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Abstract-   The principle aim of this study was to observe the effect of machining parameters as well as the separate 

additions of 0.2wt% barium (Ba) on the machinability of Al-20%Mg2Si in situ metal matrix composite. Microstructure 

alteration, surface roughness and cutting temperature were taken into account as indices to examine the effect of modifier 

and machinability during dry turning. The results showed that addition of Ba as modifier reagent results in lower cutting 

temperature and better surface roughness due to the formation of Ba compound and modification of morphology of 

Mg2Si reinforcement particle.  
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I. INTRODUCTION 

Recently Al-Mg2Si composite with internally in situ synthesized reinforcement particles has gained significant 

attention for application in automotive and aerospace industries due to low density and appropriate mechanical and 

tribological properties [1]. Furthermore, in situ fabrication of the composite during casting has more merit such as 

thermodynamic stability of particles, more homogeneous distribution of the dispersed phase particles and strong 

interface between reinforcement and matrix compared to ex situ counterpart [2]. However during solidification of 

Al-Mg2Si composite, formation of coarse dendritic morphology of primary Mg2Si and Chinese script eutectic Mg2Si 

particles decrease the mechanical properties and machinability of the cast composite; because the big size and coarse 

primary Mg2Si particles act as an abrasive and result in high rate of tool wear and short tool life thereby increasing 

the overall cost of production. Therefore, it is crucial to modify the structure of Mg2Si particles in order to improve 

mechanical and machinability properties. Substantial studies have been carried out during last years to refine and 

modify the microstructure of Al-Mg2Si composite through casting with addition of alloying elements into the melt 

such as bismuth (Bi) [3], strontium (Sr) [4], lithium (Li) [5], phosphorous (P) [6], yttrium (Y) [7], manganese (Mn) 

[8], antimony (Sb) [9], mischmetal [10], and Gadolinium (Gd) [11]. For example, Razavykia, et al [12] reported that 

with addition of 0.4 wt. % Bi as modifier to Al-20%Mg2Si, Bi compound formed which modified the morphology of 

Mg2Si reinforcement particle and as a result better surface roughness and lower cutting force were obtained during 

machining. Similarly, Yosuf et al [13] found that addition of 0.4 wt. % Bi, 0.8 wt. % Sb, and 0.01 wt. % Sr to Al-

Mg2Si composite significantly modify the morphology of Mg2Si which influenced the machining of cast composite 

by increasing in cutting force and reducing the surface roughness. It has also been shown that the presence of Ba has 

a refinement effect on the size and morphology of eutectic silicon in Al-Si alloys [14] and Mg2Si reinforcement 

particles in Mg-Zn-Si alloy [15]. To best of our knowledge, most of the previous studies focused on microstructure 

and mechanical properties of Al-Mg2Si composite and few researches have been conducted about machinability 

investigation of Al-Mg2Si composite especially with Ba addition. Therefore, the aim of present study is to determine 

the effect of each variable and their reciprocal interaction on the machinability characteristic of Al-Mg2Si composite 

to provide necessary information needed for machining of the cast composite.  

 

II. EXPERIMENTAL PROCEDURE 

In order to fabricate Al-20%Mg2Si composite ingot, commercial Al-11.7Si-2Cu alloy, pure aluminum, and pure 

magnesium were used, in which the chemical composition is given in Table 1. The composite ingot was cut into small 

pieces and melted in a 5kg SiC crucible using induction furnace with a melt temperature of 750± 5 ºC. After 

degassing of molten metal with C2Cl6 tablets, 0.2 wt. % of pure barium (>99.0 wt. %) was introduced into the molten 

alloy. After dissolution and homogenization for around 5 min the melt was stirred, skimmed and then carefully 

poured at the temperature of 730 ± 5 ºC into a mild steel mold to fabricate the cylindrical work-piece. The process 

was repeated to produce the composite work-piece without Ba addition. In order to reveal the microstructure of the 

samples, metallography specimens were cut from the work-pieces and prepared by standard grinding and polishing 

with colloidal silica (5μm). The microstructure was examined with a Nikon optical microscope (MIDROPHOT-FXL) 
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and scanning electron microscopy (Philips XL40) coupled with energy dispersive spectroscopy (EDS) facility. The 

experimental machinability trials were performed on Al–20%Mg2Si (Non-modified) and Al–20%Mg2Si–0.2%Bi 

(Modified). The specimens were rough turned to obtain uniform bar with dimensions of 93 mm in diameter and 315 

mm in length and then mounted on CNC lathe machine (Alpha 1350S, Harrison, UK, 8.3 kW power drive and 

maximum 6000 rpm spindle speed). A standard Kennametal tool holder (SVJBR-2020K11) has been applied to hold 

the inserts during turning. Dry orthogonal turning was performed at different combinations of cutting speeds (100, 

200, and 300 m/min), feed rates (0.1, 0.2, and 0.3 mm/rev) and constant depth of cut of 0.5 mm for all tests. Surface 

roughness and cutting zone temperature were considered as response factors. In order to reduce the effects of 

vibration several precautionary steps were considered. Firstly, the cutting tool was chosen with positive rake angle 

and a smaller nose radius than depth of cut (0.2 mm < 0.5 mm) to reduce cutting forces; and secondly the insert was 

selected with a chip breaker in order to reduce friction and contact between the chip and rake face. Therefore, 

Kennametal coated carbide (K10U) insert with 35° rhomboid geometry, nose radius of 0.2 mm and, 5° relief angle 

has been applied to conduct investigation trials. The surface roughness was tested using surface roughness tester 

(CS5000, Mitutoyo, Japan). FLIR thermal camera E50 and its software FLIR Tools Software have been used to 

record and analyze the cutting zone temperature as shown in Figure 1. 

 

Table -1 Chemical composition of the cast Al–20Mg2Si primary ingot (wt. %) 

Element wt. % Element wt. % 

Mg 12.80 Ni 0.01 

Si 7.50 Ti 0.01 

Fe 0.64 Cu 2.03 

V 0.02 Mn 0.01 

Cr 0.01 Al Bal. 

 

 

 
Figure 1.  FLIR thermal camera mounted on turning machine tool post DWT Decomposition model 

  

III. EXPERIMENT AND RESULT 

3.1 Microstructure analysis  

Figure 2 (a-d) shows the SEM micrographs of Al–20Mg2Si work-piece with and without barium addition in low and 

high magnifications. As it can be seen in Figure 2a, b the primary Mg2Si particles are exist in coarse polyhedral shape 

with hollow in the center which is typical morphology of non-modified primary Mg2Si. The micrographs of Al–

20Mg2Si work-piece containing 0.2 wt. % Ba are shown in Figure 2c, d. From the microstructure observation it is 

clear that addition of Ba into the composite altered the size and morphology of primary Mg2Si particles in which the 

particle size is decreased and the morphology is changed to cubic shape after treating with Ba addition compared to 

unmodified composite. In addition, the assessment of quantitative metallography features of Mg2Si particle including 

the mean size, mean aspect ratio and mean density was performed by using i- Solution image analyzer. Addition of 

Ba leads to significantly alteration in aforementioned Mg2Si features. The obtained results demonstrated that in 

unmodified Mg2Si particle, the mean size is about 40μm, the mean aspect ratio is 1.30 and the mean density is 1589 
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particle/mm
2
. However, after modification with Ba addition, the mean size and aspect ratio decreased to 30μm and 

1.19 respectively, and the mean density increased to 2383 particle/mm
2
. This implies that the mean size and aspect 

ratio decreased by 25% and 8% respectively and the mean density increased 33%. The features values clearly indicate 

modification of Ba addition on primary Mg2Si particles in Al-Mg2Si composite.    

 

 
Figure 2. SEM micrographs of Al–20Mg2Si composite (a and b) without and (c and d) with Ba addition 

 

Figure 3 depicts the back scattered electron (BSE) micrograph of the work-piece modified with Ba. A white particle 

was observed on the microstructure near to the Mg2Si particle. The corresponding energy dispersive spectroscopy 

(EDS) indicated that this particle is a Ba-compound containing Al, Si and Ba and based on atomic percentage it is 

BaAl2Si2 intermetallic compound. Therefore, the possible modification mechanism of primary Mg2Si by Ba addition 

can be related to heterogeneous nucleation, restricted growth mechanism due to presence of BaAl2Si2 phase close to 

Mg2Si particle and poisoning effect by changing the surface energy of primary Mg2Si which leads to hinder growth 

in certain directions. 
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Figure 3. BSE image and corresponding EDS spectra of Ba particle (white area) 

 

3.2 Cutting Temperature 

Table 2 summarizes recorded cutting zone temperature for both work-pieces, Ba modified and non-modified for all 

machining conditions. At the given cutting speed, as feed rate increases the cutting zone temperature increases, due 

to higher load imposed on tool tip and larger material flow on the rake face of the tool and consequently larger 

friction force [16]. Figure 4 (a) presents the dependency of cutting zone temperature on feed rate at the cutting speed 

of 100 m/min. The higher cutting speed the lower temperature at given feed rate as shown by Figure 4 (b) which 

shows the variation of temperature with respect to cutting speed at feed rate of 0.1 (mm/rev). Due to higher particle 

density in modified specimen, the tendency to form built-up edge (BUE) is reduced and the geometry of cutting 

edge does not change too much especially the tool nose radius. Higher density of the particles makes the chips more 

brittle and consequently lower continued contact between chips and rake face of the tool. Figure. 5 shows the cutting 

temperature variation during the mashing of non-modified specimen at the cutting speed of 100 m/min and feed rate 

of 0.1 mm/rev. Lower mean size and aspect ratio of the particles in modified specimen affects the impact load 

between particles and the tool tip, smaller particles provide lower interface by the matrix and reduce the load to 

require the plastic deformation and material flow behavior between the particles [12, 13]. 

 

Table -2 Cutting zone temperature for modified and non-modified specimens 

No. 
Cutting speed 

(m/min) 

Feed rate 

(mm/rev) 

Average Cutting zone 

temperature (non-

modified, °C) 

Average Cutting 

zone temperature 

(modified, °C) 

1 100 0.1 66.81 63.3 

2 200 0.1 58.43 56.3 

3 300 0.1 54.10 52.14 

4 100 0.2 81.12 80.12 

5 200 0.2 62.18 75.2 

6 300 0.2 65 72.6 

7 100 0.3 90.49 86.21 

8 200 0.3 63.92 82.4 

9 300 0.3 67.6 70.82 
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Figure 4. Temperature dependency of feed rate and cutting speed 

 

 
Figure 5. Cutting temperature variation 

 

3.3 Surface roughness 

The measured surface roughness for all combination of machining parameters is tabulated in Table 3. The surface 

roughness became worse in all work-pieces as feed rate increased from 0.1 to 0.3 mm/rev due to higher load on the 

tool and consequently increasing surface roughness. In addition higher values of feed rate result in domination of 

feed mark as well as increase distance between peaks and valleys and worsening the surfaces [17]. The results 
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indicate the reduction in surface roughness values, while cutting speed was increased from 100 to 300 m/min which 

is due to making the creation and separation BUE cycle time shorter and the size of BUE smaller if the BUE forms 

like a heap on the tool tip, deteriorates the surface roughness. The modified work-piece presented better surface 

(lower Ra) in comparison to non-modified specimen in all combination of cutting speed and feed rate. Because the 

particle density in modified work-piece is higher than non-modified one and the BUE formation and separation 

cycle becomes short. 

 

Table -3 Surface roughness for modified and non-modified specimens 

No. 
Cutting speed 

(m/min) 

Feed rate 

(mm/rev) 

Average surface 

roughness  (non-

modified, µm) 

Average surface 

roughness  

(modified, µm) 

1 100 0.1 3.48 3.40 

2 200 0.1 3.03 2.67 

3 300 0.1 2.54 1.72 

4 100 0.2 4.55 3.64 

5 200 0.2 3.79 3.66 

6 300 0.2 3.35 2.9 

7 100 0.3 6.78 5.91 

8 200 0.3 6.28 5.11 

9 300 0.3 6.17 4.68 

 

 
FIGURE 6.  Built-up edge formation on insert rake face (a) non-modified work-piece, and (b) modified work-pieces 

with (b) 0.2 wt.% Ba. 

 

Besides the lower tendency to form BUE by Ba modified specimen, it provides smaller particle size with comparison 

to non-modified work-piece which encourages better surface quality with respect to scenarios about particles behavior 

under load imposed by cutting tool tip [13, 17]. The effect of microstructure can be study and justify with respect to 

these scenarios.  

 

IV. CONCLUSION 

The machinability of Al-Mg2Si in-situ composite with and without the addition of Ba addition was evaluated when 

dry turning was applied at cutting speeds of 100 to 300 m/min, feed rates of 0.1 to 0.3 mm/rev, and at a constant 

depth of cut of 0.5 mm. The following conclusions can be drawn: 

1. Results show that the Ba can alter the morphology of coarse polyhedral Mg2Si reinforcements to cubic shape 

when the mean size and aspect ratio decreased by 25% and 8% respectively, and the mean density increased by 

33%. 

2. The surface roughness was affected by the work-piece material and BUE formation. The smaller Mg2Si 

reinforcements enabled lower surface roughness. Moreover, the BUE formation tendency was reduced and produced 

chips became brittle as the particle density increased, which led to reduce surface roughness, friction and 

temperature in the cutting zone.   
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