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ABSTRACT 
 

Modeling the performance of critical infrastructures and their interdependencies is an important 

task in the resilience assessment. In this paper, restoration curves for four critical lifelines 

(power, water, gas, telecommunication, and transportation) have been developed using a 

probabilistic approach. To do that, a large database on infrastructure downtime has been 

collected for most of the earthquakes that occurred in the past century. The restoration curves 

have been grouped based on the earthquake magnitude and the level of development of the 

country in which the earthquake occurred. The curves are presented in terms of probability of 

recovery and time; the longer is the time after the disaster, the higher is the probability of the 

infrastructure to recover its functions. 
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ABSTRACT 
 
 Modeling the performance of critical infrastructures and their interdependencies is an important 

task in the resilience assessment. In this paper, restoration curves for four critical lifelines (power, 

water, gas, telecommunication, and transportation) have been developed using a probabilistic 

approach. To do that, a large database on infrastructure downtime has been collected for most of 

the earthquakes that occurred in the past century. The restoration curves have been grouped based 

on the earthquake magnitude and the level of development of the country in which the earthquake 

occurred. The curves are presented in terms of probability of recovery and time; the longer is the 

time after the disaster, the higher is the probability of the infrastructure to recover its functions. 

 

 

Introduction 

 

The performance of infrastructures after earthquakes includes their capacity to absorb the shock 

and their willingness to bounce back to the initial state. While the structural damage following 

the disaster can be easily computed using fragility curves, the structural performance during the 

restoration phase is still at an early stage of research. After an earthquake, the functionality of 

damaged structures stops partially or totally until they are recovered. This period is known as the 

Downtime. The downtime is an essential parameter to estimate the resilience of a system. In 

engineering, resilience  is defined as “the ability of social units (e.g. organizations, communities) 

to mitigate hazards, contain the effects of disasters when they occur, and carry out recovery 

activities in ways to minimize social disruption and mitigate the effects of further earthquakes" 

[1-3]. Several attempts have been made to evaluate the resilience of large systems using 

indicators and modeling approaches [4-9] but none of these approaches considered the downtime 

as a complex variable. 

 

Under the resilience context, downtime is the time span between the moment that the 

earthquake hits (t0=0), when the functionality Qi(t) drops to Qi(0), until the time when the 

functionality of the utility is completely restored [3]. Some of the factors that can influence the 

downtime are: the structural inspection, the assessment of damage, the finance planning, the 
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bidding  process, the repair effort, and the engineering consolation [10].One of the first attempts 

to evaluate the disruption time following an event was done by Basöz and Mander (1999) [11]. 

In their work, they developed downtime fragility curves for the transportation lifeline. The 

fragility curves were later integrated in the highway transportation lifeline module of HAZUS. 

Another downtime estimation methodology was developed based on a modified repair-time 

model [12]. This methodology estimates the downtime of only the rational structural components 

of a system due to the uncertainty involved in the process. In addition, the Federal Emergency 

Management Agency (FEMA) has introduced the electronic tool PACT, which estimates the 

required repair time of buildings based on the damaged structural and non-structural components 

as well as on the building’s contents. PACT is considered the companion to FEMA P-58, a 

significant 10-year project funded by FEMA to develop a framework for performance-based 

seismic design and risk assessment of buildings [13]. Moreover, Almufti and Willford (2013) 

have suggested a modified downtime methodology based on the results coming from PACT. All 

details can be found in the REDi rating system report [14]. Also, a performance-based 

earthquake engineering method to estimate the downtime of infrastructures using fault trees has 

been introduced [15]. This method is applicable only when the downtime is mostly controlled by 

the non-structural systems damage. It also assumes that the restoration starts immediately after 

the event and the damaged components are repaired in parallel. 

 

Generally, the downtime of infrastructures varies according to several factors, such as the 

characteristics of the exposed structure, the earthquake intensity, and the resources to recover the 

damaged structure. Having so many factors makes the process of estimating the downtime even 

harder. Therefore, there is a need to have a simple and practical model for estimating the 

downtime of infrastructures. This work aims at developing an empirical probabilistic model for 

estimating the downtime of four lifelines (power, water, gas, telecommunication, and 

transportation) following an earthquake. First, a large database has been gathered from a wide 

range of literature [16; 17]. This database contains real information on a large number of 

earthquakes that took place in the last century as well as on the downtimes of the affected 

infrastructures. Fragility restoration functions were derived from the database using a 

probabilistic analysis. For each of the lifelines, a group of fragility curves were obtained in 

accordance with the earthquake magnitude and the level of development of the country in which 

the earthquake occurred. Those functions were presented in terms of probability of recovery and 

time. The longer is the time after the disaster, the higher is the probability of the infrastructure to 

recover its functions. 

 

Downtime Database of Lifelines 

 

Table 1 lists all the earthquakes considered in this work along with the year in which they 

occurred, the country they hit, and their intensity according to Richter scale of magnitude. A 

number of other damaging earthquakes that occurred during the same period have been collected 

but they were not included in this study because no engineering damage reports could be 

obtained for those events. Nevertheless, the events included in this study are sufficient to provide 

some useful illustrations for the recovery behavior of the examined lifelines. 

 

 

 



Table 1.     Summary of the analyzed earthquakes. 

 

Earthquake Year Country Magnitude Reference 

Loma Prieta 1989 USA 6.9 [18] 

Northridge  1994 USA 6.7 [19] 

Kobe  1995 Japan 6.9 [20] 

Niigata  2004 Japan 6.6 [21] 

Maule  2010 Chile 8.8 [22] 

Darfield  2010 New Zealand 7.1 [23] 

Christchurch  2011 New Zealand 6.3 [24] 

Napa  2014 USA 6 [25] 

Michoacán  1985 Mexico 8.1 [26] 

Off-Miyagi  1978 Japan 7.4 [27] 

San Fernando  1971 USA 6.6 [28] 

The Oregon Resilience Plan   2013 USA 9 [29] 

LA Shakeout Scenario 2011 USA 7.8 [30] 

Tohoku  2011 Japan 9 [31] 

Niigata  1964 Japan 7.6 [32] 

Illapel  2015 Chile 8.4 [33] 

Nisqually  2001 USA 6.8 [34] 

Kushiro-oki  1993 Japan 7.8 [35] 

Hokkaido Toho-oki  1994 Japan 8.2 [35] 

Sanriku  1994 Japan 7.5 [35] 

Alaska  1964 USA 9.2 [36] 

Luzon  1990 Philippines 7.8 [37] 

El Asnam  1980 Algeria 7.1 [38] 

Tokachi-oki  1968 Japan 8.3 [39] 

Valdivia  1960 Chile 9.5 [40] 

Nihonkai-chubu  1983 Japan 7.8 [41] 

Bam  2003 Iran 6.6 [42] 

Samara  2012 Costa Rica 7.6 [43] 

Arequipa  2001 Peru 8.4 [40] 

Izmir  1999 Turkey 7.4 [44] 

Chi-Chi  1999 Taiwan 7.6 [45] 

Alaska 2002 USA 7.9 [46] 

 

Table 2 lists the complete database used to create the restoration curves of each lifeline. 

The different earthquakes are listed in a random order. It is notable that each earthquake has 

caused damage to multiple infrastructures at the same time. For instance, in the city of Loma 

Prieta, the earthquake caused damage to two power plants, ten water systems, five gas stations, 

and six telecommunication systems. However, the affected infrastructures required different 

times to recover even when the infrastructures are of similar types. For example, the two power 

plants that were affected by the Loma Prieta earthquake needed different amount of time to 

recover: 2 and 0.5 days respectively. In addition, there were some cases where either the damage 

information was not available or no damage was recorded. Such cases are marked with a dash (-) 

inside the table. 

 

 

 

 



Table 2.     The number of affected infrastructures and the corresponding downtimes. 
 

Earthquakes 

Lifelines affected 

Power Water Gas Telecom. 

No. DT (days) No. DT (days) No. DT (days) No. DT (days) 

Loma Prieta 2 (2), (0.5) 10 

(14), (4), (3), 

(1.5), (2), (1), (3), 

(3), (7),  (4) 

5 

(30), (16), 

(11), (10), 

(10) 

6 
(3), (4), (0.1), (3), 

(3), (1.5) 

Northridge  3 (3), (0.5), (2) 6 
(7), (2), (58), 

(12), (67), (46) 
4 

(7), (30), (5), 

(4) 
3 (1), (2), (4) 

Kobe  5 
(8), (3), (2), (5), 

(6) 
3 (0.5), (8), (73) 3 

(84), (11), 

(25) 
3 (1), (5), (7) 

Niigata  4 (11), (4), (1) 3 (14), (28), (35) 3 
(28), (35), 

(40) 
- - 

Maule  6 
(14), (1), (3) 

(10), (14) 
4 

(42), (4), (16), 

(6), 
2 (10), (90) 4 (17), (7), (3), (17) 

Darfield  3 (1), (2), (12) 2 (7), (1) 1 (1) 3 (9), (2), (3) 

Christchurch  3 (14), (0.16) 1 (3) 2 (14), (9) 2 (15), (9) 

Napa  1 (2) 6 

(20), (0.9), 

(0.75), (2,5), 

(12), (11) 

1 (1) - - 

Michoacán  4 
(4), (10), (3), 

(7) 
4 

(30), (14), (40), 

(45) 
- - 1 (160) 

Off-Miyagi  2 (2), (1) 1 (12) 3 (27), (3), (18) 1 (8) 

San Fernando  1 (1) - - 2 (10), (9) 1 (90) 

The Oregon Resil. 

Plan   
1 (135) 1 (14) 1 (30) 1 (30) 

LA Shakeout 

Scenario 
1 (3) 1 (13) 1 (60) - - 

Tohoku Japan  7 
(45, (3), (8), (2), 

(2), (4) 
8 

(4.7), (47), (1), 

(26), (7), (1), 

(47), (47) 

6 

(54), (2), (30), 

(3.5), (13), 

(18) 

3 (49), (21), (49) 

Niigata  2 (24) 3 (15), (4), (10) 2 (180), (2) - - 

Illapel  1 (3) 1 (3) - - - - 

Nisqually  3 (2), (6), (3) - 
 

- - - - 

Kushiro-oki  1 
(1) 

 
3 (6), (3), (5) 2 (22), (3) - - 

Hokkaido Toho-oki  1 (1) 3 (9), (3), (5) - - - - 

Sanriku  1 (1) 3 (14), (12), (5) - - - - 

Alaska  3 (2), (0.75), (1) 5 
(14), (5), (1), (7), 

(14) 
3 

(1), (5), (2), 

(14) 
2 (1), (21) 

Luzon  3 (7), (20), (3) 3 (14), (14), (10) - - 3 (5), (10), (0.4) 

El Asnam  - - 1 (14) - - - - 

Tokachi-oki  1 (2) - - 2 (30), (20) - - 

Kanto  2 (7), (5) 1 (42) 2 (180), (60) 1 (13) 

Valdivia  1 (5) 1 (50) - - - - 

Nihonkai-chubu  1 (1) 1 (30) 1 (30) - - 

Bam  1 (4) 3 (14), (10) - - 1 (1) 

Samara  1 (1) 1 (2) - - 1 (1) 

Arequipa  1 (1) 3 (32), (34) - - - - 

Izmit  1 (10) 2 (50), (29) 1 (1) 1 (10) 

Chi-Chi  3 (40), (14), (19) 1 (9) 1 (14) 1 (10) 

Alaska 2002 2 (2), (0.5) 10 

(14), (4), (3), 

(1.5), (2), (1), (3), 

(3), (7), (4) 

1 
(3) 

 
6 

(3), (4), (0.1), (3), 

(3), (1.5) 

* No = the number of affected infrastructures; DT = the downtime in days. 
 



Methodology 
 

The main challenge faced in this work is to illustrate the gathered data in the form of restoration 

curves. Typically, the procedure followed for constructing restoration curves is similar to that of 

fragility curves. The restoration process is one of the most uncertain variables in the resilience 

analysis; therefore, it is necessary to approach it in probabilistic terms. This is done by 

performing a statistical analysis to the raw data, trying to fit it to a statistical distribution. 

Nevertheless, choosing the right distribution can be a hard task due to the high number of 

distributions that exist in the literature. The gamma distribution was found to be the optimal fit to 

most of the database; hence, it is used to build the restoration curves. The probability distribution 

(PDF) of the gamma distribution is given by: 
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where Г(.)denotes the gamma distribution, α is the shape parameter, which allows the 

gamma distribution to take variety of shapes, β is the scale parameter whose effect is to stretch 

(greater than one) or squeeze the distribution (less than one). It is important to note that the 

exponential distribution is a special case of the gamma distribution function when the shape 

parameter α is set equal to 1. To obtain the values of α and β, it is first necessary to compute the 

mean and the standard deviation µD and σD. The mean value µD denotes the average value of a 

database consisting of n entries, and it is defined by: 
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while the standard deviation σD is the dispersion of a random variable of the database 

with respect to the mean value. The value of the standard deviation is obtained using the 

following formula: 
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After obtaining both µD and σD, the parameters α and β can be estimated using Eq. 4, 5. 
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It is important to note that the restoration curves developed for different damage states 

within the same sample should not intersect in order to describe meaningful results. Intersection 

of restoration curves may occur when the restoration curves are fitted independently of one 

another [47]. So, in order to avoid the intersection of the restoration curves corresponding to 

different damage states, the same standard deviation has been assumed [48;49]. 

 

Restoration Curves 
 

Restoration curves were developed for the power, water, gas, and telecommunications systems 

using the collected data. The curves are plotted based on the number of days required to restore 

full service to customers that lost service immediately after the earthquake (horizontal axis), and 

the likelihood that the utility will be completely restored to the customers (vertical axis). To 

provide a better understanding of the restoration process, the collected data has been divided 

based on two categories: 

 

Category I: Earthquake Magnitude 

 

Figure 1 shows the restoration curves of the four lifelines based on the earthquake magnitude. 

The intensity of the earthquake is a key parameter in defining the downtime, and this is shown in 

Figure 1 where the lifeline restoration rate follows the earthquake magnitude. 

 

The restoration curves of the lifelines are characterized by a similar behavior. The only 

difference lies in the restoration rate. The power system seems to have the shorter downtime as 

the curves reach the probability of 100% just 60 days after the event, unlike the other 

infrastructures, which needed at least 100 days to achieve a restoration probability of 100%. This 

outcome is expected because all lifelines need power to function, and thus the power system is 

always the first to recover. The telecommunication system, on the other hand, is heavily 

dependent on the power network, and this delays its restoration until the power system is 

recovered. This behavior is shown in Figure 1 where the restoration probability of the 

telecommunication system did not reach 100% even after 100 days. Lastly, the gas and the water 

systems are almost identical where both reach a restoration probability of 100% after 100 days. 

 

Category II: First world countries vs developing countries 

 

Figure 2 shows the restoration curves of the database grouped according to the level of 

development of the countries. From the figure, it is clear that the infrastructure restoration rate in 

the developing countries is lower than in the developed countries for all four lifelines. Moreover, 

the recovery rate of the power system for both groups of countries is the highest compared to that 

of other lifelines, usually because the functionality of the different lifelines is greatly dependent 

on the power lifeline. 



 
Figure 1.    Restoration curves of the lifelines based on the earthquake magnitude. 

 

 
Figure 2.    Restoration curves of the lifelines based on the level of development of the countries. 
 

 



Conclusions 
 

Downtime estimation is one of the most ambiguous aspects in the resilience engineering. 

Estimating the resilience of infrastructure due to earthquakes has been studied in the past; 

however, none of the studies highlighted a clear procedure to estimate the disruption time of 

damaged systems. This paper provides an empirical model for estimating the downtime of 

damaged infrastructures following earthquakes. This model used a large set of database for 

earthquake events that occurred over the last few decades. Four main lifelines were considered in 

this work (power, water, gas, and telecommunication). For each of them, a group of restoration 

curves have been derived. The restoration curves were presented in terms of the number of days 

required to restore full service to customers (horizontal axis), and the likelihood that the utility 

will be completely restored to the customers (vertical axis). 

 

With the absence of such models in the literature, this work will provide a useful tool that 

can be used by decision makers to estimate the downtime of infrastructures. It will also allow 

them to evaluate the infrastructures resilience because the downtime is a key parameter in the 

resilience assessment. Future work will be oriented towards extending the database to include 

more earthquakes. In addition, special attention will be given to the infrastructure 

interdependency to improve the accuracy of the restoration curves. Other lifelines, such as the 

transportation system, will also be analyzed once satisfactory data of a considerable amount of 

earthquakes is collected. 
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