houlsby, 2008; Bažant, 1996).  

In analogy with (Oliver, 2000; Cervera, 2003), the evolution of the damage 
variables d   is defined by means of a stress-like function q(r  ), depending on the 
damage thresholds r  : 

 
 

1
q r

d r
r



 


    (2.69) 

The parameters affecting the hardening-softening function q are the initial 
damage thresholds r0  and the hardening-softening moduli Hd  . Specifically,     
Hd   take into account the fracture properties of the material, which are the uniaxial 
strengths f  , the fracture energies Gf  and the widths of the localization zone l   
(Bažant and Oh, 1983). 

The coupling between energy dissipated by irreversible strains and damage is 
modelled in the following way. Given a certain stress-like hardening/softening 
function q(r), the corresponding modulus Hd ruling the growth of damage is 
adjusted on the base of the definition of the permanent strain increment, in such a 
way to guarantee that the total dissipated energy is coherent with the fracture energy 
of the material. 

In order to find proper relationships (with general validity) between the 
hardening-softening moduli Hd   and the fracture energies Gf  , a 1D monotonic 
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loading history from an initial unstressed state to a complete damaged one is 
considered (Cervera, 2003). Since analogous considerations can be done for 1D 
tension and in 1D compression, hereafter the superindex   is omitted.  

The energy per unit volume gf  dissipated in this loading history can be 
expressed as the sum of an initial undamaged contribution gfe, a contribution related 
to damage gfd and a contribution related to permanent deformations gfp, in 
accordance with (Wu and Cervera, 2016; Cervera et al., 2018; Nguyen and 
Houlsby, 2008): 

0

0 00 0
: : : :

t

e e p d p
t t

g dt dt dt dt g + g gf fe f f
  

            σ ε σ ε σ ε σ ε

     

 (2.70) 

In Eq. (2.70), the instant t0 is the one for which the appearance of the nonlinear 
behaviour occurs, i.e. that instant for which the damage threshold r achieves for the 
first time the value r0. According to the crack band theory formulated in (Bažant 

and Oh, 1983), the specific fracture energy is equal to the ratio between the fracture 
energy per unit surface Gf  and the width of the crack band l. Therefore, since Gf is 
a material property, the dissipation related to damage gfd and to permanent strains 
gfp have to be coupled. 

In order to compute gfd and gfp as a function of Hd, the following relations, 
holding after the attainment of r0, are considered: 

er E  

     

 (2.71) 

( )σ q r  (2.72) 

1p e
b

ε ε
b




 (2.73) 

*
p dε ε   (2.74) 

Eqs. (2.73) and (2.74) represent the 1D counterparts of the permanent strain rate 
tensors proposed in Eqs. (2.57) and (2.61), respectively. Due to the assumption of 
monotonic loading conditions, the Heaviside function H is omitted in both the 
expressions. It is worth noting that, whilst in Eq. (2.73) pε  is not affected by 

damage, in Eq. (2.74), the strict dependence of the irreversible strain rate on the 
damage evolution is intrinsic in the dependence of pε  on *

dε . In fact, considering 
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Eq. (2.72) and the incremental forms of Eq. (2.74) and of Eq. (2.60), the increment 
of the permanent deformations from step n−1 to step n can be rewritten in this way: 
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 (2.75) 

Two types of damage evolution laws are analysed and successively adopted in 
the structural applications presented in Chapter 6, Chapter 7 and Chapter 8. The 
first is the one proposed in (Cervera, 2003), with a parabolic hardening stage and 
an exponential softening one:  
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(2.76) 

The introduction of two further variables fp  , representing the equivalent quantities 
for which the peak strength is attained, is necessary (γp   1), together with the 
definition of the parameter Ad (Cervera, 2003): 

± ± ±
p pf = γ f  (2.77) 

p
d

f f
A =

f


 (2.78) 

Taking r0 = fe (2.49) = fp = f, this damage evolution law can be expressed in the 
form: 

   exp 2 0
0 d 0

0

r rq r r H r r
r

   
    

   

 (2.79) 

which represents the classical softening exponential law (Cervera et al., 1996).  

The second one is a new damage evolution law, inspired by the Gaussian 
function. Details about the proposal of this new stress-like hardening-softening 
function are presented in Section 2.5.2. Its expression is: 
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 (2.80) 

In Eqs. (2.76), (2.79) and (2.80) the modulus Hd is positive.  

In Figure 2.8.a, Figure 2.8.b and Figure 2.8.c, the trend of the hardening-
softening (2.76), softening exponential (2.79) and hardening-softening Gaussian 
(2.80) functions, respectively, is displayed in a (r-r0) − q(r) diagram, highlighting 
the meaning of the softening and hardening/softening modulus Hd in the three cases. 
Moreover, the linear approximations of the three q(r) functions, i.e. the first order 
Taylor expansions, are plotted in dashed line. 

 
Figure 2.8: (a) Parabolic-exponential hardening-softening function (2.76); (b) 

exponential softening function (2.79) with its linear approximation; (c) new Gaussian 
hardening-softening function (2.80) with its bi-linear approximation. 

The adjusted moduli Hd are computed in the follow up according to the unified 
approach. A distinction between the parabolic-exponential softening trend and the 
Gaussian trend is performed. For the sake of brevity, the expressions of Hd are 
provided only for those combinations of q(r) functions and definitions of pε

considered in the structural applications presented in Chapter 6, Chapter 7 and 
Chapter 8. 

2.5.1 Parabolic-exponential damage evolution law  
Firstly, the softening modulus of Eq. (2.76) is computed, considering the definition 
of the permanent strain rate provided in Eq. (2.57) and expressed for the 1D case in 
Eq. (2.73). In these conditions, the sum of the three contributions present in 
Eq. (2.70) can be computed as follows: 
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For the single contributions, a detailed computation is provided in (Cervera et al., 
2018). 

By equating the fracture energy in the form (2.81) to the ratio Gf / l, the 
expression for the softening modulus is derived: 

  2
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dA  (2.82) 

Note that for the limit case of r0 = fe (2.49) = fp (2.77) = f, the softening modulus in 
Eq. (2.82), associated to the exponential softening law (2.79), reduces to: 
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H l2H
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 (2.83) 

where H  is the material property defined as:  2 2 fH f E G  . From Eq. (2.83), it 

is clear that higher is the parameter b, higher is the value of Hd. In addition, for 
b = 0, the softening moduli in (2.82) and (2.83) bring to a well-established result 
for linear and exponential softening (Cervera et al., 1996; Cervera, 2003): 
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   dA  (2.84a) 

1d
H lH

H l
 

  
  

 (2.84b) 

In the structural applications presented in Chapter 6, Chapter 7 and Chapter 8, 
where this damage evolution law is adopted, a pure exponential softening behaviour 
(fe

+ = fp
+ = f+) is assumed for d+ and a parabolic hardening followed by an 

exponential softening is considered for d−(fe− < f− < fp). 



58 Energy-equivalent d+/d− damage model for quasi-brittle materials 

 
Four figures show the qualitative differences between the unified dissipative 

approach, based on the adoption of the softening moduli (2.82) or (2.83) here 
computed and the uncoupled one, which independently of the modelling or not of 
permanent deformations, uses the softening moduli (2.85) or (2.84b). 

In each figure, the 1D stress-strain curve in case of b = 0 (null irreversible 
deformations) and 0 < b < 1 (non-null permanent deformations) are plotted. In 
Figure 2.9.a and Figure 2.9.b, the case of 1D tension is analysed while in Figure 
2.10.a and Figure 2.10.b the case of 1D compression, considering the evolution law 
for permanent deformations proposed in Eq. (2.57). 

 
Figure 2.9: 1D tensile behaviour: (a) unified dissipative approach for the computation 

of the internal variables adopting Hd (2.83) and (b) uncoupled dissipative approach, 
adopting Hd (2.84b). 

 
Figure 2.10: 1D compressive behaviour: (a) unified dissipative approach for the 

computation of the internal variables adopting Hd (2.82) and (b) uncoupled dissipative 
approach, adopting Hd (2.84b). 
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As evident from Figure 2.9.a and Figure 2.10.a, the energy released with or 

without permanent deformations is exactly the same resorting to the coupled 
approach, whereas a relevant over-dissipation can be noticed with the adoption of 
the uncoupled one (Figure 2.9.b and Figure 2.10.b), passing from the case of b = 0 
to the case of 0 < b < 1.  

Secondly, in conjunction with the new definition of the permanent strain rate 
provided in Eq. (2.61) and expressed for the 1D case in Eq. (2.75), the pure 
exponential softening function of Eq. (2.79) is considered for computing the 
adjusted Hd (r0 = fe = fp = f). Specifically, to make the following computations easier, 
the linear approximation of the q(r) function (2.79), identified with a dash line in 
Figure 2.8.a, is taken into account: 
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Substituting in Eq. (2.75) the damage values obtained considering the linear q*(r) 
function (2.85) and coming back to a rate form, the expression of the irreversible 
strain rate results: 
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The three different contributions identified in Eq. (2.70) are the following ones: 
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Merging all the contributions and equating the specific fracture energy to the ratio 
between the fracture energy per unit surface Gf

  and the width l, a second degree 
equation in the unknown Hd is found: 

 24 2 1 2 0d dH H H      (2.88) 

where 2H is the following quantity: 
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with the material property  2 2 fH f E G  . In the generic case of ξ ≠ 0, between 

the two possible roots solving Eq. (2.88), the one representing the softening 
modulus in the post-peak behaviour is: 
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(2.90) 

In Figure 2.11, the different contributions explicitly defined in Eq. (2.87) are 
shown, with reference to a linear softening curve. Both the softening modulus 
driving damage 2Hd, whose definition is provided in Eq. (2.90), and the constitutive 
parameter ξ, introduced to identify the portion of *

dε  associated to permanent 
deformations, are pointed out. Together with them, the slope of the global softening 
behaviour (including damage and irreversible deformations) is indicated with 2EH.  

 
Figure 2.11: Different dissipative contributions highlighted with reference to a 1D 

history ruled by the linear softening function (2.85) and influence of the parameter ξ. 

Such a figure allows understanding the limit cases contemplated by the 
proposal developed for permanent deformations in Eq. (2.61). For ξ = 0, the 
material behaviour is perfectly reversible, i.e. irreversible strains are absent. In this 
case, the modulus 2Hd is equal to the quantity expressed in (2.89) since the 
dissipative contribution gfp related to permanent deformations is zero and this is 
coherent with the linear softening modulus presented in (Cervera et al., 1996; 
Cervera, 2003). For growing ξ, the dissipation due to permanent deformations gfp 
increases, while gfd, the dissipation related to damage, decreases. This corresponds 



2.5 Unified dissipative approach for the evolution of the internal 
variables 

61 

 
to a growth of the softening modulus Hd and is coherent with the idea of maintaining 
unaltered the specific energy gf, being this quantity completely defined starting 
from a material constant , which is the fracture energy Gf. 

From Eq. (2.90), a limit value for ξ, ξlim, can be found by ensuring the 
positiveness of the quantity under square root: 

lim

21 4 4
2
HH H    

 
(2.91) 

As shown in the following structural applications (for instance in Section 7.1), this 
value is sufficiently high to guarantee that the experimental evidence is caught for 
quasi-brittle materials as concrete and masonry. Moreover, from Eq. (2.91) it 
derives that ξlim is lower than 1 and that increases for decreasing H.  

2.5.2 Gaussian damage evolution law 
Before computing the hardening-softening modulus of the Gaussian stress-like 
function (2.80) according to the unified dissipative approach, some comments about 
the derivation of this new q(r) function are provided. 

By comparing the new damage evolution law to the exponential one (see Figure 
2.8), the former is able to reproduce a more realistic softening behaviour than the 
latter, especially if compressive loadings are considered. In fact: the linearity is 
abandoned before the attainment of the material strength f (r0 < 1), and not in 
correspondence of it; a non- linear hardening trend precedes the softening one; the 
transition from the linear elastic regime to the softening branch is smooth, and a 
gradual decrease of the tangent stiffness, from positive to negative values, is 
simulated.  

Moreover, the attractiveness of the new damage evolution law lies in the fact 
that both the hardening and the softening trends can be modelled by means of only 
one function, the Gaussian one, and resorting to the same material parameters (Gf, 
f, E) needed in the case of linear or exponential softening. Other damage evolution 
laws contemplate both a hardening and a softening part and a smoother passage 
from the linear elastic range to softening but they generally require more than one 
function to describe the complete non-linear behaviour and, consequently, more 
input parameters. For instance, in (Petracca, 2016), for compressive damage, an 
evolution law including an hardening part, two softening parts and a final constant 
residual stress part is described. Another case is the one presented in Eqs. (2.76), 
which consists in a parabolic hardening followed by an exponential softening. 
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The general way of expressing the Gaussian function is the following: 
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  (2.92) 

where three parameters (a, b and c) appear. In Figure 2.12, the (r-r0) − q(r) curve 
associated to (2.92) is displayed and the parameters a, b and c are identified. 

 
Figure 2.12: Gaussian hardening/softening law with identification of parameters a, b 

and c in Eq. (2.92) and parameters r0 and Hd in Eq (2.80). 

The choice of these parameters depends on three conditions to be ensured: 

(i) the maximum stress σ in a uniaxial test has to be equal to the material strength; 
consequently, since σ = q(r) , the maximum value attained by q(r) has to be 
equal to the peak strength of the material f; 

(ii) the energy per unit volume dissipated has to be coincident with the ratio Gf/l; 
(iii) damage starts at r0, so q(r0) = r0 = f∙exp {−0.5} = 0.60653 f. 

Condition (i) can be satisfied considering a, which represents the maximum value 
attained by q(r), equal to f. Condition (ii) can be guaranteed by varying c, which, as 
shown in Figure 2.12, controls the width of the bell, i.e. the dissipated energy. It is 
important to clarify that condition (iii) is an assumption, meaning that other values 
for r0

 could be considered. The choice here done for r0 is equivalent to assume: 

 exp 0.50r b c f       (2.93) 

From the relation (2.93) it emerges that b, representing the value of the damage 
threshold for which the material strength is attained (see Figure 2.12), is not a free 
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parameter but it depends on c and r0. Hence, the softening modulus Hd

 adopted in 
the definition of the Gaussian hardening-softening function (2.80) can be related to 
r0 and c, since it refers to the absolute value of the derivative of q(r) in 
correspondence of the inflection point r = b + c (see Figure 2.8 and Figure 2.12). 
With reference to (2.92), this quantity can be expressed in the following way: 
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r b c

qH r
cr  


  


  (2.94) 

Finally, the Gaussian stress-like function in the form (2.80) is obtained by 
substituting in (2.92) the parameters a (equal to f), b (Eq. (2.93)) and c (Eq. (2.94)) 
as functions of Hd and r0. 

The computation of the hardening-softening modulus Hd of the Gaussian 
damage function is performed only considering the new definition of the permanent 
strain rate provided in Eq. (2.61) and expressed for the 1D case in Eq. (2.75). To 
simplify the procedure, the linear approximation of the q(r) function (2.80), 
identified with a dash line in Figure 2.8.c, is considered: 
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Substituting in Eq. (2.75) the damage values obtained considering the bi-linear q*(r) 
function (2.95) and coming back to a rate form, the expression of the irreversible 
strain rate results: 
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 (2.96) 

The three different contributions identified in Eq. (2.70) are the following ones: 
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Merging all the contributions and equating the specific fracture energy to the ratio 
between the fracture energy per unit surface Gf /l, a third degree equation in the 
unknown Hd is found: 
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with the material property  2 2 fH f E G  .  

In the generic case of ξ ≠ 0, among the three possible roots solving Eq. (2.98), 
the positive one with value between 0 and 1 must be taken. For ξ growing with 

respect to the null value, the hardening/softening modulus increases. 

Analogously to the case of exponential damage, an upper limit ξlim exists but its 
direct expression can not be easily provided; therefore, it has to be found 
numerically. In case of ξ = 0, the material is perfectly reversible and from Eq. (2.98), 
it is inferable that: 
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(2.100) 

The similarity of Eq. (2.100) with the expressions derived for the modulus 
ruling the exponential softening (Eq. (2.84b)) is evident. However, despite the same 
formalism, a quantitative comparison between them is not univocal and, only on 
the base of the width l and of the mechanical properties of the material ( H ), the 
here proposed Gaussian damage function can be defined steepest in the descending 
branch than the exponential one or viceversa.  

In the structural applications of the damage model, the hardening behaviour 
foreseen by the Gaussian q(r) function is considered only in compression while a 
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pure softening behaviour is contemplated in tension, through the adoption of the 
exponential function (2.79). 

In Figure 2.13, some curves in 1D tension and 1D compression obtained by 
considering the new evolution law for the permanent strain tensor (2.61) are 
displayed with the intent of showing how, by varying ξ and keeping fixed the 
fracture energy Gf, the softening modulus Hd

 computed according to the unified 
procedure changes in order to maintain unaltered the total specific dissipated 
energy. The material parameters considered are collected in Table 2.1 and, 
according to Eq. (2.91), the limit value for ξ+ is equal to 0.7. 

Table 2.1: Material parameters. 
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Figure 2.13: 1D σ-ε curves (a) in tension and (b) in compression for different values 

of the parameter ξ defining εp (2.61). 
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Chapter 3 

Multidirectional d+/d− damage 
model for cyclic loading 

Together with the damage-induced anisotropy, another essential feature that needs 
to be taken into account in the constitutive behaviour of quasi-brittle materials as 
concrete and masonry is the modelling of the microcrack closure-reopening (MCR) 
effects (Caboche, 1992). These effects consist in the partial or total recovery of the 
material stiffness upon load reversal from tension to compression, related to the 
closure of previously generated cracks. The modelling of such a phenomenon is 
fundamental when the main interest is to perform the analysis of concrete, 
reinforced concrete or masonry structures under wind and seismic actions (Chang 
and Mander, 1994; Cervera et al., 1995; Oliveira, 2003; Faria et al., 2004; Xue and 
Yang, 2014).  

As observed in Section 1.2.1, the “original” d+/d− damage model by (Faria et 
al., 1998) is effective in describing the unilateral behaviour of the material only in 
specific cyclic conditions, characterized by alternating full tensile and full 
compressive regimes, i.e., for instance, in a 1D tension-compression cyclic history 
or in bending dominated problems (Faria et al., 2004). In presence of shear cyclic 
conditions, the stiffness recovery capabilities are instead absent and, as remarked 
in correspondence with Figure 1.4, this consideration can be generalized to all those 
damage formulations based on the use of spectral decomposition and scalar damage 
variables. Therefore, not only the “original” d+/d− formulation suffers from this 
limitation, but also the new energy-equivalent d+/d− model presented in Chapter 2. 
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In order to make the new formulation able to deal with microcrack-closure 

reopening effects in generic cyclic conditions, and especially in shear, in the present 
chapter the constitutive model is enriched with a “multidirectional damage 

procedure” with a twofold goal. On the one hand, memory regarding microcracks 
orientation has to be preserved. On the other hand, this has to be achieved 
maintaining only two scalar variables in the constitutive law (2.33). 

For the sake of clarity and without loss of generality, first of all, the 
fundamental aspects of this new approach are described in Section 3.1, referring to 
plane problems. The interest is specifically addressed to the case of cyclic loading, 
either considered alone or preceded and/or followed by non-cyclic (permanent or 
proportionally increasing) loading. Some hints about the possibility of extending 
the procedure to 3D problems are however included. An interesting interpretation 
of the multidirectional damage approach is proposed in Section 3.2, by establishing 
some parallels with the concepts of fixed, multi-directional fixed and rotating crack 
models (Rots and Blaauwendraad, 1989). In Section 3.3, the numerical performance 
and robustness of the approach is treated, by proposing a regularization technique 
able to improve the convergence in correspondence with closure and reopening of 
cracks. Finally, in Section 3.4, some examples, solved at the local point-wise level, 
are shown to demonstrate the enhancements which derive from the adoption of the 
multidirectional damage procedure in terms of histeretic behaviour of the material 
under shear cyclic conditions.  

Part of the work presented in this chapter is already published in (Cervera and 
Tesei, 2017) and in (Cervera et al., 2018). 

3.1 Formulation  
At the base of the “multidirectional d+/d− damage model”, there is the idea of 

considering two independent damage evolution processes for tension and two 
independent damage evolution processes for compression, differing for the 
direction in which they act. This translates in the necessity of monitoring separately 
two damage values in tension and two damage values in compression and this is 
performed by means of a plane partition into two regions for d+ and two regions for 
d−. Each region is endowed with its own (tensile or compressive) degradation 
parameter d and damage threshold r. The assignment of a tensile (compressive) 
damage value to a certain region occurs on the base of the maximum (minimum) 
principal strain direction which has caused it; specifically, the reference tensor 
quantity is the elastic strain εe, in order not to alter the strain-driven formalism 
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followed in the evaluation of the secant matrix and of the internal variables (Section 
2.2.1, Section 2.3 and Section 2.4). 

The active value of d+ (d−), i.e. the one affecting the constitutive law (2.33), is 
computed starting from the internal variables d+ and r+ (d− and r−), associated to 
the damage region in which the current maximum (minimum) principal strain 
direction falls. In order not to compromise the irreversibility of the damage process, 
the updating of the active damage values is performed taking into account, within 
each region, the Kuhn-Tucker and persistency conditions (2.66) and (2.67) and the 
monotonically increasing evolution laws (2.69). The inactive damage values are 
however kept in memory with the possibility of being re-activated in 
correspondence with a principal directions’ rotation. 

The distinction between two families of cyclic loading conditions is herein 
considered: 

(i) cyclic loading characterized by a fixed principal reference system and by 
changes of the principal configuration only in presence of load reversal; this is 
the case in a 1D cyclic history or in pure shear cyclic conditions, when the 
rotation of the principal directions is represented by a swapping between 
minimum and maximum principal directions. 

(ii) Cyclic loading with continuous rotation of maximum and minimum principal 
directions; this is the case of cyclic histories preceded by non negligible not-
cyclic loading. 

To clarify this classification, in Figure 3.1, two problems, one belonging to the 
category of Load Type (i) (Figure 3.1.a) and the other belonging to the category of 
Load Type (ii) (Figure 3.1.b) are displayed: the former represents a problem of pure 
cyclic shear, the latter represents a cyclic shear history preceded by a pre-
contraction. The objective is to underline the differences in terms of rotation of the 
principal maximum (elastic strain) direction with respect to the horizontal axis, 
quantity which is defined by means of the angle θ+. While in the case of Load Type 
(i) the angle θ+ is fixed except at loading reversal (instant t1), when a swapping 
between the maximum and minimum principal directions occurs, in the case of 
Load Type (ii) this quantity continuously changes during the cyclic history. It is 
worth noting that, in the case of Load type (ii), the angle θ+ identifies actually the 
rotation between the maximum principal current direction and the maximum 
principal direction in the initial configuration, at time t0 (which is horizontal, due to 
the initial vertical pre-contraction). 
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Figure 3.1: Differences between the two types of cyclic loading conditions considered 

in the multidirectional damage procedure: (a) Load Type (i) and (b) Load Type (ii). 

It is important to underline that the multidirectional concepts above described, 
based on the monitoring of damage depending on its orientation, hold for both the 
types of loading. As discussed in the follow-up, the differences mainly lie in the 
way according to which the damage regions are identified during the loading 
history, related to the differences stressed in Figure 3.1. This will affect also the 
stiffness recovery capabilities which can be modeled in the two different loading 
conditions. 

3.1.1 Cyclic Load Type (i) 
Regarding load Type (i), since, except swappings in correspondence of load 
reversal, the principal directions are fixed during the loading history, also the 
damage regions in tension and compression in which the space is divided are 
considered fixed. Their bisectors are assumed coincident with the principal 
reference system (pmax_d , pmin_d) in correspondence of which damage occurs for the 
first time and their amplitude is equal to π/2: 
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(3.1) 

The orthogonality between the bisectors of the tensile (compressive) damage 
regions, visible in Eq. (27), allows assuming that the full fracture energy Gf

+ (Gf
−) 
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is consumed in each tensile (compressive) region, independently from one other. 
When a change of the principal configuration occurs for the first time after the plane 
partition, i.e. after appearance of damage, two situations are contemplated. If the 
rotation is significant, for instance equal to π/2 in case of swapping between 

maximum and minimum principal directions, a complete regain of the initial 
stiffness is assured; if the rotation is not relevant, and lower than π/4, there is no 

switching from a region to the other one, and no unilateral effects are visible in the 
structural response.  

The working principles of the multidirectional damage model in case of Load 
Type (i) are explained, by means of Figure 3.2, considering the problem of a panel 
subjected to a cyclic horizontal displacement ux inducing shear, just commented in 
Figure 3.1.a. It is assumed that uxL = uxRL = uxmax. 

 

 

 
Figure 3.2:  (a) Load Type (i) problem: identification of the damage regions and active 

damage variables (in grey) (b) before and (c) after loading reversal.  
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In Figure 3.2 it is shown how two damage values for tension and two damage 

values for compression are kept in memory based on the current principal strain 
directions (which are p+0−>1, p−0−>1 in Figure 3.2.b and p+1−>2, p−1−>2 in Figure 3.2.c). 
The active damage values in tension and compression are the ones associated to the 
regions highlighted in gray. It is worth noting how, in correspondence with the 
instant tmax1 (Figure 3.2.b), the degradation tensile (compressive) parameter is 
associated only to the tensile (compressive) damage region 1. The absence of 
damage in the other tensile (compressive) region allows simulating the recovery of 
stiffness in correspondence with the instant t1, i.e., when the swapping between 
maximum and minimum principal directions occurs.  

The problems which can be treated according to this procedure are mainly 
represented by structural elements in which permanent loads are negligible with 
respect to the variable loads with cyclic nature, as wind and seismic actions. 

3.1.2 Cyclic Load Type (ii) 
Regarding load Type (ii), the continuous rotation of the principal directions and the 
oscillation around the initial configuration requires the adoption of a criterion for 
defining the activation of a multidirectional damage approach and the consideration 
of evolving, non-fixed, damage regions. To do this, the introduction of two sets of 
variables is performed, monitoring the deviation of the principal reference system 
with respect to the initial conditions; the definition of the first set of variables, the 
equivalent deviation quantities τ θ , is the following: 

 cos± ±
θ ττ = θ  (3.2) 

where θτ
+ (θτ

−) represents the absolute value of the angle between the current 
maximum (minimum) principal strain direction and the initial maximum 
(minimum) principal strain direction, ranging from 0 to π/2. 

The second set of variables is constituted by the threshold deviation quantities 
rθ  , which can be computed according to the expression: 
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(3.3) 

From Eq. (3.3), it results that θr
+ (θr

−) represents the maximum value assumed by 
the equivalent angle θτ

+ (θτ
−) until the current time t, provided that it is higher than 

the minimum threshold deviation θmin  This parameter assumes the important role 
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of the minimum deviation angle for which an independent treatment of the damage 
variable is valid. 

The analogy between the definition of the damage threshold r  (2.68) and the 
deviation threshold rθ   (3.3) is evident: as r+ (r−) rules the evolution of the damage 
variable d+ (d−), as rθ

+ (rθ
−) governs the evolution of the damage regions, in terms 

of their bisector and their amplitude. Specifically: 
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where bisector+
1,2 (bisector−

1,2) refer to the directions evaluated starting from the 
initial maximum pmax_0 (minimum pmin_0) principal strain direction. As visible in 
Eq. (3.4), the amplitude of each region increases with the evolution of the region’s 

bisector: this translates in the fact that two directions initially belonging to the same 
damage region continue to be affected by the same degradation parameter during 
the whole loading history. Moreover, due to the orthogonality between the 
maximum and minimum principal directions, τθ

+ = τθ
− and rθ

+ = rθ
−; hence, the 

activation of the multidirectional procedure and the updating of the damage regions 
in tension and in compression, whose conditions are expressed in Eqs. (3.5), occur 
simultaneously. For this reason, hereafter, the superindex ±  is dropped. 

0θr       0g τ r         0θ θr g       0θ θr g   (3.5) 

Once again, a similarity between the conditions (3.5) and the Kuhn-Tucker and 
persistency conditions (2.66) and (2.67) ruling the updating of the damage variables 
is present. According to Eqs. (3.5), four different situations can be distinguished: 

 gθ > 0, r = 0 and rθ = cos(θmin): the multidirectional procedure is not active 
since the equivalent deviation angle θτ (3.2) has never overcome the minimum 
deviation θmin. The value of d+( d−) is the same in both the tensile (compressive) 
damage regions. The damage regions are identified according to Eq. (3.4); 

 gθ = 0, r < 0 and θr < π/4 (loading conditions): the multidirectional procedure 

is active and the bisectors of the damage regions rotate, accompanied by an 
increase of the regions’ amplitude, according to Eq. (3.4); 

 gθ = 0, r < 0 and θr ≥ π/4 (loading conditions): the multidirectional procedure 

is active but the damage regions do not evolve, according to Eq. (3.4), to avoid 
overlapping; 
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 gθ > 0, r = 0 and rθ < cos(θmin) (unloading conditions): the multidirectional 

procedure is active and the damage regions coincide with the ones assumed at 
the last loading step. 

The essentials of the multidirectional damage model in the presence of 
continuously rotating principal directions (Load Type (ii)) are illustrated by means 
of Figure 3.3, making reference to the problem of a panel subjected first to pre-
contraction and the to cyclic shear, displayed in Figure 3.1.b. It is assumed that 
uxL = uxRL = uxmax. 

It is important to note that, except for the positive and negative sign, the θ+ - t 
curve shown in Figure 3.3.a represents the trend of the equivalent quantity θτ

+ (see 
Eq. (3.2)), which coincides with the absolute value of the actual deviation angle θ+. 
In Figure 3.3.b, no distinction between the values of d+(d−) in the two tensile 
(compressive) damage regions is visible. In fact, this state (instant t = tminL) 
corresponds to the activation of the multidirectional procedure; before it, the 
deviation has always been lower than θmin, avoiding a directional treatment of 
damage (gθ > 0, r = 0 and rθ = cos(θmin)). The adoption of the grey colour to stress 
the active damage values is here unuseful, due to the fact that the plane partition in 
distinct damage regions is not operative yet. Moreover, Figure 3.3.c describes the 
damage distribution in the unloading conditions after the achievement of the peak 
displacement in tmax1, in the instant tminUN. In this case, the damage values and the 
damage regions are the ones assumed in correspondence with tmax1 and the 
multidirectional procedure is active since, only in the regions including the current 
principal strain directions (region 1+ and region 1−, the gray ones), the damage 
variables have evolved with respect to the values in tminL (gθ > 0, r = 0 and 
rθ < cos(θmin)). 

Similarly to the case of load Type (i), the description of the microcrack closure-
reopening effects is ensured by the transition from a damage region to the other one, 
occurring in correspondence with the load sign reversal (instant t1). In fact, from 
the active tensile damage value d+

1 (d−
1) in Figure 3.3.c, there is the passage to the 

active one d+
2 (d−

2) in Figure 3.3.d, corresponding to the maximum reloading 
instant tmax2 (gθ = 0, r < 0 and θr < π/4).  
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Figure 3.3: (a) Load Type (ii) problem: identification of the damage regions and of the 

active damage variables (in grey) (b) in correspondence with the activation of the 
multidirectional procedure, (c) in unloading conditions and (d) at the maximum reloading.  
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Finally, from Figure 3.3, the evolving nature of the damage regions, foreseen 

by the multidirectional procedure in case of rotating principal directions, can be 
observed. In fact, the amplitude of the damage regions is equal to 2θmin in Figure 
3.3.b while is equal to 2θmax (<π/4) in Figure 3.3.c and Figure 3.3.d. Specifically, in 
Figure 3.3.c, unloading conditions are represented since the bisectors of the damage 
regions (identified by θr) and the principal directions (whose current deviation is θτ) 
do not coincide. Differently, Figure 3.3.d refers to loading conditions: bisector+1 

coincides with the principal direction pmax while bisector−1 coincides with pmin. 

From the above considerations, the introduction of a minimum threshold θmin 
can be better understood: it has the objective of delaying the activation of a 
multidirectional damage model, and consequently, it implies the possibility of a 
partial stiffness recovery in a generic loading history. The modelling of a partial 
stiffness recovery seems adequate for loading conditions of Type (ii): in fact, a 
continuous rotation of the principal directions without any brusque variation allows 
one to transfer a certain amount of damage accumulated in a direction to the closest 
ones. The two limit cases, characterized by no stiffness recovery and by complete 
stiffness recovery, are however covered by the present formulation. If the cyclic 
history does not generate relevant deviations from the principal reference 
configuration of the permanent load, no stiffness recovery occurs; if no damage is 
present before the activation of the multidirectional damage procedure, a total 
stiffness recovery is obtained. 

Conversely to load Type (i), this procedure allows to model situations in which 
permanent loads are non-negligible with respect to variable cyclic actions. 

3.1.3 3D extension 
The 3D extension of the here-described multidirectional damage model has to be 
further analyzed, but it seems possible by referring to the same concepts introduced 
for plane problems and adopting the same distinction in cyclic load Type (i) and 
cyclic load Type (ii). As in 2D, the partition of the space in regions for tensile and 
compressive damage is performed, d+ (d−) is assigned to all of the regions including 
an eigenvector associated with a positive (negative) principal strain, and the active 
value of the tensile damage variable (compressive damage variable) is computed 
considering the current maximum (minimum) principal elastic strain direction.  

As regards load Type (i), the multidirectional procedure is considered active from 
the beginning of the cyclic loading history, and the space is divided into three 
regions for tensile damage and into three regions for compressive damage, each 
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region associated to a principal direction. As in 2D, the bisectors of the damage 
regions coincide with the principal directions, which are fixed throughout the 
loading history, and the amplitude of each region is equal to π/2, meaning that each 

principal direction that forms an angle θ with the bisector of a region, such that 
|cos(θ)| ≥ cos(π/4), belongs to that region.  

For load Type (ii), characterized by a continuous rotation of the principal directions, 
the activation of the multidirectional procedure and the updating of the damage 
regions are ruled by the same conditions holding in 2D, i.e., the conditions 
expressed in (3.5). Likewise, the deviation with respect to the initial configuration 
is evaluated resorting to definition (3.2), and the threshold quantity is provided by 
(3.3). Since the active damage values are computed based on the maximum and 
minimum principal directions (not the intermediate principal directions) and the 
loading conditions foresee a continuous, and not abrupt, rotation of the principal 
reference system, additional damage regions associated with the rotation of the 
intermediate principal direction are not necessary. Therefore, as in 2D problems, 
two regions for tensile damage, related to the rotation of the maximum principal 
direction, and two regions for compressive damage, related to the rotation of the 
minimum principal direction, are considered. If the bisector of the tensile damage 
region 1, coinciding with the current maximum principal direction (loading 
conditions), is inclined by an angle +θ+

r (or + π/4) with respect to the initial 

maximum principal strain direction, the bisector of the tensile damage region 2 is 
automatically defined as the direction inclined of an angle −θ+

r (or − π/4) with 

respect to the initial maximum principal strain direction and belonging to the plane 
in which the maximum principal strain direction has rotated in the loading history. 
A direction is included in a region if it forms an angle θ with the bisector of that 
region, such that |cos(θ)| ≥ |cos(θ ±

r)|. 

3.2 Parallels among the multidirectional damage model 
and fixed/rotating smeared crack concepts 
The new damage model proposed in Chapter 2 fits within the framework of the 
rotating smeared crack concept, introduced for the first time in (Cope et. al, 1980). 
In fact, as outlined in Section 2.2.1, the alignment between the axes of orthotropy 
of the damaged material and the principal strain directions is a feature of the 
proposed orthotropic damage model. Moreover, the limitations observed in the 
modelling of MCR effects in presence of shear cyclic loading (Figure 1.4) are 
comparable to the inability of the rotating crack models to take into account the 
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orientation of previous defects. The inclusion of the procedure described in Section 
3.1 can be interpreted as an enrichement of the constitutive equations with some 
properties proper of the fixed crack models (Rots et al., 1985), specifically the 
preservation of memory regarding damage orientation. Rather than to a pure fixed 
crack model, the present proposal can be assimilated to a multidirectional fixed 
crack model (De Borst and Nauta, 1985; Riggs and Powell, 1986; Rots and 
Blaauwendraad, 1989).  

First of all, a similar use of a threshold angle is present in the multidirectional 
damage model and in the multidirectional fixed crack model. As in the former, the 
transition between two different damage values is performed only when a rotation 
of the principal directions greater than a certain angle occurs, in the latter, a new 
crack is initiated only when the inclination of the principal directions with respect 
to existing cracks overcomes a certain threshold. Moreover, some specific 
hypotheses discussed in (Rots and Blaauwendraad, 1989) for the implementation 
of a multidirectional model are in good agreement with the choices here done in the 
modelling of the multidirectional damage. In fact, the assumption to consider the 
value of the damage variables evolving in a region independently of what happens 
in the other region is analogous to consider the behaviour of each multidirectional 
crack as the one of a single crack. In view of this, adequate values for θmin, the 
minimum threshold deviation appearing in Eq. (3.3), can be chosen in accordance 
with (Rots and Blaauwendraad, 1989) and range between π/12 and π/6. In addition, 
the choice of considering only one active value of damage in tension and one in 
compression is in line with the hypothesis done in multidirectional models of 
adopting the most recently initiated defect as the only currently-active crack. This 
is supported by experimental evidence: only the most recently initiated crack is 
active in a system of non-orthogonal defects (Vecchio and Collins, 1986).  

A difference between the multidirectional fixed crack concept and the 
multidirectional damage model lies in the fact that the former deals with a collection 
of several fixed defects of different orientation while the latter considers only two 
independent damage regions (2D problems). Finally, differently from the 
multidirectional fixed damage models, the multidirectional damage formulation 
maintains during the whole damage process the coaxiality between principal 
directions of elastic strains and axes of orthotropy. Hence, it keeps the motivating 
feature of the rotating crack models, coaxiality, which reduces stress locking, while 
remedying the impossibility of tracking memory of the material defects, the main 
objection arisen against the rotating crack concept (Bažant, 1983).  
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3.3 Numerical aspects  
In the present section, an implementation detail addressed to improve the numerical 
robustness of the multidirectional procedure described in Section 3.1 is introduced. 

When treating microcrack closure-reopening effects, a further aspect to be 
taken into account regards the convergence difficulties arising at structural level. 
As pointed out in (Jefferson and Mihai, 2015), these numerical difficulties are 
related to the abrupt changes in the secant stiffness going from an open crack state 
to a closed one, or vice versa.  

The passage from a damage region to the other one, performed on the base of 
the current principal strain directions, implies modifications of the active damage 
variables d+ and d− affecting the secant stiffness (2.24). Therefore, in analogy with 
the considerations provided in (Jefferson and Mihai, 2015), the multidirectional 
damage approach described in Section 3.1 may suffer from convergence problems. 
Hindrance in achieving convergence on the residual nodal forces has been observed 
especially in case of load Type (ii) (Section 3.1.2); in fact, due to the partition 
adopted for this kind of loads (see Figure 3.3), at load sign reversal, principal 
directions tend to oscillate around the boundary between a damage region and the 
other one. 

In order to eliminate these convergence difficulties, the introduction of a 
transition region, of amplitude 2θt, is here proposed, with the purpose of making 
the passage between two different damage regions smoother. The working 
principles of this smoothing procedure are explained in Figure 3.4, where it is 
shown how the transition region has, as bisector, the boundary between the damage 
region 1 and the damage region 2. Superindices + and – for identifying the regions 
and their corresponding quantities r and d are dropped, since the procedure hereafter 
described holds for both tensile and compressive regions, provided that the 
principal current elastic strain direction p refers to pmax and pmin, respectively. 

When the current principal strain direction p belongs to the transition region, 
the active damage threshold quantity r is evaluated according to Eq. (3.6), resorting 
to a hyperbolic tangent function: 

   1 2 1 2
21 1 tanh

2 2
p

t
t

r = r r r r




 
     

   
(3.6) 

where the pedix t stands for transition, r1 and r2 are the damage threshold values 
pertaining to region 1 and 2, respectively, and θp is the angle between p and the 
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boundary. Hence, the active damage value d in the transition region is evaluated 
starting from the smoothed damage threshold (3.6) and referring to the evolution 
damage law expressed in Eqs. (2.69). 

The trend of the smoothing transition, operated on the damage threshold 
quantity, is plotted in Figure 3.4.b, where the amplitude of the transition region is 
also identified. This amplitude, defined by the parameter θt, is chosen to be 
sufficiently small compared to the rotation performed by the principal directions, 
which can be, at most, π/2. In case of p falling outside the transition region, the 
active value of the damage variable is computed referring to r1 or r2, according to 
the procedure declared in Section 3.1. 

The impact that such transition has on the numerical robustness of the 
multidirectional damage approach is studied with reference to a structural 
application involving cyclic shear conditions in Section 6.3, where convergence 
histories for different values of the parameter θt are compared. 

 
Figure 3.4: Smoothing of the multidirectional procedure: (a) identification of the 

transition region and (b) hyperbolic tangent function operating the regularization. 

3.4 Enhanced microcrack closure-reopening capabilities 
under cyclic shear 
In order to show the enhanced dissipative capabilities of the multidirectional 
damage model in presence of cyclic load conditions, some problems are solved at 
a local point-wise level and commented on. 

All the numerical analyses are performed considering an exponential damage 
evolution law in tension (Eq. (2.76) with r0

+ = f+ = fp
+, i.e. γe

+ = γp
+) and a parabolic 

hardening-exponential softening trend in compression (Eq. (2.76) with 
r0

− < f− < fp
−, γe

− = 0.5 and γp
− = l.3). 
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Initially, the effects of the multidirectional treatment of damage is analyzed in 

the hypothesis of null permanent deformations. Then, they are included with the 
intent of showing how the combined adoption of the multidirectional approach and 
irreversible deformations favorably affects the structural dissipative behaviour 
under cyclic shear conditions. The definition used for εp in this section is the one 
presented in Eq. (2.57). 

The constitutive properties adopted in the numerical analyses are given in 
Table 3.1. They are representative of masonry, one of the cohesive-frictional 
materials more of interest in civil structural applications.  

Table 3.1: Material parameters used in the numerical analyses. 

E 
[MPa] 

ν 
[-] 

f+ 
[MPa] 

f− 
[MPa] 

Gf
+ 

[N/mm] 
Gf

− 
[N/mm] 

fb
−/f− 
[-] 

k 
[-] 

1540 0.2 0.13 -3.9 0.1 10 1.15 0.75 

First of all, a cyclic uniaxial load history, characterized by alternating 1D 
tension-1D compression, is considered. Since the constitutive behaviours obtained 
with or without the adoption of the multidirectional damage procedure are 
qualitatively the same in terms of unilateral effects, only one σ-ε curve is shown, in 
Figure 3.5.  

 
Figure 3.5: 1D cyclic loading history. 

It refers to the following loading sequence: a loading in tension with an exceeding 
of the damage threshold r0

+ (O-A-B), a partial unloading followed by a reloading 
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in tension with further progression of damage (B-C-D), an unloading in 
compression with softening (D-O-E-F) and a reloading in tension (F-O-D-G). 

It is evident from Figure 3.5 that the initial stiffness recovery in the transition from 
tension to compression (D-O-E) is captured. However, as discussed in Section 1.2.1 
and at the beginning of this chapter, even the “original” d+/d− damage model 
exhibits such unilateral effects.  

Therefore, the advantages of the proposed formulation have to be demonstrated 
in more generic loading conditions, as the ones previously commented on and 
represented in Figure 3.1.a (Load Type (i)) and in Figure 3.1.b (Load Type (ii)). 
Hereafter, it is assumed that the maximum horizontal displacement in the loading 
stage is lower than the maximum displacement in the reloading one, i.e., uxL < |uxRL|. 

Regarding the problem of the panel subjected to pure shear cyclic loading 
conditions (Figure 3.1.a), the normalized τ - γ responses obtained without and with 
the multidirectional damage procedure are displayed in Figure 3.6.a and Figure 
3.6.b, respectively. In this case, the differences in terms of stiffness recovery are 
clear: in Figure 3.6.a, no stiffness recovery is visible when the inversion of the 
horizontal displacement occurs in the instant t1 while in Figure 3.6.b the regain of 
the initial stiffness is present. As commented on in Section 3.1.1, the total stiffness 
recovery is justified by the orthogonality of the tensile (compressive) directions 
between the first loading stage (going from instant 0 to t1) and the second loading 
one (going from t1 to t2).  

 
Figure 3.6: Structural response of the problem represented in Figure 3.1.a: (a) without 

the multidirectional approach and (b) with the multidirectional approach. 

As regards the problem of the panel subjected first to a pre-contraction and then 
to a shear cyclic loading history (Figure 3.1.b), three combinations of horizontal 
and vertical displacement values are analyzed, differing for the ratio m = |uxmax/uy| 
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between the maximum ux attained (uxRL) and the imposed uy. Different values of this 
ratio translate into different maximum values assumed in the loading history by the 
variable rθ   (Eq. (3.3)). The minimum deviation θmin (Eq. (3.3)) is chosen equal to 
π/8. 

On the one hand, in Figure 3.7, the value θ+
τ is lower than θmin, meaning that 

the multidirectional procedure is never activated (m = 1). As a matter of fact, no 
differences can be found between the τ - γ curves obtained without (Figure 3.7.a) 
and with the multidirectional approach (Figure 3.7.b), both characterized by the 
absence of stiffness recovery when the horizontal displacement changes sign. In 
these conditions, the lack of MCR capabilities is adequate because the maximum 
and minimum principal strain directions responsible for the damage generation do 
not deviate significantly from the principal configuration induced by the permanent 
vertical displacement. On the other hand, in both Figure 3.8 and Figure 3.9, the 
maximum deviation is greater than θmin, and the ratios between the horizontal and 
vertical displacements considered are m = 1.8 and m = 8, respectively. In both these 
cases, the enhanced microcrack closure-reopening capabilities of the 
multidirectional damage procedure are evident: the curves resulting from the 
standard damage formulation (Figure 3.8.a and Figure 3.9.a) do not show any 
stiffness recovery while the adoption of the multidirectional approach (Figure 3.8.b 
and Figure 3.9.b) simulates the closure effects satisfactorily.  

 

 
Figure 3.7: Structural response of the problem represented in Figure 3.1.b, ratio m=1: 

(a) without and (b) with the multidirectional approach. 
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Figure 3.8: Structural response of the problem represented in Figure 3.1.b, ratio m=1.8: 

(a) without and (b) with the multidirectional approach. 

 
Figure 3.9: Structural response of the problem represented in Figure 3.1.b, ratio m=8: 

(a) without and (b) with the multidirectional approach. 

Specifically, for m = 1.8, the stiffness recovery is only partial (Figure 3.8.b), 
while for m = 8 (Figure 3.9.b), it is complete. The response in Figure 3.9.b is 
analogous to the one in Figure 3.6.b in terms of total recovery of the initial stiffness: 
this happens because, in \he former case, the vertical displacement is almost 
negligible compared with the horizontal one, while in the latter case, it is absent. 
This observation translates in the fact that the multidirectional procedure for Load 
Type (ii) is able to simulate the same MCR capabilities of the multidirectional 
procedure in case of Load Type (i), when the maximum rotation performed by the 
strain principal directions is large enough. 

Finally, the in-plane cyclic shear problem illustrated in Figure 3.1.a is studied 
considering five complete cycles of loading and reloading, with increasing 
amplitude. For this problem, permanent deformations are included in the analyses, 
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according to the definition (2.57) and adopting b+ = 0.15 and b− = 0.05. The 
structural responses obtained without (Figure 3.10.a) and with the multidirectional 
procedure (Figure 3.10.b) are compared. Once again, the enhanced MCR 
capabilities of the multidirectional procedure are evident. The absence of unilateral 
effects in Figure 3.10.a is responsible for a strong asymmetry in the cyclic 
dissipative behaviour, which is not supported by experimental evidence on shear 
(masonry or reinforced concrete) panels subjected to cyclic conditions (Magenes 
and Calvi, 1992; Anthoine and Magonette, 1994; Vecchio, 1999; Silva et al., 2017). 
Besides the stiffness recovery appreciable in Figure 3.10.b, another effect strictly 
related to the adoption of the multidirectional procedure is the more adequate 
representation of the evolution of permanent deformations under cyclic shear. Here, 
the possibility of differentiating the damage processes depending on the orientation 
of the principal strain directions reflects in realistically taking into account the 
energy dissipated in the formation of both the orthogonal cracks. 

 
Figure 3.10: Structural response of the problem represented in Figure 3.1.a with 

multiple cycles: (a) without and (b) with the multidirectional approach. 

This translates in considering the active damage values increasing even after 
loading reversal and has, as consequence, the accumulation both in loading and 

reloading of the permanent strains (2.57), defined on the base of d  and d (see 
Figure 3.10.b). Contrarily, in a pure scalar damage formulation, the lack of 
unilateral effects in shear conditions implies, due to Eq. (12), an underestimation of 
the irreversible deformations in the reloading stages (see Figure 3.10.a). These 
enhanced dissipative capabilities under cyclic conditions ensured by the proposed 
multidirectional damage model are further underlined in Section 6.3, devoted to 
structural applications, where the comparison with experimental data is provided.  
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Chapter 4 

Regularized strain tensor damage 
model 

The formulation of the nonlocal integral scheme thought for the regularization 
of the new d+/d− damage model is presented in this chapter. Specifically, the 
peculiarities of the constitutive model which are, among the others, the 
differentiation between compressive and tensile regimes and the coincidence 
between the axes of orthotropy of the damage material and the principal directions 
of strain and stress, encourage some reflections about the variable or variables to 
be averaged. A discussion on this topic is presented in Section 4.1.1, in order to 
reduce the arbitrariness in the choice of the nonlocal quantity by relating it to the 
particular constitutive model adopted. Then, in Section 4.1.2, the regularized 
extension of the proposed damage model is developed, underlying the unchanged 
thermo-dynamic consistency of the formulation. Finally, in Section 4.2, the 
identification of the input parameters of the regularized damage model is addressed, 
resorting to the case of a uniaxially loaded bar. In this context, particular attention 
is directed towards the nature of the nonlocal internal length lRG, which is interpreted 
either as a regularization parameter or as a material property. 

The mesh-size and mesh-bias independence of the results achieved with the 
nonlocal damage formulation are studied in Chapter 7, by means of structural 
applications involving different quasi-brittle materials as plain concrete, reinforced 
concrete and masonry elements.  
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4.1 Formulation  

4.1.1 Choice of the variable to be averaged 
In accordance with (Jirásek, 1998a), the quantities which can be selected as 
nonlocal have to satisfy some basic requirements. First of all, the averaging has to 
affect only the nonlinear response, while preserving the local character in the initial 
elastic phase. Moreover, a reasonable material behaviour has to be obtained in 
simple loading situations, not only at the onset of the strain localization but during 
the whole degradation process. Under uniaxial tension, for instance, the adequacy 
of a formulation is ensured when a localized strain profile and a vanishing stress 
state are reproduced at complete failure.  

On the base of these criteria, the generic constitutive laws of the eligible 
nonlocal approaches are summarized in Eqs. (4.1), (4.2) and (4.3) (see (Jirásek, 
1998a; Bažant and Jirásek, 2002)), where the quantity on which the averaging 
operator is applied is labeled with an overbar: 

    : e eσ D Ω Τ ε ε  (4.1) 

  
1

d :


 0 e eσ C C ε ε  (4.2) 

  : e eσ D ε ε  (4.3) 

In all cases, the averaging acts only after the appearance of the nonlinear 
behaviour; since the reversible strain εe, by which the stiffness operator D is 
multiplied, is always present in its local version, a local linear elastic response is 
initially ensured.  

The nonlocal variable in Eq. (4.1) is the tensor T of the equivalent stress 
quantities τij, according to which the damage tensor Ω is computed. In the damage 
model proposed in Chapter 2, the equivalent stress variables necessary to compute 
d+and d− are τ+ (Eq. (2.45)) and τ− (Eq. (2.46)). This is an extension to a generalized 
constitutive law of the nonlocal isotropic damage models proposed by (Pijaudier-
Cabot and Bažant, 1987) and (Saouridis and Mazars, 1992), based on the averaging 
of the equivalent energy release rate and of the equivalent strain, respectively.  

The nonlocal version expressed in Eq. (4.2) concerns the averaging of the 
inelastic material compliance Cd, which is a generalization of the averaging of the 
specific fracturing strain mentioned in (Pijaudier-Cabot and Bažant, 1987).  
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Finally, in Eq. (4.3), the nonlocal counterpart of the reversible strain tensor εe 

is adopted only in the definition of the stiffness degradation, while the strain in the 
stress-strain relation is maintained local, as described for instance in (Bažant and 

Lin, 1988).  

An interesting aspect to be outlined is that the averaging of the damage variable 
Ω, suggested in (Bažant and Pijaudier-Cabot, 1988), is not included in the class of 
eligible regularized approaches because it fails in exhibiting full tensile stress 
relaxation at complete failure. 

On the base of these considerations, the nonlocal approach chosen in order to 
develop a regularized version of the energy-equivalent d+/d− model is the one based 
on the averaging of the elastic strain tensor. Such a strategy is adequate for this 
specific damage formulation, because it allows to perform the assessment of the 
damage criteria in tension and compression (g  = τ   – r   ≤ 0,), which depend on 
the positive and negative split of the elastic stress tensor (see Eqs. (2.45) and (2.46)), 
on the base of the averaged strain eε . Conversely, an averaging applied to τ  , in 
line with the nonlocal version described in Eq. (4.1), would be weaker since the 
distinction between tensile and compressive regimes, inherent in the computation 
of the equivalent quantities, would be carried out on the basis of the local strains. 
Moreover, the elastic strain tensor as variable to be averaged allows to apply the 
multidirectional procedure proposed in Chapter 3 with reference to the principal 
directions of the regularized strain, which would be otherwise impossible limiting 
the averaging to the scalar equivalent quantities.  

However, the averaging of the type expressed in Eq. (4.3) has to be 
contextualized, in order to fit with the constitutive operator presented in Eq. (2.24) 
and derived under the assumption of energy-equivalence. The direct application of 
Eq. (4.3) to DE leads to: 

          + + +,d r ,d r ,d ,d : : ,d ,d      * *
E E e e e e 0 eD D ε ε ε A ε D A ε  (4.4) 

where the regularized mapping operator *A  is: 

          1 1+ +,d r ,d r d d          
* *

e e e e eA A ε ε ε Q ε + I Q ε  (4.5) 

and the following equalities have been exploited: 

 er r   = ε  (4.6) 



90 Regularized strain tensor damage model 

 

  ed d r    = ε  (4.7) 

Actually, the definition of the secant stiffness presented in Eq. (4.4) has to be 
avoided because it violates the rotating nature of the local orthotropic damage 
model formulated in Chapter 2. As a matter of fact, except for the condition of 
homogeneous strains, the nonlocal regularized strain tensor eε  is different from the 

local strain εe and this implies, for ED  ≠ D0, the lack of coincidence between the 
axes of orthotropy of the damaged material and the principal directions of the elastic 
strain. Consequently, the coincidence between principal directions of strain and 
stress is no more guaranteed. The necessity of maintaining unaltered the rotating 
aspect of the model, which is beneficial in terms of stress locking reduction, obliges 
to propose a slightly different format of the constitutive regularized operator DE, 
as: 

          + + +,d r ,d r ,d ,d : : ,d ,d      * *
E E e e e e 0 eD D ε ε ε A ε D A ε  (4.8) 

In *A , only the scalar damage variables are computed starting from the nonlocal 
counterpart of the elastic strain tensor, while the projection operator Q depends on 
the local elastic strain: 

          1 1+ +,d r ,d r d d          
* *

e e e e eA A ε ε ε Q ε + I Q ε  (4.9) 

Hence, exploiting Eqs. (4.8) and (4.9), the regularized d+/d− damage model 
maintains the same constitutive properties of the local formulation. 

These observations can be generalized to the whole class of orthotropic damage 
models with rotating material principal directions. Different conclusions can be 
drawn for the class of orthotropic damage models with fixed axes of material 
orthotropy, for which a nonlocal procedure of the type shown in Eq. (4.3) holds, as 
demonstrated by the anisotropic nonlocal damage formulation for composites 
presented in (Kennedy and Nahan, 1996). 

On the one hand, the choice of resorting to the elastic strain average 
distinguishes the present formulation from the majority of nonlocal damage models 
existing in the literature and, especially, from other d+/d− damage models recently 
developed to study concrete (He et al., 2015), reinforced concrete (Xenos and 
Grassl, 2016) and masonry structures (Toti et al., 2015), all of them characterized 
by the averaging of the tensile and compressive equivalent quantities. A comparison 
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between the two different regularized approaches is shown in Chapter 7, with 
reference to a reinforced concrete beam subjected to a four-point bending test. On 
the other hand, a nonlocal d+/d− damage formulation which can be considered 
similar to the present one is the model proposed in (Comi, 2001); in this 
formulation, the decomposition between tension and compression is performed 
taking into account the invariants of the averaged strain tensor. Differently from 
Comi’s approach, where two internal lengths are assumed for tension and 

compression, in the present model only one internal length is considered, with the 
aim of limiting the number of input parameters.  

Finally, it has to be remarked that the permanent strain εp is not regarded as a 
variable to be averaged, so that the local reversible strain εe is equal to the difference 
between the total strain ε and the permanent strain εp, both in their local version. 

Therefore, the expression of the regularized counterpart of the local strain 
tensor εe, defined in a domain V, is: 
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where α0 is the weight function, chosen, as in the majority of nonlocal models, as 
the Gauss distribution function, centred at x and simulating the interaction between 
point x and point ξ. Its definition is strictly related to the aforementioned internal 
length of the regularized continuum lRG (see Figure 4.1): 
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The nonlocal operator in Eq. (4.10) is normalized by the expression at its 
denominator to keep an homogeneous distribution of the local variable unaltered. 
The Gauss weight function in Eq. (4.9) has an unbounded support, so its interaction 
radius, i.e. the largest distance of point ξ that influences the regularized variable at 
x, is infinite. In practice, as shown in Chapter 5, in finite element computations, a 
finite value of the interaction radius is considered, equal to 2lRG, in order to compute 
the nonlocal integral (4.10) over a finite volume V, dependent on x. 



92 Regularized strain tensor damage model 

 

 
Figure 4.1: Averaging function α0: (a) identification of lRG and (b) variation of lRG. 

4.1.2 Thermo-dynamic framework  
The free energy potential of the regularized damage model is defined with reference 
to the constitutive operator ED  presented in Eq. (4.8): 

       1= = : :
2

+ψ ,d r ,d r ψ  
e e e e E eε ε ε ε D ε  (4.12) 

As visible from Eq. (4.12), ψ depends only on the local strain tensor and on the 

damage variables d + and d −, defined starting from the regularized strain tensor 
(4.10). No additional terms related to the regularization procedure are here present 
with respect to Eq. (2.30); hence, the standard framework of thermo-dynamics can 
be applied. 

For what concerns the first principle of thermo-dynamics, its satisfaction can 
be stated by referring to (Carol and Willam, 1996) and (Wu and Xu, 2013), where 
it is affirmed that, in presence of scalar damage variables, the conservation of 
energy in the unloading-reloading regime, for a fixed state of degradation, is 
guaranteed. 

Regarding the second principle of thermo-dynamics, the non-negativeness of 
the dissipated energy can be ensured by verifying the Clausius-Duheim inequality, 
which is the following: 

= 0ψ+ :  σ ε  (4.13) 

Replacing the total derivative of the free energy potential (4.12) with its partial 
derivatives with respect to the local strain and the internal variables, the inequality 
(4.13) becomes: 
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On the one hand, the fulfillment of inequality (4.14) leads to the establishment of 
the constitutive law: 

ψ :
 


E eσ D ε
ε

 (4.15) 

while on the other hand, it obliges the non-negativeness of each of the three 
dissipative quantities present in the following expression: 

0ψ ψ ψd d
d d
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Due to the local nature of the permanent deformations, the proof of the non-
negativeness of the dissipated energy related to this quantity coincides with the one 
provided in Section 2.4. The same reasoning holds for the derivatives of the free 

energy potential with respect to d + and d −, whose non-negativeness can be proven 
considering the procedure described in Section 2.2.2. Finally, the only variables 

affected by the regularization are the rate of d + and d −, which directly depend on 
the rate of the regularized damage thresholds: 

0dd r
r


 




  


 (4.17) 

The regularized damage variables are non-decreasing functions since the 
regularized damage thresholds, as their local counterparts, have to satisfy the Kuhn-
Tucker and persistency conditions (see Section 2.5). Hence, the second principle of 
thermo-dynamics for the regularized d+/d− damage model is fully satisfied. 

As just mentioned, the evolution of the regularized damage is ruled by the 
Kuhn-Tucker and persistency conditions, which allow distinguishing between the 
situations of loading, unloading and re-loading: 

0±r 
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0± ±r g   (4.18) 

0± ±r g   (4.19) 
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According to Eqs. (4.18) and (4.19), in the loading case > 0±r and ±g = 0; in the 

unloading or in the initial undamaged situation, = 0±r and ±g < 0. The definition 
for the non-decreasing regularized damage threshold can be deduced by the 
persistency condition (4.19): 

 0
[0, ]

max max± ± ±

t

r = r ; τ

 
 
  
              

 (4.20) 

where the initial value 0r is the same as in the local model (see Eq. (2.50)) while 
±τ  represent the equivalent quantities computed replacing in Eqs. (2.45) and (2.46) 

the elastic local stress (2.25) with the elastic regularized one eσ : 

  : e e e 0 eσ σ ε D ε

            

 (4.21) 

4.2 Calibration of the parameters of the regularized model 

Hereafter, the superscript ±  used for distinguishing a quantity between tension and 
compression is intentionally left out for the sake of brevity. 

In order to provide a correct representation of the energy dissipated during the 
degradation process, the calibration of the material parameters has to be performed. 
In (Bažant and Oh, 1983), it is affirmed that three quantities are sufficient to 
describe the material fracture properties, and these quantities are the uniaxial tensile 
strength ft, the fracture energy G+

f and the dissipation length ldis, which represents 
an effective width corresponding to the hypothesis of uniform strain within the 
fracture process zone. 

In order to obtain the correct energy dissipation, independently of the 
discretization, Bažant and Oh proposed the so-called crack band model, which is 
based on the principle that the width of the fracture process zone ldis can be replaced 
by a discretization length h (related to the size and orientation of the finite element) 
in the computation of the softening modulus, provided that the correct fracture 
energy G+

f is however caught. Hence, the crack band model can be defined as a 
“local” regularization approach, since the mesh-objectivity is ensured by means of 
a rescaling of the post-localization part of the local softening law, and not by means 
of a nonlocal spatial averaging over neighbour finite elements. It has to be noted 
that, in this way, the regularization of the problem is only partial because the mesh-
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bias dependence is not eliminated. Moreover, the crack band model renounces to 
properly describe the width of the fracture process zone: since the localization 
occurs in one element, its size depends inevitably on the discretization.  

In the case of nonlocal damage models, a reliable identification procedure is 
more complex because two sets of parameters affect the structural response: not 
only the ones defining the softening law at a local (element-wise) level but also the 
regularized internal length lRG, which describes the spatial interaction of material 
points by controlling the spread of the averaging functi’on (see Eq. (4.11)). An 
intrinsic connection exists between lRG and the local softening law since the width 
of the fracture process zone ldis, strictly related to lRG, rules the fracture properties 
of the material, hence also its softening (local) modulus, in accordance with (Bažant 

and Oh, 1983).  

The relationship between ldis and lRG represents the focus of a regularizedv 
nonlocal calibration strategy. In (Bažant and Pijaudier-Cabot, 1989), the 
coincidence between lRG and ldis is imposed a priori and their value, obtained 
experimentally by measuring the energy dissipation in concrete specimens in which 
damage remains diffused and others in which damage localizes, results equal to 2.7 
the maximum aggregate size dmax. The main limitations of such a relationship lie in 
the fact that it holds only for the nonlocal approach there adopted (based on the 
averaging of the damage variable) and it has not been verified for materials with 
other mechanical properties or with different aggregate sizes.  

In (Ferrara and di Prisco, 2001), a linear dependence between ldis and lRG is 
found by assuming the local constitutive law independent of lRG. Fixing the specific 
dissipated energy gf , for each value of lRG, a corresponding fracture energy Gf is 
computed by performing a numerical structural analysis upon complete failure. The 
value of ldis associated to lRG is then determined as Gf / gf. Two main inconsistencies 
can be identified in such a procedure: firstly, the dependence of the local 
constitutive law on the dissipation length ldis is neglected; secondly, the fracture 
energy Gf  is not treated as a mechanical parameter, since it varies with the nonlocal 
length ldis. 

Contrariwise, the calibration strategy adopted in the present work for the 
determination of the parameters of the regualrized damage model is based on the 
idea of ensuring the evaluation of the fracture energy Gf independently of the choice 
of the internal length lRG. Although such a procedure has been followed in the works 
of (Nguyen and Houlsby, 2007), its analogies with the crack band model proposed 
by (Bažant and Oh, 1983) have never been outlined. In fact, the majority of the 
nonlocal formulations presented in the literature is focused on highlighting the 
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differences between the nonlocal model and the crack band model; hereafter, a 
different interpretation is proposed, addressed to consider both the approaches 
governed by only one ruling parameter, which is the fracture energy Gf. In view of 
this consideration, in the regularized damage model here proposed, as in the crack 
band model, the fracture energy Gf does not show any size dependence. Therefore, 
the possibility of calibrating the internal length by fitting the size effect on the 
nominal fracture energy of specimens (Jirásek et al., 2004) is here not 
contemplated. Instead, as stated in (Bažant and Jirásek, 2002), if the fracture 
process zone is sufficiently smaller than the whole structure, the consideration of 
the fracture energy as an intrinsic material property can be considered valid. 

In the following subsections, firstly the calibration strategy adopted is described 
and its choice justified with respect to other existing calibration approaches. Then, 
the problem of a bar uni-axially loaded in tension is exploited with the aim of 
showing how the approach works and how it makes the regularized model 
comparable with the crack band one by (Bažant and Oh, 1983).  

4.2.1 Calibration strategy 
In a crack band model, damage localizes in a band of one element-width; therefore, 
the dissipated energy per unit area Gf is the area enclosed under the element stress-
strain curve gf, multiplied by the element size h. The local softening modulus Hd, 
derived in Section 2.5 for different types of damage evolution laws, can be defined 
by replacing the generic length l used in Eqs. (2.82), (2.84b), (2.90) and (2.100) 
with the element size h, whose computation, depending on the size and orientation 
of the discretization, can be performed referring to (Oliver, 1989). 

In regularized models, two main difficulties appear. Firstly, due to the 
introduction of the internal length lRG, the width of the zone in which the dissipation 
takes place does not limit to one element; it is broader and not a priori determinable. 
Secondly, the specific dissipated energy gf, whose definition is provided in 
Eq. (4.22) for the specific case of uniaxial tensile loading and null permanent 
deformations, is not uniform within the dissipation zone.  

      
0 0

1g : dt d r x E dtf   

 
         x σ ε

            

 (4.22) 

Although Eq. (4.22) refers to a particular load case, it allows to do some 
considerations which hold general validity: from its analysis, it is clear that the 
specific dissipated energy evaluated at a point x is affected by the strain values of 
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all the points whose distance from x is lower than the interaction radius. Hence, it 
varies with x and depends not only on the type of damage evolution law but also on 
the specific nonlocal damage model adopted, i.e. on the quantity chosen as nonlocal 
(Eq. (4.10)) and on the averaging function α0 (Eq. (4.11)). 

In order to deal with these difficulties, the procedure hereafter proposed aims 
to identify ldis as the width of a uniformly damaged crack band in a local continuum 
which dissipates the same amount of energy of the same band present in the 
regularized continuum. To guarantee this energetic equivalence, by exploiting the 
correspondence between the cohesive crack model and the crack band model, the 
local specific dissipated energy gf has to depend on ldis according to the relation: 
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Eq. (4.23) is equivalent to compute the local softening modulus of the nonlocal 
damage model by replacing the generic length l with ldis. In Eq. (4.23), the 
dependence of the dissipation length ldis on the internal length lRG is highlighted, in 
order to stress how the local constitutive behaviour is affected by the internal length 
lRG.  

The analytical evaluation of ldis starting from Eq. (4.23) is generally unfeasible, 
because its value depends on the internal length in a nonlinear way, on the other 
parameters, elastic and inelastic, defining the local constitutive law, on the type of 
softening law adopted (2.69) and on the nonlocal approach considered (nonlocal 
averaging function α0 and quantity chosen as nonlocal). In (Zaho et al., 2005) the 
specific case of a linear softening law is taken into account to derive the analytical 
nonlinear relationship between ldis and lRG.  

In (Jirásek, 1998b), the idea of providing an analytical solution for ldis is 
abandoned in order to extend the applicability of the calibration strategy to a wider 
range of softening laws and to a wider range of nonlocal approaches. On the 
contrary, the use of predefined trends relating the ductility of the local softening 
law η and the ratio ldis/lRG are proposed to define ldis in an iterative manner. The 
iterative procedure is required because η depends on ldis, according to the following 
expression: 

2 2
f disG l

f E
 


            

 (4.24) 
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However, the graphs presented in (Jirásek, 1998b) do not cover the case of high 

local ductility and include only a limited number of combinations of softening laws, 
nonlocal weight functions and nonlocal variables. Specifically, the averaging of the 
elastic strain (4.10), in conjunction with the use of the Gauss function for α0 (4.11), 
as well as the adoption of softening laws different from the exponential and the 
linear ones, as the Gaussian damage function proposed in Eq. (2.80) are not 
foreseen; therefore, these graphs can not be adopted for the calibration of the present 
regularized damage model.  

Hence, a different calibration strategy is here preferred, the one proposed in 
(Nguyen and Houlsby, 2007), which consists in identifying the nonlinear relation 
between ldis and lRG, for the material parameters of interest, by performing some 
structural analyses upon complete failure of a uniaxially loaded bar (see Figure 4.2). 
In order to trigger the strain localization, a defect is considered in the central part 
of the bar.  

Moreover, to apply this procedure to the d+/d− damage model here formulated, 
the bar is considered under both uniaxial tension (displacement u as plotted in 
Figure 4.2) and uniaxial compression (displacement u with opposite sign with 
respect to the one plotted in Figure 4.2). In this way, starting from a unique value 
of the internal length lRG, two values of ldis are obtained, one for tension l+dis and 
one for compression l−

dis, respectively.  

 
Figure 4.2: Bar under uniaxial loading, considered for the calibration of the nonlocal 

parameters. 

Referring indistinctly to tension or compression, the main steps, which 
characterize this approach, are summarized in Table 4.1. The procedure starts from 
the known material constants E and ν, the uniaxial strength f, the fracture energy 
Gf, the parameter ξ defining the intensity of εp according to Eq. (2.61) and the 
internal length lRG. 
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Table 4.1: Calibration strategy adopted in the regularized damage model. 

(i) Assume kdis
(1) such that ldis

(1)
  = kdis

 (1) lRG. 
(ii) Compute the specific dissipated energy gf

(1), the local ductility parameter η(1) 
and the local softening modulus Hd

(1), using ldis
(1), according to Eq. (4.23), 

Eq. (4.24) and one of Eqs. (2.82), (2.84b), (2.90) and (2.100), respectively. 
(iii) Perform the numerical analyses of a bar uni-axially loaded with imposed 

displacement u at both ends (see Figure 4.2), adopting gf
(1) (or, equivalently, 

Hd
(1) or η(1)) as local constitutive parameter. 

(iv) Compute the fracture energy Gf (2), by dividing the area subtended by the 
force F - displacement u resulting curve for the ligament area t × H (see 
Figure 4.2). 

(v) Compute kdis (2) as Gf (2)/ (gf
(1)∙lRG), such that ldis

(2)
  = kdis

 (2) lRG. 
(vi) Repeat n times the steps from (i) to (v), starting from a different value of 

kdis
(1), in order to obtain a different value of  k dis

(2).  
(vii) Plot two curves in a graph representing in abscissae the local ductility 

parameter η and in ordinates the kdis parameter defining ldis: one curve is given 
by the n couples of (η (1), kdis

(1)), the other by the n couples of (η (1), kdis
(2)). 

(viii) Evaluate the intersection of the two curves found in the step (vii), which 
represents the dissipation length ldis able to dissipate the correct fracture 
energy Gf. 

The calibration strategy here presented is very versatile. because it can be 
applied to any set of material parameters and to any kind of constitutive law 
(isotropic, orthotropic, with or without irreversible strains).  

4.2.2 Application of the calibration strategy: nonlocal damage 
approach compared with the crack band model 
In this section, the steps described in Table 4.1 are followed to calibrate the 
regularized damage model for a specific set of mechanical parameters, which are 
collected in Table 4.2. The calibration strategy is performed only under tension, i.e. 
to find l+

dis. The procedure to identify l−
dis is analogous and it has been omitted. 
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Table 4.2: Set of material parameters adopted in the calibration. 

E  
[MPa] 

ν 
[-] 

f+ 
[MPa] 

f− 
[MPa] 

Gf
+ 

[N/mm] 
Gf

− 
[N/mm] 

ξ 
[-] 

lRG 

[mm] 

38000 0.21 2.8 -42.3 0.037 30.00 0.00 6.00 

The problem considered for carrying the structural analysis under complete 
failure is the bar subjected to an imposed elongation at both ends, as shown in 
Figure 4.2, with the following geometric sizes: L = 101 mm, H = 10 mm, t = 1 mm. 
The defect is modelled considering a section reduction equal to 10% in the central 
part of the bar. A mesh of 101 bilinear quadrilateral finite elements is considered. 

The two curves obtained according to the steps of Table 4.2 are plotted in 
Figure 4.3.a. The intersection occurs in correspondence with the value kdis = 3.73, 
which defines the dissipation length ldis = 3.73∙lRG = 22.4 mm able to ensure the 
correct fracture energy Gf

+, as visible from the force F – displacement u curve 
displayed in Figure 4.3.b. 

 
Figure 4.3: (a) Calibration procedure for material parameters in Table 4.2; (b) F-u 

curve obtained with the calibrated dissipation length. 

In order to assess the objectivity of the calibration procedure, a check omitted 
in (Nguyen and Houlsby, 2007), the entity and the kind of the defect in the central 
element are varied (Figure 4.4.) together with the mesh refinement (Figure 4.5), 
maintaining fixed the dissipation length obtained from the calibration procedure 
shown in Figure 4.3.a. 
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Figure 4.4: Response of the bar under tension for different defects. 

 

 
Figure 4.5: Response of the bar under uniaxial tension for different mesh refinements: 

(a) F - u curves; (b) maximum principal strain localization. 

The almost full coincidence between the different curves in Figure 4.4 and 
Figure 4.5.a allows to conclude that neither the choice of the defect nor the 
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discretization affect the results of the calibration procedure, performed by means of 
the bar under uniaxial loading conditions. 

Moreover, the effect of εp is considered, referring to the new definition 
proposed in Eq. (2.61), replacing the value ξ = 0 with ξ = 0.3. As commented in 
Section 2.5, irreversible strains are modelled within a coupled dissipative 
framework, meaning that their inclusion affects damage evolution (see Eq. (2.70)) 
in such a way to maintain unaltered the specific energy dissipated with respect to 
the case of null permanent deformations. For this reason, the consideration of εp 
does not modify the calibration procedure shown in Figure 4.3.a for the case of 
ξ = 0. In fact, as expected, the calibrated dissipation length and the corresponding 
force F – displacement u curve for ξ = 0.3, shown in Figure 4.6, are identical to the 
ones presented in Figure 4.3. 

To analyse the dependence of the results on the parameter lRG, the calibration 
shown in Figure 4.3.a for lRG = 6 mm is repeated for different values of the internal 
length, in particular for lRG = 3 mm and lRG = 9 mm. The values of the relative 
dissipation length kdis obtained are 4.09 and 3.80, respectively. In Figure 4.7, the 
results of the uniaxial problem adopted for the calibration by varying lRG are 
exhibited, in terms of F – u curves (Figure 4.7.a) and maximum principal strain 
localization (Figure 4.7.b). 

 
Figure 4.6: (a) Calibration procedure for ξ = 0.3; (b) F - u curve obtained with the 

calibrated dissipation length. 
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Figure 4.7: Response of the bar under uniaxial tension for different internal lengths: 

(a) F - u curves; (b) maximum principal strain localization. 

It is worth remarking that the independence of the structural response from the 
internal length (Figure 4.7.a) is obtained thanks to the calibration procedure 
adopted, which ensures the representation of the fracture energy Gf

+, by properly 
identifying the value of the dissipation length ldis, related to lRG. On the contrary, 
the width of the localization band (Figure 4.7.b) is affected by the nonlocal 
parameter, and increases with it.  

Finally, the problem of the bar uniaxially loaded in tension, previously studied 
with the regularized approach, is solved with the local crack band model, 
considering three different mesh refinements: 35, 101 and 203 finite elements. The 
results, in terms of global response curves and strain localization, are displayed in 
Figure 4.8.a and Figure 4.8.b, respectively. 
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Figure 4.8: Response of the bar under uniaxial tension with a local approach for 

different mesh refinements: (a) F - u curves; (b) maximum principal strain localization. 

With the local approach, on the one hand, the mesh-size independence of the 
solution in terms of dissipated energy (see Figure 4.8.a) is guaranteed, because of 
the adoption of a softening modulus adjusted according to the size h of the finite 
element (Bažant and Oh, 1983). On the other hand, the width of the localization 
band (Figure 4.8.b) depends drastically on the mesh refinement, coinciding with h.  

The majority of the nonlocal formulations, such as, for instance, the recent work 
by (Xenos, and Grassl, 2016), is focused on the differences between a nonlocal 
approach and a local one in case of different mesh refinements: specifically, the 
capability of the nonlocal approach to maintain unaltered the localization band 
width (Figure 4.5.b.) is usually opposed to the corresponding incapability of the 
local one (Figure 4.8.b). Here, the main interest is different and is addressed to 
stress the analogies, and not the divergences, between the regularized model here 
proposed and the crack band model by Bažant and Oh. As a matter of fact, by 

comparing Figure 4.7 with Figure 4.8, a parallel between the internal length lRG and 
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the mesh size h can be found: both these terms do not affect the F-h curves but their 
variation influences clearly the localization bandwidth.  

Broadening the discussion, it is possible to affirm that the regularized damage 
model here presented does not require the identification of an internal length on the 
base of physical reasons. In fact, the procedure shown in Table 4.1 ensures the 
correct representation of the fracture energy Gf, independently of the value of the 
internal length, as proven in Figure 4.7.a. Hence, it holds the same versatility of the 
crack band approach, which needs only the standard material properties (elastic 
constants, fracture energies and strengths) for the identification of all the model 
components. Contrariwise, as discussed in (Bažant and Jirásek, 2002), the main 
cause of nonlocality is usually associated to the material heterogeneity and, 
consequently, the nonlocal length has to be representative of such material 
heterogeneity. This fact obliges to find a relation between the internal length and 
the heterogeneity maximum size. If for concrete a large number of studies have 
been performed on this topic, for instance in (Bažant and Pijaudier-Cabot, 1989), 
and a value of approximately 3 times the aggregate size has been found to be the 
characteristic one, for other materials, as masonry, likewise data are not available. 
Moreover, in line with these reasoning, homogeneous materials can not be studied 
with a nonlocal approach, due to the impossibility of finding a valid definition of 
the nonlocal length.  

Together with the advantages, the regularized model here presented has in 
common with the local approach one of its drawbacks. In fact, if, on the one hand, 
an arbitrary choice of the internal length allows to correctly describe the dissipated 
energy, on the other hand, as visible from Figure 4.7.b, it does not allow a detailed 
description of the width of the fracture process zone.  

Although not very common, the interpretation of the internal length as a 
regularization parameter more than a physical constant can be found in the phase 
field model proposed in (Wu, 2017). There, exploiting mode I and mixed mode 
problems, it is proven that the variation of the internal length negligibly affects the 
global overall response, except for the localization bandwidth. 

Despite the analogies found between the regularization damage model and the 
crack band model, the motivating reason for which the former is here proposed as 
positive evolution of the latter is its widely recognized better performance in terms 
of mesh-bias objectivity of the results.  
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Chapter 5 

Numerical implementation of the 
damage model 

The algorithmic implementation of the damage model developed in Chapter 2, 
Chapter 3 and Chapter 4 is described in the present chapter, with the intent of 
showing that the new energy-equivalent d+/d− formulation, combined with the 
inclusion of permanent deformations, with a multidirectional treatment of damage 
and with a regularized approach, follows an efficient fully strain-driven formalism.  

The contents are organized as follows. First of all, the algebraic system of 
equations which defines the global equilibrium in a displacement-based finite 
element code is recalled. Then, the numerical algorithms of the constitutive law are 
provided. For the sake of clarity, the problems characterized by the simultaneous 
presence of permanent deformations and damage and by the use of a 
multidirectional damage procedure are addressed separately. Specifically, both an 
explicit and an implicit computation of the permanent deformations is considered. 
Finally, the implementation details necessary to include in the code the regularized 
procedure are described and commented. 

Part of the topics proposed in the present chapter is already published in 
(Cervera et al., 2018). 
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5.1 Algebraic implementation 
The damage formulation is implemented in a displacement-based finite element 
code written in a FORTRAN environment. In order to face the material non-
linearity, the numerical algorithm works in an incremental-iterative way.  

Within a generic load increment, going from the step n−1 to the step n, the 
equilibrium global equations at each iteration i are solved using the Picard method, 
based on the adoption of the global secant stiffness matrix S. The algebraic system 
to be solved assumes the following form: 

   1 1i i i
n n n  S u u R u  (5.1) 

where δ i
nu is the iterative displacement vector correction adopted to compute the 

iterative displacement vector inu  

1i i i
n n n u = u u  (5.2) 

and the residual force vector R is expressed in terms of the internal P and external 
F force vectors: 

     1 1 1 1i i i i
n n n n n n
      R u P u F S u  u F

 
(5.3) 

The choice of a Picard method has two main reasons. On the one hand, it is 
addressed to avoid the computation of the consistent tangent stiffness matrix 
necessary for the application of the Newton Raphson method. In fact, in the case of 
the constitutive d+/d− damage model here presented, this matrix is non-symmetric 
and requires the evaluation of the derivative of the projection operator (2.15), which 
is not straightforward, as demonstrated in (Faria et al., 2000) for the original d+/d− 
damage formulation. 

On the other hand, it allows taking advantage, from a computational point of 
view, of the symmetric constitutive stiffness operator DE (2.24). In fact, the global 
stiffness matrix S is obtained by assembling the local secant operator Dsec, deriving 
from the following equality: 

 : : sec E pD D    (5.4) 

Although Dsec is not uniquely defined, it can be easily expressed as: 
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 (5.5) 

As visible from Eq. (5.5), a non symmetric local secant matrix is obtained if the 
constitutive local operator is not symmetric. Thanks to the recourse to the energy-
equivalence assumption, a symmetric Dsec is ensured by the constitutive symmetric 
operator DE (2.24) and this guarantees a symmetric algebraic system to be solved 
(Eq. (5.1)). 

In all the structural analyses shown in Chapter 6, Chapter 7 and Chapter 8, the 
convergence in a time step n is attained when both the ratio between the norm of 
the iterative residual forces R and the external forces F (see Eq. (5.3)) and the ratio 
between the norm of the iterative displacement increments δ i

nu and the total 
displacements inu (see Eq. (5.2)) are lower than 1%. 

5.2 Numerical algorithm of the constitutive law 

5.2.1 Standard scalar damage model with permanent deformations 
The objective of the numerical algorithms hereafter proposed is to provide the 
solution at time n, in terms of stresses (nσ), strains (nεp, 

nεe) and damage variables 
(nd  ,nr ), starting from the converged known quantitites at time n − 1. 

In purely elasto-degrading formulations, i.e. when irreversible deformations are 
not considered, the algorithm is straightforward, since the elastic strain tensor εe 
coincides with the total strain tensor ε, which is a known quantity at the beginning 
of each iteration i in a standard displacement-based finite element environment. In 
presence of elasto-plastic damage models, such a coincidence does not hold 
anymore and efficient computational algorithms are required to avoid a further 
iterative procedure for defining the internal variables within each global 
equilibrium iteration i.  

A first possibility consists in performing the updating of the permanent strain 
tensor explicitely, using a forward Euler algorithm. This means that n+1εp is 
computed only once, at the end of the load step n-th, after the attainment of the 
convergence. This allows to evaluate, within each iteration, the elastic strain tensor 
εe directly from the iterative displacements (5.2) and to define, on the basis of it, 
the damage variables d+ and d−, the projection operator Q (2.15), the secant stiffness 
DE (2.24) and, finally, the nominal stress tensor σ (2.33).  
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A second possibility is to use an implicit backward Euler scheme and consists 

in evaluating the permanent strain tensor n, iεp at each iteration i of the n-th step 
exactly as it is done for all the other quantities (elastic strain, damage thresholds, 
damage variables, stress). 

An explicit computation of the permanent strain tensor increases the robustness 
of the numerical procedure, but it is accurate only if sufficiently small time steps 
are adopted. On the other side, an implicit approach is more accurate but it can 
suffer from convergence difficulties. 

While the permanent strain evolution law (2.57) can be evaluated explicitely or 
implicitely, the permanent strain increment defined in (2.61), due to its intrinsic 
dependence on the quantity *

dε  (2.60), fits better for an implicit computation. 
However, it would be possible to assess it explicitely, simply replacing the quantity

*
dε , evaluated in the hypothesis of null permanent deformations, with the actual 

quantity dε . For these reasons, in the present section, the numerical algorithm 
including the explicit computation of εp refers to the permanent strain evolution law 
(2.57) while the one contemplating the implicit computation of εp is developed 
considering the definition (2.61).  

The numerical algorithm of the d+/ d− damage model with the explicit 
computation of the irreversible deformations is synthetized in Table 5.1. 

In implicit algorithms for elasto-plastic damage models, the recourse to the 
operator split method, described in (Ju ,1989; Simó and Huges, 1998), is frequently 
adopted (Lee and Fenves, 2001; Wu et al., 2006; Taqieddin and Voyiadjis, 2009). 
This approach is not adequate for the constitutive law here proposed because the 
decoupling between the elasto-plastic behaviour and damage, proper of the operator 
split method, does not hold for the present formulation, which is founded on the 
assumption of a unique failure criterion to completely describe the inelastic 
phenomena. Hence, the numerical algorithm of the constitutive law is performed 
through the adoption of a prediction-correction strategy, able to maintain the 
efficiency of a full strain-driven algorithm even in presence of implicitly computed 
irreversible deformations. This strategy is characterized by a damage predictor 
phase and a plastic-damage corrector one and results naturally from the definition 
itself of the permanent strain evolution law (2.61), as clarified also by Figure 2.6.  
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Table 5.1: Numerical algorithm of the constitutive law for the d+/d− damage model 

with an explicit computation of the permanent strains (2.57). 

Load increment n: 

Known quantities: 
n-1ε, n-1σ,  n-1εp, n-1d ±

, n-1r ±  
Iteration i: 
 

(i) Compute the nominal elastic strain tensor n, iεe from the known total iterative 
strain n, iε: n, iεe = n, iε – n-1εp. 

(ii) Compute the projection operators n, iQ and I − n, iQ by means of the spectral 
decomposition of the nominal strain tensor n, iεe (Eq. (2.15)). 

(iii) Compute the elastic stress tensor n, iσe (Eq. (2.25)). 

(iv) Compute the equivalent stress quantities n, iτ
±  (Eqs. (2.45) and (2.46)). 

(v) If  n, iτ
±  > n-1r ± : update damage thresholds n,ir ± = n, iτ

±   and update n, id ±  
by Eq. (2.69).  

If  n, iτ
±  < n-1r ± : no updating is required, n, ir ± = n-1r ±  and n, id ± = n-1d ± . 

(vi) Compute the operator n,iA*(Eq. (2.18)):

 , , , , ,1 1n i n i + n i n i n id d     *A Q + I Q . 

(vii) Compute the nominal stress n, iσ (Eq. (2.33)):
 

, , , ,n i n i n i n i: : : * *
0 eσ A D A ε . 

(viii) Check convergence at a global level: 
NO convergence: go to the iteration i+1 and start again from (i). 
YES convergence: 

Update: nε = n,iε, nσ = n,iσ, nd ± = n, id ± , nr ± =  n, ir ± . 
 Update the permanent strain tensor (Eq. (2.57)) and the elastic strain tensor:

 
   

 , 1
1 1 ,

, ,

n i n n
n n n n n n i

n i n i

:
b H d d b H d d
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e
p e

e e

σ ε ε

ε ε
σ ε

1n n n  p p pε ε ε ; n n ne pε ε ε . 
 Go to the next load increment n+1. 

In the first phase, a purely elasto-degrading material behaviour is assumed. This 
means that the total iterative strain increment n, i∆ε, which is a known quantity at 
the beginning of each iteration, is considered completely reversible, while the 
irreversible deformations are fixed to the last converged value n-1εp.  All the 
quantities (stress, strains, internal variables) associated to this predictive state are 
identified by their corresponding symbols with the apex *, in analogy with the 
quantities provided in Eq. (2.60). 
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Then, a plastic-damage corrector phase is necessary, in order to return back the 

predictive stresses and the internal variables to the damage surface, due to the 
development of permanent deformations together with the increase of damage. In 
this stage, the dependence of the permanent strain increment (2.61) on the reversible 
strain εe and on the stress σ imposes a further consideration to be done. Taking 
inspiration from the procedure described in (Faria et al, 1998) for the numerical 
computation of the effective stress tensor and adjusting it to the present damage 
formulation and to the permanent strain evolution law (2.61), the following 
relations can be exploited in order to adopt an efficient numerical algorithm. 

   
*

*
:

:
+*= H d H d   


    
 

d
e e e

e

σ ε
ε ε   ε

σ ε
  (5.6) 

Inverting Eq. (5.6) in order to have an expression for the predictive reversible 
strain *

eε and exploiting the coaxiality (Eq. (5.7)) between the stress σ and the elastic 
strain εe (Section 2.2.1), according to which 

=σ ε1 1                 : :=  e σ e ε eσ ε σ 1 ε 1 σ ε   (5.7) 

it is possible to write: 

    *
*

:+*H d H d
=

        
 e σ d e

e
e

σ ε  σ 1 ε ε
ε  

σ ε
  

(5.8) 
 

Eq. (5.8) reveals the coaxiality between the elastic strain tensor and the predictive 
elastic strain *

eε , whose definition can be provided in the following way: 

* *e e ε*ε ε 1                 ε* ε1 1  

   * *:+*= H d H d        
 e e σ dε  ε  1 ε  

(5.9) 
 

Form Eq.(5.9), the elastic strain tensor can be expressed as a function of *
eε : 

    *
*

*

:
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+*

e

H d H d
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1 ε
ε ε 1

ε
  (5.10) 
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In the end, by considering the coaxiality expressed in Eq. (5.7), valid in terms of 
predictive stress/elastic predictive strain tensors, the expression of the elastic strain, 
completely defined in terms of predictive quantities, is: 

    *
*

*

:
1

+*H d H d
=

        
  

  
 

*
d

e e*
e

σ ε
ε ε

ε σ
  (5.11) 

The plastic damage corrector phase for the integration of the d+/d− constitutive law 
starts from the expression (5.11) for the elastic strain. The complete numerical 
algorithm, thought for taking into account the implicit computation of the 
irreversible deformations (2.61), is summarized in Table 5.2 and Table 5.3, by 
distinguishing between the damage predictor and the plastic-damage corrector 
phases. 

Table 5.2: Numerical algorithm of the constitutive law for the d+/d− damage model 
with an implicit computation of the permanent strains (2.61): damage predictor phase. 

Load increment n: 

Known quantities: 
n-1ε, n-1σ, n-1εp, n-1d ±

, n-1r ±  
Iteration i, Damage predictor phase: 
 

(i) Compute the predictive elastic strain tensor n, iεe
* in the assumptions of       

n, iΔεe
* = n, iΔε, n, iΔεp

* = 0 and n, iεp
* = n-1εp:  n, iεe

* = n, iε – n-1εp. 
(ii) Compute the projection operators n, iQ* and I − n, iQ* by means of the spectral 

decomposition of the nominal strain tensor n, iεe
* (Eq. (2.15)). 

(iii) Compute the elastic stress tensor n, iσe
* = D0 : n, iεe

* (Eq. (2.25)). 

(iv) Compute the equivalent stress quantities n, iτ
±*  (Eqs. (2.45) and (2.46)). 

(v) If n, iτ
±*  > n-1r ± : update damage thresholds n,ir ±* = n, iτ

±*   and update             
n, id ±*  by Eq. (2.69).  

If n, iτ
±*  < n-1r ± : no updating is required, n, ir ±* = n-1r ±  and  

n, id ±* = n-1d ± . 
(vi) Compute the operator n,iA*(Eq. (2.18)):

 , , , , * ,1 1n i n i +* n i n i n id d     * * *A Q + I Q . 

(vii) Compute the nominal stress n, iσ* (Eq. (2.33)):
 

, , , , *n i n i n i n i: : :* * *
0 eσ A D A ε . 

(viii) Compute the inelastic strain increment according to the strain increment 
decomposition (2.55): n, iΔεd

* = n, iΔε – C0:(n, iσ*– n–1σ).  
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Table 5.3: Numerical algorithm of the constitutive law for the d+/d− damage model 

with an implicit computation of the permanent strains (2.61): plastic-damage corrector 
phase. 

Load increment n: 

Iteration i, plastic damage corrector phase: 
Known quantities: 
n-1ε, n-1σ, n-1εp, n-1d ±

, n-1r ± , n, iεe
*, n, iσ*, n, iΔεd

*, n, iΔd ±* . 

Plastic correction 

(ix) Compute the elastic strain tensor n, iεe (Eq. (5.11)): 

   , , , , *
, , *

, * ,

:
1

n i +* n i n i n i
n i n i

n i n i

H d H d
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*
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e

σ ε
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ε σ
 

(x) Compute the permanent strain tensor according to the total strain 
decomposition (2.51): n, iεp= n, iε − n, iεe. 

Damage correction 

(xi) Compute the projection operators n, iQ and I − n, iQ by means of the spectral 
decomposition of the nominal strain tensor n, iεe (Eq. (2.15)). 

(xii) Compute the elastic stress tensor n, iσe (Eq. (2.25)). 

(xiii) Compute the equivalent stress quantities n, iτ
±  (Eqs. (2.45) and (2.46)). 

(xiv) If n, iτ
±  > n-1r ± : update damage thresholds n,ir ± = n, iτ

±   and update n, id ±  by 
Eq. (2.69).  

If n, iτ
±  < n-1r ± : no updating is required, n, ir ± = n-1r ±  and 

              n, id ± = n-1d ± . 
(xv) Compute the operator n,iA*(Eq. (2.18)):

 , , , , ,1 1n i n i + n i n i n id d     *A Q + I Q . 

(xvi) Compute the nominal stress n, iσ (Eq. (2.33)):
 

, , , ,n i n i n i n i: : : * *
0 eσ A D A ε . 

(xvii) Check convergence at a global level: 
NO convergence: go to the iteration i+1 and start again from (i) of Table 5.1. 
YES convergence: 

 Update: nε = n,iε, nσ = n, iσ, nd ± = n, id ± , nr ± =  n, ir ±  and go to the next 
increment load n+1. 
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5.2.2 Multidirectional damage model 
In the present section, the numerical algorithm of the d+/d− multidirectional damage 
model is described, with reference to plane problems, combining it with an explicit 
updating of the permanent strain tensor (2.57), analogously to the scheme presented 
in Table 5.1. It is synthetized in Table 5.4. 

Three subroutines are adopted in order to make clearer the working principles 
of the multidirectional procedure. They are: 

 Damage multidirectional updating (εe, d1,2
 , r1,2

 , τ  ; d  , d , r  ): it 

provides the active damage value d+ (d−), its rate d  ( d ) and the active 
damage threshold r+ (r−) on the basis of the current damage equivalent stress 
quantity τ+ (τ−) which is compared with the damage threshold r1

+ or r2
+ (r1

− or 
r2

−), saved in the region where the principal maximum (minimum) strain (εe) 
direction falls (input parameters εe, d1,2

 , r1,2
 , τ  ; output parameters d  , 

d  and r  ); 

 Damage multidirectional saving (d  , r  , εe; d1,2
 , r1,2

 ): the converged 
d+ (d−) damage value is saved as d1

+ or d2
+ (d1

− or d2
−) in a region, depending 

on the maximum (minimum) strain (εe) direction which has generated it (input 
parameters d  , r  , εe; output parameters d1,2

 , r1,2
 ); 

 Damage regions updating: in loading conditions, for load Type (ii), it 
changes the bisectors and the amplitudes of the damage regions, with reference 
to (3.4). 

Analyzing Table 5.4 and comparing it with the numerical algorithm in the case 
of a standard scalar damage formulation (see Table 5.1), it is easy to identify the 
differences in two main stages. The first is the updating of the tensile (compressive) 
damage within the iteration, which is performed with reference to the current 
maximum (minimum) direction of εe.  

The second is the saving of the damage variables after the attainment of the 
global equilibrium convergence, which maintains these information about damage 
directionality.  

Finally, in presence of Load Type (ii), there is the necessity of monitoring the 
rotation of the principal directions, and, consequently, to update the damage 
regions, which have an evolving nature. 
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Table 5.4: Numerical algorithm of the multidirectional d+/d− damage model with an 

explicit computation of the permanent strains (2.57). 

Load increment n: 

Known quantities: 
n-1ε, n-1σ,  n-1εp, n-1d1,2

± , n-1r1,2
± ; only for load Type (ii): n-1rθ

± . 
Iteration i: 

(i) Compute the nominal elastic strain tensor n, iεe: n, iεe = n, iε – n-1εp. 
(ii) Compute the projection operators n, iQ and I − n, iQ for n, iεe (Eq. (2.15)). 
(iii) Compute the elastic stress tensor n, iσe (Eq. (2.25)). 

(iv) Compute the equivalent stress quantities n, iτ
±  (Eqs. (2.45) and (2.46)). 

(v) Only for load Type (ii): compute the equivalent deviation quantity n,iτθ
±

(Eq. (3.2)) on the base of n, iεe; 

if n,iτθ
±  < n-1rθ

± : n,irθ
±  = n,iτθ

±  and call “Damage regions updating”; 
if n,iτθ

±  > n-1rθ
± : n,irθ

±  = n-1rθ
± . 

(vi) Call “Damage multidirectional updating( n, iεe, n-1d1,2
±

, n-1r1,2
± , 

n, iτ ± ; n,  id ±
,n,  i ±d , n,  ir ±

)” 
(vii) Compute the operator n, iA*(Eq. (2.18)):

 , , , , ,1 1n i n i + n i n i n id d   *A Q + I Q . 

(viii) Compute the nominal stress n, iσ (Eq. (2.33)):
 

, , , ,n i n i n i n i: : : * *
0 eσ A D A ε . 

(ix) Check convergence at a global level: 
NO convergence: go to the iteration i+1 and start again from (i). 
YES convergence: 

 Update: nε = n,iε, nσ = n,iσ; only for load Type (ii): nrθ
±  = n,irθ

± . 
 Update permanent strain tensor (Eq. (2.57)) and elastic strain tensor:
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 For load Type (i): call “Damage multidirectional saving (n,  id ±
, n,  ir ±

, 
            nεe; nd1,2

±
, nr1,2

±
)”. 

 For load Type (ii): if nrθ
±  < cos(θmin): call “Damage multidirectional saving 

(n ,  id ±
, n ,  ir ±

,nεe; nd1,2
±

, nr1,2
±

)”; 

       if nrθ
±  = cos(θmin): nd1,2

+ =  n,id+ ; nd1,2
− =  n,id− ; nr1,2

+ =  n,ir+ ; nr1,2
− =  n,ir−. 

 Go to the next increment load n+1. 
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5.3 Implementation details of the regularized formulation 

5.3.1 Symmetry and sparsity of the secant stiffness matrix 
The adoption of the Picard method described in Section 5.1 with respect to the 
Newton Raphson for the solution of the algebraic system of equilibrium equations 
is particularly advantageous in nonlocal regularized damage analyses, although this 
fact is scarsely recognized. One of the few examples related to the adoption of a 
secant method combined with nonlocality dates back to the work by Bažant and Lin 
(Bažant and Lin, 1988). 

As noticed in (Jirásek and Patzák, 2002), the nonlocal tangent stiffness matrix 
is always non symmetric and this fact is intrinsically related to the interactions 
between close finite elements imposed by the nonlocal approach. Only in (Comi 
and Perego, 2001b) there is the proposal of a symmetric tangent stiffness matrix to 
be used in nonlocal analyses, but it is obtained through a computationally expensive 
procedure, by performing a double averaging both on the damage energy release 
rate and then on the damage variables. Contrariwise, the secant stiffness matrix S 
(see Eq. (5.1)) ruling the Picard method is symmetric both in a local approach and 
in a nonlocal one, the only difference being that in a regularized approach the secant 
constitutive operator Dsec expressed in Eq. (5.5) has to be replaced by its regularized 
counterpart: 

   
 

: :

: :


 

E p E p
sec E

E p

D D
D D

D

 

 
 (5.12) 

where ED is the regularized constitutive operator defined in Eq. (4.8).  

Moreover, the use of a secant stiffness matrix eliminates a drawback proper of 
nonlocality, which is the increase in the bandwidth of the sparse stiffness matrix 
(Jirásek and Patzák, 2002). In fact, the distribution of non-zero entries in the matrix 
varies in nonlocal analyses with respect to local ones because of the inclusion of 
the tangent stiffness component, which takes into account the nonlocal interaction 
among close finite elements. 

Hence, the adoption of the Picard method for the numerical implementation of 
the regularized damage model described in Chapter 4 allows to save computational 
resources thanks to the use of a symmetric stiffness matrix which maintains the 
same degree of sparsity held in a local analysis. 
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5.3.2 Algorithmic extension for the regularized model 
The numerical algorithm, which allows computing the constitutive law in a 
regularized nonlocal damage model, does not undergo substantial changes from the 
one adopted in a local formulation and shown, in different versions, in Section 5.2. 
As a matter of fact, the regularization procedure does not affect the algorithmic 
efficiency seen in Table 5.1, Table 5.2, Table 5.3 and Table 5.4 and similarly 
permits an evaluation of the stress tensor by means of a full-strain driven procedure.  

The only additional step required by the regularized approach consists in 
computing the averaging of the elastic strain tensor by means of Eq. (4.10), in order 
to obtain its nonlocal counterpart. The integral present in the definition of the 
regularized strain (4.10) of element i is computed numerically by Gaussian 
quadrature including in the summation only the Gauss points belonging to the set 
Ωi of interacting elements. The following discrete version of expression (4.10) is 
considered, referring to the generic component εekl of the elastic strain tensor: 
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 (5.13) 

where wj are the integration weights, xCi and xj the spatial coordinates of the centroid 
of element i and of the Gauss point j, respectively, and Ni the number of Gauss 
points included in Ωi. As visible from Eq. (5.13), the damage variables (and all the 
related quantities) employ a reduced integration scheme and are evaluated at the 
centroid of the finite element with spatial coordinates xC. For each element i, the 
neighbouring set of interacting elements Ωi is determined by means of a purely 
geometric criterion: all elements whose centroid has a distance lower or equal to 
two times the internal length lRG (see Eq. (4.11)) with respect to the centroid of the 
element i belong to this set. This works better when the internal length is large 
compared to the dimension of the finite elements. The adopted procedure is 
illustrated in Figure 5.1. 
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Figure 5.1: Evaluation of the interaction nonlocal domanin Ωi highlighting the 

interactions taken into account in the computation of the nonlocal integral quantity. 

The interaction information is computed only once, in the initialization 
procedure before the beginning of the incremental iterative procedure. Specifically, 
for each element i, the set of interacting elements Ωi is saved. This allows to keep 
low the additional computational costs required by the regularized model with 
respect to a local one. The evaluation of the regularized quantity is performed at 
each iteration, before the evaluation of the equivalent stress variables. In order to 
avoid storage overload, the data concerning the weight function are not stored in 
the initial step; consequently, they have to be computed every time, starting from 
the distance between the centroid of element i xCi and of the Gauss point j xj. 

The complete numerical algorithm for the regularized damage model, in 
presence of the implicit computation of the permanent strain tensor (2.61), is 
summarized in Table 5.5 and Table 5.6, by distinguishing between the damage 
predictor phase and the plastic-damage corrector one. 
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Table 5.5: Numerical algorithm of the constitutive law for the regularized d+/d− 

damage model with an implicit computation of the permanent strains (2.61): damage 
predictor phase. 

Load increment n: 

Known quantities: 
n-1ε, n–1 σ , n-1εp, n-1 d  , n-1 r   
Iteration i, Damage predictor phase: 
 

(i) Compute the predictive elastic strain tensor n, iεe
* in the assumptions of       n, 

iΔεe
* = n, iΔε, n, iΔεp

* = 0 and n, iεp
* = n-1εp:  n, iεe

* = n, iε – n-1εp. 
(ii) Compute the projection operators n, iQ* and I − n, iQ* by means of the spectral 

decomposition of the nominal strain tensor n, iεe
* (Eq. (2.15)). 

(iii) Compute the regularized averaging of n, iεe
* by means of Eq. (5.13), n, i *

eε .  
(iv) Compute the elastic stress tensor n, i

σ e
* = D0 : n, i *

eε . (Eq. (4.21)). 
(v) Compute the regularized equivalent stress quantities n, i *   (Eqs. (2.45) and 

(2.46)). 
(vi) If n, i *   > n-1 r  : update damage thresholds n,i *r  = n, i *    and update              

n, i *d   by Eq. (2.69).  
If n, i *   < n-1 r  : no updating is required, n, i *r  = n-1 r   and  
n, i *d  = n-1 d  . 

(vii) Compute the operator 
,n i *A (Eq. (4.9)):

 , , , , * ,1 1n i n i +* n i n i n id d    * * *A Q + I Q . 

(viii) Compute the nominal stress (Eq. (2.33)):
 

, , , , *n i n i n i n i: : :* * *
0 eσ A D A ε . 

(ix) Compute the inelastic strain increment according to the strain increment 
decomposition (2.55): n, iΔεd

* = n, iΔε – C0:(n, i
σ *– n–1 σ ).  
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Table 5.6: Numerical algorithm of the constitutive law for the regularized d+/d− 

damage model with an implicit computation of the permanent strains (2.61): plastic-
damage corrector phase. 

Load increment n: 

Iteration i, plastic damage corrector phase: 
Known quantities: 
n-1ε, n–1 σ , n-1εp, n-1 d  , n-1 r  , n, iεe

*, n, i
σ *, n, iΔεd

*, n, iΔ
*d  . 

(x) Compute the elastic strain tensor n, iεe (Eq. (5.11)): 
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(xi) Compute the permanent strain tensor according to the total strain 
decomposition (2.51): n, iεp= n, iε − n, iεe. 

(xii) Compute the projection operators n, iQ and I − n, iQ by means of the spectral 
decomposition of the nominal strain tensor n, iεe (Eq. (2.15)). 

(xiii) Compute the regularized averaging of n, iεe by means of Eq. (5.13), n, i
eε .  

(xiv) Compute the elastic stress tensor n, i
σ e = D0 : n, i

eε . (Eq. (4.21)). 
(xv) Compute the regularized equivalent stress quantities n, i   (Eqs. (2.45) and 

(2.46)). 
(xvi) If n, i   > n-1 r  : update n,i r  = n, i    and update n, i d   by Eq. (2.69).  

If n, i   < n-1 r  : no updating is required, n, i r  = n-1 r   and n, i d  = n-1 d  . 

(xvii) Compute the operator 
,n i *A  (Eq. (4.9)):

 , , , , ,1 1n i n i + n i n i n id d    *A Q + I Q . 

(xviii) Compute the nominal stress (Eq. (2.33)):
  

, , , ,n i n i n i n i: : : * *
0 eσ A D A ε . 

(xix) Check convergence at a global level: 
NO convergence: go to the iteration i+1 and start again from (i) of Table 5.5. 
YES convergence: 

 Update: nε = n,iε, ni
σ  = n, i

σ , n d  = n, i d  , n r  =  n, i r   and go to the next 
increment load n+1. 
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Chapter 6 

Validation of the damage model 
under monotonic and cyclic load 
conditions 

In this chapter, the energy-equivalent damage model described in Chapter 2 and the 
multidirectional procedure specifically thought for cyclic loadings (Chapter 3) are 
validated by means of comparisons between experimental and numerical results, 
considering 2D plane stress problems. Parts of the numerical results hereafter 
presented are already published in (Cervera et al., 2018). 

In Section 6.1, the capability of the new d+/d− damage model to describe the 
asymmetrical behaviour of quasi-brittle materials under tension and compression is 
proven, considering concrete samples subjected to uniaxial and biaxial tension, 
uniaxial and biaxial compression and biaxial shear. Not only monotonic loading 
conditions are considered but also cyclic conditions and conditions of loading and 
unloading. In this way, the performance of the different new ingredients 
characterizing the proposed damage formulation are investigated: the new 
constitutive operator (2.24), the unified dissipative approach according to which 
damage and permanent strains are treated, the new Gaussian hardening/softening 
law in compression (Section 2.5) and the new definition for the permanent strain 
tensor (2.61). The numerical algorithm adopted for studying these problems 
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includes the implicit computation of the irreversible deformations, detailed in Table 
5.2 and Table 5.3.  

In Section 6.2, three examples involving unreinforced concrete elements are 
solved in order to investigate the adequacy of the new d+/d− damage model at a 
structural level, specifically the effects produced by the adoption of the constitutive 
secant stiffness operator, derived within an energy-equivalence framework. For this 
purpose, only monotonically increasing loadings are analysed. 

Conversely, in Section 6.3, the potentialities of the multidirectional damage 
procedure described in Chapter 3 are shown with reference to a masonry wall and 
a reinforced concrete wall, both subjected to cyclic shear conditions. Finally, the 
efficiency of the smooth transition proposed in Section 3.3 for crack closure and 
reopening is discussed in a quantitative way. For all these structural applications, 
the numerical algorithm preferred uses the explicit calculation of the permenant 
strains, because of its higher robustness. Specifically, the numerical schemes 
described in Table 5.1 and Table 5.4 are taken into accoun in case of monotonic 
and cyclic loading conditions, respectively.  

All the analyses presented in this chapter are performed by resorting to a local 
approach, in order to focus the attention on the constitutive aspects of the 
formulation rather than on the aspects related to the regularization procedure. 
Therefore, to ensure mesh-size objective results, in the follow up the local damage 
formulation is combined with the crack band theory (Bažant and Oh, 1983). This 
consists in computing the local softening moduli in tension and compression 
(Section 2.5) starting from the finite element size h: for equilateral triangles 
h2 = 4/ 3 Ae while for quadrilateral elements h2 = Ae, with Ae area of the finite 
element. The application of the regularized damage model is extensively discussed 
in Chapter 7.  

6.1 Monotonic and cyclic validation examples at a local 
level 

6.1.1 Uniaxial tension test on concrete with loading and unloading 
stages (Gopalaratnam and Shah, 1985) 

The present example validates the ability of the model to describe the softening 
behaviour, the stiffness degradation and the irreversible deformations of concrete 
under uniaxial tension. The dissipative behaviour is modelled by means of the 
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exponential softening law (2.79) for describing the evolution of d+, and by the new 
definition (2.61) for representing the permanent strain tensor increment. An 
effective specimen size is adopted to represent the concrete sample, equal to 
100 mm × 100 mm, with thickness 1 mm. The material constants considered in the 
numerical analysis are summarized in Table 6.1 and the comparison between 
experimental and numerical results is shown in Figure 6.1. 

Table 6.1: Material parameters for concrete under uniaxial cyclic tension. 

E  
[MPa] 

ν 
[-] 

f+ 
[MPa] 

Gf
+ 

[N/mm] 
ξ+ 
[-] 

34500 0.2 3.5 0.105 0.51 

 

 
Figure 6.1: Concrete under uniaxial tension with unloading: comparison between 

numerical and experimental (Gopalaratnam and Shah, 1985) results. 

Although a slight underestimation of the permanent deformations and of the 
softening behaviour is visible in Figure 6.1, the correspondence between numerical 
predictions and experiment is satisfactory, especially in terms of unloading stiffness 
in the first cycles.  

6.1.2 Uniaxial compression test on concrete with loading and 
unloading stages (Sinha et al., 1964)  

The performance of the model under uniaxial compression is studied adopting 
the new softening Gaussian function (2.80), in conjunction with the new definition 
of the permanent strain tensor (2.61). The concrete sample has a length equal to 
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305 mm and a resisting section equal to 135 mm × 135 mm. The compressive 
material properties used in the numerical analysis are summarized in Table 6.2, 
while the comparison between numerical and experimental results is presented in 
Figure 6.2. 

Table 6.2: Material parameters for concrete under cyclic compression. 

E  
[MPa] 

ν 
[-] 

f− 
[MPa] 

Gf
− 

[N/mm] 
ξ− 
[-] 

29500 0.2 -31.5 38.0 0.45 

 

 
Figure 6.2: Concrete under uniaxial compression with unloading: comparison between 

numerical and experimental (Sinha et al., 1964) results. 

As visible in Figure 6.2, the overall response is properly described by the 
damage model, in terms of strength reduction, stiffness degradation and progressive 
accumulation of permanent deformations. This constitutes a proof of the adequacy 
of the Gaussian softening function to describe the behaviour of concrete (and quasi-
brittle materials in general) under uniaxial compressive regime. Specifically, the 
hypothesis of fixing the end of the linearity in correspondence with a stress value 
equal to f−∙exp(−0.5) (see Section 2.5.2 and Eq. (2.93)) fits adequately with the 
experimental trend, as well as the assumption of defining the width of the Gaussian 
bell on the basis of the fracture energy. 
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6.1.3 Uniaxial cyclic tension-compression test on concrete 
(Ramtani, 1990) 
In this section, the crack-closure effects typical of concrete, visible in a uniaxial 
cyclic loading history characterized by two loading-unloading stages in tension and 
a further reloading in compression, are reproduced with the d+/d− damage model. 

Due to the adequate fit obtained under uniaxial tension (Section 6.1.1) and 
uniaxial compression (Section 6.1.2), the softening function adopted in tension is 
the exponential one while in compression the Gaussian softening law is preferred.  

In accordance with (He et al., 2015), an effective concrete specimen is 
considered, 1 mm thick and with dimensions 80 mm × 80 mm. The material 
parameters are collected in Table 6.3 and the numerical results, compared with the 
experimental ones, are shown in Figure 6.3.a. Moreover, in Figure 6.3.b, a zoom on 
the tensile response is provided. 

Table 6.3: Material parameters for concrete under uniaxial alternate cyclic 
conditions. 

E  
[MPa] 

ν 
[-] 

f+ 
[MPa] 

f− 
[MPa] 

Gf
+ 

[N/mm] 
Gf

− 
[N/mm] 

ξ   
[-] 

16400 0.2 1.2 -18 0.02 7.50 0.4 

 

 
Figure 6.3: Concrete under uniaxial cyclic conditions: comparison between numerical 

and experimental (Ramtani, 1990) results in (a) compression and (b) tension. 
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The experimental behaviour of the material under alternate cyclic conditions is 

fairly simulated by the damage model; specifically, the crack closure is represented 
thanks to the spectral decomposition of the elastic strain tensor εe, combined with 
the use of two damage variables, one for tension and one for compression. 

6.1.4 2D tests on concrete in biaxial tension, combined tension and 
compression and biaxial compression (Kupfer et al., 1969) 
The material behaviour under biaxial stress-strain conditions is validated by 
referring to the experimental tests described in (Kupfer et al., 1969) on several 
concrete samples, subjected to different stress combinations, in the regimes of 
biaxial tension, combined tension-compression and biaxial compression.  

The softening functions adopted in tension and in compression are the 
exponential and the Gaussian one, respectively. The specimens have dimensions 
200 mm × 200 mm × 50 mm. The set of experiments herein simulated is the one 
related to a concrete with compressive strength equal to 32.8 MPa. All the input 
material properties considered in the numerical analyses are synthetized in Table 
6.4. With respect to the previous examples, two additional parameters are here 
specified, which are the ratio between the biaxial and the axial compressive 
strengths, useful in biaxial compression, and the parameter k, defining the 
amplitude of the compressive damage surfaces in the 2nd and 4th quadrants (see 
Figure 2.4). 

Table 6.4: Material parameters for concrete under biaxial stress. 

E 
[MPa] 

ν 
[-] 

f+ 
[MPa] 

f− 
[MPa] 

Gf
+ 

[N/mm] 
Gf

− 
[N/mm] 

fb
−/f− 
[-] 

k 
[-] 

ξ   
[-] 

32000 0.2 2.66 -32.8 0.105 26.00 1.16 0.75 0.22 

The normalized longitudinal stress – longitudinal strain curves obtained in 
biaxial compression, combined tension-compression and biaxial compression for 
different stress ratios are shown in Figure 6.4, Figure 6.5 and Figure 6.6. The 
longitudinal direction indicates the direction in which the maximum stress σ1 is 
applied. According to the decomposition on the elastic strain tensor, dispalyed in 
Figure 2.1.b, the cases of biaxial compression and biaxial tension are treated with 
an isotropic damage model, since the ratio between the transversal and the 
longitudinal imposed stresses is higher than the Poisson’s ratio ν. The cases of 
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uniaxia tension, uniaxial compression and combined tension-compression imply 
instead the adoption of an orthotropic damage model.  

 

Figure 6.4: Stress-strain relationships of concrete under biaxial compression, with 
stress normalized with respect to compressive strength: comparison between numerical and 
experimental (Kupfer et al., 1969) results. 

 

 

Figure 6.5: Stress-strain relationships of concrete under combined tension-
compression, with stress normalized with respect to compressive strength: comparison 
between numerical and experimental (Kupfer et al., 1969) results. 
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Figure 6.6: Stress-strain relationships of concrete under biaxial tension, with stress 

normalized with respect to 29.5 MPa: comparison between numerical and experimental 
(Kupfer et al., 1969) results. 

The satisfactory fit among experimental and numerical results, especially in 
terms of peak loads, confirms the adequacy of the damage formulation for the 
analyses of concrete structures under generic biaxial conditions. 

6.2 Monotonic loads: validation of the energy-equivalent 
d+/d− damage model 
Three different structural applications are studied with the new energy-equivalent 
d+/d− damage model: a wedge-splitting test performed on a concrete specimen in 
the experimental program described in (Trunk, 2000), a three-point bending test 
shown in (Kormeling and Reinhardt, 1983) and a mixed-mode three-point bending 
test documented in (Gálvez et al., 1998), both on single-edged-notched concrete 
beams.  

The geometry, the boundary and the loading conditions for the just mentioned 
examples are illustrated in Figure 6.7, Figure 6.8 and Figure 6.9, respectively. In all 
the problems, the increasing forces P are applied by imposing increasing 
displacements of the application points.  
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Figure 6.7: Wedge-splitting test set-up (dimensions in mm). 

 
Figure 6.8: Three-point bending test set-up.(dimensions in mm). 

 
Figure 6.9: Mixed mode three-point bending test (dimensions in mm). 

All the numerical analyses are performed considering an exponential damage 
evolution law in tension (Eq. (2.76) with r0

+ = f+ = fp
+, i.e. γe

+ = γp
+) and a parabolic 

hardening-exponential softening trend in compression (Eq. (2.76) with 
r0

− < f− < fp
−, γe

− = 0.33 and γp
− = l.33). The permanent strains are taken into account 

by means of Eq. (2.57). 

The mechanical properties assumed for concrete in each case are summarized 
in Table 6.5, Table 6.6 and Table 6.7. 
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Table 6.5: Concrete parameters for the wedge-splitting test. 

E 
[MPa] 

ν 
[-] 

f+ 
[MPa] 

f− 
[MPa] 

Gf
+ 

[N/mm] 
Gf

− 
[N/mm] 

fb
−/f− 
[-] 

b+ 
[-] 

b− 
[-] 

k 
[-] 

28300 0.2 1.59 -25 0.35 35 1.16 0.05 0.30 0.8 

Table 6.6: Concrete parameters for the three-point bending test. 

E 
[MPa] 

ν 
[-] 

f+ 
[MPa] 

f− 
[MPa] 

Gf
+ 

[N/mm] 
Gf

− 
[N/mm] 

fb
−/f− 
[-] 

b+ 
[-] 

b− 
[-] 

k 
[-] 

20000 0.2 2.40 -24 0.133 30 1.16 0.05 0.30 0.8 

Table 6.7: Concrete parameters for the mixed mode three-point bending test. 

E 
[MPa] 

ν 
[-] 

f+ 
[MPa] 

f− 
[MPa] 

Gf
+ 

[N/mm] 
Gf

− 
[N/mm] 

fb
−/f− 
[-] 

b+ 
[-] 

b− 
[-] 

k 
[-] 

38000 0.2 3.00 -54 0.069 38 1.16 0.05 0.30 0.8 

The mesh has been generated taking care of refining the discretization where 
the propagation of the crack is expected; for the wedge-splitting test, a mesh of 3353 
quadrilateral elements is adopted with a representative length in the proximity of 
the cracking zone equal to 17.5 mm. In the three-point bending and in the three-
point mixed-mode bending tests, the concrete beams are discretized with 2752 and 
13336 elements, respectively: in the regions around the notch, triangular elements 
with an average size of 2.5 mm are used while the other zones are discretized with 
larger quadrilateral meshes.  

The adequacy of the proposed orthotropic d+/d− damage model in capturing the 
nonlinear behaviour is proven by comparing the numerical and the experimental 
results in terms of deformed configurations, damage distribution, applied load 
P – crack mouth opening displacement CMOD and/or applied load 
P – displacement of relevant points.  

Regarding the wedge-splitting test, as expected due to the problem symmetry, 
the localization of the tensile damage occurs in correspondence of the notched zone 
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(see Figure 6.10.a and Figure 6.10.b) and is vertical, in accordance with the vertical 
crack path found experimentally.  

 
Figure 6.10: Wedge-splitting test: (a) deformed configuration (× 100) (in mm) and (b) 

tensile damage distribution. 

The numerical P - CMOD curve is compared in Figure 6.11 with the 
experimental one: both the peak-load and the post-peak behaviour are satisfactorily 
described with the proposed model.  

 
Figure 6.11: Load P – CMOD curve for the wedge-splitting test: comparison between 

numerical and experimental results. 
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The accordance of the results obtained numerically with the experimental ones 

is evident also for the three point bending test, as confirmed by the deformed 
configuration of the beam and by the d+ distribution (Figure 6.12.a and Figure 
6.12.b), which show the localization of the maximum deformations in 
correspondence of the mid-span, above the notch. The agreement between 
experimental and numerical results is evident also in Figure 6.13, where the load 
P – mid-point displacement δ curve obtained with the proposed damage model falls 
in between the maximum and minimum experimental envelopes.  

 
Figure 6.12: Three point bending beam: (a) deformed configuration (× 100, in mm) 

and (b) tensile damage distribution map. 

 
Figure 6.13: Load P – δ curve for the three-point bending test: comparison between 

numerical and experimental results. 
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Finally, as regards the three-point mixed-mode bending test, the deformed 

configuration (Figure 6.14.a) and the distribution of the tensile damage 
(Figure 6.14.b) are in perfect agreement with the crack trajectory found in the 
experiment, which has an inclined direction of propagation, as accurately 
documented in (Gálvez et al., 1998). The structural curves obtained with the 
proposed orthotropic model, in terms of applied load P – CMOD (Figure 6.15.a) 
and applied load P  – displacement of point B (Figure 6.15.b), fit satisfactorily with 
the experimental results, except for a slight overestimation of the dissipated energy 
in the post peak regime. 

 

 
Figure 6.14: Three-point mixed-mode bending test: (a) deformed configuration (× 100, 

in mm) and (b) tensile damage distribution map. 

 
Figure 6.15: (a) Load P – CMOD curve and (b) load P – uB curve for the three-point 

mixed-mode bending test: comparison between numerical and experimental results. 
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All the problems just described are solved also with the constitutive law 

presented in (Faria et al., 1998), derived in the framework of strain-equivalence, 
but resorting to the same permanent strain rate (2.57), damage criterion (Eqs. (2.45) 
and (2.46)) and damage evolution laws (Eq. (2.79) in tension and Eq. (2.76) in 
compression) here considered. The corresponding numerical curves are plotted in 
Figure 6.11, Figure 6.13 and Figure 6.15, together with the experimental ones and 
the ones obtained with the new d+/d− damage model described in Section 2.2. The 
objective is to discuss the effects of the energy-equivalence assumption, here 
adopted for the derivation of the constitutive operator (2.24), compared with the 
strain-equivalence hypothesis, whose constitutive equation is expressed in 
Eq. (2.6).  

On the one hand, it is possible to note how the differences between the two 
different formulations are substantially slight in the structural response, being both 
of them able to reproduce satisfactorily the laboratory results. Hence, although the 
choice of energy-equivalence ensures a gain in thermodynamic consistency with 
respect to the strain-equivalence one, as observed in Section 2.2, both the 
formulations are adequate in describing the strain-softening response typical of 
quasi-brittle materials.  

However, the adoption of the constitutive symmetric operator DE (Eq. (2.24)) 
is convenient in computational terms because it allows solving the algebraic system 
of equations referring to a symmetric secant stiffness matrix, as explained in 
Section 5.1. Looking at the CPU time necessary to complete the numerical analyses, 
collected in Table 6.8, this fact is confirmed. The maximum beneficial effect 
consists in a saved time equal to 51%, which results from the adoption of the new 
energy-equivalent damage model with respect to the original one. It is worth 
remarking that such an high saving of computational resources has to be ascribed 
not only to the assemblage and inversion of a symmetric stiffness matrix with 
respect to a non-symmetric one but also to the fact that, with the use of a symmetric 
matrix, the convergence is found in a lower number of iterations.  
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Table 6.8: Comparison in terms of CPU’s time between the new energy-equivalent 

damage formulation and the original strain-equivalent one (Faria et al., 1998). 

Problem Number 
of FEs 

CPU time  
Energy equivalence  

CPU time  
Strain equivalence 

Saved CPU 
time 

Wedge-splitting 3359 1042.95  s 1223.85 s 14.7% 

Three-point 
bending 2971 8813.53 s 17996.26 s 51.0% 

Mixed-mode 
bending 13635 5452.77 s 10393.5 s 47.5% 

6.3 Cyclic shear loads: validation of the multidirectional 
d+/d− damage model 

6.3.1 Masonry shear panel under cyclic conditions 
The first problem analyzed with the model presented in Chapter 2 enriched with the 
multidirectional procedure described in Chapter 3 is an unreinforced brick masonry 
wall under in-plane quasi-static shear loading conditions. The reference solution is 
represented by the results of laboratory tests provided in (Anthoine et al., 1994) and 
(Magenes and Calvi, 1997), dealing with a laboratory campaign addressed to 
investigate the seismic behaviour of masonry existing buildings. The loading 
conditions of the analyzed problem are representative of the ones sustained by 
vertical structural elements during a seismic event, i.e. permanent vertical loads and 
double bending moments. 

According to the experimental set-up (Anthoine et al., 1994), the wall, with an 
height H-width ratio equal to 1.35, width B 1000 mm and thickness 250 mm, is first 
subjected to a vertical compressive force of 150 kN (p = 0.6 N/mm2) and then to 
cyclic horizontal displacements uh of increasing amplitudes applied on the top 
boundary. The base of the panel is completely constrained and the vertical 
displacements of its top side are prevented, forcing the bottom and top panel 
sections to remain parallel. Both the geometry and the loading conditions adopted 
in the numerical analyses are summarized in Figure 6.16.  
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Figure 6.16: Geometry, boundary and loading conditions for the masonry shear wall. 

All the numerical analyses are performed considering an exponential damage 
evolution law in tension (Eq. (2.76) with r0

+ = f+ = fp
+, i.e. γe

+ = γp
+) and a parabolic 

hardening-exponential softening trend in compression (Eq. (2.76) with 
r0

− < f− < fp−, γe
− = 0.5 and γp

− = l.5). The permanent strains are taken into account 
by means of Eq. (2.57). Regarding the mechanical parameters, except for the 
Young’s modulus and the compressive uniaxial strengths f−, inferable from 
(Anthoine et al., 1994), the majority of the other values have been chosen in 
accordance with the experimental data expressed in (Berto et al., 2002; Magenes 
and Calvi, 1992) for brick masonry panels with mechanical features comparable 
with the ones of the analyzed wall and belonging to the same research program. The 
input values for the constitutive parameters adopted in the numerical simulations 
are collected in Table 6.9. 

Table 6.9: Masonry parameters for the wall under in-plane cyclic shear. 

E 
[MPa] 

ν 
[-] 

f+ 
[MPa] 

f− 
[MPa] 

Gf
+ 

[N/mm] 
Gf

− 
[N/mm] 

fb
−/f− 
[-] 

b+ 
[-] 

b− 
[-] 

k 
[-] 

1500 0.15 0.26 -6.2 0.25 28 1.15 0.1 0.30 0.8 

Due to the presence of a non-negligible constant vertical force in addition to 
the cyclic actions, the problem is solved by resorting to the multidirectional 
procedure specifically devised for Load Type (ii) (Section 3.1.2), i.e. taking into 
account the evolution of the damage regions related to the continuous rotation of 
the principal directions. The two additional deviation parameters required by the 
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multidirectional damage procedure, θmin (Eq. (3.3)) and θt (Eq. (3.6)), are assumed 
equal to π/8 and π/36, respectively. 

The response of the panel obtained in the laboratory test is plotted in Figure 
6.17.a, in terms of the horizontal shear force Fh recorded at the top side versus the 
imposed horizontal displacement uh. The Fh - uh curves deriving from the 
application of the multidirectional damage model, considering three quadrilateral 
mesh configurations with different refinement, are shown in Figure 6.17.b, Figure 
6.17.c and Figure 6.17.d. For comparison purposes, each numerical curve is plotted 
together with the envelope of the experimental one.  

 
Figure 6.17: Masonry wall under in-plane cyclic shear: (a) experimental results; (b), 

(c) and (d) numerical results obtained with the multidirectional procedure for different 
mesh refinements.  
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The experimental response (Figure 6.17.a) is typical of a brittle failure 

mechanism dominated by shear, where the peak load, equal to 84 kN in 
correspondence of a drift of 0.20 %, corresponds to the formation of diagonal cracks 
in the center of the panel; the pre-cracking behaviour is characterized by a modest 
hysteresis behaviour while, after the attainment of the maximum carrying capacity, 
rapid strength and stiffness degradation and high energy dissipation are visible. The 
cyclic conditions are responsible for a trapezoidal cracking pattern which presents 
two sets of intersecting cracks in the mid-height of the panel, as well as horizontal 
flexural ones in correspondence of the corners.  

Analyzing the numerical curves (Figure 6.17.b, Figure 6.17.c, Figure 6.17.d), 
firstly it is evident how the dependence of the results on the discretization, ensured 
by the adoption of the mesh-adjusted softening moduli in tension and compression, 
is very small and can be considered negligible. Secondly, it can be noticed that the 
numerical results reproduce satisfactorily the overall structural response of the 
shear panel: both the peak load, achieved at a drift of 0.22 % (uh = −3 mm) and 
equal to 84,8 kN (curve in Figure 6.17.d), and the post-peak softening trend are well 
approximated. Moreover, the effect of the multidirectional procedure is visible in 
the similarity of the response in terms of ultimate load, ultimate displacement and 
softening behaviour between positive and negative displacements. This is simulated 
thanks to the stiffness recovery capabilities of the multidirectional model in 
correspondence of loading reversal; in fact, going from negative to positive 
displacements, an increase in stiffness is visible in the numerical response, 
particularly evident in the unloading stage after the attainment of the maximum 
carrying capacity (cycle 2, amplitude 3 mm): here, the closure of a set of diagonal 
cracks just opened translates in almost the total recovery of the initial stiffness, 
since the generation of the diagonal cracks in the orthogonal direction is not 
occurred yet. In the subsequent cycles, this phenomenon, although present, is less 
evident because the closure of a set of cracks coincides with the re-activation of the 
other set of cracks previously originated.  

To make clearer how this stiffness regain is simulated, the contour plots of the 
active tensile damage value d+ corresponding to different stages of cycle 2 are 
shown in Figure 6.18. In Figure 6.18.a, Figure 6.18.b and Figure 6.18.c, the contour 
plots refer to the situations of maximum loading (uhmax= −3 mm), loading reversal 
(uhmax= +0.12 mm) and maximum reloading (uhminx= +3 mm).  
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Figure 6.18: Active d+ contour plots in cycle 2: (a) uh=−3mm, (b) uh=+0.12mm and (c) 

uh=+3mm. 

In Figure 6.18.a, the high values of damage at the center of the panel and at the 
two corners identify the formation of the shear and flexural cracks, respectively, 
induced by a horizontal displacement towards the right. Just after loading reversal, 
in Figure 6.18.b, the closure of the previously generated cracks is represented by 
making inactive the damage values displayed in Figure 6.18.a: in fact, due to the 
rotation of the principal directions, the transition from a damage region to the other 
one has occurred and the active damage values coincide with the maximum ones 
attained during the reloading in cycle 1. Starting from this damage configuration, 
due to the increase of the horizontal displacement towards the left, the active 
damage distribution in Figure 6.18.c is obtained, almost symmetric with respect to 
the one in Figure 6.18.a.  

A further confirmation that the collapse mechanism captured by the numerical 
analysis is governed by shear is given in Figure 6.19 and Figure 6.20, where the 
maximum tensile strains εmax are displayed in cycle 2 and in cycle 5, respectively, 
at the end of loading and at the end of the reloading stages. The contour plots in 
Figure 6.19 confirm the formation of the dominant cracking mechanism in the 
center of the panel. In Figure 6.20, the results refer to the end of the analysis, when 
the crack propagation towards the corners has occurred, causing the maximum 
strain values to leave the central part. Although the adoption of a smeared approach 
does not allow identifying with accuracy the strain localization, the numerical 
solutions shown in Figure 6.19 and Figure 6.20 are in good agreement with the 
cracking pattern observed in laboratory and documented in (Anthoine et al., 1994). 
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Figure 6.19: Maximum tensile strain contour plots in cycle 2: (a) uh= −3 mm and (b) 

uh= +3 mm. 

 
Figure 6.20: Maximum tensile strain contour plots in cycle 5: (a) uh= −7.5 mm and (b) 

uh= +7.5 mm. 

For comparison purposes, the Fh - uh curve obtained by the adoption of the 
damage model without a multidirectional treatment of damage is shown in Figure 
6.21.a. Even though the peak load and the envelope of the experimental curve are 
basically captured, the lack of unilateral effects reflects in a relevant 
underestimation of the dissipated energy. This can be noticed both in the unrealistic 
shape of the hysteretic cycles and in the evolution of permanent deformations, 
which accumulate mainly in the positive loading stages, and not in the reloading 
ones (in accordance with the observations provided in Section 3.4). Differently, in 
the response obtained with the multidirectional damage model (see Figure 6.17.d), 
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although the permanent strains are somewhat underestimated, their evolution is 
qualitatively correct, as permanent deformations are generated both in the loading 
and in the reloading stages. 

In order to provide a quantitative proof of the beneficial role of the 
multidirectional damage approach in terms of representation of the dissipative 
behaviour, the equivalent viscous damping coefficients are computed for each load 
cycle, referring to the numerical response with and without enhanced MCR 
capabilities, Figure 6.17.d and Figure 6.21.a, respectively. The equivalent viscous 
damping is evaluated as the ratio between the energy dissipated in a cycle Wd and 
the elastic energy We at the maximum displacement uhmax: 

 2
d

eq
e e

W

W W


  



 

(6.1) 

In Figure 6.21.b, these quantities are plotted as a function of the drift (uhmax/H) 
and compared with the ones derived from the experimental response (data provided 
in (Magenes and Calvi, 1997)).  

 
Figure 6.21: Masonry shear wall under in-plane cyclic shear: (a) numerical results 

without the multidirectional procedure; (b) comparison in term of viscous damping 
coefficients between the numerical response obtained with and without the multidirectional 
procedure. 

On the one hand, Figure 6.21.b shows the adequacy of the multidirectional 
model in treating the cyclic shear failure: after cracking, the numerical trend of the 
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equivalent viscous damping is close to the experimental one, meaning that the 
growth of the dissipated energy due to increasing damage and increasing 
displacement demand is well reproduced. The slightly lower values obtained in the 
analyses can be attributed to the slight underestimation of the permanent strains. On 
the other hand, Figure 6.21.b confirms the incapability of a pure scalar damage 
formulation in describing the real dissipative behaviour under shear cyclic 
conditions, because independent degradation processes along different directions 
can not be represented. 

As mentioned above, a slight underestimation of the permanent deformations 
is visible in the numerical response from Figure 6.17.d. This deserves some further 
consideration on the adequacy of the simplified definition (2.57) here adopted for 
the irreversible strain tensor εp and the importance of this model component in 
cyclic loading conditions. To do this, two additional analyses are carried out, 
varying the values of the material parameters b+ and b− with respect to the ones 
indicated in Table 6.9. Specifically, both the case of high permanent deformations 
(b+= 0.17 and b−= 0.45) and null permanent deformations (b+= 0 and b−= 0) are 
considered. The resulting Fh - uh curves, obtained using the finer mesh, are plotted 
in Figure 6.22. Moreover, these solutions are also re-elaborated in terms of damping 
coefficients-drift trends in Figure 6.23, in order to directly evaluate the variation of 
energy dissipation associated to the variation of εp.  

 
Figure 6.22: Masonry shear wall under in-plane cyclic shear: Fh - uh curves in case of 

(a) high permanent deformations and (b) absent permanent deformations. 
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Figure 6.23: Masonry shear wall under in-plane cyclic shear: numerical responses with 

different levels of permanent deformations compared in terms of viscous damping 
coefficients. 

Some relevant aspects emerge from the analysis of these figures. Firstly, 
although the inclusion of permanent deformations in the damage model is perfomed 
in a simplified manner, it results adequate for describing the experimental evidence, 
both in terms of residual deformations at complete unloading (Figure 6.22.a) and in 
terms of energy dissipation capacity (Figure 6.23). Secondly, a less pronounced 
softening response is obtained when the permanent deformations are not included 
(Figure 6.22.b); this is not surprising because, according to the coupled definition 
of the softening modulus proposed in Section 2.5 (Eq. (2.84b)), a reduction of the 
permanent deformations implies a reduction of the softening modulus, hence a 
slower evolution of damage. Moreover, the unrealistically low values of ξeq 
obtained with null εp (Figure 6.23) are very similar to the ones derived without the 
multidirectional procedure, in case of b+= 0.1 and b−= 0.3 (Figure 6.21.b). It is 
concluded that the modelling of permanent deformations is important as the 
modelling of microcrack closure-reopening effects for a correct representation of 
the behaviour of quasi-britttle structures under cyclic loading.  

6.3.2 Reinforced concrete wall under cyclic shear 
The second problem studied with the multidirectional procedure described in 
Chapter 3 is a reinforced concrete wall subjected to horizontal cyclic shear forces, 
tested within the French national research project CEOS.fr (Rospars and Chauvel, 
2014). The specimen analyzed is the one identified in the experimental campaign 
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with the acronym SHW2 and represents a 1/3 reduced-scale model of reinforced 
concrete thick shear walls employed in industrial buildings to resist seismic 
loadings.  

In the numerical analysis, the experimental set-up, detailed in (Rospars and 
Chauvel, 2014; Bisch et al., 2014), is reproduced as shown in Figure 6.24: the 
reinforced concrete specimen (Zone 1, Zone 2), of overall dimensions 
4.2 m × 1.05 m × 0.15 m, is connected on the top and on the bottom to highly 
reinforced thick horizontal beams (Zone 3 and Zone 4), which allow redistributing 
the shear loading on the panel. The horizontal action, in the laboratory test assigned 
by means of hydraulic actuators placed on each side of the top beam, 100 mm over 
the wall, is provided in terms of horizontal imposed displacements uh alternated on 
the Surfaces 1 and 2. Moreover, the constraint represented by the steel frame in 
which the whole test body is installed is modelled by preventing horizontal 
displacements on Surfaces 3 and 4 and vertical displacements on Surfaces 5 and 6. 
Rebars ϕ 10, spaced 100 mm in both vertical and horizontal directions on both faces 
of the wall (Zone 1) are considered while vertical rebars ϕ 25 and ϕ 32 are added in 
the left and right sides of the wall (Zone 2), in order to control the opening of cracks 
due to bending. 

 
Figure 6.24: Geometry, boundary and loading conditions for the reinforced concrete 

shear wall. 
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In the highly reinforced zones, specifically the top and bottom beams (Zone 3, 

Zone 4) and the left and right parts of the wall (Zone 2), it is assumed that the 
concrete behaviour is elastic. Hence, the damage formulation developed in 
Chapter 2 and Chapter 3 is applied only to Zone 1, considering the definition for 
permanent strains (2.57), an exponential softening law in tension (Eq. (2.76) with 
r0

+ = f+ = fp+, i.e. γe
+ = γp

+) and a parabolic-exponential damage evolution law in 
compression (Eq. (2.76) with r0

− < f− < fp
−, γe

− = 0.4 and γp
− = l.6). The mechanical 

parameters adopted for concrete, class C40, are collected in Table 6.10. They are 
chosen in accordance to (Rospars and Chauvel, 2014; Vassaux et al., 2015) and, in 
absence of data availability, calibrated in order to optimize the fitting between 
numerical and experimental results. 

Table 6.10: Concrete parameters for the problem of the R.C. wall under cyclic shear. 

E 
[MPa] 

ν 
[-] 

f+ 
[MPa] 

f− 
[MPa] 

Gf
+ 

[N/mm] 
Gf

− 
[N/mm] 

fb
−/f− 
[-] 

b+ 
[-] 

b− 
[-] 

k 
[-] 

22000 0.2 3.9 -42 0.7 45 1.16 0.1 0.35 0.8 

The reinforcement is modeled as follows, exploiting the fact that it is oriented 
along the Cartesian directions x and y. Assuming the hypothesis of perfect 
adherence between concrete and rebars, the axial forces sustained by steel in the 
horizontal and vertical direction, Psx and Psy, are computed starting from the 
deformations εx and εy in the concrete, taking into account the percentage of 
horizontal and vertical reinforcement ρx and ρy. The uniaxial constitutive law 
chosen to represent the cyclic behaviour of the reinforcement is the one proposed 
in (Menegotto and Pinto, 1973) and illustrated in Figure 6.25. The expression for 
the steel stress σs is explicited in (Faria et al., 2004).  

 
Figure 6.25: Constitutive law of the reinforcement under uniaxial cyclic history. 
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The parameters adopted in the analyses for the characterization of the 

reinforcement are synthetized in Table 6.11, where Es is the Young’s elastic 

modulus, Esh is the hardening modulus, fy is the yielding stress and a1, a2 and a3 are 
three constants chosen to fit the Baushinger effect observed experimentally.  

Table 6.11: Reinforcement constitutive parameters for the problem of the R.C. wall 
under cyclic shear. 

Es 
[MPa] 

Esh 
[MPa] 

fy 

[MPa] 
a1  
[-] 

a2  
[-] 

a3  
[-] 

210000 2100 420 18.5 0.15 20 

The percentages of steel reinforcement considered in the different Zones 
highlighted in Figure 6.24 are summarized in Table 6.12, together with the 
thickness of each Zone. 

Table 6.12: Percentage of the reinforcement and thickness for each Zone of the R.C. 
shear wall body test. 

Zone 
ρx 

 [-] 
ρy  
[-] 

Thickness  
[mm] 

Zone 1 0.011 0.011 150 

Zone 2 0.025 0.243 150 

Zone 3 0.043 0.005 450 

Zone 4 0.048 0.155 450 

Due to the absence of vertical loads, except for the self-weight which is 
negligible compared to the horizontal cyclic action, the multidirectional approach 
is applied referring to load Type (i), considering non-evolving damage regions 
during the loading history (Section 3.1.1). Therefore, the only additional parameter 
required by the multidirectional procedure is θt (Eq. (3.6)), assumed equal to π/36. 

In Figure 6.26, the experimental results in terms of global horizontal force 
Fh – horizontal displacement uhA of point A on the top side of the specimen (see 
Figure 6.24) are plotted (Bisch et al., 2014). In Figure 6.27, four different numerical 
predictions are shown: Figure 6.27.a and Figure 6.27.b exhibit the force-
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displacement curves obtained by means of the multidirectional procedure, 
considering two different quadrilateral mesh refinements; Figure 6.27.c represents 
the numerical response derived by applying the standard scalar damage 
formulation, without a multidirectional treatment of damage; finally, in Figure 
6.27.d the results are obtained with the multidirectional procedure and increasing 
the intensity of the permanent deformations with respect to the values presented in 
Table 6.10 (b+= 0.18 and b−= 0.45). 

 
Figure 6.26: R.C. wall under in-plane cyclic shear: experimental results. 

First of all, comparing Figure 6.27.a and Figure 6.27.b, a very low dependence 
of the results on the discretization can be appreciated. Secondly, good 
representativeness of the experimental curve is noticed. Specifically, the 
progressive evolution of degradation with the development of cracking is captured, 
as well as the lateral resistance of the structure (4.07 MN against 4.3 MN). Even in 
terms of displacement capacity, the numerical and observed results are in good 
agreement: the slightly greater deformability visible in Figure 6.26 for high load 
cycles is attributable to the assumption of elastic behaviour for the Zones 2, 3 and 
4 displayed in Figure 6.24.  
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Figure 6.27: R.C. wall under in-plane cyclic shear: (a) and (b) numerical results 

obtained with the multidirectional procedure for two different mesh refinments; (c) 
numerical results without the multidirectional procedure; (d) numerical results obtained 
with the multidirectional procedure and with an higher level of permanent deformations. 

In addition, comparing Figure 6.27.b and Figure 6.27.d, it is worth noting that 
the level of permanent deformations experimentally observed is better modelled by 
increasing the parameters b+ and b−. This represents a further confirmation of the 
adequacy of Eq. (2.57) for describing the evolution of εp. 

For what concern the effects of the alternating loadings, the global response 
obtained with the adoption of the multidirectional procedure (Figure 6.27.a, Figure 
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6.27.b and Figure 6.27.d) is essentially symmetric. This proves an appropriate 
consideration of the microcracks closure-reopening phenomena. In fact, the same 
peak loads and the same dissipative trends can be obtained in the loading and 
reloading stages only by means of appropriate stiffness recovery capabilities upon 
loading reversal. These features are absent in the response obtained without the 
multidirectional procedure (Figure 6.27.c), in which the full conservation of 
damage from the loading to the reloading stages is evident and is due to the 
impossibility of distinguishing between two sets of defects with different 
orientations. In addition, as discussed in Section 3.4, the lack of unilateral 
capabilities have consequences even on the evolution of permanent strains, which 
unrealistically accumulate only for positive thrusts. 

The only notable discrepancy between numerical and observed results lies in 
the pinched shape of the hysteresis cycles, which is evident in Figure 6.26 and is 
not appreciable in Figure 6.27.a, Figure 6.27.b and Figure 6.27.d. Pinching is 
associated to the bond slip between concrete and rebars (Vecchio, 1999), neglected 
in the analysis due to the hypothesis of perfect adherence. Removing such an 
assumption would add significant complexity to the model and it is not in line with 
the objective of the present example of application, which is to show the enhanced 
unilateral capabilities of concrete ensured by the application of the multidirectional 
procedure.  

In order to demonstrate how the multidirectional approach allows reproducing 
the stiffness recovery, the contour plots of the active tensile damage at the end of 
the loading (uhA = 1.55 mm) and at the end of the reloading (uhA = −1.35 mm) in the 
fourth cycle of the curve plotted in Figure 6.27.b are displayed in Figure 6.28.a and 
Figure 6.28.b, respectively. The approach is based on the deactivation of some 
values of damage (the one referred to the closed cracks) and on the reactivation of 
other values (the one referred to the open ones).  

 
Figure 6.28: Contour plots of the active tensile damage value d+for the R.C. wall 

under in-plane cyclic shear: (a) uhA = 1.55 mm and (b) uhA = −1.35 mm. 
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Finally, the symmetry found in the active damage contour plots (Figure 6.28) 
between the two sets of alternating active cracks reflects in a symmetric distribution 
of the longitudinal strains εxx, between the situation uhA  = 2.35 mm and uhA  = −2.2 

mm, as shown in Figure 6.29.a and Figure 6.29.b respectively. These contour plots 
reproduce satisfactorily the two symmetric sets of cracks observed in the laboratory 
test (Rospars and Chauvel, 2014) and confirm the adequacy of the proposed 
mechanical model in dealing with cyclic shear actions. 

 
Figure 6.29: Contour plots of the longitudinal strains εxx for the R.C. wall under in-

plane cyclic shear: (a) uhA = 2.35 mm and (b) uhA = −2.2 mm. 

6.3.3 Numerical robustness of the multidirectional damage 
procedure 
In Section 3.3, a smooth transition between different damage regions is proposed 
with the aim of alleviating the convergence difficulties expected when cracks close 
and reopen. Here, the effects of this procedure on the numerical performance of the 
multidirection damage approach are investigated and quantified with reference to 
the problem of the masonry shear panel studied in Section 6.3.1. This is carried out 
by varying the value of the parameter θt which identifies the amplitude of the 
transition region (see Eq. (3.6) and Figure 3.4) for each level of permanent 
deformations considered in the numerical analyses (Figure 6.23). The variable used 
to quantify the numerical performance is the number of iterations necessary to 
achieve convergence in a load step.  

The convergence data discussed in the following regards the unloading-
reloading stages after the achievement of the maximum load (cycle 2, amplitude 
3 mm). As previously discussed, this is in fact the situation in which stiffness 
recovery is more emphasised and hence convergence difficulties are expected to be 
greater. Specifically, the load increments around crack-closure, which require the 
highest number of iterations to converge, are thirteen. For these thirteen load steps, 
the number of necessary iterations is indicated in Figure 6.30.a, Figure 6.30.b and 
Figure 6.30.c, which refer to the case of high permanent deformations (b+= 0.17 
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and b−= 0.45), intermediate permanent deformations (b+= 0.1 and b−= 0.3) and null 
permanent deformations (b+= 0.0 and b−= 0.0), respectively.  

In each graph, different values of θt are taken into account: from θt = π/180 (1°) 

to θt = π/36 (5°). Higher is θt, smoother is the modelling of the crak closure. 

 
Figure 6.30: Numerical convergence in correspondence with crack closure for varying 

θt: (a) high permanent deformations, (b) intermediate permanent deformations, (c) zero 
permanent deformations and (d) effects of θt on the structural response. 

Moreover, Figure 6.30.d shows the structural responses obtained with different 
values of θt , in case of b+= 0.1 and b−= 0.3. 

Analysing Figure 6.30, it is possible to observe that passing from θt =  π/180 to 

θt =  π/36 there is a non-negligible reduction of the total number of iterations, which 
is of 22% in the case of high εp and 24% in the case of intermediate εp. However, 
the beneficial effect of the smoothing procedure is more significant in the case of 
zero permanent deformations, where the inclusion of a sufficiently wide transition 
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region (θt= π/36) allows to obtain convergence in 57 iterations, while, with the 
adoption of θt= π/180, lack of covergence has been encountered. For this reason the 

curve associated to θt= π/180 is not present in Figure 6.30.c. This consideration is 
in agreement with another trend inferable from Figure 6.30: permanent 
deformations improve the numerical performance as they mitigate the abrupt 
stiffness changes in correspondence of crack closure. Finally, Figure 6.30.d shows 
that the structural response is unaffected by the transition parameter θt, confirming 
that its role is only the one of improving the robusteness of the multidirectional 
damage procedure.  



  
 

Chapter 7 

Validation of the regularized strain 
tensor damage model 

In the present chapter, different structural problems are solved with the regularized 
d+/d− damage model presented in Chapter 4. The versatility of such a formulation 
is proven by studying a masonry arch and reinforced and unreinforced concrete 
elements. Besides the validation of the numerical results with experimental or 
analytical data, each example highlights one or more features of the regularized 
formulation: the mesh-size and mesh-bias independence of the results, the influence 
of the nonlocal internal length lRG, the effect of the choice of the nonlocal variable 
to be averaged, the possibility to reproduce structural size effects. The numerical 
algorithm adopted for studying these problems is the one detailed in Table 5.5 and 
Table 5.6. 

7.1 Masonry arch subjected to a vertical point load 
The first problem solved with the regularized damage model is a masonry arch 
subjected to a vertical cyclic point-load located at one quarter of the span.  

On the one hand, the example is addressed to show the applicability of the 
proposed damage model to a common typology of masonry structures under gravity 
loads. In these loading conditions, a damage criterion in compression can be 
omitted because crushing is far from being attained. Therefore, with respect to the 
general formulation, the further assumption of d− = 0 is here considered. Although 
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the choice of a linear elastic behaviour in compression does not reproduce 
accurately the reality, it is undertaken also in (Heyman, 1995) for applying limit 
analysis to masonry structures and in (Cuomo and Ventura, 2000), for describing 
the masonry mechanical behaviour in combination with a no-tension material 
model.  

On the other hand, the problem discusses the negligible dependence of the 
regularized solution on the mesh-size. As mentioned at the end of Section 4.1.1, the 
averaging is applied to the elastic strain tensor εe whilst the permanent strain tensor 
εp is always considered in its local version. Therefore, the capability of the 
regularized approach to ensure objective results with respect to the discretization 
has to be investigated in presence of irreversible deformations. For this reason, such 
an example, characterized by loading and reloading stages, is taken into account for 
validating the mesh-size independence of the regularized formulation. 

The reference solution is represented by the results of a static cyclic laboratory 
test illustrated in (Ramos et al., 2010) and (Ramos, 2007). A comparison between 
these experimental results and the numerical solution obtained by means of a 
unilateral nonlocal damage model is also developed in (Toti et al., 2014).  

The arch, made of brick masonry, has a semicircular shape with a radius of 
0.77 m, a span of 1.5 m and a cross section equal to 0.05 m (thickness) × 0.45 m 
(depth). The geometry and loading conditions are considered with reference to a 
plane stress problem. Both vertical and horizontal displacements are restrained at 
the arch springers, simulating as infinitely stiff the concrete abutments present in 
the experimental configuration. The applied point load at the quarter span is 
modelled by means of a prescribed displacement history in order to capture the post-
peak structural response. The material properties are reported in Table 7.1. 

Although damage in compression is not taken into account, the value of the 
compressive strength is provided because the damage surface in tension depends 
on the ratio between the tensile and compressive uniaxial strengths, as shown in 
Figure 2.4.a and in the expression of the positive equivalent stress quantity (2.45). 

Table 7.1: Material parameters for the analysis of the masonry arch. 

E  
[MPa] 

ν 
[-] 

f+ 
[MPa] 

f− 
[MPa] 

Gf
+ 

[N/mm] 
ξ+ 
[-] 

lRG 

[mm] 
γm 

[kN/m3] 

4000 0.2 0.11 -3 0.0085 0.5 21 16 
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The elastic material properties as well as the masonry specific weight are chosen 
according to (Ramos, 2007) and (Toti et al., 2014): E = 4000 MPa, ν = 0.2 and 
γm = 16 kN/m3. In (Toti et al., 2014), these parameters are calibrated by means of 
an inverse procedure, taking into account the modal structural properties derived by 
the dynamic tests carried out on the arch in (Ramos et al., 2010). The parameters 
governing the damage propagation and the development of irreversible 
deformations are assumed in order to obtain a response curve as close as possible 
to the experimental one: ft = 0.11 MPa, Gf

+= 0.0085 N/mm and ξ+= 0.5. The use of 
the parameter ξ+ indicates that the new definition of the permanent deformations, 
expressed in Eq. (2.61), is here considered. Finally, according to the calibration 
procedure commented in Section 4.2, a relative dissipation length kdis equal to 2, is 
associated to the internal length lRG= 21 mm. 

As done in the laboratory test, the numerical analysis is performed under a 
cyclic load history, in order to validate the capability of the proposed constitutive 
law to catch the experimental response in terms not only of carrying capacity and 
strain localization but also stiffness degradation and permanent deformations. The 
numerical cyclic structural response is shown in Figure 7.1 in a diagram whose axes 
are the vertical applied displacement u and measured reaction force F as abscissae 
and ordinates, respectively. The numerical solution for a structured triangular mesh 
of 1563 finite elements is plotted together with the experimental envelope. The 
unloading braches obtained in the cyclic experimental test are omitted and only the 
loading stages are shown. 

 
Figure 7.1: Concentrated force F - vertical displacement u curve for the arch: 

comparison between experimental and numerical results with a mesh of 1563 FEs. 
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The numerical results are satisfactory: the decrease of the initial stiffness at the 

elastic limit, the ascending stage up to the peak load as well as the softening regime 
are well captured by the model. In particular, the approximation of the peak load is 
excellent, with a negligible difference between the numerical (1424.7 N) and the 
measured (1424.9 N) values.  

In terms of failure mechanism, the opening of the four experimentally observed 
cracks is well reproduced. The crack sequence, not registered in the laboratory test, 
can be positively compared with some preliminary numerical results provided in 
(Ramos, 2007). In Figure 7.2, the tensile damage distribution shows how strain 
localization appears first just below the concentrated load at the intrados (Figure 
7.2.a), then at the intrados of the right support (Figure 7.2.b), then again at a 
symmetrical position with respect to the first crack but at the extrados (Figure 7.2.c) 
and lastly at the extrados of the left support (Figure 7.2.d; here damage 
concentration is only slightly displayed).  

The map of the maximum principal permanent strains at the end of the analysis, 
plotted in Figure 7.3, constitutes a further evidence of the fact that the expected 
resistant mechanism based on four hinges is numerically well reproduced. 

 

 
Figure 7.2: Numerical crack localization and opening crack sequence: first crack at a 

vertical displacement of 0.3 mm (a), second crack at 0.51 mm (b), third at 0.79 mm(c), 
fourth at 0.86 mm. 
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Figure 7.3: Contour plots of maximum principal permanent strains at the end of 

the analysis. 

A detailed comparison between the numerical F - u trends in the loading and 
unloading stages and the four cycles observed in the laboratory test is provided in 
Figure 7.4 in order to verify the adequacy of the new definition of permanent strains 
introduced in Eq. (2.61). From the analysis of Figure 7.4, it can be inferred that 
relating the evolution of permanent deformations to the partial irreversibility of the 
microcrack opening through Eq. (2.61) finds experimental confirmation: except for 
the first load cycle, in all the other cases a fair correspondence is found in terms of 
residual deformations at complete unloading. 

 
Figure 7.4: Comparison between numerical and experimental cyclic response. 
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This allows to conclude that the new simplified definition of the permanent 

deformations (2.61) is effective, as well as the one proposed by (Faria et al., 1998) 
and reconsidered in the form (2.57), but has a stronger mechanical basis, which is 
the plastic microcracking. 

A further confirmation of the adequacy of the constitutive law is provided by 
its capability of representing faithfully the stiffness degradation during the loading 
history. This is shown in Figure 7.5, where the evolution of the numerical relative 
secant unloading stiffness is compared with the corresponding experimental value.  

Finally, the example of the masonry arch subjected to a point load is exploited 
to investigate the positive consequences of a regularized approach in terms of 
dependence of the solutions on the mesh refinement. Three different degree of mesh 
refinements are considered, all of them characterized by the use of triangular 
structured finite elements: the coarse mesh has 1072 finite elements, the 
intermediate 1536 finite elements while the finer 2112 finite elements. The global 
response curves for the different discretizations are collected in Figure 7.6.  

The mesh objectivity study proves the capability of the regularized damage 
model to provide solutions negligibly affected by the discretization. In particular, 
higher is the refinement, lower are the differences visible in the response curve, as 
confirmed by the almost perfect superimposition between the F - u curves obtained 
with the intermediate and the fine mesh.  

 
Figure 7.5: (a) Identification of unloading secant stiffness and (b) comparison 

between numerical and experimental unloading relative stiffness values. 
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Figure 7.6: Dependence on the mesh refinement of the results obtained with the 

regularized damage model for the problem of the arch subjected to a vertical point wise 
load. 

It is worth noting that not only the load values are not influenced by the choice 
of the mesh refinement, but also the irreversible strains. This allows concluding that 
the averaging of only the elastic strain tensor εe, performed in accordance with the 
calibration procedure explained in Section 4.2, is sufficient to ensure the mesh-
objectivity of the results; consequently, the permanent strains, introduced by means 
of a unified dissipative framework, can be treated as local variables.  

7.2 Perforated slab under uniaxial tension 
The present section highlights the capability of the regularized approach described 
in Chapter 4 to provide strain localization results independent of the mesh 
alignment, comparing it with the performance of the corresponding local approach.  

The reference solution considered to verify the adequacy of the regularized 
model is represented by the analytical results obtained with the strain localization 
analysis proposed in (Wu and Cervera, 2017). In this paper, the strain localization 
analysis is applied to some classical isotropic damage models, among which there 
is the “1 − d” damage model described in (Simó and Ju, 1987). For such damage 
formulation, a closed form solution for the discontinuity orientations is provided in 
(Wu and Cervera, 2017), strongly dependent on the Poisson ratio ν.  

Therefore, to validate the mesh-bias objectivity of the regularized strain tensor 
approach, firstly the Simo and Ju isotropic damage model is considered, in order to 
use known analytical results as comparison. Then, the strain localization analysis 
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proposed in (Wu and Cervera, 2017) is extended to the new constitutive operator 
presented in its regularized version in Eq. (4.8) (for the case of d−= 0). This allows 
to study the effect of the orthotropy on the discontinuity inclination as well as to 
verify the reliability of the regularized procedure in conjunction with the new 
constitutive orthotropic stiffness operator (4.8). 

The problem chosen to develop this topic is a singly perforated slab loaded in 
uniaxial tension by means of imposed vertical displacements at top and bottom 
ends. The slab, with dimensions 20 m × 40 m × 1 m, holds a slanted perforation of 
diameter 1 m, introduced in order to avoid symmetric solutions. The imposed 
vertical displacement uv at both ends is equal to 0.1 m. This is the same example of 
application adopted in (Wu and Cervera, 2017) to validate numerically the proposed 
strain localization analysis. However, there the mesh-bias independence of the 
results is ensured by the adoption of the mixed strain/displacement finite element 
method (Cervera et al., 2011). The material properties used in the numerical 
analyses are summarized in Table 7.2. 

Table 7.2: Material parameters for the analysis of the perforated slab. 

E  
[MPa] 

ν 
[-] 

f+ 
[MPa] 

Gf
+ 

[N/mm] 
ξ 

[-] 

10 0.0 – 0.15 – 0.3 0.01 0.5 0.0 

The absence of the material properties related to compression in Table 7.2 is 
justified by the fact that the damage criteria adopted in the follow-up in the isotropic 
and orthotropic cases are not dependent on them, in accordance with the 
formulation proposed by (Simó and Ju, 1987).  

Three values for the Poisson ratio ν are considered since the discontinuity angle 
is affected by ν, as demonstrated in (Wu and Cervera, 2017). In fact, the strategy to 
validate the mesh-bias objectivity of the model is different from the one usually 
adopted, consisting in changing the mesh alignment and monitoring the variation 
of the numerical solution. Here, the mesh is maintained fixed and the capability of 
the regularized approach to catch the analytical solution is assessed by varying the 
Poisson ratio. Actually, to test further the regularized approach, two different 
triangular meshes are adopted, both with an average size of 0.3 m in correspondence 
with the perforation: an unstructured mesh is adopted in case of ν = 0 (Figure 7.7.a) 
and a structured one in case of ν ≠ 0 (Figure 7.7.b), since horizontal and inclined 
discontinuities are expected from the analytical results, respectively. 
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Figure 7.7: (a) Triangular unstructured mesh adopted for ν = 0 with 9694 finite 

elements and (b) triangular structured mesh adopted for ν ≠ 0 with 7684 finite elements. 

7.2.1 Isotropic model  
The isotropic model considered is the strain-based one proposed in (Simó and Ju, 
1987), whose salient aspects (constitutive law and damage criterion) are 
summarized in Eqs. (7.1), (7.2) and (7.3). 

   1 1d d :    0 eσ σ D ε  (7.1) 

0g r    (7.2) 

: :τ  0ε D ε       
[0, ]

max ;max0
t

r r τ
 

  
 

 (7.3) 

In Eqs. (7.1), (7.2) and (7.3), τ and r represent the equivalent and the damage 

threshold quantities; in particular, r0 is equal to f+/ E . An exponential softening 
law of the type expressed in Eq. (2.79) is adopted to define d starting from r.  
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In the local analyses, in accordance with the crack band theory, the softening 

modulus Hd is adjusted according to the size h of the discretization (h replaces the 
generic length l present in Eq. (2.84b)). In the regularized analyses, the internal 
length lRG is assumed equal to 0.215 m (i.e, the interaction radius is 0.43 m) and the 
relative dissipation lengths kdis, which vary slightly with the Poisson’s ratio, 

computed according to the calibration procedure described in Section 4.2, are: 
kdis = 2.11 for ν = 0.0, kdis = 2.09 for ν = 0.15 and kdis = 2.06 for ν = 0.3.  

The vertical force F- vertical displacement uv curves obtained with the 
regularized approach, for the three different values of the Poisson’s ratio, are shown 

in Figure 7.8, together with a comparison between the global response obtained 
with the local and with the regularized approach for the representative case of 
ν = 0.3.  

 

 
Figure 7.8: (a) Force F - vertical displacement uv curves with the regularized isotropic 

damage model for different values of ν; (b) local and regularized approaches for ν = 0.3. 

As shown in Figure 7.8, the structural response is slightly affected by the Poisson 
ratio. The comparison between the curve obtained with the local and with the 
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nonlocal approach highlights the fact that, thanks to the calibration procedure, the 
two models are able to dissipate the same amount of energy, being the damage 
evolution ruled by the common fracture energy Gf

+. 

In addition, the vertical displacements at the end of the analysis obtained with 
the local approach and with the r one are plotted for the different values of the 
Poisson’s ratio in Figure 7.9 and Figure 7.10, respectively. These figures clearly 
show how ν strongly affects the discontinuity orientation and how significantly 
different results are achieved with a local approach and with a regularized one. 

The analytical localization angle in case of plane stress problems, derived in 
(Wu and Cervera, 2017) for the Simó and Ju isotropic damage model, is: 

1 2

1 2

1cos2
1cr

σ σ

σ σ







 

 
      (7.4) 

where θcr is the angle (clockwise verse) between the principal direction associated 
to σ1 and the normal to the discontinuity. Due to the uniaxial loading conditions 
(σ1 ≠ 0, σ2 = 0), the localization angle for the perforated slab under study becomes: 

1cos 2
1cr










      (7.5) 

 
Figure 7.9: Contour plots of the vertical displacements (mm) with the isotropic local 

damage model for (a) ν = 0, (b) ν = 0.15 and (c) ν = 0.3. 
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Figure 7.10: Contour plots of the vertical displacements (mm) with the isotropic 

regularized damage model for (a) ν = 0, (b) ν = 0.15 and (c) ν = 0.3. 

The comparison between the analytical results, the local (Figure 7.9) and 
regularized (Figure 7.10) localization angles is provided in Table 7.3. 

Table 7.3: Comparison between analytical, local and regualrized discontinuity angles 
for the perforated slab under uniaxial tension studied with an isotropic damage model. 

Poisson’s ratio Analytical Numerical-local Numerical-Regularized 

ν = 0.0 0.00° 10.60° 0.00° 

ν = 0.15 21.17° 0.00° 21.80° 

ν = 0.3 28.71° 34.31° 28.9° 

On the one hand, the agreement between the discontinuity orientations obtained 
with the regualrized approach and the analytical values is remarkable, proving the 
independence of the proposed model from the mesh alignment. On the other hand, 
the local results are strongly affected by the mesh-bias. For ν = 0.0 the horizontal 
crack is not represented due to use of the unstructured mesh (Figure 7.7.a), while 
for ν = 0.15 and ν = 0.3 the discontinuities tend to follow the two preferential 
directions induced by the structured mesh (Figure 7.7.b), which are the horizontal 
direction and the one inclined of 45°, respectively. 
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7.2.2 Orthotropic model 
The Simó and Ju isotropic damage model exhibits a dependence of the strain 
localization on the lateral deformation behaviour which is inconsistent with the 
hypotheses at the base of the smeared and discrete crack models and that can be 
ascribed to its constitutive secant stiffness (see Eq. (7.1)).  

In the present section, the adoption of the new energy-equivalent d+/d− 
constitutive operator DE (see Eq. (4.8)) is investigated to discuss the effect of the 
orthotropy on the strain localization orientations. For the sake of clarity, the 
assumption of d− = 0 is done. Moreover, in order to make the results comparable to 
the ones obtained in the previous section, the strain-driven damage criterion 
adopted in (Simó and Ju, 1987) and expressed in Eqs. (7.2) and (7.3) is considered, 
together with a damage evolution law of the exponential type. Only regularized 
analyses are performed with the orthotropic model, adopting the same internal 
length and the same dissipation lengths previously introduced for the isotropic 
formulation. 

The structural responses obtained with the regularized orthotropic damage 
model, for the three different values of the Poisson ratio, are displayed in Figure 
7.11. Although some slight differences between the curves plotted in Figure 7.11 are 
visible, they are smaller than the ones characterizing Figure 7.8.a, meaning that the 
effect of ν is mitigated by the damage-induced orthotropy. The same consideration 
arises from the analysis of the vertical displacements, shown in Figure 7.12.  

 
Figure 7.11: Vertical force F - vertical displacement uv curves obtained with the 

regularized orthotropic damage model for different ν. 
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Figure 7.12: Contour plots of the vertical displacements (mm) with the orthotropic 

regularized damage model for (a) ν = 0, (b) ν = 0.15 and (c) ν = 0.3. 

In order to compare the discontinuity angles found numerically with some 
analytical values, a strain localization analysis is carried out, following the 
procedure described in (Wu and Cervera, 2017) for plane stress problems. Such a 
procedure identifies the discontinuity angle θcr by setting appropriate kinematic 
constraints on the characteristic second order tensor Λ, which has the following 
definition: 

:
ω ω

 d dε C σ
Λ  (7.6) 

In Eq. (7.6), ω is the alternative scalar damage variable d+/(1−d+) while Cd is the 
damage compliance. Referring to the specific loading conditions of the perforated 
slab, the principal reference system of stresses coincides with the Cartesian 
reference system. The damage compliance Cd, derived by the inverse of the 
constitutive stiffness DE, the stress σ and the characteristic tensor Λ in the principal 
reference system of the stress tensor are defined according to the Voigt notation in 
Eqs. (7.7), (7.8) and (7.9). 
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The kinematic condition to be set in order to identify the discontinuity angle θcr 

(clockwise verse) between the first principal direction (associated to the principal 
stress value σ1) and the normal to the discontinuity is expressed in the following: 

1 2

1 2
cos2 cr

Λ Λ

Λ Λ






 (7.10) 

By replacing in Eq. (7.10) the principal components of the characteristic tensor 
defined in Eq. (7.9), the discontinuity inclination obtained with the orthotropic 
damage ruled by the constitutive operator DE results:  
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Eq. (7.11) is fully comparable to Eq. (7.5): they have the same formalism but in the 
former the undamaged Poisson ratio is reduced by the positive damage quantity

 1 1d d    .  

The dependence of θcr on d+in Eq. (7.11) implies that the orientation of the 
discontinuity depends on the damage value for which the strain localization occurs. 
Since the strain localization occurs for d+ < 1 in case of exponential softening, a 
complete independence of the localization angles from the Poisson ratio is not 
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achieved with the present orthotropic model. However, the fact that the nominal 
Poisson ratio does not remain constant throughout the damage process is 
responsible for a reduction of the inclination of the discontinuity with respect to the 
horizontal direction. Such a consideration is in agreement with the numerical results 
obtained with the regularized orthotropic damage model, plotted in Figure 7.12: a 
certain dependence on the Poisson ratio is still visible but it is smaller than for the 
isotropic damage formulation (see Figure 7.10). 

The comparison between the numerical localization angles and the analytical 
ones, computed from Eq. (7.11) assuming that the complete crack propagation 
happens for a damage value equal to 0.95, is provided in Table 7.4. From these data, 
the objectivity of the regularized approach with respect to the mesh-bias, even in 
conjunction with the orthotropic constitutive stiffness operator DE, is validated. 

Table 7.4: Comparison between analytical and regularized discontinuity angles for the 
perforated slab under uniaxial tension studied with an orthotropic damage model. 

Poisson ratio Analytical Numerical-Regularized 

ν = 0.00 0.00° 0.00° 

ν = 0.15 9.19° 8.98° 

ν = 0.30 12.9° 13.3° 

Finally, the evolution of the tensile damage obtained with the regularized 
orthotropic damage formulation in case of ν = 0.3 is plotted in Figure 7.13, in order 
to show the reliability of the hypothesis of d+ = 0.95 as value for which the strain 
localization completely occurs. 

 
Figure 7.13: Evolution of tensile damage with the regularized orthotropic damage 

model, for the case of ν=0.3. 
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7.3 Longitudinally-reinforced concrete beam under four 
point bending test 
The example of application analysed in the present section is a longitudinally-
reinforced concrete beam subjected to a four point bending test, experimentally 
tested in (Leonhardt and Walther, 1962) and numerically reproduced in (Xenos and 
Grassl, 2016). The geometry, the loading and the boundary conditions of the plane 
stress problem are illustrated in Figure 7.14.a. To avoid stress concentrations, steel 
plates are placed in correspondence with the loading points and the supports. The 
loading conditions are modelled assigning a prescribed vertical displacement to the 
central points of the loading surfaces; consequently, the point force P is evaluated 
as reaction at the support. 

Due to the absence of transversal reinforcement, the observed failure, displayed 
in Figure 7.14, is governed by shear and consists in a set of cracks which, getting 
away from the mid-span, abandon the verticality and incline towards the supports. 
The study of this structural problem, characterized by multiple cracks and by an 
arch-resistant mechanism, with the proposed d+/d− regularized damage model is 
interesting because here the damage criterion in compression plays a fundamental 
role as well as the one in tension. 

 

 
Figure 7.14: Geometry [mm], loading and boundary conditions of the four point 

bending test and (b) experimental cracking pattern documented in (Leonhardt and Walther, 
1962).  
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Moreover, the example discusses in a quantitative way two fundamental aspects 

of the regularized damage model, extensively commented, in a qualitative way, in 
Section 4.1 and Section 4.2. On the one hand, the choice of the elastic strain tensor 
as variable to be averaged is compared to another, more common choice, based on 
the averaging of the equivalent quantity τ  , other than to the local crack band 
approach. The comparison among the regularized strain tensor approach, the 
regularized approach based on the averaging of τ  , hereafter named “regularized 
scalar approach”, and the crack band model is developed in terms of mesh-
objectivity and numerical performance. On the other hand, the influence of the 
internal length lRG on the structural response is investigated. Interesting 
considerations are expected regarding this topic because of the multiple localization 
zones characterizing the example. 

The material parameters considered in the numerical analyses for concrete are 
collected in Table 7.5. The majority of them, and in particular the elastic constants, 
the uniaxial strengths and Gf

+, are chosen in perfect agreement with the values 
provided in (Xenos and Grassl, 2016). They allow to identify the damage surfaces 
in tension and compression (note that k = 0.8 is chosen in the definition of τ− (2.46)), 
the damage evolution laws (an exponential softening (2.79) is adopted in tension 
and a “Gaussian” hardening-softening (2.80) in compression) and the entity of the 
permanent deformations, according to Eq. (2.61).  

 

Table 7.5: Material parameters for concrete. 

E  
[MPa] 

ν 
[-] 

f+ 
[MPa] 

f− 
[MPa] 

Gf
+ 

[N/mm] 
Gf

− 
[N/mm] 

ξ   
[-] 

fb
−/f− 
[-] 

30500 0.2 2.18 -28.5 0.133 10.00 0.1 1.16 

 

Five different values of the internal length lRG are considered in the numerical 
simulations. Their values, together with the corresponding relative dissipation 
lengths in tension and compression, evaluated by means of the calibration 
procedure described in Section 4.2, are synthetized in Table 7.6. 
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Table 7.6: Internal lengths adopted in the numerical simulations of the reinforced 

concrete beam under four point bending test. 

lRG 
[mm] 

Interaction radius 
[mm] 

k+
dis 

[-] 
k−

dis 
[-] 

5.7 11.4 4.09 8.09 

7.8 15.6 4.14 6.22 

11.3 22.6 4.16 4.40 

14.1 28.2 4.18 3.78 

17.0 34 4.04 3.37 

In addition, the hypothesis of linear elastic behaviour is considered for the steel 
of the reinforcement and of the loading plates, whose material constants are 
specified in Table 7.7. Specifically, the longitudinal reinforcement’s behaviour is 
modelled as uniaxial (hence, the Poisson ratio shown in Table 7.7 is actually 
neglected), under the assumption of perfect adherence between concrete and steel. 
Exploiting the orientation of the rebars along the Cartesian direction x, the axial 
forces sustained by the reinforcement are evaluated by the total deformation εx in 
the concrete, taking into account the percentage of horizontal reinforcement ρx, 
equal to 1.75%. 

Table 7.7: Material parameters for the steel plates and the steel reinforcement. 

E  
[MPa] 

ν 
[-] 

198000 0.3 

Finally, the triangular unstructured meshes adopted in the simulations (Figure 
7.15) have an average size, from the coarser to the finer, equal to: 20 mm (5462 
FEs), 15 mm (10052 FEs), 12 mm (15168 FEs) and 7 mm (54065 FEs). 
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Figure 7.15: Discretization refinements (half beam) from the coarsest to the finest. 

7.3.1 Comparison among regularized strain tensor, regularized 
scalar and crack band models 
The first aspect analyzed for comparative purposes regards the mesh-objectivity 
exhibited by the different approaches. In order to limit the computational effort, 
only the discretizations with average size 20 mm (coarse mesh), 15 mm 
(intermediate mesh) and 12 mm (fine mesh) are here taken into account. The force 
P - mid span (point A in Figure 7.14.a) deflection v curves resulting from the 
adoption of the regularized strain tensor approach, regularized scalar approach and 
crack band model are plotted in Figure 7.16, accompanied by the experimental 
response. All the regularized results are obtained with the adoption of the same 
internal length, equal to lRG= 7.8 mm (see Table 7.6).  

 



7.3 Longitudinally-reinforced concrete beam under four point 
bending test 

175 
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Figure 7.16: Mesh-size objectivity studies: (a) regularized elastic strain tensor 

approach, (b) regularized scalar approach and (c) crack band (local) approach. 

The first consideration with emerges from the analysis of the results is that the 
experimental structural response is satisfactorily described by the regularized 
formulations as well as by the local one. The correspondence between numerical 
and experimental values is evident in terms of load carrying capacity and this is a 
confirmation of the adequacy of the damage surfaces considered for d+ and d−. It is 
worth noting that, by neglecting the damage in compression, an overestimation of 
the observed shear carrying capacity would be obtained. In terms of stiffness 
degradation, the numerical curves show a slightly lower deformability than the 
response observed in the laboratory; this can be ascribed to the simplifying 
assumptions of linear-elasticity and perfect adherence considered for the 
reinforcement.  

To study the dependence of the results plotted in Figure 7.16 on the 
discretization in a quantitative manner, the peak load differences are evaluated, for 
each approach, and shown, in percentage, in Table 7.8.  
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Table 7.8: Percentage differences [%] among peak loads obtained with different 

approaches. 

Compared 
meshes 

Regularized 
strain tensor 

approach 

Regularized 
scalar approach 

Crack band 
approach 

Coarse -
Intermediate 0.66 2.34 1.50 

Intermediate -
Fine 0.86 1.66 1.35 

Coarse - Fine 1.52 4.00 2.85 

Among the approaches, the lowest variation with respect to the mesh 
refinement is provided by the regularized procedure applied to the elastic strain 
tensor εe. Further confirmation of this comes from comparing, for each formulation, 
the maximum total strain contour plots resulting by the adoption of different 
meshes. The strain localization maps, displayed in Figure 7.17, Figure 7.18 and 
Figure 7.19 refer to the end of the analysis, once the shear resistance is attained.  

 
Figure 7.17: Maximum principal strain localization obtained with the regularized 

elastic strain tensor approach: (a) coarse mesh, (b) intermediate mesh and (c) fine mesh. 
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Figure 7.18: Maximum principal strain localization obtained with the regularized 

scalar approach: (a) coarse mesh, (b) intermediate mesh and (c) fine mesh. 

 
Figure 7.19: Maximum principal strain localization obtained with the crack band 

approach: (a) coarse mesh, (b) intermediate mesh and (c) fine mesh. 
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Some considerations are drawn by these figures. First of all, the well-known 

mesh-bias dependence of the local approach is proven, together with the mesh-bias 
independence of the nonlocal formulations. As a matter of fact, the orientation of 
the cracks, their number, their position and their width strongly differ passing from 
the coarser to the finer mesh in Figure 7.19 whilst similar solutions are obtained 
both in Figure 7.17 and Figure 7.18. 

Moreover, differences between the two regularized formulations are not very 
evident, but present: although the localization orientation at rupture is almost 
identical, the maximum strain values plotted in Figure 7.17 and Figure 7.18 show 
that their variation with the mesh refinement is less significant with the nonlocal 
strain tensor approach than with the nonlocal scalar one.  

On the basis of all these observations, it is concluded that, in terms of mesh 
independence,the regularized model ensures an higher reliability than a local one; 
more specifically, within the regularized formulations, the averaging of the elastic 
strain tensor is preferable, even if not crucial, with respect to the averaging of the 
scalar equivalent stress quantities. 

Finally, the local and the two regularized approaches are compared in terms of 
numerical performance, i.e. number of iterations necessary to find the convergence 
of the residuals on the global level. The displacement is applied at the two 
application points in 40 load steps. The data concerning the total number of 
iterations performed adopting the three different procedures and an average number 
of iterations for each load step are collected in Table 7.9, with reference to solutions 
obtained with the intermediate mesh. 

Table 7.9: Comparison among the three different approaches in terms of numerical 
performance.  

 Regularized strain 
tensor approach 

Regularized scalar 
approach 

Crack band 
approach 

Total number of 
iterations 192 234 287 

Average number 
of iterations for 
each load step 

4.8 5.85 7.18 
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Despite the higher number of iterations, the local approach is the fastest one in 

terms of computational time, since it does not require any averaging to be computed 
among neighbour elements. However, the data suggest that a regularized approach 
is able to achieve convergence to equilibrium in a lower number of iterations, due 
to the higher smoothness introduced with the averaging. Specifically, comparing 
the regularized “tensor” approach and the regularized “scalar” one, an improved 

convergence rate is obtained with the former with respect to the latter. 
Consequently, the reduced number of iterations necessary to achieve convergence 
compensates the increased numerical effort deriving from the averaging of a tensor 
quantity. 

7.3.2 Dependence of the regularized solutions on the internal length 
lRG  
In Section 4.2 it is explained that the use of the particular calibration procedure 
ensures the independence of the response from the internal length for the problem 
of a bar loaded in uniaxial tension (see Figure 4.7.a). The objective of the present 
section is to investigate the influence of the parameter lRG on the structural 
behaviour of the reinforced concrete beam under four point bending and to assess 
if the results obtained in uniaxial conditions can be extended to more complex 
stress-strain states.  

It is worth noting that, in the nonlocal framework, such a sensitivity analysis is 
usually considered secondary with respect to the mesh dependency study, usually 
conducted to prove mesh-bias objectivity. This is for instance the case of the work 
presented in (Xenos and Grassl, 2016), where the same structural application is 
treated but only a marginal part is devoted to assess the influence of the internal 
length on the results.  

The dependence of the regularized formulation on the length lRG is studied 
adopting the intermediate triangular unstructured discretization (see Figure 7.15), 
whose average size h is equal to 15 mm. The numerical simulations are performed 
considering all the values of the internal length collected in Table 7.6, except 
lRG = 5.7 mm, because an interaction radius smaller than the average size of the 
finite elements corresponds to this internal length, and consequently, the nonlocal 
interaction between elements is not guaranteed uniformly in the whole structure. 
The force P - mid span deflection v curves resulting from the adoption of the 
regularized strain tensor damage model with different nonlocal lengths are 
displayed in Figure 7.20.  
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Figure 7.20: Structural responses of the reinforced concrete beam under four point 

bending test with the adoption of the regularized strain tensor formulation, for different lRG. 

The curves plotted in Figure 7.20 show that the dependence of the regularized 
formulation on the choice of the internal length is substantially low. As a matter of 
fact, the structural responses corresponding to lRG= 14.1 mm and lRG= 17 mm are 
almost coincident and differ only slightly (2.6% in terms of peak loads) from the 
one obtained with lRG= 11.3 mm. A more significant variation, in any case small 
(3.4% in terms of peak loads), can be observed between the solutions with 
lRG= 11.3 mm and lRG= 7.8 mm.  

These data confirm that the dependence of the regularized strain tensor 
formulation on the internal length, in terms of response curves, is small, fully 
comparable with the dependence exhibited by the same model on the mesh 
refinement (see Figure 7.16.a), and negligible when high values of lRG with respect 
to the discretization are considered. For this specific mesh refinement (average size 
15 mm), an internal length equal to 11.3  mm, characterized by a nonlocal 
interaction radius equal to 22.6 mm, seems to be sufficient.  

Despite these considerations, it is proper to observe that the perfect coincidence 
of the results obtained with different internal lengths for the uniaxial case (Figure 
4.7) is not reproduced for this structural application (Figure 7.20). This is due to the 
fact that the calibration, addressed to obtain the relative dissipative lengths k+

dis and 
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k−

dis collected in Table 7.6, is performed considering a particular stress-strain state, 
which does not coincide with the one experienced in the beam. Similar comments 
on this topic are discussed in (Nguyen and Houlsby, 2007). 

To extend this sensitivity analysis, the maximum principal strain contour plots 
obtained with the different values of lRG, just before the attainment of the maximum 
carrying capacity, are displayed in Figure 7.21. It is worth noting that the effect of 
the internal length is not negligible in the maximum strain distributions. 
Specifically, a higher length lRG implies a higher width of the strain localization 
zones, as well as the concentration of close localization zones in a unique failure 
area. This second aspect, in particular, is proper of damaged structures 
characterized by multiple failure zones.  

The results collected about the influence of the internal length parameter on the 
solution (Figure 7.20 and Figure 7.21) lead to find analogies between the role 
played by the mesh size in the crack band approach and the role played by lRG in 
the regularized formulation. Firstly, as the crack band approach is able to ensure the 
correct description of the dissipated energy independently of the mesh size, 
similarly the regularized damage model does the same independently of the internal 
length, thanks to the adoption of the calibration procedure described in Section 4.2 
(Figure 7.20). Secondly, analogously to the mesh size in the crack band approach 
(Figure 7.19), lRG influences not only the width of the localization band but also the 
number of resulting failure zones. All these observations allow to interpret the 
length lRG as a regularization parameter, as it is the mesh size in the crack band 
approach. Moreover, in problems characterized by multiple failure zones, it 
emerges that the internal length has to be kept sufficiently low to capture the 
interspace between cracks, as the mesh refinement has to be chosen sufficiently 
high in the crack band approach, in order to achieve the same goal.  

In order to visualize with the regularized approach the single cracks present in 
the laboratory tests (Figure 7.14), a lower value of lRG with respect to the ones 
adopted in Figure 7.21, accompanied by a higher mesh refinement, is used in the 
follow up. In order to visualize with the regularized approach the single cracks 
present in the laboratory tests (Figure 7.14), a lower value of lRG with respect to the 
ones adopted in Figure 7.21, accompanied by a higher mesh refinement, is used in 
the follow up. Specifically, the lowest value of lRG in Table 7.6 is adopted 
(lRG= 5.7 mm) in conjunction with the finest mesh present in Figure 7.15, to show 
how the numerical nonlocal strain localization approaches qualitatively the 
experimental cracking pattern (Figure 7.22 ).  
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Figure 7.21: Maximum principal strain contour plots before the attainment of the peak 

load in case of: (a) lRG= 7.8 mm, (b) lRG = 11.3 mm, (c) lRG = 14.1 mm and (a) lRG= 17 mm. 

 
Figure 7.22: Maximum principal strain contour plots before the attainment of the peak 

load in case of lRG= 5.7 mm and average mesh size equal to 7 mm. 

Finally, to confirm the reliability of the regularized damage model to represent 
the failure arch-mechanism, the contour plots of the minimum principal stresses at 
the end of the analysis is provided in Figure 7.23. 
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Figure 7.23: Minimum principal stress contour plot at the end of the analysis in case 
of lRG= 5.7 mm and average mesh size equal to 7 mm. 

7.4 Size effect for notched and unnotched plain concrete 
beams under three-point bending test 
An important aspect of damage models for quasi-brittle materials is that they should 
be able to represent the structural size effect, i.e. the dependence of the nominal 
strength on the structural size.  

Size effect derives from the fact that the elastic stored energy is proportional to 
the total volume while the energy dissipation by fracture is proportional to the 
fracture surface. Defining a brittleness index br as the ratio between the stored 
energy and the dissipated energy: 
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 (7.12) 

it is possible to note how, as the generic structural size S increases with respect to 
the material fracture length lmat, brittleness increases too. 

Hence, as commented in (Bažant and Planas, 1998), the behaviour of 
geometrically similar specimen is not geometrically similar, because the fracture 
surface maintains constant whilst the structural size changes and this implies 
different energy redistributions from the remaining part of the structure to the 
fracture process zone.  

Numerically, such effect can be reproduced thanks to the use of a procedure 
which dissipates Gf through a surface. Therefore, nonlocal formulations, as well as 
enhanced gradient models, phase field models and also crack band models (Cervera 
and Chiumenti, 2009) are able to represent the size effect. 
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In the present section, the capability of the proposed regularized damage model 

to describe the size effect is explored. The experimental data taken as reference 
solution are the ones presented in (Grégoire et al., 2013), where the results of three 
point bending tests on notched and unnotched concrete beams, made of the same 
material, are collected. The specimens are characterized by a span L-to-depth D 
ratio equal to 2.5, a constant width b of 50 mm, various depths and various notch-
to-depth ratios (see Figure 7.24).  

 
Figure 7.24: Different geometries and different sizes considered in the three point 

bending tests on concrete beams documented in (Grégoire et al., 2013). 

For each geometry, four depths D are considered: 400 mm, 200 mm, 100 mm 
and 50 mm. Moreover, the three geometries are designated as: half notched (notch-
to-depth ratio equal to 0.5), fifth notched (notch-to-depth ratio equal to 0.2) and 
unnotched (notch-to-depth ratio equal to 0). 

The numerical description of the structural size effects for various geometries 
is an ambitious objective, as commented in (Grégoire et al., 2013). As a matter of 
fact, the capability of nonlocal models to capture the size effect on beams with a 
single specific geometry is quite common, as shown for instance in (Bažant and 
Lin, 1988) and (Jirásek et al., 2004), but the extension to other geometries, with the 
adoption of the same set of input parameters, is not obvious. For instance, in 
(Krayani et al., 2009), the impossibility of adopting the same model parameters for 
fitting data regarding notched and unnotched beams with a nonlocal damage model 
is pointed out. Moreover, in (Grégoire et al., 2013), some numerical simulations 
with the damage model presented originally in (Pijaudier-Cabot and Bažant, 1987) 
show the same difficulties, compared with the experimental results. In fact, the 
procedure there followed, described in detail in (Le Bellégo et al., 2003), consists 
in calibrating the nonlocal length and the material parameters governing the local 
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tensile softening behaviour in order to obtain a good fit with the results associated 
to three different sizes (50 mm, 100 mm and 200 mm) of the same geometry (fifth 
notched beams). The numerical results show that the calibrated material parameters 
are able to describe accurately the structural response for those specific sizes and 
for that specific geometry but they are not likewise good in describing the results 
for the largest specimen (400 mm) with that geometry and for the other geometries. 
In particular, the correspondence is poor in the case of the unnotched specimens. 

The regularized damage model proposed in Chapter 4 is used for studying the 
structural response of the concrete beams under three point bending tests shown in 
Figure 7.24. For the sake of simplicity, permanent deformations are neglected in 
the present example. The parameters adopted in the numerical analyses, for all the 
sizes and all the geometries, are collected in Table 7.10. 

Table 7.10: Parameters adopted in the analyses of notched and unnotched concrete 
beams. 

E  
[MPa] 

ν 
[-] 

f+ 
[MPa] 

f− 
[MPa] 

Gf
+ 

[N/mm] 
Gf

− 
[N/mm] 

ξ   
[-] 

lRG 

[mm] 

38000 0.21 2.8 -42.3 0.037 30.00 0.00 6.00 

The elastic properties, as well as the compressive strength’s values, are chosen in 

accordance with the measured ones, documented in (Grégoire et al., 2013). For 
what regards the tensile material parameters, a lower value is here adopted with 
respect to the one specified in (Grégoire et al., 2013) and measured by means of a 
splitting test. This is in line with the fact that the direct tensile strength, which is the 
one considered in the damage criterion (see Figure 2.4 and Eq. (2.45)), is usually 
lower than the splitting tensile strength of, at least, 10% - 15%. The fracture energy 
in tension Gf

+ is similar to the value computed in (Grégoire et al., 2013) from a 
load-deflection curve, according to RILEM recommendations (around 
0.045 N/mm). Gf

− is assumed as a typical value for concrete because of its null 
influence in the present structural application.  

Finally, the internal length of the regularized model is chosen in order to 
guarantee a sufficiently high ratio between the interaction radius (2∙lRG= 12 mm) 
and the triangular mesh average size, maintained fixed in the fracture process zone 
for all the geometries and equal to 1.5 mm. Thanks to the application of the 
calibration procedure, starting from this value of lRG, a tensile dissipation length 
equal to 22.4 mm is obtained, which is reasonable if compared to the experimental 
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value of approximately 3 times the maximum aggregate size proposed in (Bažant 

and Oh, 1983) and (Bažant and Pijaudier-Cabot, 1989). Hence, with the use of this 
dissipation length in place of the generic length l in the softening modulus (2.84b), 
the local softening law is calibrated in order to describe the correct fracture energy. 

The numerical predictions, together with the experimental envelopes, are 
plotted in terms of force F - crack mouth opening displacements CMOD curves in 
Figure 7.25, Figure 7.26 and Figure 7.27 for the half notched, fifth notched and 
unnotched beams, respectively. The CMOD is evaluated as the relative 
displacement between points A and B at the intrados of the beams (see Figure 7.24).  

 
Figure 7.25: Size effect results for the half notched beams with the nonlocal model.  

 
Figure 7.26: Size effect results for the fifth notched beams with the nonlocal model.  
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Figure 7.27: Size effect results for the unnotched beams with the nonlocal model.  

Good agreement between experimental and numerical results can be observed 
for all the geometries, especially in terms of peak loads.  

For each geometry, the trend of the numerical nominal strength as a function of 
the structural size is shown in Figure 7.28, compared with the experimental values 
(maximum and minimum) documented in (Grégoire et al., 2013). The nominal 
strength is computed in its simplest form for three point bending tests (Bažant and 
Planas, 1998): 

2
3
2N

FL
σ

bh
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where L is the distance between the supports, b is the width of the beam and h is the 
ligament height. 

In terms of softening behaviour, a more emphasized decrease in load is visible 
in the post peak numerical regimes. However, the higher deviation with respect to 
the experimental softening is visible in the unnotched beams (Figure 7.27), 
especially in the largest one, and can be ascribed to numerical issues, deriving from 
the imposed increasing displacements conflicting with the snap-back in the 
experimental data. The difficulties in achieving convergence, shown by the fact that 
all the curves stop at a CMOD approximately equal to 0.2 mm, have to be probably 
related to these problems.  

Finally, it is important to note that the only significant discrepancy between 
experimental and numerical peak loads regards the smallest half notched beam 
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(Figure 7.25). This is not surprising because this is the beam, among the ones 
numerically verified, which has the smallest ligament, equal to 50 mm. The 
overestimation of the peak load obtained numerically can be explained considering 
that the assumption of constant fracture energy Gf  holds, provided that the 
structural size is large enough with respect to the process zone size (Bažant and 
Jirásek, 2002). For a ligament 50 mm long, the nonlocal damage formulation 
proposed does not provide reliable results and for this reason, the set of beams with 
a depth equal to 50 mm (Figure 7.24) is not studied numerically. 

 

 
Figure 7.28: Comparison between experimental and numerical size effect laws: (a) half 

notched beams, (b) fifth notched beams and (c) unnotched beams (D0= 400 mm).  
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Chapter 8 

Large-scale application: masonry 
multi-span arch bridge 

 

8.1 Introduction to the structural analysis of masonry arch 
bridges 
Masonry arch bridges represent one of the most diffused construction typologies 
for railway and road networks in Europe. The majority of these structures were built 
in the nineteenth century, as a consequence of the birth and expansion of the railway 
system, and had a further impulse after the II World War. Multi-span bridges were 
usually preferred to single-span arches because of their easier construction, 
especially when long distances had to be covered.  

As noticed in (Melbourne et al., 1997), the structural behaviour of a multi-span arch 
bridge, similarly to the one of a multi-bay portal frame with fixed base, foresees a 
degree of redundancy equal to 3∙m, where m is the number of the spans. In order to 
have a complete failure hinged mechanism, 3m + 1 hinges are required while, in 
case of partial collapse which involves only a number of spans n < m, the necessary 
hinges are 3n + 1. Finally, four hinges generate the failure of a single span. The 
formation of a complete, partial or single-span mechanism depends on several 
factors, which include not only the arches themselves but also the other resisting 
elements, such as piers and spandrel walls if present, and their interaction.  
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In this regard, in (Harvey and Smith, 1991), the role of the flexibility of the 

piers is underlined. In fact, Harvey and Smith observe that, in intact conditions, the 
loaded span of a multi-span arch bridge behaves as an active arch which tends to 
move apart its abutments; contemporarily, the close unloaded span resists this 
movement as a passive arch. In case of collapse of one span, the interruption of this 
resisting system occurs and the piers have to counterbalance the actions exerted by 
the remaining structure.  

On the one hand, piers are defined stocky when they are able to behave as 
abutments, i.e., they are able, in case of collapse of an arch span, to sustain the 
others preventing the rest of the structure to go down. The case of the medieval 
bridge in Boroughbridge, which failed under the passage of a train of about 160 
tons in 1945 can be classified within the category of stocky pier collapse.  

On the other hand, piers are identified as slender when they are involved in the 
mechanism, causing the collapse of more arches, because of their incapability to 
equilibrate the thrusts of the remaining parts. This behaviour was observed in 1989 
at Balnacraig in Deeside, where the removal of an arch span in a disused railway 
bridge caused the progressive collapse of the whole viaduct.  

However, as remarked in (Melbourne et al., 1997), it is not possible to predict 
the kind of mechanism on the base of those geometrical features which are usually 
adopted to define the slenderness of vertical structural elements. As a matter of fact, 
the height-width ratio does not provide complete information because even other 
factors, as the type of interaction between piers and arches, the geometrical features 
of arches and the presence or not of collaborating spandrel walls intervene 
drastically. 

In the past decades, several assessment procedures have been proposed for the 
study of masonry arch bridges, which can be classified into two wide sets of 
structural analysis techniques.  

On the one hand, limit analysis is applied to masonry constructions with its 
basis on the formulation originally provided by Heyman (Heyman, 1969; Heyman, 
1985). The adoption of the static (lower bound) theorem of plasticity for assessing 
the behaviour of masonry multi-span arch bridges is present, for instance, in 
(Harvey and Smooth, 1991; Cavicchi and Gambarotta, 2007). The kinematic (upper 
bound) theorem is instead used in (Gilbert and Melbourne, 1994; Huges, 1995). 
From these contributions, it is inferable that inevitably the identification of the 
thurstline in the static approach, as well as the definition of a sufficient number of 
hinges in the kinematic one, become more complex in case of multi-span bridges 
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than in single-span ones (Brencich and De Francesco, 2004a; Brencich and De 
Francesco, 2004b). Moreover, if the assumption of null tensile strength is 
conservative, the other one at the base of the limit analysis, related to the infinite 
compressive strength of masonry, can lead to overestimate the load-carrying 
capacity, especially in case of degraded materials and severe loading conditions.  

In addition, even if a failure criterion and a maximum ductility are set to 
describe the nonlinear compressive behaviour of masonry, as done in (Crisfield and 
Packham, 1988), some other intrinsic limitations of the formulation can not be 
eliminated. They regard the possibility of having only information about the load-
carrying capacity of the structure whilst disregarding displacement and strain 
quantities. This implies that the structural displacement capacity can not be 
assessed, and this is a restriction especially in case of time-varying loadings, as 
earthquakes. It is worth noting that the lack of information about the kinematic 
quantities is a drawback especially in the study of multi-span arch bridges, since it 
does not allow considering the influence of the pier flexibility, above discussed, on 
the structural response.  

On the other hand, there is the possibility of studying arch bridges by means of 
finite element method based approaches, in conjunction with nonlinear constitutive 
laws appropriate for masonry. The main advantage of an incremental finite element 
analysis, with respect to a limit analysis, lies in the fact that the former provides 
more information than the latter: not only the load-carrying capacity can be 
evaluated, but also the displacement capacity at failure and the stress-strain states 
of all the significant parts of the structure during the incremental loading history. 

Differently from other typologies of masonry structures, masonry arch bridges 
can be studied also with one-dimensional models. A lot of one-dimensional models 
exist, because of their computational advantages. Among the first models 
developed for studying arch bridges with the finite element method, there is the 
contribution by Crisfield and Wills (Crisfield and Wills, 1985), which consists in a 
no tension material model implemented in uni-dimensional and bi-dimensional 
finite elements. Another approach, presented in (Choo et al., 1991), uses uni-
dimensional elements to represent the arch rings, whose thickness is progressively 
modified in order to take into account cracking and crushing phenomena.  

More recent are the works by Molins and Roca (Molins and Roca, 1998) and 
by Brencich and De Francesco (Brencich and De Francesco, 2004a; Brencich and 
De Francesco, 2004b). In the former, a numerical model for the study of curved and 
spatial structures by means of uni-dimensional elements is proposed, assuming an 
elastic-perfectly brittle behaviour in tension and an elasto-plastic constitutive 
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response in compression and shear. In the latter, the behaviour of single and multi-
span bridges is studied considering no tensile resistance and an elasto-plastic 
behaviour with limited strength and limited ductility in compression. Finally, De 
Felice addresses the evaluation of the load carrying capacity of multi-span masonry 
arch bridges by means of a model based on the adoption of nonlinear beam elements 
with fibre cross section (De Felice, 2009). 

Despite the adequacy of the results obtained with these simplified uni-
dimensional formulations, 2D and 3D models allow to perform more complete 
analyses. First of all, they permit to deal with the geometry complexity 
characterizing this kind of structures, which are usually curved and with varying 
cross sections. Moreover, they allow modelling the interaction between the arch 
barrel and the infill and the presence of cooperating spandrel walls, whose influence 
is not negligible as stressed in the experimental programme described in 
(Melbourne et al., 1997).  

Among the first interesting contributions of two-dimensional finite elements 
for the study of masonry arch bridges, there is the work in (Gong et al., 1993), 
where a no tension material model for masonry is combined with a discrete crack 
modelling. In this approach, cracks can be generated only at the boundaries of the 
finite elements, both in radial and tangential direction (separation between adjacent 
rings). Besides the problems related to the use of a simple no-tension material 
model for describing cracking, such a model suffers from the limitations proper of 
micro-modelling approaches when applied to describe large structures. In fact, it 
requires a very high computational effort and a non-automatic mesh generation, due 
to the necessity of reproducing with the discretization the masonry pattern.  

A more effective 2D procedure is proposed in (Loo and Yang, 1991), where, in 
the context of a macro-modelling approach for masonry, cracking and crushing 
phenomena are both considered, assuming a softening behaviour in tension and an 
elastic-perfectly plastic behaviour in compression. However, the formulation is 
validated considering only single-span arches.  

More recently, Boothbly et al. (Boothbly et al., 1998) and Fanning and Boothby 
(Fanning and Boothby, 2001) performed 2D and 3D numerical analyses for 
studying the service load conditions of masonry arch bridges using a commercially 
available finite element package. Among the few examples of application of non-
commercial finite element codes for the analysis of masonry arch bridges, it is worth 
remembering the work by Milani and Lourenço (Milani and Lourenço, 2012), 
where it is observed that a full 3D analysis has a clear advantage with respect to a 
2D one only when skewed geometry and 3D loading conditions have to be 
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investigated. The approach adopted consists in assuming an infinitely rigid 
behaviour for the eight-node brick elements and in localizing elastic and inelastic 
deformations in interface quadrilateral elements. 

The overview of existing assessment methods just described can be a reference 
for the study of masonry arch bridges not only subjected to vertical (permanent and 
vehicular) loads but also to horizontal (seismic) actions, in the framework of 
nonlinear static approaches. 

In view of the above discussion, it can be affirmed that the adoption of a non-
linear mechanical model with softening in tension and compression for the 2D finite 
element analysis of masonry multi-span arch bridges have been rarely adopted in 
literature. In fact, the assumptions of no-tension material and elasto-plastic 
behaviour in compression are generally preferred and this results in the fact that the 
application of damage mechanics to study the non-linear behaviour of such 
structures has not been sufficiently explored. Therefore, the following sections of 
this chapter are addressed to investigate the adequacy of the regularized d+/d− 
damage model to assess the structural behaviour of multi-span masonry arch 
bridges. In order to prove the reliability of the proposed formulation, the objectivity 
of the response with respect to the discretization is also verified. Such a study is 
generally skipped in the analysis of large structures but it is fundamental to evaluate 
the actual predictive capabilities of the numerical model. Finally, to gain further 
insight on the potentialities of the proposed approach, the results obtained with the 
d+/d− damage model are compared with the ones deriving from limit analysis. 

8.2 Numerical study of a large-scale three-span bridge 
model under vertical loads 

8.2.1 Experimental programme and modelling assumptions 
The structural problem studied in the follow up is a 1:5 scale model of a three-span 
arch bridge, tested under concentrated vertical loads in laboratory within the 
experimental programme described in (Melbourne et al., 1995; Melbourne et al., 
1997). The same problem has been previously assessed, by means of 1D finite 
element formulations, by Brencich and De Francesco (Brencich and De Francesco, 
2004b) and De Felice (De Felice, 2009). 

The geometry of the structure is plotted in Figure 8.1. Each span is 3 m long 
and is characterized by a span-rise ratio equal to 4. The thickness of the single ring 
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is equal to 0.215 m. All the elements composing the bridge, i.e. the piers, the 
abutments, the arch barrels, the spandrel walls, present typical geometries for multi-
span brickwork arch bridges. 

As visible from the central section of the central span displayed in Figure 8.1.b, 
the spandrel walls are not collaborating with the arches, despite they lie on the same 
piers and abutments. The resisting width of the arch barrels is in fact equal to 
2.88 m. In fact, the bridge considered in the following numerical analysis, 
schematically named “bridge 2” in (Melbourne et al., 1997), differs from the other 
two bridges experimentally studied because of its detached spandrel walls.  

 

 
Figure 8.1: Geometry [mm] of the large-scale model of the multi-span masonry arch 

bridge described in (Melbourne et al., 1995; Melbourne et al., 1997): (a) longitudinal 
profile and (b) central section of the central span. 

The masonry used to build the large-scale model of the bridge is composed of 
solid, class A clay “engineering” bricks and cement-lime-sand (1:2:9) mortar. In 
Table 8.1, the material properties available in (Melbourne et al., 1995; Melbourne 
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et al., 1997) for the brickwork are collected, together with the data for the backfill 
placed in the spandrel void. 

Table 8.1: Parameters of masonry and backfill material for the problem of the multi-
span masonry arch bridge as indicated in (Melbourne et al., 1995; Melbourne et al., 1995). 

Masonry Backfill 

E  
[MPa] 

f− 
[MPa] 

γm 
[kN/m3] 

c 
[MPa] 

Angle of friction 
[°] 

γbdry 
[N/mm] 

17000 -26.8 22.4 0 60.5 24.0 

It is worth noting how the mechanical performance of the brickwork is really high, 
having a compressive strength value which is usually proper of concrete and not of 
masonry. No information about the tensile strength and the tensile fracture energy 
of the material is provided in (Melbourne et al., 1995; Melbourne et al., 1997). 

The problem is studied in plane stress conditions. The loading and boundary 
conditions used in the numerical analyses are synthetized in Figure 8.2. As visible 
from this figure, the backfill and the spandrel walls are not included in the numerical 
model, nor the concrete basement which supports piers and abutments.  

Due to the fact that the spandrel walls are not attached to the arch vaults, they 
do not collaborate in the resisting mechanism. Therefore, their stiffness, together 
with the stiffness of the backfill, is neglected. The stabilizing effect of their weight 
is however taken into account, by applying, in the first load step of the analyses, a 
distributed load at the extrados of the barrels and of the abutments together with the 
dead load of the structural elements (arches, piers and abutments).  

In order to avoid superposition wih the concentrated load, in Figure 8.2 this 
distributed load is not plotted at the extrados of the central span, but it is obviously 
included in the numerical analysis. A specific weigth equal to 23 kN/m3 is 
considered for the backfill while the specific weight for the masonry of the 
structural elements is equal to 22.4 kN/m3.  
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Figure 8.2: Boundary and loading conditions in the numerical analyses of the three-

span masonry arch bridge. 

A dispersion angle θ is used to identify the loaded surface at the extrados of the 
central arch, starting from the concentrated force applied at the quarter span on the 
top of the bridge. On this curved surface, the action is applied uniformly in terms 
of imposed vertical displacements. For what regards the concrete basement, it is 
considered infinitely stiff: hence, piers and abutments clamped at the base are 
assumed.  

By performing the numerical analysis, it is found that the angle of load 
dispersion θ defined in Figure 8.2 has a non-negligible influence on the structural 
overall strength: higher is θ, wider is the surface of load application at the extrados 
and higher is the load carrying capacity, given that all the other input parameters 
are fixed. In addition, it is also noted that the material quantities which affect most 
the estimated load-carrying capacity of the bridge are the tensile strength and the 
tensile fracture energy, which are not available in (Melbourne et al., 1995; 
Melbourne et al., 1997). This consideration is in agreement with the observations 
done in (Loo, 1995), where indications on the reliable values to assign to f+ and to 
the ultimate strain in a local linear softening curve are provided.  

In order to show the dependence of the results on θ, the structural behaviour of 
the arch bridge is studied considering a very low value of load dispersion (θ = 5°) 
and a standard value of load dispersion (θ = 25°). Only by adopting two different 
sets of material properties, with different uniaxial tensile strengths, it is possible to 
reproduce the maximum peak load observed in laboratory for both the values of θ. 
These two groups of input parameters are summarized in Table 8.2.  
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Table 8.2: Two sets of input parameters used for the numerical analysis of the multi-

span masonry arch bridge. 

Set 
θ 

[°] 
E 

[MPa] 
ν 

[-] 
f+ 

[MPa] 
f− 

[MPa] 
Gf

+ 
[N/mm] 

Gf
− 

[N/mm] 
lRG 

[mm] 
k 

[-] 

I 5 17000 0.2 0.21 -26.8 0.58 30.00 35.00 0.0 

II 25 17000 0.2 0.14 -26.8 0.58 30.00 35.00 0.0 

From Table 8.2, it is inferable that, higher is θ, lower is the chosen tensile 
strength in order to have an appropriate fit with the experimental results, while the 
rather high value for the tensile fracture energy is maintained equal. Starting from 
the value of the nonlocal length, by means of the calibration procedure detailed in 
Section 4.2, the dissipation lengths in tension and compression can be defined and 
are: ldis

+ = 147 mm for f+= 0.21 MPa and ldis
+ = 148 mm for f+= 0.14 MPa, 

ldis
− = 100 mm. The local softening behaviour of the material is represented 

according to these values; by comparing it with the recommended softening trends 
proposed in (Loo, 1995), lower values of tensile strengths and a slightly higher 
specific dissipated energy gf + are here adopted. The absence of the parameters ξ+ 
and ξ− in Table 8.2 is justified by the simplifying assumption here done to consider 
the permanent deformations absent.  

Finally, the damage evolution laws adopted in the numerical analyses foresee 
an exponential softening behaviour in tension (softening modulus in Eq. (2.84b)) 
and a Gaussian damage evolution law in compression (softening modulus in 
Eq. (2.100)).  

8.2.2 Numerical results  
On the base of the boundary and loading conditions described in Figure 8.2, the 
structural analyses of the three-span masonry arch bridge are performed considering 
as input parameters of the nonlocal d+/d− damage model the values collected in 
Table 8.2.  

The unstructured triangular mesh used is composed of 19360 finite elements, 
with an average size of 24 mm which is sufficiently smaller than the interaction 
radius 2∙lRG = 70 mm.  
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The numerical responses are shown in Figure 8.3 in terms of applied 

concentrated force – radial displacement of point A (see Figure 8.2) curves, where 
the comparison with the experimental trend is also provided. Figure 8.3.a refers to 
the solution obtained adopting the set I of input parameters whilst Figure 8.3.b 
refers to the one obtained with the set II (see Table 8.2).  

Thanks to the proper calibration of the tensile strength associated to the 
dispersion angle θ, the load-carrying capacity of the structure is well captured in 
both cases. In fact, in Figure 8.3.a, the peak load is equal to 316.5 kN while in 
Figure 8.3.b it is equal to 317.5 kN, against an experimentally measured failure load 
of 320 kN. In the post-peak regime, the numerical trend derived with the value of 
θ = 25° appears to be more faithful to the the experimental trend than the one 
obtained with θ = 5°, which is, actually, an excessively low dispersion angle. Both 
the numerical curves show a slightly lower deformability than the experimental one, 
which can be mainly ascribed to the assumption of excluding from the structural 
model the backfill and its interaction with the arches. 

 
Figure 8.3: Comparison between numerical and experimental concentrated load-radial 

displacement of point A curves: (a) set of input paramters I and (b) set of input parameters 
II (see Table 8.2). 
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In order to check the mesh-independence of the proposed nonlocal damage 

approach, the same analyses are repeated adopting a less refined discretization. By 
modifying the number of finite elements both in the radial and tangential directions 
of the arches, a mesh with an almost halved number of finite elements, equal to 
10419, is used. Even with this mesh, the average size of the finite elements (34 mm) 
is sufficiently smaller than the nonlocal interaction radius (70 mm). The mesh 
objectivity study is shown in Figure 8.4, where both the sets of input parameters 
collected in Table 8.2 are considered. 

From Figure 8.4, it can be seen that the variations induced by the adoption of a 
different mesh are only minimal, and negligible in engineering terms. In fact, in 
both cases they are less than 3%. This proves that the regularized damage 
formulation provides solutions almost unaffected by the discretization even in 
large-scale applications. 

 
Figure 8.4: Mesh objectivity study considering a fine (19360 FEs) and a coarse 

(10419 FEs) discretization: (a) set of input parameters I and (b) set of input parameters II 
(see Table 8.2). 
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Hereafter, the analysis performed with the higher, and more realistic, angle of 

dispersion is detailed to show how the damage formulation is able not only to 
describe the load-carrying capacity of the bridge and its post-peak regime but also 
its failure mechanism.  

In the laboratory, a collapse involving two spans, the central and the south ones, 
is observed, generated by the formation of seven hinges. Hence, according to the 
classification provided in Section 8.1, the south pier is flexibile and is not able to 
counterbalance the thrusts coming from the south span, once the central one has 
collapsed.  

The numerical results are in perfect agreement with the experimental 
behaviour: in fact, the spans involved in the failure mechanisms are the central and 
the south one and seven hinges can be identified, three for each span plus one at the 
base of the south “flexible” pier. This is confirmed by the deformed configuration 
and the contour plots of the maximum principal strains obtained at the end of the 
analysis, displayed in Figure 8.5 and Figure 8.6, respectively.  

Specifically, the distribution of maximum principal strains is exhibited both 
with the fine and with the coarse mesh, in order to show the independence from the 
discretization, even in terms of strain localization.  

A further proof of the accuracy of the numerical results is represented by the 
concentrated load - top south pier radial displacement (point B in Figure 8.2) curve, 
shown in Figure 8.7. 

 

 
Figure 8.5: Deformed configuration (× 10) of the three-span masonry arch bridge at 

the end of the analysis. 
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Figure 8.6: Contour plots of the maximum principal strains of the three-span masonry 

arch bridge at the end of the analysis: (a) fine mesh and (b) coarse mesh. 

 
Figure 8.7: Comparison between numerical and experimental concentrated load-radial 

displacement of point B curves. 

The position of the hinges, identifiable from the position of the predicted cracks 
in Figure 8.6, coincides with the experimental observation. The loads for which the 
cracks are generated in the laboratory and in the numerical analyses are summarized 
in Table 8.3. In the same table, information about the placement of the cracks are 
reported, in order to compare the experimental and the numerical sequence. In the 
numerical solution, the formation of a crack is associated to a value of tensile 
damage equal or higher to 0.95. The experimental load values are recorded in 
(Melbourne et al., 1995; Melbourne et al., 1997). 
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Table 8.3: Comparison between experimental and numerical loads [kN] of crack 

generation. 

Results 1 2 3 4 5 6 7 Failure 

Exp. 

130 230 250 265 270 270 270 320 

under 
load 

base of 
south 
pier 

south 
span; 
north 

loaded 
span; 
north 

loaded 
span; 
south  

south 
span; 
crown 

south 
span; 
south 

- 

Num. 
 

129.9 181.2 236.0 245.3 253.4 266.3 290.6 317.5 

under 
load 

loaded 
span; 
north 

south 
span; 
north 

base of 
south 
pier 

loaded 
span; 
south  

south 
span; 
south 

south 
span; 
crown 

- 

As visible from Table 8.3, there is adequate agreement between the 
experimental and the numerical predicted loads of crack generation; this agreement 
is remarkable if only the loads in correspondence with the formation of the first 
hinge and the failure are considered. Also the formation of the hinges is satisfactory, 
with the only discrepancy lieing in the fact that the south pier and the south span 
are involved in the collapse mechanism later than in the experimental test. 

Finally, it has to be noted that no compressive damage is present at the end of 
the analysis, meaning that the masonry crushing is not reached in any point of the 
structure. This is reasonable due to the very high strength exhibited by the material 
in the compressive tests (see Table 8.1). 

8.2.3 Comparison with limit analysis 
The three-scale masonry arch bridge under concentrated vertical load described in 
(Melbourne et al., 1995; Melbourne et al., 1997) is studied with the commercial 
software RING 1.5 (LimitState, 2014). This is a software specifically developed to 
study the collapse state of masonry arch bridges, based on the adoption of 
computational limit analyses methods.  

To do this, the geometry and the loading conditions described in Figure 8.1 and 
Figure 8.2 are imported in RING 1.5. The material input parameters required by the 
software and adopted in the non-linear finite element analyses are the compressive 
strength, the specific weights for masonry and for the backfill. As additional 
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information, the software needs the definition of the radial and tangential 
coefficient of frictions for masonry (assumed as the default values) and of the load 
dispersion type (uniform or Boussinesq) for backfill. In accordance with the 
modelling assumptions done in Section 8.21, the horizontal backfill pressure is 
disregarded and the load dispersion is assumed uniform, although the value of the 
dispersion angle can not be defined by the user but is automatically computed by 
the software. 

The solution of the limit analysis appears to be excessively conservative for this 
specific problem; in fact, a load-carrying capacity equal to 192 kN is obtained. This 
value, together with the collapse mechanism, is plotted in Figure 8.8, where a 
screen-shot of the software results is reported. 

The high discrepancy between the results provided by RING 1.5 and the 
experimental ones has to be ascribed to the hypothesis of no tension material at the 
base of the limit analysis. In fact, the brickwork composing the scale bridge model 
has non negligible tensile strengths and high values of fracture energies, coherently 
with the high compressive performance of the material tested in laboratory 
(Melbourne et al., 1995; Melbourne et al., 1997) 

 

 
Figure 8.8: Collapse solution for the multi-span masonry arch bridge provided by the 

limit analysis software RING 1.5. 



206 Large-scale application: masonry multi-span arch bridge 

 
To prove this, the FE analyses performed in Section 8.22 are repeated by 

diminuishing Gf
+ and f+ with respect to the values indicated in Table 8.2 (material 

set II). By simulating a material which is close to the condition of null tensile 
resistance and null dissipated energy in tension, the load-carrying capacity 
evaluated with the damage formulation is a good estimation of the ultimate load 
derived by limit analysis (see Figure 8.9). The former is higher than the latter 
because a certain tensile strength and a certain fracture energy are considered. 

It is important to note that, even including in RING 1.5 the presence of a passive 
uniform horizontal backfill pressure (50 kN/m2), whose contribution is observed in 
laboratory, the maximum strength of the structure remains far below the 
experimental failure load (231 kN against 320 kN).  

Finally, the absence of crushing numerically detected with the d+/d− damage 
model is confirmed with the use of RING 1.5. In fact, the ultimate capacity of the 
bridge varies from 192 kN to 194 kN, considering the actual compressive strength 
of the material or assuming it as infinite, respectively.  

It is worth specifying that the over-conservative feature of the limit analysis 
observed in this specific case can not be generalized. In fact, in the evaluation of 
existing bridges, in which the materials have been subjected to degradation 
processes, the assumption of no tensile resistance is not so far from the actual 
behaviour as here instead found (Figure 8.9). 

 
Figure 8.9: Tendency of the damage formulation to recover the ultimate load provided 

by RING 1.5 for small values of Gf
+ and f+. 

 



  
 

Chapter 9 

Conclusions 

9.1 Summarizing considerations 
In the present thesis, a new d+/d− damage model apt for the nonlinear analysis of 
masonry, unreinforced and reinforced concrete structures under monotonic and 
cyclic loading conditions is proposed. The formulation, implemented in a 
displacement-based finite element environment, aims to be a reliable structural 
assessment tool which could provide accurate results at an affordable computational 
cost.  

In these concluding remarks, the different stages described in the previous 
chapters, i.e. formulation, implementation in a finite element code and validation, 
are retraced to put in evidence the salient aspects of the damage model and its 
capabilitites to describe the response of structures made of concrete- and masonry-
like materials. 

To take into account the several distinctive mechanical features proper of these 
materials, the following aspects characterize the new d+/d− damage formulation at 
a constitutive level: 

 the pronounced non-symmetrical behaviour under tension and compression, due 
to different strengths and different fracture energies, is simulated by the 
adoption of two independent scalar damage variables, d+ and d−, which describe 
the softening and the degradation of the elastic stiffness under tensile and 
compressive regimes, respectively. Similarly, two damage surfaces, one for 
tension and one for compression, inspired from the failure criterion proposed 
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for concrete in (Lubliner et al., 1989), are considered to assess, separately, the 
evolution of d+ (Figure 2.4.a) and d− (Figure 2.4.b). 

 The damage-induced orthotropy is represented thanks to the spectral 
decomposition of the elastic strain tensor (see Figure 2.1). Specifically, the 
strain equivalence assumption between nominal and effective configurations, 
considered in the original model, is abandoned in favor of an energy-
equivalence framework, with the consequent derivation of a new constitutive 
operator (Eq. (2.24)), which is positive definite and symmetric. In 
thermodynamic terms, its adoption allows proving the consistency of the 
constitutive law with respect to the Schwartz theorem about the equality of the 
mixed partial derivatives of the potential (2.30) and the 1st and 2nd principles of 
thermo-dynamics (Section 2.2.2). In addition, from a mechanical point of view, 
it permits simulating a reduction of Poisson’s ratio throughout the damage 

process, rather than considering it unrealistically constant (Section 2.2.3). 
Analogously to the original formulation, the new one can be classified within 
the orthotropic rotating models due to the coincidence between the material axes 
of orthotropy and the principal reference systems of the stress and the elastic 
strain tensors. 

 The development of permanent deformations εp is taken into account in a 
simplified as well as effective way, without introducing concepts proper of a 
plasticity theory. This is achieved considering the evolution of εp only when 
there is progression of damage and occuring in the direction of the elastic strain 
tensor. Two different definitions of the permanent strain rate tensor, based on 
this simplification, are proposed: the first (Eq. (2.57)) is a revisitation of the 
expression for εp proposed in (Faria et al., 1998) while the second (Eq. (2.61)) 
finds its mechanical basis on the plastic micro-cracking. 

 The evolution of all the internal variables (d+, d− and εp) is treated within a 
unified dissipative approach since Gf 

+ and Gf 
−

, the material constants ruling the 
energy dissipation under tension and under compression, are not pure fracture 
parameters but they are actually composed of both damage and plastic 
dissipative contents. This leads to a modification of the softening modulus 
usually adopted for exponential damage evolution laws, with the aim of taking 
into account the simultaneous presence of both the dissipation mechanisms 
(Section 2.5). Moreover, a new damage evolution law, exhibiting a Gaussian 
trend (Section 2.5.2), is proposed, suitable to describe the hardening-softening 
response of quasi-brittle materials under compression. 
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 To deal with microcrack closure-reopening effects, crucial under cyclic loading, 

a multidirectional damage approach is adopted, especially effective in case of 
orthogonal, or however intersecting, sets of cracks, typical of cyclic shear 
conditions. The procedure consists in enriching at a constitutive level the 
orthotropic rotating scalar damage model with some features proper of fixed 
crack models, in order to maintain memory about the degradation directionality. 
This is done, in plane problems, by performing a partition into two damage 
regions for d+ and two damage regions for d−, with the intent of monitoring and 
saving during the loading history two damage values in tension and two damage 
values in compression (Section 3.1). The opening and the closure of cracks can 
be simulated by activating or deactivating, respectively, a damage value on the 
base of the current principal directions of εe. Moreover, the distinction between 
two different cyclic conditions, i.e., cyclic loadings considered alone (Type 
Load (i)) or preceded by not-cyclic permanent loads (Type Load (ii)), and the 
proposal of an ad-hoc procedure for each of them, add versatility to the 
formulation. In fact, after loading reversal, a complete stiffness recovery, partial 
stiffness recovery and no stiffness recovery can be modelled, as shown with 
reference to the problem of the panel subjected to in-plane cyclic shear without 
or with a precompression (Section 3.4). 

In order to circumvent the convergence difficulties in correspondence with 
crack closure and reopening and the dependence of the results on the discretization, 
the formulation is enriched according to the following points: 

 the modelling of unilateral effects incorporates a smoothing procedure in the 
transition from an unloading stiffness to a reloading one, in order to improve 
the robustness and performance of the multidirectional approach in the 
numerical analyses (Section 3.3). 

 A regularized nonlocal integral approach is adopted to ensure the mesh-
objectivity of the results. Specifically, the variable chosen to be averaged is not 
a scalar, as done in the majority of nonlocal damage models, but is the elastic 
strain tensor εe. The regularized counterpart of εe is used to define the evolution 
of the internal variables whilst, in the constitutive law (2.33), the local elastic 
strain tensor is maintained. The local strain is also the quantity with reference 
to which the spectral decomposition is performed, in order to keep the 
coincidence between the axes of orthotropy of the damage material and the 
principal directions of elastic strains and stresses unaltered even in the nonlocal 
formulation.  
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 The calibration strategy chosen to define the parameters affecting the softening 

behaviour, inspired by the work presented in (Nguyen and Houlsby, 2007), 
consists in the modification of the local softening law on the basis of the internal 
length lRG, with the intent of ensuring the evaluation of the correct fracture 
energy Gf,  independently of lRG. Such a calibration strategy is preferable 
because it makes the fracture energy the only ruling material parameter while 
releasing the obtained solution from the choice of the internal length, whose 
assessment is one of the most debated aspects of regularized damage models. 

The new d+/d− formulation here summarized has been efficiently implemented, 
thanks to its full strain driven formalism, in a displacement-based finite element 
code which works incrementally and iteratively. To solve the algebraic system of 
equations, the Picard (secant) method has been preferred to the Newton Raphson 
one, since the use of the new symmetric constitutive operator ensures the adoption 
of a symmetric global secant stiffness matrix.  

Several structural applications are presented as validation of the predictive 
capabilitites of the new damage model. From these numerical analyses and their 
comparison with experimental (or analytical) solutions, the following 
considerations can be drawn: 

 the response of concrete samples under cyclic uniaxial tension, cyclic uniaxial 
compression and biaxial stresses, studied at a local level, can be satisfactorily 
reproduced by the model, proving the adequacy of the constitutive operator, of 
the damage criteria and of the evolution laws for the internal variables (see 
Section 6.1). 

 At a structural level, the performance of the new mechanical model, and 
specifically, the effect of the new energy-equivalent constitutive operator 
(2.24), compared with the strain-equivalent original one (2.8), is analyzed with 
reference to unreinforced concrete notched elements subjected to pure tension, 
pure bending and mixed-mode bending (Section 6.2). Despite the gain in 
thermo-dynamic consistency ensured by the former, no significant differences 
are appreciable in the structural responses obtained with the two formulations, 
being both of them able to fit adequately the experimental results. However, the 
adoption of the constitutive symmetric operator DE is convenient in 
computational terms. In fact, saving in CPU time ranging from 14.7 % to  51 % 
are found adopting the new symmetric contitutive operator with respect to the 
non-symmetric original one (see Table 6.8).  

 The microcrack closure-reopening capabilities are ensured in cyclic shear 
conditions, as demonstrated in the problems of a masonry and a reinforced 
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concrete wall subjected to in-plane cyclic shear (Section 6.3). In both the 
examples, the experimental evidence is satisfactorily reproduced in terms of 
lateral resistance and also hysteretic behaviour and symmetry in the response 
between loading and reloading. This is obtained thanks to the multidirectional 
procedure, which gives the possibility of differentiating the damage processes 
on the basis of the orientation of the principal strain directions, taking into 
account, realistically, the energy dissipated in the formation of both the sets of 
orthogonal cracks typical of these loading conditions. To quanitify the 
beneficial effects of the new approach on the simulated hysteretic behaviour, 
the results coming from the multidirectional procedure and a standard scalar 
damage formulation are compared with the experimental ones in terms of 
viscous damping coefficients, for the case of the masonry shear panel. While 
with the former the energy dissipation capacity of the wall is fairly reproduced, 
with the latter it is strongly underestimated (Figure 6.21). 

 Both the definitions for the permanent deformations here formulated, although 
simplified, are able to adequately fit the experimental results, as visible in the 
problem of the masonry arch subjected to loading and unloading stages 
(Section 7.1) and in the problems of the masonry and reinforced concrete walls 
under cyclic in-plane shear (Section 6.3). In the latter case, its effect on the 
structural response is investigated (Figure 6.23) by varying the intensity of the 
permanent strain tensor with the conclusion that an adequate modelling of 
permanent deformations is essential, as an adequate modelling of unilateral 
effects, for the correct representation of the hysteretic behaviour of these 
structures under cyclic loadings. 

 The problem of the masonry wall subjected to in-plane cyclic shear is also 
exploited to quantify the improved numerical robustness guaranteed by the 
adoption of the smoothing procedure in correspondence with closure and 
reopening of cracks (Section 3.3). Data related to the convergence histories, 
evaluated for different intensities of the permanent strain tensor and for different 
amplitudes θt of the transition region, are collected. They suggest two main 
observations. On the one hand, the higher is θt, the smoother is the modelling 
of the crak closure and the faster is the convergence; actually, for null permanent 
deformations, it is found that with θt = π/36 the convergence in correspondence 
with the crack-closure is achieved with 57 iterations while, with θt = π/180, it is 
not found. On the other hand, the smoothing procedure is more effective when 
irreversible strains are not considered, because they tend to naturally mitigate 
the abrupt stiffness changes in presence of unilateral effects. 
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 The adoption of the regularized approach is able to guarantee objectivity of the 

results with respect to the size and the alignment of the discretization. The mesh-
size independence is proven both in the case of the masonry arch subjected to a 
vertical point load and of a reinforced concrete beam under four-point bending 
test, solving the problems with different discretization refinments. Specifically, 
in the former case, the averaging applied to the elasic strain tensor εe only, is 
however capable of describing the objectivity of the residual deformations at 
complete unloading, although the irreversible strain tensor is considered as a 
local variable (Figure 7.6). In addition, the independence of the results on the 
mesh bias is demonstrated in Section 7.2, with reference to the case of a 
perforated slab under uniaxial tension. For this problem, the analytical 
inclination of the discontinuity is known by a strain localization analysis and it 
strongly depends on the Poisson ratio ν. By varying ν, the solutions coming 
from the regularized approach are able to reproduce the analytical ones (Figure 
7.10), differently from the ones obtained with the local approach, which are 
influenced by the mesh alignment (Figure 7.9). 

 For this specific constitutive law, within the regularized formulations, the 
averaging of the elastic strain tensor is preferable with respect to the averaging 
of the scalar equivalent stresses. This is shown in the example of application 
regarding the reinforced concrete beam under four point bending test 
(Section 7.3.1), where a slightly higher level of mesh-objectivity is observed 
(Table 7.8), together with an improved convergence speed (Table 7.9), adopting 
the regularized strain tensor approach instead of the regularized “scalar” one. 

 The dependence of the regularized solutions on the internal length in terms of 
force-displacement curves is almost null in uniaxial loading conditions (Figure 
4.7.b) and substantially slight in general stress-strain states (Figure 7.20), thanks 
to the calibration strategy adopted to define the energy dissipation. In terms of 
strain localization, the internal length influences the localization bandwidth in 
problems characterized by a single failure zone (Figure 4.7.b) and the number 
and width of the damaged areas in problems characterized by multiple failure 
zones (Figure 7.21). All these considerations can be interpreted finding a 
significant analogy between the regularized approach and the local crack band 
approach proposed in (Bažant and Oh, 1983), with a parallelism intervening 
between the role played by the internal length lRG and the mesh size. 

 The proposed regularized strain-tensor approach, in combination with the 
adopted calibration strategy, appears to be able to describe the structural size 
effect for different geometries, with the same set of input parameters 
(Section 7.4). In fact, experimental results coming from three-point bending 
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tests on notched and unnotched beams, with different scales, are fairly 
reproduced in the numerical analyses, especially in terms of peak loads. Other 
nonlocal formulations applied to the same set of specimens are not likewise 
good in catpturing the structural size effect on different geometries, i.e., on 
different notch-to-depth ratios. 

 The application of the regularized d+/d− damage model to the study of a three-
span masonry arch bridge subjected to a vertical point-wise load is satisfactory 
and encourages the adoption of finite element nonlinear analysis based on 
damage mechanics for the study of masonry arch bridges with a single or more 
spans. In fact, the results obtained with the proposed model are able to estimate 
the load-carrying capacity of the structure, its post-peak response and the failure 
mechanism which involves the collapse of two of the three spans, due to the 
piers’ flexibility. In addition, the reliability of the numerical results is proven 
by performing a mesh objectivity study. The material constants which affect 
most the structural response are the ones related to the tensile behaviour of 
masonry, i.e. the uniaxial strength f+and the fracture energy Gf

+, hence the 
accuracy of the results depends on the reliable characterization of the material 
parameters. It is however shown that, for the specific problem analyzed, by 
performing a limit analysis with the commercial software RING 1.5, an 
excessive underestimation of the structural resistance is found, suggesting that 
the assumption of a null tensile strength and a null fracture energy is not always 
a valid option. 

9.2 Main contributions 
The main contributions of the present thesis to the field of the structural analysis of 
masonry and concrete structures by means of damage mechanics-based finite 
element codes are summarized in the following points: 

 the proof that a new version of the original d+/d− damage model (Faria et al., 
1998) is necessary and derives from the difficulties found in defining a 
consistent consitutive operator (positive-definite and endowed with major and 
minor symmetries) under the assumption of strain equivalence between the 
effective and the nominal configurations. 

 The adoption of tensor mapping procedures existing in literature to describe an 
orthotropic material starting from an isotropic one (Pelà et al., 2014) to 
represent the orthotropy induced by the degradation process in an initially 
isotropic material. Indeed, the use of the energy-equivalence assumption to 
derive the new constitutive operator is equivalent to consider a mapping tensor 



214 Conclusions 

 
which relates the effective, isotropic, configuration of the undamaged material 
between microcracks, to the nominal, orthotropic, configuration of the damaged 
material (see Figure 2.2). The d+/d− damage model deriving from this 
assumption is thermo-dynamically consistent and is governed by a constitutive 
operator which is positive definite and endowed with both major and minor 
symmetries. 

 The cognition that the d+/d− damage models in the existing literature are not 
able to describe the unilateral effects in generic cyclic conditions, but only in 
alternating full tensile - full compressive regimes. This represents a strong 
limitation because the modelling of microcrack closure-reopening is not 
possible, for instance, in shear cyclic conditions, which are the ones typically 
induced during an earthquake in resisting vertical panels. 

 The formulation of a multidirectional damage approach, which allows to 
preserve memory regarding degradation directionality while maintaining 
unaltered the dependence of the stress tensor from only the scalars d+ and d−. 
This procedure is based on the incorporation of aspects proper of fixed crack 
models in a constitutive law which has, instead, a rotating nature, due to the 
split of the elastic strain tensor into its positive and negative counterparts. 
Therefore, the application of the multidirectional damage approach is versatile 
and all those orthotropic damage models based on the use of scalar damage 
variables and on the spectral decomposition of a second order tensor can take 
advantage from it. 

 The consideration of the microcrack closure-reopening effects also from a 
numerical point of view, with the proposal of a smoothing procedure to alleviate 
convergence difficulties in correspondence with loading reversal. This topic has 
not received by the existing literature the same degree of attention of other 
numerical issues, as the ones related to the spurious mesh dependence in 
simulating cracking and strain-softening. 

 The application of the multidirectional approach to the study of masonry and 
reinforced concrete walls under in-plane cyclic shear, with the successful 
description of the structural response, in terms of lateral resistance but also 
hysteretic behaviour and symmetry between loading and reloading. The 
experimental energy dissipation capacity of the structure, related to the 
formation of intersecting sets of cracks, is well reproduced by the proposed 
model, thanks to the correct representation of unilateral effects and to the 
development of permanent deformations. 

 The identification of the elastic strain tensor as the variable to be regularized, in 
order to optimize the mesh-objectivity of the formulation while maintaining the 
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coincidence between the axes of material orthotropy and the principal directions 
of elastic strains and stresses, typical of the local constitutive model. 

 The notion that the nonlocal integral damage model has not to be opposed 
drastically to the crack band approach proposed in (Bažant and Oh, 1983). 
Indeed, by considering the internal length as a pure regularization parameter, it 
is possible to establish a parallelism between its role in nonlocal damage models 
and the mesh size’s role in crack band approaches. Both these parameters affect 

the local softening law in such a way that, independently of their value, the 
correct fracture energy is represented at a structural level. In terms of strain 
localization, both of them influence the width (and even the number in case of 
multiple failure zones) of the damage areas. The essential advantage of a 
nonlocal model with respect to a crack band one mainly lies in its mesh-bias 
objectivity. 

 The attention dedicated to the dependence of the regularized formulations on 
the choice of the internal length. Such a sensitivity analysis is often neglected 
in the existing literature, usually addressed to show only the independence of 
the nonlocal results from the discretization. 

 The adoption of the Picard (secant) method to solve the algebraic system of 
equations, which leads to a symmetric global stiffness matrix in the local as well 
as in the regularized version of the damage formulation, with the consequent 
saving of computation resources. 

 The application of the regularized d+/d− damage model for the structural 
assessment of a multi-span masonry arch bridge. Both the load carrying 
capacity and the global failure mechanisms are well caught by the proposed 
formulation. Numerical issues, usually neglected in large-scale applications, are 
also addressed proving the reliability of the nonlocal damage approach, due to 
its capacity to provide mesh-independent results. 

9.3 Topics for further research 
Being the field of the structural assessment of masonry, reinforced and unreinforced 
concrete structures by means of damage mechanics-based formulations very wide, 
the possibilities to extend the present work are several.  

 To widen the typologies of structures and the loading configurations to be 
studied, the application of the d+/d− damage formulation to 3D problems has to 
be performed. It is worth noting that the formulation of the damage model, as 
well as the formulation of its regularized version, do not need additional 
ingredients to be applied to three-dimensional cases. Therefore, only their 
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validation is required. Regarding the 3D extension of the multidirectional 
approach, it does not appear conceptually difficult, as described in Chapter 3, 
but it requires a certain implementation effort, due to the necessity of 
partitioning the space into solid regions. 

 At a constitutive level, to explore the possibilities of modelling different types 
of damage-induced orthotropy, other forms for the tensor A*, which defines the 
dependence of the constitutive operator on the scalar variables and on the 
operator Q performing the spectral decomposition of the elastic strain tensor 
(2.23) can be analyzed. For instance, Q can be fixed at a certain degradation 
level, interrumpting the rotation of the directions of material orthotropy, in order 
to switch from a rotating crack model to a fixed one. This has beneficial effects 
in terms of stiffness recovery capabilitites under cyclic loadings, making the 
multidirectional procedure unnecessary, but it requires to face another essential 
issue, typical of fixed crack models, which is the stress locking. An alternative 
to describe an higher degree of damage-induced orthotropy is to monitor three 
distinct tensile damage variables and three distinct compressive damage 
variables, each one associated to a principal direction. The main complication 
arising from such a procedure regards the definition of the equivalent stress 
variables, which have to be representative of a directional stress-strain state.  

 To increase the accuracy of the results at the expense of an higher number of 
necessary material parameters, a plastic theory can be considered for the 
evaluation of the irreversible deformations and creep effects can be modelled as 
another source of material degradation. 

 The application of the d+/d− damage model to the study of masonry arch bridges 
by means of 2D finite elements can be deepened, introducing suitably the 
resisting contribution of the spandrel walls and the fill-arch interaction. 

 A natural continuation of this work can be also the extension to seismic analysis, 
which deals with the formulation in a finite element framework of the dynamic 
balance equation and the refinement of the constitutive laws in order to take into 
account the fatigue behaviour and the strain-rate sensitivity of the material 
properties. The proper modelling of the unilateral effects, achieved with the 
multidirectional damage procedure conceived in the present thesis, is obviously 
essential in this kind of analysis. 

 The capability of the multidirectional damage approach to provide a reliable 
response under cyclic actions can be exploited to extract, for some recurrent 
typologies of structures, the characteristic value of some input parameters of 
less-refined seismic analysis techniques. For instance, thanks to the possibility 
of describing with accuracy the hysteretic behaviour, the proposed damage 
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model, enriched with the multidirectional procedure, can be adopted in the 
definition of the viscous damping coefficient in dynamic linear analyses. 
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