
Doctoral Dissertation

Doctoral Program in Computer and Control Engineering (30thcycle)

Classification algorithms

for Big Data
With applications in the urban security domain

By

Luca Venturini

Supervisor:

Prof. Elena Maria Baralis, Supervisor

Doctoral Examination Committee:

Prof. Amr El Abbadi, Referee, University of California Santa Barbara

Prof. Paolo Ciaccia, Referee, Università degli Studi di Bologna

Prof. Paolo Garza, Politecnico di Torino

Prof. Marco Mellia, Politecnico di Torino

Prof. Ruggero G. Pensa, Università degli Studi di Torino

Politecnico di Torino

2018

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my

own original work and does not compromise in any way the rights of third parties,

including those relating to the security of personal data.

Luca Venturini

2018

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.

degree in the Graduate School of Politecnico di Torino (ScuDo).

Dedico questa tesi ai miei genitori,

che mi hanno tirato su per l’uomo che sono

e l’hanno poi sopportato.

Acknowledgements

I would like to acknowledge the guidance of my supervisor, Prof. Elena Baralis, and

her support during the years of the PhD.

A big part of this thesis would not be here if not for the help and the experience

of Dr. Paolo Garza, to whom I’m deeply thankful. I also owe much to Dr. Fabio

Pulvirenti, that in this journey has been a guide and a dear friend. I hope I am not

too much in debt with you still.

I would like to express my gratitude to Prof. Vania Ceccato, that has invited me

to spend three months at KTH. Her passion for teaching is admirable and her PhD

course is undoubtly the most intense I have followed in my career.

I thank all the wonderful persons I met during my visiting period in Sweden, in

Stockholm and in Norrtälje. The blank in this page is too little for all the love you

gratuitously gave me.

I thank all the colleagues and friends at Lab5, whenever they lived there or only

were welcome guests. You have made these years somewhat enjoyable. I owe you a

thousand smiles and some really good laughs.

In our lives we meet several persons that deserve our gratitude and estimation,

and I have the luck of having met many of them. Usually, we call them friends. I

thank all the persons that fall under this definition, hoping that I do enough to make

them recognize in it.

I thank my family. A life without love would not be worth living.

Abstract

A classification algorithm is a versatile tool, that can serve as a predictor for the

future or as an analytical tool to understand the past. Several obstacles prevent

classification from scaling to a large Volume, Velocity, Variety or Value. The aim

of this thesis is to scale distributed classification algorithms beyond current limits,

assess the state-of-practice of Big Data machine learning frameworks and validate

the effectiveness of a data science process in improving urban safety.

We found in massive datasets with a number of large-domain categorical features

a difficult challenge for existing classification algorithms. We propose associative

classification as a possible answer, and develop several novel techniques to distribute

the training of an associative classifier among parallel workers and improve the final

quality of the model. The experiments, run on a real large-scale dataset with more

than 4 billion records, confirmed the quality of the approach.

To assess the state-of-practice of Big Data machine learning frameworks and

streamline the process of integration and fine-tuning of the building blocks, we

developed a generic, self-tuning tool to extract knowledge from network traffic

measurements. The result is a system that offers human-readable models of the data

with minimal user intervention, validated by experiments on large collections of

real-world passive network measurements.

A good portion of this dissertation is dedicated to the study of a data science

process to improve urban safety. First, we shed some light on the feasibility of a

system to monitor social messages from a city for emergency relief. We then propose

a methodology to mine temporal patterns in social issues, like crimes. Finally,

we propose a system to integrate the findings of Data Science on the citizenry’s

perception of safety and communicate its results to decision makers in a timely

manner. We applied and tested the system in a real Smart City scenario, set in Turin,

Italy.

Contents

List of Figures xv

List of Tables xix

List of Algorithms xxi

1 Introduction 1

1.1 Dissertation plan and research contribution 2

1.1.1 Scaling associative classification to very large datasets . . . 3

1.1.2 Building a Big Data machine learning pipeline 4

1.1.3 Data Science for urban security 4

1.1.4 Dissertation plan . 5

2 Scaling associative classification to very large datasets 7

2.1 Theoretical background . 8

2.1.1 Frequent itemset mining 8

2.1.2 Associative classification 9

2.2 Frequent Itemset Mining and distributed frameworks 11

2.2.1 Centralized algorithms . 11

2.2.2 Itemset mining parallelization strategies 13

2.2.3 Distributed itemset mining algorithms 19

xii Contents

2.2.4 Experimental evaluation 23

2.2.5 Digest of the experimental session 32

2.2.6 Choosing an approach for scaling associative classification . 33

2.3 BAC: a Bagged Associative Classifier 34

2.3.1 Background . 35

2.3.2 The proposed approach . 37

2.3.3 Experimental evaluation 39

2.4 DAC: a Distributed Associative Classifier 43

2.4.1 The proposed approach . 43

2.4.2 Experimental evaluation 56

2.5 Related work . 68

2.6 Summary . 69

2.7 Relevant publications . 71

3 Building a Big Data machine learning pipeline 73

3.1 Introduction . 74

3.2 Methodology overview . 76

3.3 Offline self-learning model building 77

3.3.1 Self-tuning clustering phase 77

3.3.2 Cluster and data characterization 83

3.3.3 Classification model training 84

3.4 Online characterization and model update 86

3.4.1 Quality index . 86

3.4.2 Characterization and self-evolution policy 87

3.5 Experiments and datasets . 88

3.6 YouTube use case . 91

3.6.1 Offline cluster and model characterization 91

Contents xiii

3.6.2 Online data characterization and model update 94

3.7 P2P use case . 97

3.7.1 Offline cluster and model characterization 99

3.7.2 Online data characterization and model update 101

3.8 Related work . 101

3.9 Summary . 103

3.10 Relevant publications . 104

4 Data Science for urban security 105

4.1 Analyzing spatial data from Twitter during a disaster 106

4.1.1 Related work . 106

4.1.2 Data collection and preprocessing 107

4.1.3 Discussion . 108

4.1.4 Suggestions for practitioners 115

4.2 Spectral analysis of crimes . 116

4.2.1 Time-series analysis . 117

4.2.2 Results . 120

4.2.3 Related Work . 122

4.3 Monitoring the citizens’ perception on urban security in Smart Cities 124

4.3.1 The NED system . 125

4.3.2 Analysis scenario . 132

4.4 Summary . 134

4.5 Relevant publications . 135

5 Conclusion 137

Appendix A Further investigations on the performance of distributed FIM

algorithms 141

xiv Contents

A.1 Scalability in terms of parallelization degree 142

A.2 Impact of framework and hardware configurations 143

A.3 Execution time breakdown into phases 146

A.4 Real use cases . 149

A.4.1 URL tagging . 152

A.4.2 Network traffic flows . 154

A.5 Load balancing . 155

A.6 Communication costs . 157

References 159

List of Figures

2.1 Lattice representing the search space based on the items appearing

in the example dataset D . 9

2.2 Itemset mining parallelization: Data split approach 14

2.3 Itemset mining parallelization: Iterative Data split approach 15

2.4 Itemset mining parallelization: Search space split approach 15

2.5 Execution time for different minsup values (Experiment 1) 26

2.6 Execution time for different minsup values (Experiment 2) 27

2.7 Execution time with different average transaction lengths (Experi-

ment 3). 29

2.8 Execution time with different average transaction lengths (Experi-

ment 4). 29

2.9 Execution time with different number of transactions (Experiment 5). 30

2.10 Accuracy results . 40

2.11 A CAP-tree example built over the toy dataset with minimum support

equal to 0.3 . 48

2.12 An example model with CARs for the dataset in Table 2.6 49

2.13 Example visit of the CAP-tree in Figure 2.11 51

2.15 Example projection of the CAP-tree in Figure 2.11 to reconstruct

the support of itemset {A,D} . 51

2.17 DAC vs Random Forest. AUROC cross-validated with 5-fold on the

entire dataset . 60

xvi List of Figures

2.18 DAC vs Random Forest. AUROC vs training and testing times,

cross-validated with 5-fold on the entire dataset 61

2.20 DAC tuning. Comparison of different choices for f (), g(), m() and

minsup . 64

2.22 Random Forest tuning. Performance (AUROC) with different pa-

rameter settings . 66

3.1 SeLINA building blocks. 74

3.2 Toy example for DBScan, with MinPoints set to 4. The picture

highligths the area of radius E psilon around each point, which can

divide in core points, in red, border points, in yellow, and noise, in

blue. Adapted from [66]. 78

3.3 A toy example of a decision tree. 86

3.4 YouTube dataset. Real-time data labeling: Silhouette and percentage

of new flows assigned to each cluster. 95

3.5 YouTube dataset. Per-day correlation matrices of silhouettes for

cluster 1 and 4. 99

4.1 Frequent hashtags in the Ischia dataset in non-geo-referenced tweets 110

4.2 Frequency of tweets by area in Texas dataset 112

4.3 Frequency of tweets by area in Texas dataset (place_id=Houston, TX)113

4.4 Frequent hashtags in Texas dataset 114

4.5 Frequency of top 10 locations for Texas dataset 114

4.6 Evolution of burglaries in San Francisco 119

4.7 Daily count of burglary by weekday 120

4.8 Periodogram of burglaries with detrending 121

4.9 Periodogram of most frequent categories of crime 122

4.10 Heatmap of vehicle thefts in different days of the week, in 2015 . . 123

4.11 Main architecture of NED system 126

4.12 Data warehouse dimensional fact model. 128

List of Figures xvii

4.13 Incidence of disturbance from public venues per district in year 2012.133

4.14 Incidence of disturbance from public venues per district in year 2013.133

A.1 Speedup with different parallelization degrees 142

A.2 Performances with different hardware configurations (Dataset #1,

minsup 0.2%) . 144

A.3 Performances with different hardware configurations (Dataset #5,

minsup 1.5%) . 145

A.4 BigFIM: Execution time of its phases 146

A.5 DistEclat: Execution time of its phases 147

A.6 Mahout and MLlib PFP algorithms: Execution time of their phases . 147

A.7 Resource utilization of (a) BigFIM (b) DistEclat 150

A.8 Resource utilization of (a) Mahout PFP (b) MLlib PFP 151

A.9 Execution time for different periods of time on the Delicious dataset

(minsup=0.01%) . 153

A.10 Number of flows for each hour of the day. 154

A.11 Execution time of different hours of the day. (dataset 16, minsup=1%)155

A.12 Normalized execution time of the most unbalanced tasks. 157

A.13 Communication costs and performance for each algorithm 158

List of Tables

2.1 An example transactional dataset, binary-labeled. 8

2.2 Comparison of the parallelization approaches. 17

2.3 Synthetic datasets . 26

2.4 Summary of the limits identified by the experimental evaluation of

FIM algorithms . 33

2.5 Average training time of the different approaches. 42

2.6 An example transactional dataset, binary-labeled. 47

2.7 IG, weight and Gini for the items in the toy dataset 48

2.8 Single-instance DAC vs CBA, average accuracy on binary-labeled

UCI datasets . 67

2.9 DAC vs BAC, average accuracy on selected UCI datasets 67

2.10 DAC vs BAC, average number of rules on selected UCI datasets . . 68

3.1 A toy dataset . 85

3.2 Features used by SeLINA as input. 89

3.3 YouTube dataset. Cluster characterization. 93

3.4 Quality of the classification algorithm. 3-fold cross-validation . . . 93

3.5 YouTube dataset. New clusters’ characterization. Clusters obtained

by using SMDBScan and setting E psStep=0.001 98

3.6 P2P dataset. Cluster characterization. 100

xx List of Tables

4.1 Top 10 of domain names linked in geo-referenced tweets in Ischia

dataset . 111

4.2 Top 10 of domain names linked in non-geo-referenced tweets in

Ischia dataset . 111

4.3 Top 10 of domain names linked in tweets in Texas dataset 111

4.4 Categorization of non-emergency reports 127

A.1 Framework and Hardware configurations 144

A.2 Stage Bottlenecks . 149

A.3 Real-life use-cases dataset characteristics 149

A.4 Delicious dataset: cumulative number of transactions and frequent

itemsets with minsup 0.01%. 153

A.5 Network traffic flows: number of transactions and frequent itemsets

with minsup 0.1%. 156

List of Algorithms

2.1 CAP-tree building . 46

2.2 CAP-growth . 50

2.3 Model consolidation . 54

3.1 Automatic setting of the epsilon parameter value. 80

3.2 Automatic setting of the MinPoints parameter value. 82

Chapter 1

Introduction

In the recent years, Big Data have received much attention by both the academic and

the industrial world, with the aim of fully leveraging the power of the information they

hide. The term “Big” spans over several dimensions, that are usually remembered

as “Vs”. The three traditional Vs of Big Data are Volume, Variety and Velocity,

although several Vs have been added to this triangle.

Linked with the Vs of Big Data are several problems, that prevent traditional

techniques from scaling in that dimension. Most often, it is a technological problem.

For example, many traditional solutions fail to scale to large Volumes because of the

hardware constraints of the single machine, or to high throughput (Velocity) because

of limits of the bandwidth or of the processor unit. Sometimes, solutions exist for

each of the subproblems we face, but the complexity relies in the cooperation of the

single solutions. We have thus a problem of integration, and it is a common obstacle

when growing in Variety. Finally, we have an analytical problem when choosing the

direction that our investigation must follow, and eventually a communication problem

in presenting our results. These two are the crucial issues in extracting Value, the

fourth of the three Vs, as only actionable results given to informed decision makers

can really make data valuable. Analysis and communication are usually the two

primary tasks of Data Science, which can be thus seen as the final step in the pipeline

of the Big Data.

The focus of this dissertation is on classification algorithms. Classification is a

supervised learning task, that aims at labeling new records of data. A classification

model is a versatile tool, that can serve as a predictor for the future or as an analytical

2 Introduction

tool to understand the past. The training of the model can meet serious obstacles

when scaling on large Volumes. The update, or the application of the model on

new records can limit its scalability on high Velocity. The lack of a known, ground

truth limits its applicability on a Variety of datasets. The use of a complex model

limits or impedes its readability and thus the extraction of Valuable insights. In this

dissertation, we will humbly try to propose solutions to all these issues.

The Value of a data science process is higher as greater the impact that can have

on the world. And the entire human society can greatly benefit from data-driven

decisions on themes of public or global interest, like social issues, relief to natural

disasters, water scarcity, etc. A good portion of this dissertation is dedicated to the

study of a data science process to improve urban safety, as an application that would

have a potential impact on the lives of nearly 4 billion people.

Thesis statement: The aim of this thesis is to scale distributed classification

algorithms beyond current limits, assess the state-of-practice of Big Data machine

learning frameworks and validate the effectiveness of a data science process in

improving urban safety.

In the next section, we will review the dissertation plan.

1.1 Dissertation plan and research contribution

This dissertation is divided into three parts, which reflect the three folds of the thesis

statement:

1. Scale distributed classification algorithms beyond current limits, which focuses

on a special kind of classification algorithms, associative classifiers, trying to

cope with some limitations faced by many classification techniques on Big

Data.

2. Assess the state-of-practice of Big Data machine learning frameworks. Nowa-

days, machine learning libraries offer many off-the-shelf solutions for Big

Data. In this part, we evaluate the validity of these solutions in integrating

and adapting to a complex Big Data scenario, like that of computer networks

measurements.

1.1 Dissertation plan and research contribution 3

3. Validate the effectiveness of a data science process in improving urban safety,

where we see if and how we can leverage on multiple sources of information

to provide useful insights for policing and policy making.

In the following, we briefly introduce each chapter.

1.1.1 Scaling associative classification to very large datasets

Supervised learning algorithms are nowadays successfully scaling up to datasets that

are very large in volume, leveraging the potential of in-memory cluster-computing

Big Data frameworks, like Apache Spark. Still, massive datasets with a number of

large-domain categorical features are a difficult challenge for any classifier. Most off-

the-shelf solutions cannot cope with this problem. Chapter 2 proposes Associative

Classification as a possible answer.

After a brief introduction to the background theory, we examine how the task

of Frequent Itemset Mining is distributed in MapReduce frameworks. This gives

us a sound ground to build a scalable solution for the training of an associative

classifier, which has many points in common with the frequent itemsets mining task.

We then propose two solutions: BAC, a Bagged Associative Classifier, and DAC,

a Distributed Associative Classifier. Both exploit ensemble learning to distribute

the training of an associative classifier among parallel workers and improve the

final quality of the model. BAC tests this approach on a number of medium-sized

datasets, proving that we can reach the quality that associative classifiers have on

single machines. DAC improves on these results adopting several novel techniques

to reach high scalability, without sacrificing quality.

The proposed techniques contribute to the state of the art in scaling supervised

learning algorithms to large Volume and Velocity. To prove this, we run the final

experiments of DAC on a real large-scale dataset, with more than 4 billion records

and 800 million distinct categories. The training time of the model was in some

cases 25 times smaller than the one of Random Forests, keeping at the same time the

prediction times of DAC lower than the competitor. The model generated by DAC,

made of association rules, was still readable at the end of the pipeline, while the

Random Forest lost its readability for reasons we will explain in detail in the chapter.

This adds Value to the classification model as an instrument to understand the data

and make decisions.

4 Introduction

1.1.2 Building a Big Data machine learning pipeline

Understanding the behavior of a network from a large scale traffic dataset is a

challenging problem. Big data frameworks offer scalable algorithms to extract

information from raw data, but often require a sophisticated fine-tuning and a detailed

knowledge of machine learning algorithms. To streamline this process, in Chapter

3 we propose SeLINA (Self-Learning Insightful Network Analyzer), a generic,

self-tuning tool to extract knowledge from network traffic measurements. SeLINA

includes different data analytics techniques providing self-learning capabilities to

state-of-the-art scalable approaches, jointly with parameter auto-selection to off-load

the network expert from parameter tuning. We combine both unsupervised and

supervised approaches to mine data with a scalable approach. SeLINA embeds

mechanisms to check if the new data fits the model, to detect possible changes in the

traffic, and to, possibly automatically, trigger model rebuilding.

The result is a system that offers human-readable models of the data with minimal

user intervention, supporting domain experts in extracting actionable knowledge and

thus Value. Self-learning features help dealing with a Variety of datasets, where

the ground truth of the observations is potentially unknown. SeLINA’s current

implementation runs on Apache Spark. We tested it on large collections of real-

world passive network measurements from a nationwide ISP, investigating YouTube

and P2P traffic. The experimental results confirmed the ability of SeLINA to provide

insights and detect changes in the data that suggest further analyses.

1.1.3 Data Science for urban security

The global population is nowadays increasingly urban, with more than half living

in a city [1]. Moreover, in the last twelve years our planet has added rooms for

more than a billion new guests, totaling more than 7 and a half billion people on the

globe [2]. Growing in size, cities have become more complex to manage and face

exploding issues, like pollution, traffic, social unrest and injustice, and crime. It is

only a matter of necessity if institutions have recurred to Information Technology to

manage this complex system, aiming at fully implementing the paradigm of a Smart

City.

1.1 Dissertation plan and research contribution 5

Chapter 4 focuses on how Data Science can help a Smart City improving urban

security. We start the chapter investigating on the quality of the information hidden

in social media, in the special context of a mass emergency. From this study, we

gain precious knowledge that sheds some light on the feasibility and validity of a

system that monitors social messages from a city for emergency relief, highlighting

the potential limitations. We then propose a methodology to mine temporal patterns

in social issues, and particularly crimes. Finally, we propose a system to integrate

the findings of Data Science on the citizenry’s perception of safety and communicate

its results to decision makers in a timely manner, facilitating the production of Value,

like punctual interventions and corrective policies. We apply and test the system in a

real Smart City scenario, set in Turin, Italy.

1.1.4 Dissertation plan

This dissertation is organized as follows. Chapter 2 focuses on scaling associative

classification to very large datasets. Chapter 3 proposes a Big Data machine learning

pipeline for network traffic analysis. Chapter 4 reports our approach towards inte-

grating Data Science in the urban security process. Finally, Chapter 5 draws the final

conclusions.

Chapter 2

Scaling associative classification to

very large datasets

Associative classification is a powerful supervised learning technique, which is well-

known to produce accurate models. Among its several advantages, we count the

extreme readability of the generated models, that are made of association rules, and

the native support for categorical features. Unfortunately, state-of-art associative

classifiers do not scale effectively on a distributed framework like Apache Spark,

as they need multiple readings of the data and make an extensive usage of off-load

computation.

In this chapter, we will see different solutions to scale the training of an associa-

tive classifier to very large datasets. First, we will review existing scalable solutions

for a very similar problem, frequent itemset mining. From the findings of this section,

we will build two different proposals for scaling associative classification, namely a

Bagged Associative Classifier (BAC) and a Distributed Associative Classifier (DAC).

Part of the contents of this chapter were originally published in [3–5]. The chapter

is organized as follows. In Section 2.1 we review the theoretical background. Section

2.2 surveys existing solutions for the frequent itemset mining task and scalable

approaches. Section 2.3 introduces BAC, a Bagged Associative Classifier. Section

2.4 introduces an advanced approach, DAC, a Distributed Associative Classifier. In

Section 2.5, we review related works. Finally, Section 2.6 concludes the chapter and

sums up.

8 Scaling associative classification to very large datasets

2.1 Theoretical background

In this section, we review some of the theory of the frequent itemset mining problem

and associative classification, which will serve as a foundation for the rest of the

chapter.

2.1.1 Frequent itemset mining

tid Transaction Class

1 {A,B,D,E} +

2 {B,C,E} -

3 {A,B,D,E} +

4 {A,B,C,E} -

5 {A,B,C,D,E} +

6 {B,C,D} -

Table 2.1 An example transactional dataset, binary-labeled.

A frequent itemset represents frequently co-occurring items in a transactional

dataset. More formally, let I be a set of items. A transactional dataset D consists

of a set of transactions {t1, . . . , tn}. Each transaction ti ∈ D is a collection of items

(i.e., ti ⊆ I) and is identified by a transaction identifier (tidi). Figure 2.1 reports an

example of a transactional dataset with 6 transactions.

An itemset I is defined as a set of items (i.e., I ⊆ I) and is characterized by

a support value, which is denoted by sup(I) and defined as the ratio between the

number of transactions in D containing I and the total number of transactions in

D . In the example dataset in Table 2.1, for example, the support of the itemset

{A,B,D} is 50% (3/6). This value represents the frequency of occurrence of the

itemset in the dataset. An itemset I is considered frequent if its support is greater

than a user-provided minimum support threshold minsup.

Given a transactional dataset D and a minimum support threshold minsup, the

Frequent Itemset Mining [6] problem consists in extracting the complete set of

frequent itemsets from D .

The dimension of the search space can be represented as a lattice, whose top

is an empty set. Its size increases exponentially with the number of items [7, 8].

2.1 Theoretical background 9

Fig. 2.1 Lattice representing the search space based on the items appearing in the example

dataset D

Due to the exponential growth of the lattice, data mining techniques, like associative

classification itself, make often use of an approximate representation or a subset of

the complete lattice, which is also difficult to store. In Figure 2.1, the lattice related

to our example is shown.

2.1.2 Associative classification

In the classification problem, the dataset is represented as a structured table of records

and features. Each feature is identified by a feature_id, that is set to some value v

for each record, or to a null value for not available information. More formally, the

input dataset D is represented as a relation R, whose schema is given by d distinct

features A1 . . .Ad and a class attribute C ∈ C , where C is the set of distinct classes.

Each transaction in R can be described as a collection of pairs (feature, value), plus

10 Scaling associative classification to very large datasets

a class label (a value belonging to the domain of class attribute C). Each pair (feature,

value) can be seen as an item and we can use the notation in Section 2.1.1.

Not available data are represented with a null value, or not represented at all, as

transactional datasets do not have a fixed structure. If a transaction has a length of

exactly d items, or equivalently has no missing values, it’s a point in a space of d

dimensions. The common practice in classification is to define a training set, i.e. a

part of the labeled dataset that is used to train the algorithm, and a test set, from

which the labels are removed. The two sets are used together with other techniques,

like cross-validation, to simulate the behavior of the algorithm towards unlabeled,

new data and validate its performance.

Association rules [9] are made of an antecedent itemset A, and a consequent

itemset B, and are read as A yields B, or A ⇒ B. When the consequent is made

of a single item, and specifically an item belonging to the set of class labels, the

association rule can be used to label the record. We inherit the naming in [10] and

call these rules Class Association Rules, or CARs.

Both association rules and CARs share a number of metrics that measure their

strength and statistical significance [11, 12]. The support count (supCount), or

absolute support, of an itemset is the number of transactions in the dataset D that

contain the whole itemset. The support (sup), or relative support, of a rule A ⇒ B is

defined as supCount(A∪B)/|D |, where |D | is the cardinality of D . The confidence

(conf) of the rule is defined as supCount(A∪B)/supCount(A), and in CARs it

measures how precise the rule is at labeling a record. The lift of a rule (lift) is a

measure of the (symmetric) correlation between the antecedent and consequent of

the extracted rules and it is defined as conf(A ⇒ B)/sup(B). Lift values significantly

above 1 indicate a positive correlation between rule antecedent and consequent,

meaning that the implication between A and B holds more than expected in the

source dataset. The χ2 of a CAR is the value of the χ2 statistics computed against the

distribution of the classes in D , which states whether the assumption of correlation

between the antecedent and the consequent is statistically significant. Other measures

used to sort rules and CARs are their length (len), i.e. the total number of items of A

and B, and the lexicographical order (lex).

Another measure that is widely used in classification algorithms is the Gini

impurity [13]. The Gini impurity measures how often a record would be wrongly

labeled, if labeled randomly with the distribution of the classes in the dataset. It is

2.2 Frequent Itemset Mining and distributed frameworks 11

used for example in decision trees, to evaluate the quality of the splits at each node.

The Gini impurity of a dataset, or portion of it, is computed as

Gini = ∑
i∈C

fi(1− fi)

where fi is the frequency of class i in the dataset, or portion of it, for which we are

computing the impurity. A portion of dataset is considered pure if its Gini is equal to

0, that happens when only a single label appears. We will refer to the Gini Impurity

of an itemset, as the impurity of the portion of the dataset that contains the itemset.

In association rule mining and associative classification, the user is usually able

to set some minimum threshold for the above-mentioned quality measures, like a

minimum support minsup, a minimum confidence minconf, a minimum positive lift

min+lift, etc. The model generation phase of associative classifiers is usually based

on two steps: (i) Extraction of all the CARs with a support higher than a minimum

support threshold minsup and a minimum confidence threshold minconf and (ii)

Rule selection by means of the database coverage technique, firstly introduced in

[10]. The database coverage technique works as follows. First, given an ordered list

of CARs extracted from a training set, it considers one CAR r at a time in the sort

order and selects the transactions in the training set matched by r. For each matched

transaction t, it checks also if r classifies properly t. If r classifies properly at least

one training record, then r is kept. Differently, if all the training transactions matched

by r have a class label different from the one of r, then r is discarded. If r does not

match any training data then r is discarded as well. Once r has been analysed, all

the transactions matched by r are removed from the training set and the next CAR is

analysed by considering only the remaining transactions.

2.2 Frequent Itemset Mining and distributed frame-

works

2.2.1 Centralized algorithms

The search space exploration strategies of the distributed approaches are often

inspired by the solutions adopted by the centralized approaches. Hence, this section

12 Scaling associative classification to very large datasets

shortly introduces the main strategies of the centralized itemset mining algorithms.

This introduction is useful to better understand the algorithmic choices behind the

distributed algorithms.

The frequent itemset mining task is challenging in terms of execution time

and memory consumption because the size of the search space is exponential with

the number of items of the input dataset [7]. Two main search space exploration

strategies have been proposed: (i) level-wise or breadth-first exploration of the

candidate itemsets in the lattice and (ii) depth-first exploration of the lattice.

The most popular representative of the breadth-first strategy is Apriori [14].

Starting from single items, it iteratively generates and counts the support of the

candidate itemsets of size k+1 from the frequent itemsets of size k. At each iteration

k, the supports of the candidate itemsets of length k are counted by performing a new

scan of the input dataset. The search space is pruned by exploiting the downward-

closure property, which guarantees that all the supersets of an infrequent itemset

are infrequent too. Specifically, the downward-closure property allows pruning the

set of candidate itemsets of length k+ 1 by considering the frequent itemsets of

length k. The Apriori algorithm is significantly affected by the density of the dataset.

The higher the density of the dataset, the higher the number of frequent itemsets

and hence the amount of candidate itemset stored in main memory. The problem

becomes unfeasible when the number of candidate itemsets exceeds the size of the

main memory.

More efficient and scalable solutions exploit the depth-first visit of the search

space. FP-Growth [15], which uses a prefix-tree-based main memory compressed

representation of the input dataset, is the most popular depth-first based approach.

The algorithm is based on a recursive visit of the tree-based representation of the

dataset with a “divide and conquer” approach. In the first phase the support of each

single item is counted and only the frequent items are stored in the “frequent items

table” (F-list). This information allows pruning the search space by avoiding the

analysis of the itemsets extending infrequent items. Then, the FP-tree, that is a

compact representation of the dataset, is built exploiting the F-list and the input

dataset (together they compose the “header table”) . Specifically, each transaction

is included in the FP-tree by adding or extending a path on the tree, exploiting

common prefixes. Once the FP-tree associated with the input dataset is built, FP-

growth recursively splits the itemset mining problem by generating conditional

2.2 Frequent Itemset Mining and distributed frameworks 13

FP-trees and visiting them. Given an arbitrary prefix p, where p is a set of items,

the conditional FP-tree with respect to p, also called projected dataset with respect

to p, is substantially the compact representation of the transactions containing

p. Each conditional FP-tree contains all the knowledge needed to extract all the

frequent itemsets extending its prefix p. FP-growth decomposes the initial problem

by generating one conditional FP-tree for each item and invoking the itemset mining

procedure on each of them, in a recursive depth-first fashion.

FP-growth suits well dense datasets, because they can be effectively and com-

pactly represented by means of the FP-tree data structure. Differently, with sparse

datasets, the compressions benefits of the FP-tree are reduced because there will be a

higher number of branches [6] (i.e., a large number of subproblems to generate and

results to merge).

Another very popular depth-first approach is the Eclat algorithm [16]. It performs

the mining from a vertical transposition of the dataset. In the vertical format, each

row includes an item and the transaction identifiers (tid) in which it appears (tidlist).

After the initial dataset transposition, the search space is explored in a depth-first

manner similar to FP-growth. The algorithm is based on equivalence classes (groups

of candidate itemsets sharing a common prefix), which allows smartly merging

tidlists to select frequent itemsets. Prefix-based equivalence classes are mined

independently, in a “divide and conquer” strategy, still taking advantage of the

downward closure property. Eclat is relatively robust to dense datasets. It is less

effective with sparse distributions, because the depth-first search strategy may require

generating and testing more (infrequent) candidate itemsets with respect to Apriori-

like algorithms [17].

2.2.2 Itemset mining parallelization strategies

Two main algorithmic approaches are proposed to address the parallel execution of

the itemset mining algorithms by means of the MapReduce paradigm [18]. They

are significantly different because (i) they use different solutions to split the original

problem in subproblems and (ii) make different assumptions about the data that can

be stored in the main memory of each independent task.

Data split approach. It splits the problem in “similar” subproblems, executing

the same function on different data chunks. Specifically, each subproblem

14 Scaling associative classification to very large datasets

Fig. 2.2 Itemset mining parallelization: Data split approach

computes the local supports of all candidate itemsets on one chunk on the

input dataset (i.e., each subproblem works on the complete search space but

on a subset of the input data). Finally, the local results (i.e., the local supports

of the candidate itemsets) emitted by each subproblem/task are merged to

compute the global final result (global support of each itemset). The main

assumptions of this approach are that (i) the problem can be split in “similar’

subproblems working on different chunks of the input data and (ii) the set of

candidate itemsets is small enough that it can be stored in the main memory of

each task.

Search space split approach. It splits the problem by assigning to each subproblem

the visit of a subset of the search space (i.e., each subproblem visits a part of

the lattice). Specifically, this approach generates, from the input distributed

dataset, a set of projected datasets, each one small enough to be stored in

the main memory of a single task. Each projected dataset contains all the

information that is needed to extract a subset of itemsets (i.e., each dataset

contains all the information that is needed to explore a part of the lattice)

without needing the contribution of the results of the other tasks. The final

result is the union of the itemset subsets mined from each projected dataset.

2.2 Frequent Itemset Mining and distributed frameworks 15

Fig. 2.3 Itemset mining parallelization: Iterative Data split approach

Fig. 2.4 Itemset mining parallelization: Search space split approach

Figures 2.2 and 2.4 depict the first and the second parallelization strategies,

respectively. In the data split approach (Figure 2.2), the map phase computes the

16 Scaling associative classification to very large datasets

local supports of the candidate itemsets in its data chunk (i.e., each mapper runs

a “local itemset mining extraction” on its data chunk). Then, the reduce phase

merges the local supports of each candidate itemset to compute its global support.

This solution requires each mapper to store a copy of the complete set of candidate

itemsets (i.e., a copy of the lattice). This set must fit in the main memory of each

mapper. Since the complete set of candidate itemsets is usually too large to be stored

in the main memory of a single mapper, an iterative solution, inspired by the level-

wise centralized itemset mining algorithms, is used. Figure 2.3 reports the iterative

solution. At each iteration k only the subset of candidates of length k are considered

and hence stored in the main memory of each mapper. This approach, thanks also

to the exploitation of the apriori-principle to reduce the size of the candidate sets,

allows obtaining subsets of candidate itemsets that can be loaded in the main memory

of every mapper.

In the search space split approach (Figure 2.4), the map phase generates a set of

local projected datasets. Specifically each mapper generates a set of local projected

datasets based on its data chunk. Each local projected dataset is the projection of

the input chunk with respect to a prefix p.1 Then, the reduce phase merges the

local projected datasets to generate the complete projected datasets. Each complete

projected dataset is provided as input to a standard centralized itemset mining

algorithm running in the main memory of the reducer and the set of frequent itemsets

associated to it are mined. Each reducer is in charge of analyzing a subset of complete

projected datasets by running the itemset mining phase on one complete projected

dataset at a time. Hence, the main assumption, in this approach, is that each complete

projected dataset must fit in the main memory of a single reducer.

Table 2.2 summarizes the main characteristics of the two parallelization ap-

proaches with respect to the following criteria: type of split of the problem, usage of

main memory, communication costs, load balancing, and maximum parallelization

(i.e. maximum number of mappers and reducers).

Type of split/Split of the search space. The main difference between the two

parallelization approaches is the strategy adopted to split the problem in subproblems.

This choice has a significant impact on the other criteria.

1Note that the projected datasets can overlap because the transactions associated with two distinct

prefixes p1 and p2 can be overlapped.

2.2 Frequent Itemset Mining and distributed frameworks 17

Criterion Iterative data split approach

(Figure 2.3)

Search space split approach

(Figure 2.4)

Type of

split/Split

of the search

space

Each subproblem analyzes a dif-

ferent subset of the input data and

computes the local supports of all

the candidate itemsets of length

k on its chunks of data. The final

result is given by the merge of

the local results.

Each subproblem analyzes a dif-

ferent subset of itemsets/a differ-

ent part of the search space. The

final result is the union of the lo-

cal results.

Usage of main

memory

The candidate set of length k is

stored in the main memory of a

single task.

The complete projected dataset is

stored in the main memory of a

single task.

Communication

cost

Number of candidate itemsets ×
number of mappers × number of

iterations.

Sum of the sizes of the local pro-

jected datasets.

Load balancing Load balancing is achieved by

associating the same number of

itemsets to each reducer.

The tasks could be significantly

unbalanced depending on the

characteristics of the projected

datasets assigned to each node.

Maximum num-

ber of mappers

Number of chunks Number of chunks

Maximum num-

ber of reducers

Number of candidate itemsets Number of items

Table 2.2 Comparison of the parallelization approaches.

18 Scaling associative classification to very large datasets

Usage of main memory. The different usage of the main memory of the tasks

impact on the reliability of the two approaches. The data split approach assumes that

the candidate itemsets of length k can be stored in the main memory of each mapper.

Hence, it is not able to scale on dense datasets characterized by large candidate sets.

Differently, the search space split approach assumes that each complete projected

dataset can be stored in the main memory of a single task. Hence, this approach runs

out of memory when large complete projected datasets are generated.

Communication costs. In a parallel MapReduce algorithm, communication costs

are important, because the network can easily become the bottleneck if large amounts

of data are sent on it. The communication costs are mainly related to the outputs

of the mappers which are sent to the reducers on the network. For the data split

approach the data that is sent on the network is linear with respect to the number of

candidate itemsets, the number of mappers, and the number of iterations. Differently,

for the search space approach, the amount of data emitted by the mappers is equal to

the size of the projected datasets.

Load balancing. The different split of the problem in subproblems significantly

impacts on load balancing. For the data split approach, the execution time of each

mapper is linear with respect to the number of input transactions and the execution

time of each reducer is linear with respect to the number of assigned itemsets. Hence,

the data split approach can easily achieve a good load balancing by assigning the

same number of data chunks to each mapper and the same number of candidate

itemsets to each reducer. Differently, the search space split approach is potentially

unbalanced. In fact, each subproblem is associated with a different subset of the

lattice, related to a specific projected dataset and prefix, and, depending on the data

distribution, the complexity of the subproblems can significantly vary. A smart

assignment of a set of subproblems to each node would mitigate the unbalance.

However, the complexity of the subproblems is hardly inferable during the initial

assignment phase.

Maximum number of mappers and reducers. The two approaches are signifi-

cantly different in terms of “maximum parallelization degree”, at least in terms of

number of maximum exploitable reducers. The maximum parallelization of the map

phase is equal to the number of data chunks for both approaches. Differently, the

maximum parallelization of the reduce phase is equal to the number of candidate

itemsets for the data split approach, because potentially each reducer could compute

2.2 Frequent Itemset Mining and distributed frameworks 19

the global frequency of a single itemset, whereas it is equal to the number of global

projected datasets for the second approach, which can be at most equal to the number

of items. Since the number of candidate itemsets is greater than the number of items,

the data split approach can potentially reach a higher degree of parallelization with

respect to the search space split approach.

The two parallelization approaches are used to design efficient parallel implemen-

tations of well-known centralized itemset mining algorithms. Specifically, the data

split approach is used to implement the parallel versions of level-wise algorithms (like

Apriori [14]), whereas the search space split approach is used to implement parallel

versions of depth-first recursive approaches (like FP-growth [15] and Eclat [16]).

2.2.3 Distributed itemset mining algorithms

This section describes the algorithms, and available implementations, representing

the state-of-the-art solutions in the parallel frequent itemset mining context. We

considered the following algorithms: YAFIM [19], PFP [20], BigFIM [21], and

DistEclat [21]. The only algorithm which is lacking a publicly available implementa-

tion is YAFIM. Among the considered algorithms, YAFIM belongs to the ones based

on the data split approach, while PFP and DistEclat are based on the search space

split approach. Finally, BigFIM mixes the two strategies, aiming at exploiting the

pros of them. For PFP we selected two popular implementations: Mahout PFP and

MLlib PFP, which are based on Hadoop and Spark, respectively. The description of

the four selected algorithms and their implementations are reported in the following

subsections.

YAFIM

YAFIM [19] is an Apriori distributed implementation developed in Spark. The

iterative nature of the algorithm has always represented a challenge for its application

in MapReduce-based Big Data frameworks. The reasons are the overhead caused

by the launch of new MapReduce jobs and the requirement to read the input dataset

from disk at each iteration. YAFIM exploits Spark RDDs to cope with these issues.

Precisely, it assumes that all the dataset can be loaded into an RDD to speed up the

counting operations. Hence, after the first phase in which all the transactions are

loaded in an RDD, the algorithm starts the iterative Apriori algorithm organizing the

20 Scaling associative classification to very large datasets

candidates in a hash tree to speed up the search. Being strongly Apriori-based, it

inherits the breadth-first strategy to explore and partition the search space and the

preference towards sparse data distributions. YAFIM exploits the Spark “broadcast

variables abstraction” feature, which allows programmers to send subsets of shared

data to each slave only once, rather than with every job that uses those subset of

data. This implementation mitigates communication costs (reducing the inter job

communication), while load balancing is not addressed.

Parallel FP-growth (PFP)

Parallel FP-growth [20], called PFP, is a distributed implementation of FP-growth

that exploits the MapReduce paradigm to extract the k most frequent closed itemsets.

It is included in the Mahout machine learning Library (version 0.9) and it is developed

on Apache Hadoop. PFP is based on the search space split parallelization strategy

reported in Section 2.2.2. Specifically, the distributed algorithm is based on building

independent FP-trees (i.e., projected datasets) that can be processed separately over

different nodes.

The algorithm consists of 3 MapReduce [18] jobs.

First job. It builds the F-list, that is used to select frequent items, in a MapReduce

“Word Count” manner.

Second job. In the second job, the mappers project with respect to group of items

(prefixes) all the transactions of the input dataset to generate the local projected

contributions to the projected datasets. Then, the reducers aggregate the projections

associated with the items of the same group and build independent complete FP-trees

from them. Each complete FP-tree is managed by one reducer, which runs a local

main memory FP-growth algorithm on it and extracts the frequent itemsets associated

with it.

Third job. Finally, the last MapReduce job selects the top k frequent closed itemsets.

The independent complete FP-trees can have different characteristics and this

factor has a significant impact on the execution time of the mining tasks. As discussed

in Section 2.2.2, this factor significantly impacts on load balancing. Specifically,

when the independent complete FP-trees have different sizes and characteristics, the

tasks are unbalanced because they addresses subproblems with different complexities.

This problem could be potentially solved by splitting complex trees in sub-trees,

each one associated with an independent subproblem of the initial one. However,

2.2 Frequent Itemset Mining and distributed frameworks 21

defining a metric to split a tree in such a way to obtain sub-mining problems that

are equivalent in terms of execution time is not easy. In fact, the execution time of

the itemset mining process on an FP-Tree is not only related to its size (number of

nodes) but also to other characteristics (e.g., number of branches and frequency of

each node). Depending on the dataset characteristics, the communication costs can

be very high, especially when the projected datasets overlap significantly because in

that case the overlapping part of the data is sent multiple times on the network.

Spark PFP [22] represents a pure transposition of PFP to Spark. It is included in

MLlib, the Spark machine learning library. The algorithm implementation in Spark

is very close to the Hadoop sibling. The main difference, in terms of addressed

problem, is that MLlib PFP mines all the frequent itemsets, whereas Mahout PFP

mines only the top k closed itemsets.

Both implementations, being strongly inspired by FP-growth, keep from the

underlying centralized algorithm the features related to the search space exploration

(depth-first) and the ability to efficiently mine itemsets from dense datasets.

DistEclat and BigFIM

DistEclat [21] is a Hadoop-based frequent itemset mining algorithms inspired by the

Eclat algorithm, whereas BigFIM [21] is a mixed two-phase algorithm that combines

an Apriori-based approach with an Eclat-based one.

DistEclat is a frequent itemset miner developed on Apache Hadoop. It exploits

a parallel version of the Eclat algorithm to extract a superset of closed itemsets

The algorithm mainly consists of two steps. The first step extracts k-sized pre-

fixes (i.e., frequent itemsets of length k) with respect to which, in the second step,

the algorithm builds independent projected subtrees, each one associated with an in-

dependent subproblem. Even in this case, the main idea is to mine these independent

trees in different nodes, exploiting the search split parallelization approach discussed

in Section 2.2.2.

The algorithm is organized in 3 MapReduce jobs.

First job. In the initial job, a MapReduce job transposes the dataset into a vertical

representation.

Second job. In this MapReduce job, each mapper extracts a subset of the k-sized

prefixes (k-sized itemsets) by running Eclat on the frequent items, and the related

22 Scaling associative classification to very large datasets

tidlists, assigned to it. The k-sized prefixes and the associated tidlists are then split

in groups and assigned to the mappers of the last job.

Third job. Each mapper of the last mapReduce job runs the in main memory version

of Eclat on its set of independent prefixes. The final set of frequent itemsets is

obtained by merging the outputs of the last job.

The mining of the frequent itemsets in two different steps (i.e., mining of the

itemsets of length k in the second job and mining of the other frequent itemsets in

the last job) aims at improving the load balancing of the algorithm. Specifically,

the split in two steps allows obtaining simpler sub-problems, which are potentially

characterized by similar execution times. Hence, the application is overall well-

balanced.

DistEclat is designed to be very fast but it assumes that all the tidlists of the

frequent items should be stored in main memory. In the worst case, each mapper

needs the complete dataset, in vertical format, to build all the 2-prefixes [21]. This

impacts negatively on the scalability of DistEclat with respect to the dataset size.

The algorithm inherits from the centralized version the depth-first strategy to explore

the search space and the preference for dense datasets.

BigFIM is an Hadoop-based solution very similar to DistEclat. Analogously to

DistEclat, BigFIM is organized in two steps: (i) extraction of the frequent itemsets

of length less than or equal to the input parameter k and (ii) execution of Eclat on the

sub-problems obtained splitting the search space with respect to the k-itemsets. The

difference lies in the first step, where BigFIM exploits an Apriori-based algorithm

to extract frequent k-itemsets, i.e., it adopts the data split parallelization approach

(Section 2.2.2). Even if BigFIM is slower than DistEclat, BigFIM is designed to

run on larger datasets. The reason is related to the first step in which, exploiting

an Apriori-based approach, the k-prefixes are extracted in a breadth-first fashion.

Consequently, the nodes do not have to keep large tidlists in main memory but

only the set of candidate itemsets to be counted. However, this is also the most

critical issue in the application of the data split parallelization approach, because,

depending on the dataset density, the set of candidate itemsets may not be stored in

main memory.

Because of the two different techniques used by BigFIM in its two main steps

(data split and then search space split), in the first step BigFIM achieves the best

2.2 Frequent Itemset Mining and distributed frameworks 23

performance with sparse datasets, while in the second phase it better fits dense data

distributions.

DistEclat and BigFIM are the only algorithms specifically designed for address-

ing load balancing and communication cost by means of the prefix length parameter

k. In particular, the choice of the length of the prefixes generated during the first step

affects both load balancing and communication cost.

2.2.4 Experimental evaluation

In this section, the results of the experimental comparison are presented. The

behaviors of the algorithm reference implementations are compared by considering

different data distributions and use cases. The experimental evaluation aims at

understanding the relations between the algorithm performance and its parallelization

strategies. Algorithm performance is evaluated in terms of execution time and

scalability under different datasets and conditions.

Experimental setup

The experimental evaluation includes the following four algorithms, which are

described in Section 2.2.3:

• the Parallel FP-Growth implementation provided in Mahout 0.9 (named Ma-

hout PFP in the following) [23],

• the Parallel FP-Growth implementation provided in MLlib for Spark 1.3.0

(named MLlib PFP in the following) [22],

• the June 2015 implementation of BigFIM [24],

• the version of DistEclat downloaded from [24] on September 2015.

We recall that Mahout PFP extracts the top k frequent closed itemsets, BigFIM

and DistEclat extract a superset of the frequent closed itemsets, while MLlib PFP

extracts all the frequent itemsets. To perform a fair comparison, Mahout PFP

is forced to output all the closed itemsets. Additionally, in our experiments, the

numbers of frequent itemsets and closed itemsets are in the same order of magnitude.

24 Scaling associative classification to very large datasets

Therefore, even if the extraction of the complete set of frequent itemsets is usually

more resource-intensive than dealing with only the set of frequent closed itemsets, the

disadvantages related to the more intensive task performed by MLlib are mitigated2

We defined a common set of default parameter values for all experiments. Spe-

cific experiments with different settings are explicitly indicated. The default setting

of each algorithm was chosen by taking into account the physical characteristics of

the Hadoop cluster, to allow each approach to exploit the hardware and software

configuration at its best.

• For Mahout PFP, the default value of k is set to the lowest value forcing Mahout

PFP to mine all frequent closed itemsets.

• For MLlib PFP the number of partitions is set to 6,000. This value has shown

to be the best tradeoff among performance and the capacity to complete the

task without memory issues. In particular, with lower values of the the number

of partitions MLlib PFP cannot scale to very long transactions or very low

minsup. Higher values, instead, do not lead to better scalability, while affecting

performance.

• The default value of the prefix length parameter of both BigFIM and DistEclat

is set to 2, which achieves a good tradeoff among efficiency and scalability of

the two approaches.

• We did not define a default value of minsup, which is a common parameter

of all algorithms, because it is highly related to the data distribution and

the use case, so this parameter value is specifically discussed in each set of

experiments.

For the evaluation, synthetic datasets have been generated by means of the IBM

dataset generator [25], commonly used for performance benchmarking in the itemset

mining context. We tuned the following parameters of the IBM dataset generator to

analyze the impact of different data distributions on the performance of the mining

algorithms: T = average length of transactions, P = average length of maximal

patterns, I = number of different items, C = correlation grade among patterns, and

2We recall that the complete set of frequent itemsets can be obtained expanding and combining the

closed itemsets by means of a post-processing step. Hence, to obtain the same output, the execution

times of Mahout PFP, BigFIM and DistEclat may increase with respect to MLlib PFP

2.2 Frequent Itemset Mining and distributed frameworks 25

D = number of transactions. The full list of synthetic datasets is reported in Table 2.3,

where the name of each dataset consists of pairs <parameter,value>.

All the experiments, except the speedup analysis, were performed on a cluster

of 5 nodes running the Cloudera Distribution of Apache Hadoop (CDH5.3.1) [26].

Each cluster node is a 2.67 GHz six-core Intel(R) Xeon(R) X5650 machine with

32 Gigabytes of main memory and SATA 7200-rpm hard disks. The dimension

of Yarn containers is set to 6 GB. This value leads to a full exploitation of the

resources of our hardware, representing a good trade-off between the amount of

memory assigned to each task and the level of parallelism. Lower values would have

increased the level of parallelism (i.e. the number of concurrent parallel tasks) at the

expense of the tasks available memory and, therefore, their ability to complete the

frequent itemset mining. Higher values, instead, would have decreased the maximum

level of parallelism.

For the speedup experiments we used a larger cluster of 30 nodes3 with 2.5 TB

of total RAM and 324 processing cores provided by Intel CPUs E5-2620 at 2.6GHz,

running the same Cloudera Distribution of Apache Hadoop (CDH5.3.1) [26].

From a practical point of view, all the implementations revealed to be quite easy

to deploy and use. Actually, the only requirement for all the implementations to be

run was the Hadoop/Spark installation (from a single machine scenario to a large

cluster). Only the MLlib PFP implementation requires few additional steps and some

coding skills, since it is delivered as a library: users must develop their own class

and compile it.

Impact of the minimum support threshold

The minimum support threshold (minsup) has a high impact on the complexity of the

itemset mining task. Specifically, the lower the minsup, the higher the complexity of

the mining task [8]. For this reason, this set of experiments uses very low minsup

values. Specifically, we have tried to lower as much as possible the minsup values

to understand the behavior of the algorithms dealing with such challenging tasks.

Moreover, the selected minsup values strongly affect the amount of mined knowledge

(i.e., the number of mined itemsets).

3http://bigdata.polito.it

26 Scaling associative classification to very large datasets

ID Name/IBM Generator Num. of Avg. Size

parameter setting different # items per (GB)

items transaction

1 T10-P5-I100k-C0.25-D10M 18001 10.2 0.5

2 T20-P5-I100k-C0.25-D10M 18011 19.9 1.2

3 T30-P5-I100k-C0.25-D10M 18011 29.9 1.8

4 T40-P5-I100k-C0.25-D10M 18010 39.9 2.4

5 T50-P5-I100k-C0.25-D10M 18014 49.9 3.0

6 T60-P5-I100k-C0.25-D10M 18010 59.9 3.5

7 T70-P5-I100k-C0.25-D10M 18016 69.9 4.1

8 T80-P5-I100k-C0.25-D10M 18012 79.9 4.7

9 T90-P5-I100k-C0.25-D10M 18014 89.9 5.3

10 T100-P5-I100k-C0.25-D10M 18015 99.9 5.9

11 T10-P5-I100k-C0.25-D50M 18015 10.2 3.0

12 T10-P5-I100k-C0.25-D100M 18016 10.2 6.0

13 T10-P5-I100k-C0.25-D500M 18017 10.2 30.4

14 T10-P5-I100k-C0.25-D1000M 18017 10.2 60.9

Table 2.3 Synthetic datasets

Fig. 2.5 Execution time for different minsup values (Experiment 1)

To avoid the bias due to a specific single data distribution, two different datasets

have been considered: Dataset #1 for Experiment 1 and Dataset #3 for Experiment 2

2.2 Frequent Itemset Mining and distributed frameworks 27

Fig. 2.6 Execution time for different minsup values (Experiment 2)

(Table 2.3). They share the same average maximal pattern length (5), the number

of different items (100 thousands), the correlation grade among patterns (0.25),

and the number of transactions (10 millions). The difference is in the average

transaction length: 10 items for Dataset #1 and 30 items for Dataset #3. Being the

other characteristics constant, longer transactions lead to a higher dataset density,

which results into a larger number of frequent itemsets.

Experiment 1. Figure 2.5 reports the execution time of the algorithms when

varying the minsup threshold from 0.002% to 0.4% and considering Dataset #1.

DistEclat is the fastest algorithm for all the considered minsup values. However, the

improvement with respect to the other algorithms depends on the value of minsup.

When minsup is greater than or equal to 0.2%, all the implementations show similar

performances. The performance gap largely increases with minsup values lower than

0.05%. BigFIM is as fast as DistEclat when minsup is higher than 0.1%, but below

this threshold BigFIM runs out of memory during the extraction of 2-itemsets.

Experiment 2. In the second set of experiments, we analyzed the execution

time of the algorithms for different minimum support values on Dataset #3, which is

characterized by a higher average transaction length (3 times longer than Dataset #1),

and a larger data size on disk, with the same number of transactions (10 millions).

28 Scaling associative classification to very large datasets

Since the mining task is more computationally intensive, minsup values lower than

0.01% were not considered in this set of experiments, as this has proven to be a limit

for most algorithms due to memory exhaustion or too long experimental duration

(days). Results are reported in Figure 2.6. MLlib PFP is much slower than Mahout

PFP for most minsup values (0.7% and below), and BigFIM, as in the previous

experiment, achieves top-level performance, but cannot scale to low minsup values

(the lowest is 0.3%), due to memory constraints during the k-itemset generation

phase. Finally, DistEclat was not able to run because the size of the initial tidlists

was already too big. Using the data-split approach, instead, BigFIM generates the

set of candidates to be tested in independent chunks of the dataset. With a low

minsup value, the set of candidates of the first phases is already too large to be stored

and tested in each independent task. Overall, as expected, DistEclat is the fastest

approach when it does not run out of memory. Mahout PFP is the most reliable

implementation across almost all minsup values, even if it is not always the fastest,

sometimes with large gaps behind the top performers. MLlib is a reasonable tradeoff

choice, as it is constantly able to complete all the tasks in a reasonable time. Finally,

BigFIM does not present advantages over the other approaches, being unable to

reach low minsup values and to provide fast executions.

Impact of the average transaction length

We analyzed the effect of different average transaction lengths (len), from 10 to

100 items per transaction. We fixed the number of transactions to 10 millions. To

this aim, Datasets #1–10 were used (see Table 2.3). Longer transactions often

lead to more dense datasets and a larger number of long frequent itemsets. This

generally corresponds to more computationally intensive tasks. We executed two

sets of experiments, with a respective minsup value of 1% (Experiment 3) and

0.1% (Experiment 4). The execution times obtained are reported in Figure 2.7 and

Figure 2.8.

Experiment 3. In Figure 2.7, BigFIM and DistEclat execution times for trans-

action length of 10 and 20 are not reported because, for these configurations, no

3-itemsets are extracted and hence the two algorithms could not complete the min-

ing.4 For higher transaction lengths, DistEclat is not included since it runs out of

4Due to the absence of a specific test, BigFIM and DistEclat present some issues if no itemsets

longer than the value of the prefix length parameter are mined.

2.2 Frequent Itemset Mining and distributed frameworks 29

Fig. 2.7 Execution time with different average transaction lengths (Experiment 3).

Fig. 2.8 Execution time with different average transaction lengths (Experiment 4).

memory for values beyond 20 items per transaction. The other algorithms have

similar execution times for short transactions, up to 30 items. For longer transactions,

a clear trend is shown: (i) MLlib PFP is much slower than the others and it is not

30 Scaling associative classification to very large datasets

Fig. 2.9 Execution time with different number of transactions (Experiment 5).

able to scale for longer transactions, as its execution times abruptly increase until

it runs out of memory; (ii) Mahout PFP and BigFIM have a similar trend until 70

items per transactions, when Mahout PFP becomes slower than BigFIM.

Experiment 4. The results of Figure 2.8 show a very similar trend, with excep-

tion that also BigFIM is not able to run. With this minsup, both Mahout PFP and

MLlib PFP reach their limit way before the previous experiment.

Overall, despite the Apriori-based initial phase, BigFIM proved to be the best

scaling approach for very long transactions and a relatively high minsup. When the

minsup is decreased, BigFIM is penalized by the data-split approach which assumes

to store all the candidates in each task memory, and only Mahout PFP is able to cope

with the complexity of the task.

Impact of the number of transactions

Experiment 5. We evaluated the effect of varying the number of transactions, i.e.,

|D |, without changing intrinsic data characteristics (e.g., transaction length or data

distribution). The experiments have been performed on Datasets #1, #11–14 have

2.2 Frequent Itemset Mining and distributed frameworks 31

been used (see Table 2.3), which have a number of transactions ranging from 10

millions to 1 billion. The minsup is set to 0.4%, which is the highest value for which

the mining leverages both phases of BigFIM, and it corresponds to the highest value

used in the experiments of Section 2.2.4. Since in the experiment the relative minsup

threshold is fixed, from the mining point of view, the search space exploration is

similar and not particularly challenging, as shown in Section 2.2.4. What really

affects this experiment is the algorithms reliability dealing with such amounts of

data.

As shown in Figure 2.9, all the considered algorithms scale almost linearly with

respect to the dataset cardinality, with BigFIM being the slowest, closely followed by

Mahout PFP, and with MLlib PFP being by far the fastest approach, with execution

times reduced by almost an order of magnitude. PFP implementations are faster than

BigFIM because they read from the disk the input dataset only twice. BigFIM pays

the iterative disk reading activities during its initial Apriori phase when the number

of records of the input dataset increases. Finally, DistEclat fails under its assumption

that the tidlists of the entire dataset should be stored in each node, and it is not able

to complete the extraction beyond 10 million transactions.

Discussion

The experiments confirm that the performance of the data-split-based algorithms

(i.e., BigFIM in its first phase) is highly affected by the number of candidate itemsets,

which must be stored in the temporary main memory of each task. Specifically,

BigFIM crashes during its Apriori-based phase when low minsup values or dense

datasets are considered, due to the large number of generated candidate itemsets.

This issue does not affect the approaches based on the search split strategy (Mahout

PFP and MLlib PFP), since they do not need to store candidate itemsets as an

intermediate result. Hence, Mahout PFP and MLlib PFP proved to be more suitable

than BigFIM to process large dataset sizes, high-density datasets, and low minsup

thresholds. DistEclat deserves a separate consideration: even if it is based on the

search space approach, it often runs out of memory, because in its initial job it needs

to store the tidlists of all frequent items in main memory and this operation becomes

easily unfeasible when large or dense datasets are considered.

Experiments also highlight the predominant importance of load balancing in the

itemset mining problem, in particular when comparing BigFIM to Mahout PFP. Since

32 Scaling associative classification to very large datasets

the initial mining phase of BigFIM is based on the data split parallelization approach,

it reads many times the input dataset (differently than Mahout PFP). Moreover,

BigFIM is also characterized by greater communication costs than Mahout PFP.

These two factors should impact significantly on the execution time of BigFIM.

Instead, not only the execution time of BigFIM is comparable with that of Mahout

PFP with 1000-million record datasets (Figure 2.9), but BigFIM is also even faster

than Mahout PFP in specific cases, e.g., with datasets with an average number of

items per transaction greater than 70 (Figure 2.7). The rationale of such results is the

better load balancing of BigFIM with respect to Mahout PFP.

2.2.5 Digest of the experimental session

To analyze in detail the impact of the choice of an approach over the other, we run

an extensive set of experiments, as shown in Section 2.2.4, aimed at finding the

strengths and the limitations of each available algorithm. These experiments provided

a wide view of the different behaviours of the algorithms in various experimental

settings. With this digest, we aim at supporting the reader in a conscious choice of

the most suitable approach, depending on the use case at hand. Pursuing this target,

we measured the real-life performance of the openly-available frequent-pattern

mining implementations for the most popular distributed platforms (i.e., Hadoop and

Spark). They have been tested on many different datasets characterized by different

values of minimum support (minsup), transaction length (dimensionality), number

of transactions (cardinality), and dataset density, besides two real-life use cases.

Performance in terms of execution time, load balancing, and communication cost

have been evaluated: a one-table summary of the results is reported in Table 2.4. As

a result of the described experience, the following general suggestions emerge:

• High reliability. Without prior knowledge of dataset density, dimensionality

(average transaction length), and cardinality (number of transactions), Mahout

PFP is the algorithm that best guarantees the mining task completion, at the

expense of longer execution times. Mahout PFP is the only algorithm able to

always reach the experimental limits.

• High cardinality and low-dimensional data. On most real-world use cases,

with limited dimensionality (up to 60 items per transaction on average), MLlib

2.2 Frequent Itemset Mining and distributed frameworks 33

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

minsup minsup len len |D |
Mahout PFP 0.002% 0.01% 100 60 100M

MLlib PFP 0.002% 0.01% 60 30 100M

BigFIM 0.1% 0.3% 100 - 100M

DistEclat 0.002% - - - 1M

Table 2.4 Summary of the limits identified by the experimental evaluation of the algorithms

(lowest minsup, maximum transaction length len, largest dataset cardinality |D |) in Section

2.2.4. The fastest algorithm for each experiment is marked in bold.

PFP has proven to be the most reasonable tradeoff choice, with fast execution

times and optimal scalability to very large datasets.

• High-dimensional data. For high-dimensional datasets, BigFIM resulted the

fastest approach, but it cannot cope with minsup values as low as the others.

In those cases, Mahout PFP represents the only option.

• Limited dataset size. When the dataset size is small with respect to the

available memory, DistEclat has proven to be among the fastest approaches,

and also to be able to reach the lowest experimental minsup values. DistEclat

experiments showed that it cannot scale for large or high-dimensional datasets,

but when it can complete the itemset extraction, it is very fast.

2.2.6 Choosing an approach for scaling associative classification

In this section, we have reviewed the two main approaches used by distributed

frequent itemset mining algorithms to divide the workload and reach high scalability.

The training phase of an associative classifier often requires the generation of all

association rules that satisfy some minimal constraints, namely a minimum support

and a minimum confidence, and thus relies on the generation of frequent itemsets,

with their support, in the first step. Therefore, associative classification shares with

the frequent itemset mining problem many of its scalability issues, like the usage

of main memory, the communication costs and the load balancing. The design of a

scalable associative classifier needs to cope with these issues.

In Section 2.2.2 we have seen as the main advantage of the data split approach

is its good load balancing. This characteristic is fundamental for a distributed

34 Scaling associative classification to very large datasets

algorithm, as the slowest worker in the process will be the bottleneck of the entire

chain of operations. On the other hand, the search space split approach shows a

very good scalability. One of its implementation in particular, FP-Growth, and

its parallel version PFP, deals in a very effective way with the usage of the main

memory. Unfortunately, search space split approaches do not manage load balancing

as well as the data split ones, and their performance can highly vary depending on

the distribution of the frequent itemsets in the dataset.

The usage of main memory is a crucial issue in the frequent itemset problem

as much as in associative classification. In the frequent itemset mining task, both

approaches to distribution are limited by the amount of available memory. The limit

of the data split approach is the amount of candidate itemsets that can be stored,

and thus it fails to scale on dense datasets. The search space split approach, instead,

runs out of memory when large projected datasets are generated. This issue, though,

is mitigated by the usage of efficient data structures, like the FP-tree in the FP-

growth implementation of this approach, for example. In associative classification,

the amount of memory available is not only used in the itemset generation phase,

but also to store candidate rules before a final pruning phase that selects the best

rules for classification. The memory issue becomes therefore, even more than in

frequent itemset mining, the bottleneck of scalability. In the next sections, we will

see two approaches to distributed associative classification that exploit heavily the

data split approach to foster load balancing, with two different paradigms of memory

management.

2.3 BAC: a Bagged Associative Classifier

In this section, we aim at distributing the training phase of an associative classifier.

The distribution of the work on a cluster of machines could have several advantages,

among which a performance boost, or an increase of the dataset size which can be

analyzed. Unfortunately, as we will see in Section 2.3.1, the training of an associative

classifier is highly sequential for its nature. Our approach exploits bagging, a well-

known supervised learning technique that splits the input dataset and the works in

different partitions. In this way, it applies the data split paradigm that we have seen

very effective for frequent itemset mining (Section 2.2.2). Preliminary experimental

results exploiting a distributed approach on Apache Spark applied to real-world and

2.3 BAC: a Bagged Associative Classifier 35

synthetic datasets showed promising results: ensembles of multiple models trained on

small subsets of the original dataset (as small as 10%) lead to accuracies comparable

with the single model trained on the whole dataset. Our method thus proves to be a

viable solution to distribute the workload of this task, without compromising on the

quality of the results.

This section is organized as follows. Section 2.3.1 describes the data mining

background, and Section 2.3.2 presents the proposed approach.

2.3.1 Background

In this section, we describe the centralized L3 associative classifier [27], since the

distributed BAC algorithm proposed in this chapter is based on L3. We also provide

an overview on the bagging technique.

The L3 classifier

The proposed distributed algorithm (Section 2.3.2) is based on the L3 associative

classifier. Hence, we describe the centralized version of L3. The model generation

phase of L3 algorithm is based on two main steps: (i) frequent CAR mining and (ii)

rule selection by means of a lazy database coverage technique. To address the mining

step efficiently, L3 exploits an FP-growth like association rule mining algorithm. The

exploited mining algorithm is optimized to directly extract CARs.

Once the potentially large set of frequent CARs is available, a lazy pruning step,

based on the database coverage approach is applied. Before performing the pruning

phase, a global order is imposed on the extracted frequent CARs. Let r1 and r2 be

two CARs. Then r1 precedes r2, denoted as r1 > r2 if

1. conf(r1)> conf(r2), or

2. conf(r1) = conf(r2) and sup(r1)> sup(r2), or

3. conf(r1) = conf(r2) and sup(r1) = sup(r2) and len(r1)> len(r2), or

4. conf(r1) = conf(r2) and sup(r1) = sup(r2) and len(r1) = len(r2) and lex(r1)>

lex(r2).

36 Scaling associative classification to very large datasets

After the rule sorting operation, only the rules satisfying the χ2 test, at a sig-

nificance level of 95% are selected (i.e., the rules with a correlation between the

antecedent and the consequent of the rule).

Finally, the lazy pruning approach is applied. The idea behind the lazy pruning is

to discard only the rules that do not correctly classify any training record. To achieve

this goal, the lazy pruning approach splits the frequent CAR set in three subsets:

• First level rules. This rule set contains the mining set of CARs that is needed

to properly “cover” the training data. This set of rules represents the main

characteristics of the majority of the training transactions.

• Second level rules. These rules are not included in the first level, but are

potentially useful to represent the characteristics of “special” records that

are slightly different with respect to the most common ones appearing in the

training set. These rules are also called “spare” rules and are useful to properly

label new unlabelled data not represented by the rules of the first level.

• Harmful rules. Some rules, even when applied on the training set, always

perform wrong predictions. These rules must be removed since they contribute

only negatively to the quality of the generated model.

To identify the three described subsets, L3 applies the database coverage tech-

nique described in Section 2.1.2, with the difference that rules that do not match any

training transaction are not discarded, and saved in the second level of the classifier.

The rules that classify properly at least one training transaction are stored in the first

level of the classifier. Harmful rules, as in the original technique, are discarded.

To predict the class label of an unlabelled transaction t, the rules of the first level

are initially considered. If no rule in the first level matches t, the second level is used.

Bagging

The bagging technique is frequently used to build accurate models by combining a

set of “weak” classifiers [28]. The basic idea is that a set of classifiers can provide

better predictions than a single model. It was firstly introduced in [29], and later

adopted in the definition of Random Forests [30].

The bagging technique works as follows.

2.3 BAC: a Bagged Associative Classifier 37

1. Generate N datasets by applying random sampling with replacement on the

training dataset.

2. Build N classification models (one for each dataset generated during Step 1).

3. Predict the class label of the new unlabelled records by using a majority voting

approach combining the predictions of the N classifiers that have been built

during Step 2.

2.3.2 The proposed approach

This section describes the proposed approach to scale on different machines the

training of an associative classifier, namely L3, which is presented in Section 2.3.1.

The Big Data framework we exploited is the well-known Apache Spark, which poses

some specific technological issues to the design of an associative classifier.

We recall, as mentioned in Section 2.3.1, that an important phase of the generation

of such a classifier is represented by the database coverage (lazy pruning in L3).

Unfortunately, the database coverage algorithm does not fit a MapReduce approach,

as it is sequential in its nature: the database must be covered in the strict order of the

rules for the algorithm to be effective. Such requirement prevents most of the work

of this phase to be executed in parallel.

To cope with the scalability of the process, in order to fully exploit the distributed

framework, we adopt bagging. The solution consists in generating several models,

each one from a portion of the original full dataset. Each model can then be trained

independently, thus also in parallel on multiple machines. The model trained locally

on each portion of the dataset is a variant of L3, where we discard the second level

rules after the database coverage phase. The FP-growth algorithm used is the one

implemented in Apache Spark, slightly modified to run locally. The ensemble of the

single models eventually generate a single prediction by majority voting.

In the following we provide details about the split of the dataset among the dif-

ferent machines (i.e., Apache Spark workers). The ensemble of models is eventually

collected and can be used on any number of machines to classify new records.

38 Scaling associative classification to very large datasets

Dataset distribution

Each model, as said, is trained on a different portion of the original dataset. Each

portion is drawn by sampling the original records with replacement, as this method

is well-proven in literature, as mentioned in Section 2.3.1. Moreover, whereas

this method allows for obtaining any sort of combination for number of models and

partitions size, sampling without replacement would limit the total number of records

to the original dataset size. In other words, sampling with replacement can produce,

for example, multiple models trained on a dataset as large as the original dataset (and

still different), or even larger; or we might have a dozen models, each trained on half

of the original dataset, while without replacement we would have just two halves

available.

The core APIs of Apache Spark provide a method for performing sampling with

replacement. The method is characterized by two parameters: the input dataset D

and a real number λ that is used to specify the size of the sample as a fraction of

the input dataset. Specifically, a sample of size |D |×λ is generated. The provided

method performs a sampling with replacement, generating k copies for each input

record, where k is drawn from a Poisson distribution.

In our case, we are interested in N samples, each one with a size equal to |D | ·α ,

since we want to build N models for N different samples. α is a real parameter of

the algorithm and it is used to specify the size of each sample. We can generate the

N samples invoking, sequentially, the Spark sampling API N times setting λ to α .

However, this approach will reduce the parallelism of our algorithm. Hence, we

decided to use another approach that allows us generating simultaneously N samples,

each of size |D | ·α . Specifically, we proceed in the following way. First, we sample

the dataset D with λ = N ·α , as to have an expected single sample with a total size

equal to |D | ·N ·α . Now we need to split this sample in N subsamples. We can

perform this operation by using the parallel Spark API repartition that splits the

input data in a user-specified number of partitions (in our case we set it to N). Hence,

each partition contains a sample of size |D | ·α of the input dataset.

Once obtained N samples with the desired fraction of data, each on a separate

partition, we can simply call mapPartitions in Spark to apply the same function

on each, in our case the training function of the model.

2.3 BAC: a Bagged Associative Classifier 39

2.3.3 Experimental evaluation

To validate the proposed approach, we implemented BAC in Scala on top of Apache

Spark. Experiments aim at assessing the usefulness of a distributed approach against

two alternatives: (i) working on the whole dataset on a single machine, which is

not always feasible, and (ii) working on a sample of the original dataset, that is

always feasible for small portions, but at the cost of a lower quality of the model

(e.g., accuracy). Experiments also evaluate the effect of the number of estimators

(models) of the ensemble on the final quality of the whole ensemble model.

As evaluation criterion, we focus primarily on the accuracy, computed on a 10-

fold cross-validation of the selected datasets. For each mean accuracy, we computed

a 95% confidence interval based on the standard error of the mean, using a t-student

statistics. We also computed the average time for training.

Three very popular datasets have been used for the experiments: yeast, nursery,

and census, from the UCI repository [31]. We have chosen these datasets as they

are heterogeneous in dimensions, shape and distribution, and state-of-art associative

classifiers do not perform well, so that there is still margin for improvements. The

continuous attributes have been discretized applying the entropy-based discretization

technique [28]. Since the bigger of the three datasets counts for 30162 records only,

we generated a fourth synthetic dataset containing 1 million tuples and 9 attributes

with different distributions, using the IBM data generator. Continuous attributes have

then been discretized to 10 bins each.

All experiments share the same minimum support threshold (1%) and the same

minimum confidence value (50%), as in previous works of associative classifiers

[27] they proved to generate a good amount of significant rules. Experiments were

performed on a cluster with 30 worker nodes running Cloudera Distribution of

Apache Hadoop (CDH5.5.1), which comes with Spark 1.5.0. The cluster has 2.5TB

of RAM, 324 cores, and 773TB of secondary memory. The size of each container

has been set to 2GB.

Results

Focusing on real datasets, that are yeast, nursery, and census, Figures 2.10a,

2.10b, and 2.10c show the average accuracy. The dashed line represents the accuracy

40 Scaling associative classification to very large datasets

(a) Results on yeast (b) Results on nursery

(c) Results on census (d) Results on the synthetic dataset

Fig. 2.10 Accuracy results

obtained by the classifier trained over the whole dataset on a single machine. The

range of its confidence interval, highlighted in the figures, serves as reference for

our evaluation. On the x axes we have the number of models trained, each on a

10%-portion of the original dataset. For x = 1, we have the simple sampling. For

yeast (Fig. 2.10a), we see how the simple sampling can reduce the total accuracy

of more than 8% with respect to the level of the classifier trained on the whole

dataset. In nursery (Fig. 2.10b) we see the same behaviour. Here the drop is less

marked, less than 2%, but still significant if we compare the confidence intervals.

Curiously, census (Fig. 2.10c) shows a completely different behaviour. In this

dataset, representing a US census of the population, sampling obtains an accuracy

even higher than our reference. This surprising result can be due to a simpler, even if

weaker, model less prone to overfitting the training data. The 10-fold cross-validation

indeed penalizes overfitting models.

2.3 BAC: a Bagged Associative Classifier 41

Let us now inspect the results of BAC, with an increasing number of models, up

to 20. For all datasets, the accuracy level stabilizes way before 10 models. We see

that yeast (Fig. 2.10a), for example, enters the confidence interval of the reference

model from 3 models on, becoming statistically indifferent. Large confidence

intervals are a peculiarity of the k-fold cross-validation, and highly depend on the

dataset. It is as well a measure of the robustness of the model towards different

training sets. Nursery (Fig. 2.10b) and census (Fig. 2.10c) confirm the same trend

as yeast, with BAC entering the confidence interval of the centralized classifier

from 3 models onward. These results are interesting, since 3 models cover less than

a third of the original dataset, and they are enough to reach similar accuracies to

our reference model. This means also that distributing the dataset only once, i.e.,

10 models of 10% each, we can be confident enough of having entered already the

steady region, without the need of more replicas/models. Furthermore, having a

number of models equal to one corresponds to the simple sampling, whereas two

models would affect the contribution of the majority voting among models. Thus 3

is also the minimum sensible setting of this parameter.

Results for the synthetic dataset are shown in Figure 2.10d. The dataset counts

for a million records, and tries to emulate a possible use case of BAC, to show

its potential on large dataset. Firstly, the accuracy of the reference classifier is

characterized by a very narrow confidence interval. This, as mentioned above, comes

from the shape and distribution of the dataset: since it is synthetic, the distribution

of the attributes and of the labels is uniform among the folds, thus the standard

error of the mean accuracy is very little compared to the real datasets, feature that is

further sharpened by the greater size of the folds. Sampling the 10% of the dataset

results in an almost negligible detriment to the quality, less than a point of accuracy.

This outcome is not surprising, as the distribution of the attributes in the sample

can not vary too much from the whole, being the attributes generated from a given

distribution. The accuracy of BAC increasing the number of models steadily stays

in the range of the single sample, often overlapped with the results of the reference

model, showing that adding data from the remainder of the dataset does not add

information to our model. Though in this case we cannot conclude for absolute

better performances on either side (namely, BAC or single-machine), we see an

interesting fact in the way these results were obtained. On the cluster described at the

beginning of the section, indeed, the generation of the reference classifier, the single

model trained on the whole dataset, failed, running out of the memory available to

42 Scaling associative classification to very large datasets

its (single) container. To obtain the value of reference plotted in Figure 2.10d we

executed the training on a standalone Spark machine, where we set the amount of

memory for the Java VM to the whole RAM available on the machine itself (32 GB).

All experiments for BAC, instead, completed successfully, proving that distributing

workload can be a way to overcome the limits of the single machine and expand the

size of the explorable datasets.

Finally, Table 2.5 shows the average training time for the 10% sample, for BAC

with 10 models on a tenth of the data each, and the reference model, that is the

classifier trained on the whole data. As said, the last-mentioned classifier failed its

execution for the synthetic dataset, so its timing is not fairly comparable with the

others. On the three real datasets, we notice that, unsurprisingly, simple sampling

outperforms the more accurate models. BAC is the slowest, as the overhead of

the distributed framework and the communication costs are very high for such

small datasets. On the larger synthetic dataset, these overheads are absorbed by the

real computational costs, resulting in little difference between one or 10 machines

working on models of the same size/complexity. We need further investigations to

show the real impact of parallelization on a real dataset of this size or larger.

To sum up, from these results we can conclude that:

1. the mere sampling is not always sufficient to reach a good accuracy,

2. training an associative classifier over the whole dataset is not always feasible,

3. bagging is a viable solution to reach the quality of a single classifier trained

on the whole dataset, and offers an easy way to distribute the work among

multiple workers.

Dataset Records
Avg training time for a fold [ms]

1 model, 10% 10 model, 10% 1 model, 100%

Census 30162 57692 340020 302147

Nursery 12960 983 3457 2181

Yeast 1484 642 1799 850

Synthetic 1000000 14235 15150 n.a.

Table 2.5 Average training time of the different approaches.

2.4 DAC: a Distributed Associative Classifier 43

2.4 DAC: a Distributed Associative Classifier

This section introduces DAC, a Distributed Associative Classifier, whose training

phase is designed to be distributed in an in-memory cluster computing framework

like Apache Spark.

In Section 2.3, we have seen an effective approach to split the training of an

associative classifier without losing predictive quality, which is bagging. This

strategy alone has a limit, though, as the amount of memory needed grows with the

number of rules extracted, and thus does not scale. We build upon the findings of

Section 2.2, where we found the most scalable frequent itemset miners the ones

relying on the search space split approach and an effective usage of memory, and we

design an approach that aims at limiting the amount of rules stored in memory and

making an effective usage of memory with ad-hoc data structures.

The section is organized as follows. Section 2.4.1 explains how DAC works, and

Section 2.4.2 describes the experimental evaluation of DAC.

2.4.1 The proposed approach

Traditionally, the training phase of an associative classifier is a memory-intensive

process, often executed out-of-core. The vast majority of the techniques has at least

an instant of time where a very large set of itemsets or rules has been extracted

and not yet pruned. This model cannot leverage the advantages of our reference

architecture, an in-memory cluster computing framework like Apache Spark. In

building a scalable associative classifier, we have been guided by the two following

design principles: i) anticipating pruning before the actual extraction of the rules, and

ii) moving from a large model that predicts with only the first matching rule toward

a lightweight model, that compensates the loss in size by applying all the rules that

match. These two principles aim at reducing the amount of rules contemporarily

present in the main memory at any given instant of time, allowing for an effective

exploitation of the in-memory computing platform.

The baseline framework on which we build for the training of our Distributed

Associative Classifier, namely DAC, is as follows.

44 Scaling associative classification to very large datasets

1. The dataset is split into N partitions, each one sampled from the original

dataset with a ratio α;

2. Within each partition, a rule extraction phase occurs, that produces a model as

a set of CARs. The CARs found are filtered by minimum support, minimum

confidence and minimum χ2 and optionally further pruned with a database

coverage phase;

3. The generated N models are collected in an ensemble.

Following our first design principle, we aimed at devising an extraction phase

that made the work of the posterior pruning extremely reduced or null, in the best

case. We have therefore adopted a greedy approach based on the Gini impurity of an

item, keeping in mind the second design principle presented before, that we finally

want a smaller model where several rules can collaborate for the prediction, instead

of a single first-match. This calls for shorter rules, that can more easily match new

records and avoid over-fitting. In order to follow such a route without sacrificing

predictive quality we designed several solutions that will be presented in the next

sections, namely: i) an FP-growth-like CAR extractor that produces only useful

classification rules, in a greedy fashion, by exploiting the Gini impurity; ii) an added

model consolidation phase for the generation of the ensemble that reduces further

the size of the final model; iii) new voting strategies for the ensemble that exploit the

before-mentioned novelties.

CAP-growth

The FP-tree is an effective solution for frequent itemsets extraction, and is often

adapted to the extraction of CARs [11]. Moreover, it adapts well to in-memory

computing, as its construction needs only two scans of the dataset and, once built,

the FP-tree stores in the main memory all the necessary information for frequent

itemsets or CARs extraction.

However, there is a twofold motivation behind designing an alternative to the

FP-tree, like [32, 33], as method of storage for the patterns that will build the final

CARs. First, the FP-tree is designed to build all frequent patterns, that are a superset

of what we look for when we build CARs. Second, being frequent does not always

coincide with being useful, and using the standard FP-growth algorithm would yield

2.4 DAC: a Distributed Associative Classifier 45

the growth of an overwhelming number of rules that would impede the descent

to lower supports, where more useful information may dwell. Guided by these

considerations, and keeping in mind the design principles outlined in the beginning

of the section, we designed an FP-growth-like algorithm called CAP-growth, for

Class Association Patterns growth.

CAP-growth stores the information that is useful for extracting CARs in a

CAP-tree. Similarly to an FP-tree, this structure allows to compactly store all

the information needed to extract association rules reading the dataset only twice.

Differently from the FP-tree, a CAP-tree stores in each node extra information useful

to extract only CARs, as it is usually done in single-machine approaches[32, 33].

Moreover, the first phase of the CAP-tree’s construction sorts the frequent items

by their Gini impurity, which will help the extraction of more useful rules in the

CAP-growth phase.

46 Scaling associative classification to very large datasets

The algorithm that builds a CAP-tree is detailed in Algorithm 2.1.

Algorithm 2.1: CAP-tree building

Input :A transaction DB labeled with classes - D

Input :A minimum support threshold - minsup

Output :A CAP-tree

1 Scan Donce. Collect L, the list of frequent items (support >= minsup).

Sort L by decreasing IG and filter out items with IG ≤ 0.

2 Create the root of a CAP-tree T and label it as null.

3 for each labeled transaction t do

4 select only the items in t that appear in L and sort them according to the

order in L, obtaining t ′

5 call insert(t ′, T)

6 end

7 Function insert (transaction t, node T)

8 h = first item of t

9 if T has a child T ′ s.t. T ′.id = h.id then

10 T ′.freqs[t.class]+=1

11 else

12 create a new node T ′

13 init T ′.id = h.id and T ′.freqs to an array of zeros

14 T ′.freqs[t.class]+=1

15 T ′.parent = T

16 update the header table

17 end

18 t ′ = t\h

19 if t ′ is not empty then

20 insert(t ′, T ′)

21 end

Given a minimum support threshold, which is used to recognize frequent itemsets,

the algorithm scans the dataset twice. In the first pass (line 1), it builds a list L of

frequent items, with decreasing and strictly positive Information Gain. Since we are

considering the item alone, we assume that the (1−wi)-th part of the dataset not

covered by the item has a distribution of the labels identical to the global distribution

2.4 DAC: a Distributed Associative Classifier 47

tid Transaction Class

1 {A,B,D,E} +

2 {B,C,E} -

3 {A,B,D,E} +

4 {A,B,C,E} -

5 {A,B,C,D,E} +

6 {B,C,D} -

Table 2.6 An example transactional dataset, binary-labeled.

(same Gini). Hence, the Information Gain is computed as follows:

IGi = GiniD − [wiGinii +(1−wi)GiniD] (2.1)

in which GiniD is the impurity of the global dataset, Ginii is the impurity of item

i, and wi is the ratio of dataset D containing item i.

Equation 2.1 simplifies as

IGi = wi(GiniD −Ginii) (2.2)

In this first passage, we can also obtain the frequency of the classes in the entire

dataset, which is used in the CAP-growth’s extraction phase. In the second pass

(lines 2-6), we insert each read transaction in the CAP-tree (line 5), maintaining

a header table that keeps track of the pointers to the nodes in the tree that store

the frequent items, like in the original FP-tree (line 16). Before being inserted, the

transaction is cleaned from the infrequent items and reordered according to the order

of L (decreasing IG) (line 4). The insertion updates the structure of the CAP-tree to

keep track of the label of the transaction in an array of frequencies (lines 9-17).

This allows the direct extraction of CARs and the computation of the IG and the

confidence of the rules in the CAP-growth.

Figure 2.11 shows the CAP-tree built on the toy dataset in Table 2.6, with the

minimum support threshold set to 0.3, that is 2 records. Each node of the tree

is labeled with the array of the frequencies of the classes, positive and negative

respectively. In this tree we see how item B has been pruned, since its IG is 0, and

how the remaining items are sorted and inserted by their IG, with item A being the

48 Scaling associative classification to very large datasets

/0

3,3

C

0,2

E

0,1

D

0,1

A

3,1

D

2,0

E

2,0

C

1,1

E

0,1

D

1,0

E

1,0

Header Table

Item
Freqs

+ -

A 3 1

C 1 3

D 3 1

E 3 2

Fig. 2.11 A CAP-tree example built over the toy dataset with minimum support equal to 0.3

Item wi Ginii IGi

A 4/6 0.375 8.3%

B 1 0.5 0

C 4/6 0.375 8.3%

D 4/6 0.375 8.3%

E 5/6 0.48 1.7%

Table 2.7 IG, weight and Gini for the items in the toy dataset

first and the most useful for classification. The IG of all items of the toy dataset are

shown for reference in Table 2.7, together with their weight w and Gini.

CAP-growth extracts a set of CARs from the CAP-tree descending the tree

greedily. This yields that, since the frequent items are sorted by decreasing IG, we

evaluate the rules made of high-IG items first. The rationale that guided the design

of the algorithm is to avoid redundant rules, where possible, while keeping the length

of the rules minimal.

The following example illustrates some ways in which redundancy affects CARs.

In other approaches, this redundancy is often reduced after the extraction of CARs,

as shown in Section 2.5. We provide this example so that the reader may later gain

an intuition of where CAP-growth helps reducing redundancy before the extraction

itself. In Figure 2.12 we see all the CARs in the set of association rules extracted

2.4 DAC: a Distributed Associative Classifier 49

EDA ⇒ + BEDA ⇒ +

ED ⇒ + BED ⇒ +

EC ⇒ - BEC ⇒ -

EA ⇒ + BEA ⇒ +

DA ⇒ + BDA ⇒ +

A ⇒ + BA ⇒ +

E ⇒ + BE ⇒ +

C ⇒ - BC ⇒ -

D ⇒ + BD ⇒ +

Fig. 2.12 An example model with CARs for the dataset in Table 2.6

with the standard FP-Growth, with minimum support set to 0.3 (2 rows or more) and

minimum confidence 0.51 on the toy dataset in Table 2.6. 18 CARs for a dataset of

6 records are clearly redundant. A first, evident source of this redundancy is item

B, which is present in all the records in the dataset. This results in having, for any

rule generated, an identical rule with B appended, that does not contribute to the

classification and lengthens the model. A similar situation happens with item E.

Likewise, item C appears in many rules, all of which agree in classifying a record as

negative: item C itself would be sufficient as antecedent of the rule. The same holds

for other rules as well.

As previously stated, CAP-growth aims to avoid the redundancy of the example

above. Algorithm 2.2 shows the pseudocode for CAP-growth. Similarly to Equation

2.2, we define the Information Gain for a node as

IGT = wT (GiniT.parent −GiniT) (2.3)

where wT is the ratio of transactions represented in node T with regards to its parent

node, and Gini is computed on the frequencies of the labels stored in the node.

The algorithm is a recursive call to the function extract (line 6), which visits in a

depth-first fashion the CAP-tree. The stopping criteria of this visit are:

1. a negative Information Gain for the current node. In this case, we do not

generate any rule (line 9).

50 Scaling associative classification to very large datasets

Algorithm 2.2: CAP-growth

Input :a CAP-tree

Input :A minimum support threshold - minsup

Input :A minimum confidence threshold - minconf

Input :A minimum chi2 threshold - minchi2

Output :A list of CARs

1 rules = /0

2 for each child T of CAP-tree.root do

3 rules += extract(T)

4 end

5 return rules

6 Function extract(node T)

7 rules = /0

8 if IG(T)<= 0 then //negative Information Gain: do not generate any

rule

9 return /0

10 end

11 if Gini(T) == 0 then //pure node: try to generate a rule

12 return generateRule(T)

13 end

14 for each child T ′ of T do

15 rules += extract(T ′)
16 end

17 if rules is /0 then //none of the children has produced a rule: try to

generate a rule

18 return generateRule(T)

19 end

20 return rules

21 Function generateRule(node T)

22 consequent = class with highest value in T .freqs[]

23 antecedent = set of items in the path from T to CAP-tree.root

24 tree = CAP-tree conditioned by the items in antecedent

25 freqs = tree.root.freqs

26 sup = freqs[consequent] / totCount

27 supAntecedent = freqs.sum / totCount

28 from sup, supAntecedent and the global frequencies of the classes

computed in the first pass of Algorithm 2.1 compute support,

confidence and χ2 for the generated rule: antecedent ⇒ consequent

29 if sup < minsup or conf < minconf or χ2 < minchi2 then

30 return /0

31 end

32 return rule

2.4 DAC: a Distributed Associative Classifier 51

/0

3,3 0.5

A

3,1 0.375

IG: 8.3%

(a)

/0

3,3 0.5

A

3,1 0.375

C

1,1 0.5

IG: -6.25%

(b)

/0

3,3 0.5

A

3,1 0.375

D

2,0 0.0

C

1,1 0.5

IG: 18.75%

(c)

/0

3,3 0.5

C

0,2 0.0

A

3,1 0.375

D

2,0 0.0

C

1,1 0.5

IG: 16.6%

(d)

Fig. 2.13 Example visit of the CAP-tree in Figure 2.11

/0

3,1

C

0,1

A

3,0

C

1,0

(a) project(D)

/0

3,0

(b) project(DA)

Fig. 2.15 Example projection of the CAP-tree in Figure 2.11 to reconstruct the support of

itemset {A,D}

52 Scaling associative classification to very large datasets

2. a Gini impurity for the current node equal to 0. Being the Gini impurity always

strictly decreasing, this makes the current node the first pure node in the path

from the root to this node, i.e. we see only one label for it. We try to generate

a rule(line 12).

Whenever none of the children of a node does generate a rule, the node itself tries to

generate a new rule (lines 14-19). This can occur when the children nodes do not

see enough samples to satisfy the minimum support threshold, for example, or if the

current node is a leaf.

The function that generates a new rule (lines 21-32) needs first to recollect the

frequencies of the labels from all the nodes where the current pattern appears. Like

in the original FP-growth, this is done by projecting the CAP-tree recursively on all

the items of the pattern, that is all the nodes in the path to the root (line 24). At the

end of the projection, the root node contains the array of classes’ frequencies for the

pattern (line 25). With it, we can compute the support, the confidence and the χ2

of the rule we are trying to generate (lines 26-28). If any of the measures does not

satisfy the minimum constraints, the rule is not generated (line 29).

In Figure 2.13 we see an example of the CAP-growth algorithm, run on the

CAP-tree of Figure 2.11, with minimum support, confidence and χ2 set respectively

to 0.3, 0.51 and 0. In the figure, each node is labeled by the array of frequencies of

the classes and the resulting Gini impurity. The root of the tree has a Gini impurity

of 0.5. Its first child to be explored stores item A with a Gini of 0.375 (Figure 2.14a).

Having a positive IG and a non-null Gini, we continue the descent to its children.

The first to be explored describes the pattern A,C (Figure 2.14b). This node has

a Gini index of 0.5, thus a negative IG. This means that the addition of item C to

the pattern only worsens the ability of A in predicting a label. We therefore do not

explore anymore this pattern and its offsprings. The other sibling (Figure 2.14c),

storing item D, is pure for the positive class: continuing the descent further would

only lengthen the rule without any improvement. We reconstruct the real frequencies

of itemset {A,D} to see if the rule A,D ⇒ + is really worth to generate and compute

its support, confidence, and χ2. First, we need to project the CAP-tree for item D.

The header table stores the pointers to the three nodes that store this item. Only the

parts of the tree that end to these three nodes are kept, and all the surviving nodes and

the header table are updated in their frequency arrays to reflect this change (Figure

2.16a). Now we have a CAP-tree storing only the transactions that contain item D.

2.4 DAC: a Distributed Associative Classifier 53

We project again for item A. The header table points to a single node that stores

this item, and its frequency array, updated in the step before, is [3,0]. By projecting,

the CAP-tree reduces to the root node alone, whose frequencies also are updated to

[3,0] (Figure 2.16b). This is the frequency array for itemset {A,D}. Thus, the rule

A,D ⇒ + has confidence 1 and support 0.5, and satisfies the minimum thresholds5.

Rule A ⇒ + is not generated, as one of the subpatterns of A has already produced one

rule. Finally, we move to the second child of the root, storing item C (Figure 2.14d).

This is again a pure node. We recollect the frequencies of item C by projection as

seen before and get the array [1,3], which produces the rule C ⇒ - with support 0.5

and confidence 0.75. The final model is made of only two rules.

It is worth paralleling the strategy in CAP-growth with the one in the database

coverage pruning [10]. The database coverage scans the rules extracted and already

sorted by prediction quality, and keeps on adding them to the model if they predict

correctly at least a transaction not yet covered, and until all the transactions have

been covered at least once. Similarly, CAP-growth keeps on adding rules that cover

transactions not yet covered, since they are extracted in different branches of the CAP-

tree, and does so without extracting the entire set of CARs that satisfy the minimum

thresholds. The main difference between the two strategies is in the moment when

the pruning is performed: the database coverage acts at the end of the extraction,

when all the rules have been already extracted, whereas CAP-growth anticipates

the pruning in the extraction phase. The aim of both strategies is the same, that is

generating the least, shortest rules, avoiding redundancy in the model.

Model consolidation

CAP-growth generates a single model, in each partition of the dataset, that is at the

same time compact and useful. Still, with massively large datasets, it may happen

that the number of partitions to have a sufficient division of the workload is in the

order of thousands, or more. Consequently, the number of single models in the

ensemble explodes. This results in a larger model to store, more complex to be read

and examined by a human, and with longer execution times when applied to predict

new records.

5The minimum χ2 is set to 0 in this example.

54 Scaling associative classification to very large datasets

To cope with these issues, we shrink the ensemble of the models to a unique

model. This is done by merging the models, combining rules with identical an-

tecedent and consequent into a single, new rule. The new rule will need to have an

approximation for its support, confidence and χ2, as it is too expensive to recon-

struct the exact ones in this phase. In other words, we anticipate part of the voting

that eventually classifies new records to this phase: establishing how two identical

rules collapse to a single one is establishing how they would eventually vote in the

classification, a priori. Algorithm 2.3 shows how the consolidation is done.

Algorithm 2.3: Model consolidation

Input :A list of models - models

Output :A single model, as a list of CARs

1 model = /0

2 for each m in models do

3 model = merge(model, m)

4 end

5 return model

6 Function merge(model m1, model m2)

7 m = new model

8 rules = m1.rules ∪ m2.rules

9 gr = group rules by same antecedent and consequent

10 for each group of rules i in gr do

11 m = m ∪ aggregate(i)

12 end

13 return m

14 Function aggregate(rules)

15 rule = new rule

16 r = rules.first

17 (rule.antecedent, rule.consequent) = (r.antecedent, r.consequent)

18 supports =
⋃

r∈rulesr.support

19 confs =
⋃

r∈rulesr.confidence

20 chis =
⋃

r∈rulesr.chi2

21 (rule.support, rule.confidence, rule.chi2) = g(supports, confs, chis)

22 return rule

23 Function g(supports, confs, chis)

24 return (max(supports), max(confs), max(chis))

We recall that DAC ’s training has split the dataset in N partitions and runs a

CAP-growth over each partition, thus generating an ensemble of N models. These

2.4 DAC: a Distributed Associative Classifier 55

models are the input for the model consolidation algorithm (Algorithm 2.3). We

reduce the models by applying, recursively two by two, a function merge (line 3).

This function simply makes the union of the rules in the two models (line 8) and, for

each set of identical (in the antecedent and consequent) rules found, applies function

aggregate (line 11).

Function aggregate returns a new rule by choosing the new support, confidence

and χ2 with g() (line 21), which actually sets the strategy for the consolidation. Func-

tion g() must have the properties of associativity and commutativity. Associativity

and commutativity in g() make the consolidation runnable in parallel. The default

behavior of g() is returning the maximum of the supports, confidences and χ2 in

input, as an upper bound estimation (line 24). We have also experimented with other

possibilities, namely the minimum and the product. In Section 2.4.2 we give details

on these experiments.

Voting

In associative classifiers, the models usually label a record by applying the first

matching rule based on a quality ranking. Differently from other families of classi-

fiers, associative classifiers usually do not have a score or a vector of probabilities

for the prediction, but only the predicted class. Introducing a score for the prediction

of the associative classifier, the predictions can express their strength in a continuous

domain and we can use measures different from the accuracy to compare the model

with others, like the Area Under Curve. Moreover, we have a way to weigh the

votes in the ensemble, whereas in its simplest implementation every model would

have voted with an equal weight, independently of the confidence or support of the

rules of each model. This last point is indeed partially covered by the consolidation,

but we can still hold in the consolidated model rules, with different antecedents or

consequents, that come from different models and contemporarily match a record.

Defining a score would mean defining how these many rules contribute to strengthen

our belief in predicting a class, when they all agree, or to mitigate our certainty, when

they partially disagree.

Given an unlabeled record, for each label i, we define a score si as a function of

some measure for all rules matching the transaction, i.e.

si = f (m(⃗ri)), ∀i : r⃗i ̸= /0

56 Scaling associative classification to very large datasets

where r⃗i is the array of matching rules for label i, m() is a measure, e.g. the support

or the confidence, and f () a function with domain in [0,1]. If there are no matching

rules for a label and the transaction, si is defined as

si = sX/|X |, ∀i ∈ X

where X is set of labels for which we do not have a matching rule, and sX is defined

under a naive assumption of independence as

sX = ∏
j:r⃗ j ̸= /0

(1− s j), X = {i : r⃗i = /0}

If there are no matching rules at all, si is default to the probability of each label i

in the original dataset. The score vector s⃗, containing the scores si as above defined,

is finally normalized to sum to one.

The default setting for m() is the confidence, that is a common choice in associa-

tive classifiers for the rules’ ranking. In preliminary experiments, we tried several

alternative choices for m(), i.e. the support, its complement (1− sup) and the χ2.

We performed further experiments on the two most promising of these, that is the

confidence and 1− sup, which we report in Section 2.4.2.

The default setting for f () is the max() function, which is an upper bound

estimation of the quality of the rule, based on the measures from the models where it

was found. Alternatives to this choice are, for example, the minimum or the mean,

which are always valid scores whenever m(⃗ri) is defined between 0 and 1. We test

and discuss these alternatives in Section 2.4.2.

2.4.2 Experimental evaluation

In our experimental evaluation, we want to compare DAC with state-of-art ap-

proaches in a realistic, large-scale scenario. Among publicly available datasets,

we found only one dataset to be very large (i.e. over the Terabyte) and with the

characteristics of our problem (i.e. many categorical features), and is described be-

low. As competitors to DAC, we choose the algorithms implemented in the Apache

Spark Mllib library [22], as it is a well-proven framework for machine learning on

distributed computing [34, 35].

2.4 DAC: a Distributed Associative Classifier 57

The experiments were performed on a cluster with 30 worker nodes running

Cloudera Distribution of Apache Hadoop (CDH5.8.2), which comes with Spark

1.6.0. The cluster has 2TB of RAM, 324 cores, and 773TB of secondary memory.

Unless differently specified, all the single experiments are run on 100 executors and

a master node with one virtual core and 7GB of RAM each. We used version 1.6.0

of Apache Spark Mllib6 and version 2.1 of DAC, which is released as open source7.

The dataset used in the experiments is the Criteo dataset [36], which has already

been used as a benchmark in classification tasks, although only on its continuous

features, in [37]. The dataset counts more than 4 billion records, describing the

behavior of users in 24 consecutive days towards web ads. The positive class is a

click on the showed ad and the negative is a non-click. The records are described by

13 continuous features and 26 categorical features, whose semantics is not disclosed.

For the experiments, we selected the categorical features only, as DAC does not

handle continuous features without a discretization phase, which is outside the scope

of this evaluation. The resulting dataset contains more than 800 million unique items,

each appearing once or more, and is larger than 1.2 TB. The negative class appears

97% of the times.

The dataset is characterized by the presence of categorical features and the

extreme imbalance of the classes. In the next paragraphs, we will describe our

approach toward the two issues.

Managing categorical features. To deal with categorical features, we need

either an algorithm that supports them natively, like DAC, or a proper encoding

of the features into integer or binary values. A common solution, which would

enable the exploitation of many widely-used classification algorithms, like SVMs

or artificial neural networks, is to use the so-called “one-hot” encoding. With it,

all the distinct items appearing in the dataset are transformed to a binary feature,

which represents the presence or absence of the value in the record. With all the

categorical features mapped to binary ones, we would be able to try many solutions

for classification.

We tried one-hot encoding as implemented in Mllib. Unfortunately, with so

many unique values (more than 800 million) the preprocessing quickly grows in

memory and fails. A possible reason is the fact that the records are stored in a

6https://spark.apache.org/docs/1.6.0/mllib-guide.html
7https://gitlab.com/dbdmg/dac/tags/v2.1

58 Scaling associative classification to very large datasets

dense vector. Since with this encoding only a few features would be non-zero, we

tried to implement the encoding with a sparse matrix, but the dimensions involved

(billions of records by billions of features) showed to be too large also for this kind

of representation, and our attempts exhausted the memory available to our testbed.

A different approach is selecting an algorithm that supports natively categorical

features without a special encoding, like decision trees or random forests. Again,

the number of distinct values in each feature is an issue, due to the metadata that

these algorithms need to collect and store to decide the binnings and the splits at

each iteration. Not surprisingly, all preliminary experiments again failed for out-of-

memory errors. We decided therefore to exploit a technique known as “hashing trick”

[38]. With this method, all values are hashed to reduce dimensionality, with inevitable

collisions. We therefore progressively reduced the domain of each feature down to

100000 categories, value that allowed the execution of the random forest algorithm

without memory issues. After the reduction of dimensionality, the application of

one-hot encoding was still impossible. This therefore excludes from our analysis the

Mllib implementations of linear SVM, logistic regression and multilayer perceptron.

Dealing with class imbalance. Preliminary experiments showed that neither

Random Forests nor DAC were able to handle the highly unbalanced distribution

of classes in this dataset. Indeed, the resulting models were respectively trees

with all the leaf nodes predicting the majority class and sets of CARs where the

minority class was highly underrepresented, when not absent. To cope with this

issue, we investigated several techniques, among which instance-based weighting,

oversampling, and subsampling. Instance-based weighting assigns a given weight w

to each sample, that while building the model is thus counted as if present w times.

In the decision tree and the random forest, this weight affects the sample counts of

each node and the split decisions. When the weight w is equal to the inverse of the

frequencies of the sample’s class, this technique can balance the dataset without a

physical replication of the records. Although implemented in several popular random

forest implementations [39, 40], instance-based weighting is not implemented in

Mllib. Oversampling replicates some of the records belonging to the minority class

or classes, so that the dataset gets balanced [41]. In our scenario, the application

of this technique to the training set did not converge successfully due to memory

constraints. Conversely, subsampling extracts a fraction of the majority class or

classes, to reduce their volume to a size comparable to the minority class [41]. We

2.4 DAC: a Distributed Associative Classifier 59

applied this technique to the negative class to have a cardinality roughly equal to the

positive one, in the training set. The test set was not subsampled.

In these preliminary evaluations we have also tried several settings of the general

architecture of DAC. In this phase, we found that sampling with replacement yields

a better load balancing, as this operation triggers the shuffling of part of the training

dataset and leads to equally-sized partitions, whereas the default partition can see

blocks of very different sizes. We have set α , the sampling size for each one of

the N models, to 1/N, to have a final training dataset sized as the original one. We

have also tried several N, finding in 100 for each partition a value that allowed the

CAP-tree of each model to be stored in memory.

Summarizing, our competitor to DAC will be a Random Forest with categorical

features, with the values of the categories hashed down to 100000 different values at

most8. DAC will be instead evaluated without hashing trick, as it is not necessary.

For both, we will subsample the majority class in the training set.

Experimental comparison of DAC and Random Forest

In this section, we evaluate the quality and the performance of DAC and a Random

Forest. Our objective is to show how our proposed technique can manage a dataset

characterized by a very large volume and domain, and compare the quality of the

resulting model with the state of the art. We evaluate our results in the binary tasks

with the AUROC, i.e. the area under the ROC curve [42]. DAC will be evaluated

with its default settings, i.e. f () = max, m() = conf and g() = max. The experiments

are run with a 5-fold cross-validation on the whole dataset, with the K-fold function

implemented in the MLUtils of Mllib. Each one had a variable duration on our

testbed between 2 and 30 hours. All the confidence intervals shown in the plots were

computed using a t-student distribution at 95% confidence. After subsampling, each

training fold sees an average of 111 million distinct items9.

Figure 2.17 shows the resulting AUROC for the candidate set of models, consist-

ing of i) DAC with f () = max, g() = max and m() = confidence, varying minimum

support thresholds from 0.01 to 0.0002; ii) Random Forests with a depth of 4, varying

8Hashing to larger values or not using hashing was not a viable option for the memory issues

explained before.
9This statistics is computed in a separate experiment, and does not thus affect the execution times

shown in the remainder of the section.

60 Scaling associative classification to very large datasets

D
ec

is
io

n
T

re
e

R
an

d
o
m

F
o
re

st
5
-t

re
e

R
an

d
o
m

F
o
re

st
1
0
-t

re
e

R
an

d
o
m

F
o
re

st
1
0
0
-t

re
e

D
A

C
0
.0

1

D
A

C
0
.0

0
5

D
A

C
0
.0

0
2

D
A

C
0
.0

0
1

D
A

C
0
.0

0
0
2

0.61

0.62

0.63

0.64

0.65

0.66
A

U
R

O
C

Fig. 2.17 DAC vs Random Forest. AUROC cross-validated with 5-fold on the entire dataset

the number of trees from 5 to 100; iii) a single Decision Tree, with depth 4. The

baseline for the results is set by the Decision Tree, which is almost two points below

the Random Forest and DAC. The quite large confidence interval for DAC with 0.01

as minimum support makes uncertain the comparison with the two smallest forests,

with 5 and 10 models respectively. These last three models are all clearly below

the results of the 100-tree forest and DAC with minimum support 0.002, that have

a comparable AUROC of 0.644. Significantly better are the results of DAC with

minimum supports of 0.001 and 0.0002, this last one scoring the highest AUROC of

0.655, a good point above the 100-tree forest.

Notably, the cross-validation experiments for the 100-tree forest lasted 30 hours

in our testbed, against the 20 hours of the DAC with minimum support of 0.0002.

These high computation costs would certainly be a heavy factor in the choice of a

model, as the model with the highest score is not always a viable path. We therefore

plot the same scores against the training and testing time of their models, in Figure

2.18. In Figure 2.19a we see how the training times of the Random Forest grow with

2.4 DAC: a Distributed Associative Classifier 61

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
·104

0.61

0.62

0.63

0.64

0.65

0.66

training time (s)

A
U

R
O

C Decision Tree

Random Forest 5-tree

Random Forest 10-tree

Random Forest 100-tree

DAC 0.01

DAC 0.005

DAC 0.002

DAC 0.001

DAC 0.0002

(a)

0 2 4 6 8 10 12 14 16 18
0.61

0.62

0.63

0.64

0.65

0.66

testing time/record (µs)

A
U

R
O

C Decision Tree

Random Forest 5-tree

Random Forest 10-tree

Random Forest 100-tree

DAC 0.01

DAC 0.005

DAC 0.002

DAC 0.001

DAC 0.0002

(b)

Fig. 2.18 DAC vs Random Forest. AUROC vs training and testing times, cross-validated

with 5-fold on the entire dataset

62 Scaling associative classification to very large datasets

the number of models. The Decision Tree shows times higher than both the 5-tree

and 10-tree forests, as it does not perform any feature selection, whereas the forests

randomly choose
√

d features for each tree, where d is number of columns, i.e. 26 in

our scenario. The half-point advantage in the AUROC of the 100-tree forest on the

10-tree one comes with a cost five times higher in terms of training times. This large

gap could make the difference in a scenario where the model needs to be frequently

updated, e.g. an application with nightly updates to the training dataset, and could

lead to the choice of the shallower model. DAC here demonstrates a highly desirable

behavior, as the best model trains in only 500 seconds, a time respectively 5 and

25 times smaller than the 5-tree and the 100-tree forests, which also have a worse

AUROC. Moreover, the gap between the training times of the least and most accurate

models for DAC is under the 15%, so the latter one is clearly preferable.

The testing times of DAC and the Random Forest have similar trends, depicted

in Figure 2.19b. Both appear to grow exponentially with the AUROC reached,

symptom of models that are more and more complex. For the Random Forest, this

complexity is proportional to the total number of splits, or equivalently to the number

of trees, since we have a fixed depth. This justifies the alignment of the Decision

Tree to the trend of the Random Forests, as in this phase it is practically identical to

a Random Forest with one tree. For DAC, the complexity depends on the number

of rules extracted and, in this strategy that applies max for both f () and g(), on the

position of the first matching rules in the model for each class, for we need only

these for the score. This explains the slightly larger confidence interval on the time

axes, whereas the forests all have negligible intervals, due to the constant number

of splits traversed by each record for a prediction. Despite this, we can still safely

affirm that DAC reaches the same quality of a Random Forest within smaller testing

times, as it happens with DAC with minimum support 0.002 and the 100-tree forest.

At the same time, we can say that, given a comparable testing time, DAC performs

better, as in the case with minimum support 0.005 and the 10-tree forest.

Evaluation of DAC parameters

We tested the effect of the choice of the algorithms’ parameters on the quality of the

model, to eventually select one or several candidates for more thorough tests.

For DAC, we evaluated different choices for:

2.4 DAC: a Distributed Associative Classifier 63

• the use of the database coverage technique, [yes/no]

• the function used in the voting, f (), [max/min/mean]

• the measure used in f (), m(), [conf /1− sup]

• the function used in the model consolidation phase, g(), [max/min/product]

• the minimum support threshold, [9 values from 5% to 0.01%]

for a total of 324 runs, considering all the combinations of values. f () was

chosen among max, min and mean. We tested two values for measure m(), that is the

confidence of the matching rules, which is a common choice in associative classifiers,

and 1−sup, following the intuition that a rule (a set of words) is the better in labeling

the more is rare [43]. g() was chosen among min, max and product, three functions

that have the properties of associativity and commutativity, which are important for

the distribution of the workload. We tried nine different values for the minimum

support threshold, from 5% to 0.01%. The database coverage was either used or not.

The minimum confidence has been set to 50%, for the rationale that any rule better

than random guessing should positively contribute to the quality of the labeling. The

minimum χ2 was set to 3.841, corresponding to a p-value of 0.05 for the statistics.

We ran this session of experiments on the day 0 of the dataset, which is a 24th

of the whole dataset, and without cross-validation, keeping 30% of the dataset out

for testing. This reduced the execution time by more than two orders of magnitude,

allowing us to test a larger selection of parameter values within some days of

execution.

Database coverage. The first, immediate finding was on the use of the database

coverage, which did not show effects on the quality of the model trained. The

amount of rules pruned by this technique has been constantly below 5%. Thus, CAP-

growth is effective in selecting useful rules with limited overlapping. For example,

with a minimum support of 0.1%, the number of rules of the model produced by

DAC was 339, reduced to 328 with the database coverage. The training time with

this technique grew instead with the number of rules, motivating us not to use it in

the following experiments.

Figure 2.20 shows the results of the runs without the database coverage.

Function f(). Choosing min as f () (Figure 2.21a) is comparable with other

options only with shallow models (minsup 5%). With this support, the number

64 Scaling associative classification to very large datasets

0.00010.00020.00050.0010.0020.0050.010.020.05

0.2

0.3

0.4

0.5

0.6

minsup

A
U

R
O

C

g() = max m() = con f

g() = max m() = 1− sup

g() = min m() = con f

g() = min m() = 1− sup

g() = product m() = con f

g() = product m() = 1− sup

(a) f () = min

0.00010.00020.00050.0010.0020.0050.010.020.05

0.4

0.5

0.6

minsup

A
U

R
O

C

g() = max m() = con f

g() = max m() = 1− sup

g() = min m() = con f

g() = min m() = 1− sup

g() = product m() = con f

g() = product m() = 1− sup

(b) f () = max

0.00010.00020.00050.0010.0020.0050.010.020.05

0.4

0.5

0.6

minsup

A
U

R
O

C

g() = max m() = con f

g() = max m() = 1− sup

g() = min m() = con f

g() = min m() = 1− sup

g() = product m() = con f

g() = product m() = 1− sup

(c) f () = mean

Fig. 2.20 DAC tuning. Comparison of different choices for f (), g(), m() and minsup

2.4 DAC: a Distributed Associative Classifier 65

of rules extracted (6) is so little that f () rarely affects the voting. Decreasing the

support, min does not show improvements, as only more confident and rare rules are

being added to the models. Thus, the minimum does not change. Both f () = mean

(Figure 2.21c) and f () = max (Figure 2.21b), instead, improve their performance

with a similar rate, with the top performers almost overlapping, and the top AUROC

for max standing 0.4% above the one for mean.

Measure m(). Preliminary experiments already led us not to choose the support

itself and the χ2 for m(). Confidence proves to be the best choice. Against the trend

is the case where g(), in the consolidation function, is set to be the product of the

measures. In this case 1− sup is the better choice for m(), reaching an AUROC

of 0.625 with max as f (), ranking third among all experiments but still two points

below the best scenario.

Function g(). As for what concerns g(), the function applied to two identical

rules in the consolidation phase to choose the new confidence, support and χ2,

choosing either min or max is identical in this set of experiments. Choosing product,

instead, shows contrasting outcomes. Together with the confidence as m, it never

shows improvements with lower supports, reaching at most an AUROC of 60%. With

f () set to min (Figure 2.21a), it has the worst quality among all the combinations,

often below the AUROC of a random choice (50%). With f () set to max (Figure

2.21b) and 1− sup as m(), instead, as said above, it reaches the first quartiles of the

results and is able to equal the AUROC of the alternatives at the lowest support.

Minimum support. With varying minimum support thresholds, from 0.02 to

0.0001, the best performing solution is stably with f () = max (Figure 2.21b) and

m = confidence, and indifferently max or min as g(). This, with an arbitrary choice

of g = max(), is the solution we tested on the whole dataset and compared with the

state of the art.

Model selection for Random Forest

With a Random Forest, the parameters that would affect the quality and the perfor-

mance of the resulting model are mainly two, the number of trees and their depth.

Similarly to the previous section, we run some preliminary tests to evaluate different

choices for these parameters, on the same portion of the dataset, again without

cross-validation.

66 Scaling associative classification to very large datasets

We evaluated the AUROC for depths of 4, 8 and 16, starting with 10 trees and

increasing their number until possible.

20 40 60 80 100 120 140 160

0.635

0.640

0.645

0.650

0.655

0.660

number of trees

A
U

R
O

C

MLlib Random Forest - tuning

depth = 4

depth = 8

depth = 16

Fig. 2.22 Random Forest tuning. Performance (AUROC) with different parameter settings

Figure 2.22 shows the results. With depth 4, the quality of the classification

improves steadily until reaching a plateau after 100 trees. The execution with 170

trees repeatedly failed, raising an OutOfMemoryError on our testbed. With depth 8

and 10 trees, the quality improves of a not negligible point over the shallower version,

and the gap still augments with more trees. Unfortunately, the OutOfMemoryError

appears even faster, with only 60 trees. Finally, the only execution attempted with

depth 16 scored 65.7%. This result was obtained in an experiment lasting more than

17 hours, which would become, assuming linear scalability, more than 100 days for

the tests with the complete dataset. Similarly, building any forest with depth 8 has

an unfeasible expected duration. The solutions we tested on the whole dataset were

thus focused on the forests with depth 4.

Experimental evalutation of DAC on small and medium sized datasets

In order to compare our work with previous works, we have evaluated a local, single-

model version of DAC on a number of medium-size datasets from the UCI repository,

on which results for other associative classifiers were available. For CBA [10], we

used the results published in [27]. The experiments, performed with a 5-fold cross-

2.4 DAC: a Distributed Associative Classifier 67

CBA DAC

austrad 0,8550 0,8561

breastd 0,9530 0,9544

cleved 0,7720 0,8052

crxd 0,8590 0,8393

diabetesd 0,7290 0,7478

germand 0,7320 0,7000

heartd 0,8190 0,7742

horsed 0,8210 0,8223

hypod 0,9840 0,9527

ionod 0,9210 0,8994

labord 0,8300 0,8802

pimad 0,7310 0,7451

sickd 0,9730 0,9392

sonard 0,7830 0,7440

Table 2.8 Single-instance DAC vs CBA, average accuracy on binary-labeled UCI datasets

BAC DAC

censusd 0.8286 0.8315

nursery 0.9255 0.9243

yeastd 0.5573 0.5678

Table 2.9 DAC vs BAC, average accuracy on selected UCI datasets

validation, showed that DAC performs similarly to CBA, reaching higher accuracies

as often as not, as shown in Table 2.8. Moreover, DAC reaches these results with

a significantly lower number of rules, without any posterior pruning. This sets the

single-model DAC as a good choice for a base model in an ensemble, where usually

shallow models are preferred as baseline models.

We also evaluated the quality of DAC on the three datasets on which we made

our experimental evaluation of BAC, in Section 2.3.3. We set for both the algorithms

a minimum support of 1%, a sample size of 10% and 10 models for the ensemble.

The results, shown in Table 2.9, demonstrate that DAC reaches a good accuracy also

on these datasets of limited size, with scores that are better or similar to the ones of

BAC. Moreover, this good quality is reached with a significantly less sizeable model,

as shown in Table 2.10, which depicts the average number of rules of the models

generated in the cross-validation.

68 Scaling associative classification to very large datasets

BAC DAC

censusd 3236 352

nursery 12057 1212

yeastd 33051 3351

Table 2.10 DAC vs BAC, average number of rules on selected UCI datasets

2.5 Related work

Associative classifiers exist in a number of fashions, and a precise taxonomy has

been already made in [11]. Among all, we can distinguish classifiers exploiting

CARs (Class Association Rules), as introduced in [10], and others exploiting EPs

(Emerging Patterns), like [44]. Our approach falls in the first category, together with

works like [32, 33, 45–52]. Since its introduction in [10], the database coverage

technique has been exploited with success by many classifiers, e.g. [32, 33, 48, 49],

and several others have also exploited similar techniques, e.g. [32, 44, 53]. One

of these is the redundant rule pruning, which scans again the set of rules found to

delete the extensions of a rule that follow the rule itself, and that therefore are never

applied [32]. These techniques have proved to be very effective in the reduction of

the model and the improvement of the quality of the classifier. However, the amount

of rules that are first extracted and then reordered is often enormous, demanding

proportionate resources both in terms of memory and CPU. We argue that, in order to

scale to very large dimensions and effectively exploit the potentials of a MapReduce-

like framework, an effective associative classifier should aim at reducing, if not

eliminating, the contribution of these techniques to the reduction of the model size,

and focus on the extraction of a small, good quality subset of the rules.

The increase of the overall accuracy of the predictions is also addressed by means

of ensemble techniques [28]. The authors of [54] analyzed the impact of the boosting

ensemble technique when a set of associative classifiers are used as building block.

However, the impact of the bagging ensemble approach on associative classifiers has

never been analyzed. Differently from [54], in this work we perform this analysis by

proposing a bagging version of an associative classifier.

An attempt to bring the training of an associative classifier onto a framework

for parallel computing and scale to large datasets has been done also in [50]. The

authors of [50] proposed a MapReduce solution based on a parallel implementation

of FP-growth [55], modified to extract CARs, followed by two pruning phases that

2.6 Summary 69

are slight variants of the database coverage and the above-mentioned rule pruning.

This solution was implemented and tested in the Hadoop framework. The work

follows the strategy of generating the complete set of CARs and prune in a second

phase, similarly to BAC. We could not attempt a direct comparison with [50] as

their code is not publicly available. Furthermore, most of the datasets used in their

experiments are characterized by continuous features. Thus, the application domain

is much different from the one of BAC and DAC, that are designed to work on

large-scale and large-domain categorical datasets.

Several works have already explored the possibility of combining more than one

rule for prediction, thus defining weights akin to a score for each class. The authors

of [32] have proposed to use the top K rules that match and weigh their vote with a

weighted χ2-analysis. In [46], the top rule for each class is first determined, then

the prediction is made on the one that maximizes the Laplace accuracy. [52] has

proposed a weighted-voting based on some metrics, e.g. support, confidence and

conviction of the rule. [47] sets as score the sum of the confidences for the matching

rules. All these techniques have been used selecting as label the class that maximizes

the defined score. The majority of associative classifiers, though, does not use a score

and predicts the label with the first rule that matches the record [33, 45, 48–50].

2.6 Summary

In this chapter, we have proposed an approach to scale an associative classifier on

very large datasets.

A survey of several techniques to distribute a very similar task, frequent itemset

mining, showed the advantages and the limitations of the two main approaches, a

data split approach and a search space split approach (Section 2.2). From this, we

built our approach to scaling associative classification on the good load balancing of

the data split approach, while aiming at replicating for associative classification the

effective data structures proposed by a search space split approach, FP-growth.

A naive way to implement the data split approach in associative classification is

by creating an ensemble of state-of-art classifiers, through bagging. In Section 2.3 we

have seen as this approach can effectively reach the same quality of a single-machine

implementation and distribute the workload on a cluster of machines.

70 Scaling associative classification to very large datasets

For our Distributed Associative Classifier (DAC) we considered an in-memory

cluster-computing architecture, Apache Spark (Section 2.4). In this architecture,

the large availability of memory is heavily exploited to streamline the computation,

avoiding disk access whenever possible, allowing an extremely faster sequential

processing and caching of the intermediate results. This scheme, and the available

memory, have of course their limits. In preliminary experiments, we identified the

major issue of designing an associative classifier in this framework in the large

number of extracted rules, which are only eventually pruned in the training phase.

Therefore, we have anticipated all the pruning into a novel extraction algorithm,

CAP-growth. DAC trains an ensemble model by means of bagging, which eases

the distribution of the computation. Each model is generated by an instance of

CAP-growth. A final consolidation phase for the models of the ensemble and a new

voting strategy help further reduce the size of the model and improve the quality of

the predictions.

To validate our approach, we have performed experiments in a real large-scale

scenario, a binary-labeled dataset with more than 4 billion records, 800 million

distinct values in its categorical features and larger than 1.2 TB in storage. The

pruning done in CAP-growth has proved to be effective. When executing database

coverage pruning as a final step, a negligible fraction of rules are pruned by this

technique, always below 5%, without improvements in quality. DAC demonstrated

better performance than a state-of-the-art technique, a Random Forest, both in terms

of quality of the prediction and execution time. The best setting for DAC improves

the AUROC upon the best for the Random Forest by 1% with a total training time

that is 25 times smaller.

The DAC classifier, differently from a Random Forest, generates a readable

model. The “hashing trick”, which allows the Random Forest to deal with a large

number of distinct values in the categoric fields, has the major drawback of making

the model unintelligible by a human. This hampers the usability of the model for

decision-making and makes also extremely difficult its debugging. DAC did not

require hashing, though larger scales, i.e. billions or trillions of distinct values, might

make it necessary. In this scenario, the model produced by DAC, without hashing, is

made of rules containing the items exactly as they appear in the dataset, with all their

semantics left intact. We believe this feature to be highly valuable for a classification

model.

2.7 Relevant publications 71

Future works will experiment different model generation strategies. For example,

we will introduce a projection by column in the ensemble like the one implemented

in Random Forests.

2.7 Relevant publications

[3] Daniele Apiletti, Elena Baralis, Tania Cerquitelli, Paolo Garza, Fabio Pul-

virenti, and Luca Venturini. Frequent itemsets mining for big data: A comparative

analysis. Big Data Research, 9:67 – 83, 2017

[4] Luca Venturini, Paolo Garza, and Daniele Apiletti. Bac: A bagged associative

classifier for big data frameworks. In East European Conference on Advances in

Databases and Information Systems, pages 137–146. Springer, 2016

[5] Luca Venturini, Elena Maria Baralis, and Paolo Garza. Scaling associative

classification for very large datasets. JOURNAL OF BIG DATA, 4(1):1–24, 2017

Chapter 3

Building a Big Data machine

learning pipeline

Inspecting the performance of a network from a massively big traffic logs’ dataset is

a difficult task. Big data frameworks provide scalable solutions to mine information

from raw data, but frequently need a complicate fine-tuning and a thorough under-

standing of machine learning algorithms. To streamline this process, we propose

SeLINA (Self-Learning Insightful Network Analyzer), a generic, self-tuning, simple

tool to extract knowledge from network traffic measurements. SeLINA encompasses

several data analytics routines adding self-learning abilities to state-of-the-art scal-

able approaches, in concert with parameter auto-selection to discharge the network

analyst from the tuning of the parameters. We incorporate both unsupervised and

supervised procedures to mine data and scale up to the size of the task. SeLINA

includes instruments to automatically test if the new data fits the model, to discover

changes in the traffic, and to trigger the rebuilding of the model.

The result is a methodology that provides human-readable models of the data with

limited user mediation, aiding domain experts in pointing up interesting insights and

retrieving actionable knowledge. SeLINAis currently implemented on Apache Spark.

We tested it on large datasets consisting of real-world passive network measurements

from a nationwide ISP, investigating YouTube and P2P traffic. The experimental

results confirm the ability of SeLINA to provide insights and detect changes in the

data that suggest further analyses.

74 Building a Big Data machine learning pipeline

Fig. 3.1 SeLINA building blocks.

The contents of this chapter were originally published in [56, 57]. This chapter is

organized as follows. Section 3.1 introduces the problem we aim to solve. Section 3.2

provides an overview of the proposed methodology, while Sections 3.3-3.4 describe

its main building blocks. Section 3.5 provides an overview of the experimental

evaluation campaign, while Sections 3.6-3.7 thoroughly discuss the experiments

performed on two real use cases based on real traffic datasets. Finally, Section 3.8

compares our approach with previous work, while Section 3.9 draws conclusions

and presents future developments of this work.

3.1 Introduction

Internet monitoring is paramount in network management, in order to understand how

the network behaves, how the nodes access contents, and how to correctly administer

and supervise the infrastructure. Network managers and analysts are challenged

every day by the growth of traffic, users, services and applications, and need to deal

with and understand the growing system complexity. Big data and machine learning

methodologies have given birth to approaches that aim at the mechanical extraction

of knowledge from the raw data that the monitoring infrastructures collect, and their

application to network traffic analysis has been devoted a significant effort. Most of

the proposed systems target a specific problem, e.g., monitoring of a CDN [58–60],

detecting anomalies [61, 62], or simply offering scalable platforms [63].

However, few works have targeted the general-purpose extraction of useful in-

formation from the raw data exposed by the system, i.e., the application of the data

3.1 Introduction 75

mining approach to information discovery, a classic application of unsupervised ma-

chine learning approaches. While methodologies exist, to the best of our knowledge,

they require non-trivial skills and the domain expert needs to be able to fine tune

the underlying algorithms. In this work, we target the design of an unsupervised

machine learning tool that allows the network administrator to discover properties of

the traffic, without requiring her to be a machine learning expert. We identified the

following requirements.

• Scalability, as the ability to (i) process very large datasets, but (ii) provide

compact representations of the traffic, independently of the data size.

• Auto-configuration, as the capability to (i) self-adapt to different data distribu-

tions (e.g., data densities, cluster shapes), and to (ii) self-tune the algorithm

parameters to avoid human intervention.

• Human-readability of both results and underlying models, to make the knowl-

edge better exploitable and more actionable.

• Self-assessment and self-evolution, to autonomously evaluate the model quality

and trigger a rebuilding when the model fitting to new data degrades.

The above-mentioned design guidelines led to the design of SeLINA (Self-

Learning Insightful Network Analyzer), which exploits both supervised and unsu-

pervised data-mining techniques by combining their strengths. Specifically, effective

unsupervised approaches are used to autonomously identify clusters of homogeneous

traffic flows, thus reducing the granularity of objects to observe from millions of sin-

gle flows to few tens of clusters, and generating a model of traffic. Human-readable

and fast supervised approaches are used then to classify flows on the fly and assign

them to clusters, and to offer valuable information about the main characteristics of

each class. The system computes internal quality indices to check whether the new

data does not fit anymore the historical model, suggesting to the analyst changes

in the new network traffic, and, possibly automatically, triggering a new clustering

phase to update the model.

SeLINA has been implemented in a state-of-the-art Big Data framework, Apache

Spark, and has been applied to two real-world large use cases: a YouTube video

streaming dataset and a peer-to-peer traffic dataset. Experimental results showed that

SeLINA is able to provide insightful network traffic models, e.g., pinpoint different

76 Building a Big Data machine learning pipeline

groups of YouTube servers with different properties, and suggest the presence of

changes in the infrastructure that have caused well-known issues to end-users [60].

3.2 Methodology overview

In this section, we provide an overview on the proposed methodology. The methology

assumes that a network flow is described and stored as a point with d features, for

example network measurement that describe the flow. Figure 3.1 depicts its main

components.

Offline self-learning model building. This component, which analyzes historical

network traffic flows, aims at building a self-learning data characterization model,

and consists of three phases: (1) a self-tuning clustering phase, (2) a cluster and data

characterization phase, and (3) a classification model training phase.

Online characterization and model update. This component analyzes new net-

work data in real-time by applying the model built in the previous block to detect

changes in the network traffic characterization. It consists of two phases: (4) a

real-time data labeling phase, and (5) an online characterization phase.

In details, step (1) of the proposed methodology consists of a self-tuning clus-

tering algorithm, which is run over historical data to discover homogeneous groups

of traffic flows without prior knowledge, in a fully autonomous and unsupervised

fashion. Effectively applying cluster analysis on real datasets requires the non-trivial

choice of algorithm-specific parameters, a typically difficult task for domain experts

exploiting data mining techniques. To this aim, SeLINA includes ad-hoc strategies to

automatically tune the clustering parameter values. In step (2), the resulting cluster

set is then enriched by both general-purpose and domain-specific statistics, whose

aim is to support network analysts in understanding the semantics of the identified

clusters.

The cluster set is also the input to the model training phase of step (3), where

a classification model is built by exploiting clusters as classification labels. The

model is able to self-learn how to assign each network flow to the proper cluster.

Different classification techniques could be exploited, depending on the preference

towards pure performance (e.g., accuracy) or human-readability of the model. A

good candidate could be the technique proposed in Section 2.4, as the associative

3.3 Offline self-learning model building 77

classifier produces a human readable model with good predictive quality. However,

the simultaneous presence of categorical and continuous features lead us to choose

another solution, able to manage effectively both. SeLINA choice is a decision tree

algorithm, which is among the most popular classification techniques and provides an

easily readable model in the form of classification rules. The latter feature supports

network analysts in getting more meaningful insights on the reasons for the classifier

underlying choices.

The classification model is exploited in the real-time data labeling phase at

step (4), where each new network flow is assigned a label. Then, at step (5) the

quality index computation is executed, by exploiting different quality indicators to

self-assess the model fitting and its results over time. When the quality index falls

below a given threshold, the offline model building can be automatically triggered to

rebuild a model better fitting the new data, thus providing self-evolutionary features.

SeLINA is a general-purpose methodology which can be easily exploited to

analyze large collections of network data (e.g., network traffic headers, network

flow characteristics, statistical measurements of traffic flows). As a case study, in

the chapter we apply SeLINA to analyze network measurements collected through

TSTAT [64].

3.3 Offline self-learning model building

The core of the SeLINA approach is the offline self-learning model building com-

ponent, which consists of (1) a self-tuning clustering phase, (2) a cluster and data

characterization phase, and (3) a classification model training phase. Details on each

phase are provided in the following.

3.3.1 Self-tuning clustering phase

SeLINA exploits clustering to autonomously identify homogeneous groups of net-

work traffic flows without prior knowledge. This phase performs a preliminary data

normalization step, by means of the standard z-score technique [28], and then a

clustering algorithm is applied to the normalized data. Among the many clustering

algorithms available to this aim, SeLINA provides an advanced DBScan-based [65]

78 Building a Big Data machine learning pipeline

Fig. 3.2 Toy example for DBScan, with MinPoints set to 4. The picture highligths the area

of radius E psilon around each point, which can divide in core points, in red, border points,

in yellow, and noise, in blue. Adapted from [66].

algorithm providing high-quality clusters on very-large real data collections. Since

the clustering phase is at the core of the SeLINA self-learning feature, in the follow-

ing subsections its building blocks are presented.

Basic DBScan

DBScan is a density-based approach that identifies clusters as dense areas of data

points surrounded by lower density spaces, whose points are marked as noise. The

identification of the dense areas is driven by two parameters: epsilon and MinPoints.

Given an arbitrary point p, the density of the area of radius epsilon centered in p is

considered, and the points in this area are counted. If the number of points in the

area is at least MinPoints then p is called core point, the area is considered dense,

and it is merged with adjacent dense areas to form a cluster. A point in the area of

a core point that is not a core point itself is called border point. The remainder of

the points are considered noise. Figure 3.2 shows a toy example where all the three

kinds of point are present.

DBScan is a well-known clustering algorithm, fruitfully exploited in a variety of

application contexts. Its strength is the ability to identify arbitrary-shaped clusters,

and isolate noise and outliers. The results provided by DBScan are usually better

3.3 Offline self-learning model building 79

than those provided by other popular clustering algorithms. However DBScan

requires longer execution times, due to its quadratic complexity. To scale to very

large datasets, we exploit the Spark-based distributed implementation of DBScan1

proposed by Aliaksei Litouka, whose main difference with respect to the original

centralized version is an additional partitioning step, performed at the beginning.

Self-tuning Multi-level DBScan

SeLINA improves the basic DBScan approach by addressing two main issues: (i)

parameter setting, and (ii) diverse data densities within the same dataset. To offload

domain experts from the critical task of configuring DBScan-specific parameters,

SeLINA includes a self-tuning strategy to automatically set proper values. Further-

more, very-large real datasets are often characterized by diverse data distributions

in different regions, and this is an issue hardly handled by the standard DBScan

version. To address both issues, the SMDBScan algorithm in SeLINA builds upon

an advanced version of DBScan successfully proposed in [67]. SMDBScan features

a multi-level iterative approach and a smart automatic parameter-setting procedure.

Multi-level iterative approach. At each iteration, SMDBScan considers the

data points which have not been assigned to a cluster yet (at the first iteration, the

whole dataset is considered), then (i) partitions them to allow parallel computation,

(ii) automatically selects the most appropriate values of epsilon and MinPoints, and

(iii) executes the standard DBScan with such parameter settings. At the end of each

iteration, the newly found clusters are included in the global set of clustering results,

while the noise points become the dataset for the next iteration.

Automatic parameter setting: epsilon. To automatically compute the values

of epsilon and MinPoints at each iteration, SMDBScan introduces a self-tuning

procedure, consisting of two heuristics. The two heuristics are very intertwined, the

second depending on the epsilon set by the first, and they are designed to fit the

scope of a multi-level strategy.

To determine epsilon, SMDBScan exploits the density-based concept of cluster:

“a dense area surrounded by a lower density zone”. To this aim, a greedy approach

is exploited, selecting the best potential epsilon for each point separately. A final

decision is then taken globally given all the local best epsilons.

1Downloaded from https://github.com/alitouka/spark_dbscan

80 Building a Big Data machine learning pipeline

Algorithm 3.1: Automatic setting of the epsilon parameter value.

Input :Dataset partitions - dataPartitions

Input :Epsilon step - epsStep

Output :Estimate of best epsilon - bestE psilon

1 List<Double> potentialEpsilons = {};

2 for partition in dataPartitions do

3 for p in partition do

/* Compute the density of the areas centred in p of

a radius eps multiple of epsStep */

4 Map<Double,Int> densities = {};

5 eps=epsStep;

6 density_be f ore = 0;

7 f ound = False;

8 while (not f ound and

eps <=distanceFromFarthestPoint(p,partition)) do

9 numNeighbours = numNeighboursRadiusEps(p, eps, partition);

10 density = numNeighbours/epsd ; /* d is the number of

attributes */

11 if (density < density_be f ore) then

12 f ound = True;

13 end

14 density_be f ore = density

15 end

/* The potential value of epsilon for p is the one

before the first density decrease */

16 epsilonP = eps;

17 potentialEpsilons.add(epsilonP);

18 end

19 end

/* Among the potential values of epsilon, select the one

corresponding to the first quartile */

20 bestE psilon=FirstQuartile(potentialE psilons);

21 return bestE psilon;

3.3 Offline self-learning model building 81

In particular, given an arbitrary point p, the algorithm tries to identify the bound-

ary of the dense area around p. To this aim, it computes the density distribution in the

hypersphere having radius R and center in p, with increasing values of R. The larger

R, the higher the number of points inside the hypersphere will be. We define dense

areas when the number-of-point increasing rate is higher than the growth in volume.

At the border of a dense area, this growth rate will show an inversion of the trend, as

soon as the volume starts growing faster than the number of points. The proposed

heuristics chooses the first inversion point as the border. If many inversion points

occur, greedily choosing the first one reduces the computational time and leaves

margin for further exploration in the next levels of SMDBScan. The final value

of epsilon, actually used for each run of DBScan, is selected by considering the

first quartile of the set of border values generated by applying the border-detection

procedure for all points p. The first quartile value produces a set of dense clusters

covering a representative subset of our data: taking the first quartile leads to having

at least a quarter of all the points set as core points with high probability, which will

help covering a good portion of the dataset in few levels.

The border-detection procedure increases the R value at epsStep increments.

This is the only parameter, whose main impact is on the execution time: very small

steps lead to many iterations to converge. In our experiments, we found that a value

of 10−3 was reasonable for the hardware at our disposal.

The pseudo-code for the epsilon self-tuning is reported in Algorithm 3.1. Since

the data partitions are independent, the main loop (Algorithm 3.1, lines (2)-(19)) is

executed in a distributed fashion by exploiting Spark (each data partition is associated

with an independent task).

Automatic parameter setting: MinPoints. Once epsilon has been set, the value

of MinPoints is automatically set by selecting the value of MinPoints for which

the product MinPoints×numberOfCorePoints(D ,MinPoints,epsilon) is maximum,

where numberOfCorePoints returns the number of core points in D found by DBScan

with the MinPoints and epsilon given. The approach stems from the following

observations. MinPoints represents the minimum size of the generated clusters.

Since small clusters are not interesting, because they represent a negligible part of

our data, while we are interested in the main groups and their characterization, we

aim at setting high values of MinPoints: The higher the value of MinPoints, the

higher the minimum cardinality of the generated clusters. However, the higher the

82 Building a Big Data machine learning pipeline

Algorithm 3.2: Automatic setting of the MinPoints parameter value.

Input :Dataset partitions - dataPartitions

Input :Epsilon - epsilon

Output :Estimate of best MinPoints - bestMinPoints

1 Map<Int,Int> histogramNeighbours = {};

2 for partition in dataPartitions do

3 for p in partition do

/* p is a core point if MinPoints is lower than or

equal to the number of its neighbours */

4 numNeighbours = numNeighboursRadiusEps(p, epsilon, partition);

/* Update the statistics about the number of points

with numNeighbours neighbours */

5 histogramNeighbours[numNeighbours] =

histogramNeighbours[numNeighbours] + 1;

6 end

7 end

8 Map<Int,Int> numO fCorePoints = {};

9 neighboursA f terMinPoints = 0;

/* Given MinPoints, the number of core points is the number

of points with more than MinPoints neighbours */

10 for MinPoints in histogramNeighbours.keys().sort().reverse() do

11 numO fCorePoints[MinPoints] = histogramNeighbours[MinPoints] +

neighboursA f terMinPoints; neighboursA f terMinPoints =

numO fCorePoints[MinPoints]
12 end

13 max=0;

/* Select the MinPoints value that maximizes

MinPoints×number o f core points */

14 for MinPoints in histogramNeighbours.keys() do

15 numCorePoints = numO fCorePoints[MinPoints];
/* d is the number of attributes */

16 if (MinPoints > d and numCorePoints×MinPoints > max) then

17 max=numCorePoints×MinPoints;

18 bestMinPoints=MinPoints;

19 end

20 end

21 return bestMinPoints;

3.3 Offline self-learning model building 83

value of MinPoints, the lower the number of core points will be. With lower values of

numberO fCorePoints, the amount of clustered data potentially decreases, while the

amount of noise points increases. Since we are interested in clustering as many data

points as possible, discarding only the minimum amount of objects in lower-density

areas, we should consider high values of numberO fCorePoints. To balance the

two discussed trends, we set the MinPoints trade-off to the value that maximizes

MinPoints× numberOfCorePoints(D ,MinPoints,epsilon). Algorithm 3.2 reports

the pseudo-code of the algorithm that automatically sets MinPoints given the value

of epsilon. Also in this case, the procedure can be parallelized by assigning each

data partition to a different Spark task.

3.3.2 Cluster and data characterization

Since clusters are anonymous groups of network traffic flows, but human-readable

results are much more valuable to domain experts, the SeLINA methodology, as

reported in block (2) of Figure 3.1, is designed to enrich clusters with (i) general

attribute-based statistics, and (ii) domain-specific knowledge, for each cluster in

the resulting set, as detailed in the following. The former does not require user

intervention, whereas the latter can be guided by domain experts, by a-priori selecting

specific attributes of interest.

• Number of flows. It provides insights into the data distribution, by identifying

clusters covering most of the dataset and others identifying small “remote”

groups of traffic flows. For instance, some network datasets present a pre-

dominant cluster with regular traffic and many smaller clusters identifying

deviations. Other datasets may present similarly-sized clusters, (i.e., with the

same number of flows) for different subnets or services.

• Top characterizing attributes. SeLINA provides the attributes with the highest

Variance Reduction Ratio (VRR) for each cluster with respect to their variance

over the whole normalized dataset. Given an estimator for the variance σ̂2,

the Variance Reduction Ratio (VRR) for the j-th cluster and i-th feature xi is

defined as follows.

VRR j(x
i) =

σ̂2
D
(xi)− σ̂2

j (x
i)

σ̂2
D
(xi)

(3.1)

84 Building a Big Data machine learning pipeline

where σ̂2
D

is the variance over the whole dataset and σ̂2
j is the variance over

the j-th cluster. The rationale behind the variance reduction is to quantify the

information gain, for a given attribute, obtained by isolating some of the flows

in a cluster; it is inherited from decision trees [68], where the order of the

attributes in the tree influences performance and results. Together with the

variance itself, VRR is a strong indicator of the features that characterize a

cluster the most and their relative importance.

• Network domain statistics. Network-oriented features of interest provided by

SeLINA are the number of different source IP addresses, ports, and service

types per cluster. Furthermore, the current implementation of SeLINA com-

putes and plots the Cumulative Density Function (CDF) of selected dataset

attributes (see Table 3.2 and Sec. 3.5 for details). For instance, per-cluster

statistics of server IP addresses, server L4-ports, L7-application protocols, etc.,

are provided. Such attributes, despite being discarded during the clustering,

are often crucial to allow domain experts to correctly extract meaning from

the results.

3.3.3 Classification model training

All flows processed by the clustering algorithm (excluding the final iteration noise

points) are labelled according to their cluster (e.g., cluster 1, 2, 3), and form a labeled

dataset (i.e., a training set), which can be exploited for supervised learning. Thus,

the goal of this phase, depicted in block (3) of Figure 3.1, is to build a classifier to

efficiently label new unseen flows as they are captured.

Even if the cluster set could be directly exploited for labeling unseen data, a

new ad-hoc classifier is trained separately to reach two design goals: (i) to provide a

real-time high-performance classifier, and (ii) to build a human-readable model that

can harness the knowledge inside the data.

To this aim, SeLINA exploits decision trees [69] to build the classification

model. They are a well-known popular and mature technique able to reach both

good accuracy and easy model interpretability, with the latter being a highly-valued

feature for domain experts. To provide the intuition of how a decision tree works,

we describe a toy example in the following.

3.3 Offline self-learning model building 85

tid RT T [ms] DataByte Class

1 3 2M Cl. 1

2 20 900k Cl. 2

3 12 1.5M Cl. 1

4 15 500k Cl. 2

5 12 3M Cl. 1

Table 3.1 A toy dataset

Tree example. Table 3.1 shows a simple training set with 5 records, each

characterized by two attributes. Two clusters/classes are present (Cl. 1 and Cl. 2). A

possible decision tree is reported in Figure 3.3. The node labels represent a feature

(e.g., the size of the flow in bytes), while each branch is labelled with a possible

value, or a range of values, for the feature within the node. In our example, the

split from the root node is done on a range of values of the minimum round trip

time. Each path from the root node to a leaf node represents a rule characterizing

a class (a cluster in our case). The path within the dotted box models the simple

rule RT T < 5ms → cluster1, thus this leaf can be interpreted by the analyst as a set

of flows served by a cache in the nearby, with cluster 1 partly served by this cache,

which serves uniquely this cluster. This kind of information is human-readable and

provides a good characterization of how the traffic labeling is performed.

Knowledge model. The output tree provides an easy-to-read overview of the

features that best split the dataset according to the labels: for each node of the tree

the split criterion can be written as an if/else condition over a single feature and a

splitting value, and few levels of the tree are usually sufficient to show the most

significant splits for the purpose of the classification.

Split criterion. In the current work, the impurity-based criterion used to grow

the tree is the Gini index, defined in Section 2.1.2. The Gini index is among the most

popular choices and typically yields high-quality results. We exploited the Spark

decision-tree implementation, which provides both the Gini and the entropy criteria.

We performed some experiments, not reported here, to compare the accuracy of the

classification models based on the Gini and the entropy indices and their results are

very similar. We refer the reader to [70] for details about the entropy index.

86 Building a Big Data machine learning pipeline

Fig. 3.3 A toy example of a decision tree.

3.4 Online characterization and model update

This component analyzes new network data in real-time by applying the model built

in the previous block. As depicted in Figure 3.1, it consists of two phases: a real-time

data labeling phase (4), and an online characterization phase (5).

The classification model is exploited in the real-time data labeling phase of step

(4), where each new network flow is assigned a label.

Then, at step (5) the quality index computation is executed, to self-assess the

model fitting and its results over time. When the quality index falls below a given

threshold, the offline model building can be automatically triggered to rebuild a model

better fitting the new data, thus providing self-evolutionary features. While the online

data labeling phase (4) is straightforward, as it consists of a classification model

application, in the following we provide details on the quality index computation in

step (5) and the self-evolution policy stemming from such quality evaluation.

3.4.1 Quality index

When no external information is provided (e.g., ground-truth class labels), the

clustering results are evaluated on the shape of the clusters themselves. To this

purpose, SeLINA exploits a well-known quality index, named Silhouette [71]. This

index measures both intra-cluster cohesion and inter-cluster separation to evaluate

the appropriateness of the assignment of a data object to a cluster rather than to

another one.

Let C= {C1, . . . ,Cn} be a set of clusters. The Silhouette value for a given data

point pi in a cluster Ck ∈ C, given a distance measure dist, is computed as

3.4 Online characterization and model update 87

S (pi) =
b(pi)−a(pi)

max{a(pi),b(pi)}
, (3.2)

where a(pi) is the average distance of point pi from all other points in cluster Ck, i.e.

a(pi) =
1

|Ck| ∑
p j∈Ck

dist(p j, pi) (3.3)

and b(pi) is the lowest average distance from all other clusters, i.e.

b(pi) = min
Cl∈C

(
1

|Cl| ∑
p j∈Cl

dist(p j, pi)),∀Cl ̸=Ck. (3.4)

The Silhouette value for an arbitrary cluster Ck ∈ C is the average Silhouette

value on all points in Ck. It is computed as

S (Ck) =
1

|Ck| ∑
pi∈Ck

S (pi) (3.5)

Lastly, the average S (pi) over all data of the entire dataset is a measure of how

appropriately the data has been clustered. The distance measure dist must be the

same used for clustering, thus the Euclidean distance in our case.

The Silhouette coefficients take values in [−1,1]. Negative and positive Silhou-

ette values represent wrong and good object placements, respectively. Hence, the

ideal clustering algorithm splits the data in a set of clusters C such that all clusters

in C have a Silhouette value equal to 1. However, Silhouette values around 0.5 are

already considered very high values representing a strong clustering result [71].

3.4.2 Characterization and self-evolution policy

As the quality of the network traffic model is subject to ageing, SeLINA continuously

evaluates the quality degradation of the model itself, with a two-fold objective: (i)

highlighting substantial changes in the network and (ii) triggering the regeneration

of the model as soon as the quality index falls below a threshold.

88 Building a Big Data machine learning pipeline

Since SeLINA computes the Silhouette for each new flow against the ones seen

during the training phase, this quality index indicates how well the new flow fits

the old clusters. A Silhouette close to 1 would indeed mean that the intra-cluster

distances are negligible compared to the inter-cluster ones. The Silhouette values for

the clusters (S (C j)) are recomputed every M new records, where M is set by the

user. The Silhouette index for the clusters significantly changes as soon as new kinds

of data (not seen during the training) are added to the input (see Section 3.6.2 for an

example). Assignments to the wrong cluster should get a negative Silhouette value,

while outliers, i.e. points that are distant from all clusters, will have a Silhouette

close to 0.

Besides the Silhouette indicator, SeLINA also tracks the number (percentage) of

new flows assigned to each cluster over time. This helps in detecting changes in the

traffic characterization due to (i) degradation in the clustering quality and (ii) shift

in the distribution of the traffic flows among different clusters, as discussed in the

experiments.

The final goals of the real time evaluation are to keep track of the state of the

network, to identify changes and react. The reaction strongly depends on the use

case and on the type of change. When SeLINA is trained on a standard behaviour,

e.g. a usual working day without interruptions of service or congestion, a change is

a strong hint of an anomaly, a strong congestion or an attack. The identification can

be performed by looking at the current clusters and their cardinality in recent time

frames. If the Silhouette value is unchanged, the current clusters do still model well

the traffic, and the anomaly occurs only in the distribution of the flows among the

clusters. If the Silhouette value of one or more clusters decreases, instead, the change

is way more significant: the current model cannot describe the traffic anymore. The

inspection in this case needs a new clustering, which can also be automatically

triggered by the system. The new clustering can be executed on the whole historical

dataset or on the most recent flows only. The latter option generates a more specific

up-to-date model, that could be less general due to fewer training data.

3.5 Experiments and datasets

We experimentally evaluated SeLINA on two real network traffic datasets, associated

with two different use cases. Our goal is to show how SeLINA (i) effectively

3.5 Experiments and datasets 89

Metric Description Intuition

L7−Data Amount of application

payload transferred

Identifies possible different type of

flows, e.g., data vs signaling

Duration Time since the first

SYN to the last segment

Related to performance issues, and

type of flow, e.g., bulk transfer or

persistent connections

RT T Min Per-flow minimum RTT Estimate of the “distance” between

client and server, and of possible

congestion

Preord Per-flow reordering

probability

Identifies possible packet losses oc-

curred before the probe

Pdup Per-flow duplicate prob-

ability

Identifies possible packet losses oc-

curred after the probe

Table 3.2 Features used by SeLINA as input.

characterizes network traffic, and (ii) supports the analyst in understanding changes

of the traffic mix. We focused on two real-world use cases. The first one consists

of a dataset of YouTube flows in which we know the CDN had changed over time,

causing possible issues to both end-users and ISPs [60]. The second case deals with

the understanding of P2P traffic, for which, instead, little knowledge is available. In

both cases, SeLINA autonomously extracts information from the automatic analysis

of the traffic summaries, and presents results to domain experts in an interpretable

format.

We collected network traffic data through a passive probe located on the access

link (vantage point) connecting an ISP Point of Presence (PoP) to the Internet. The

passive probe sniffs all packets flowing on the link. The probe runs Tstat [72], a

passive monitoring tool that extracts flow level logs. Tstat rebuilds each TCP (and

UDP) stream by matching incoming and outgoing segments (and messages). A

flow-level analysis is performed, and for each flow a set of metrics is logged [64].

Tstat offers advanced classification mechanisms that we leveraged to split traffic

according to the application that generated it.

In this work, we focus on two datasets, collected during two different time

periods. The first one consists of flows carrying YouTube videos. The second one

collects all TCP flows excluding web traffic, i.e., it consists of mostly P2P traffic.

We refer to each dataset as “YouTube” and “P2P” in the following.

90 Building a Big Data machine learning pipeline

The YouTube dataset consists of TCP flows collected during May 2013 by a

probe placed on a PoP of a nation-wide ISP in Italy where the traffic aggregate

from more than 10,000 customers is monitored. We use data from May 1st, 2013 to

let SeLINA build the offline model. Datasets from May 2nd to May 31st are used

instead to run the online model update phase and highlight traffic changes possibly

suggesting the automatic model rebuilding. For this dataset, we know that during the

second part of May 2013 the YouTube CDN had relevant changes affecting end-user

quality of experience [60, 58]. Hence, we consider this as ground-truth information

that allows us to verify if SeLINA correctly identifies interesting events.

The P2P dataset refers to April 17, 2012. From it we extract all TCP flows whose

application protocol is neither HTTP nor HTTPS, i.e., where the majority of the

traffic is due to P2P applications [73]. Traffic comes again from a backbone link of a

nation-wide ISP in Italy.

Among the measurements exposed by Tstat, we consider the metrics reported in

Table 3.2. We selected them since they are correlated to both system configuration

and possible performance issues. For instance, the measure of the Round Trip Time

(RTT) is related to both the distance from the server, and possible congestion on the

path. Similarly, both reordering and duplicate probabilities increase during periods

of congestion. Finally, duration and amount of carried data are possibly linked

to the type of service the flow carries, e.g., short-lived signaling flows carrying

little data rather than long lived data flows carrying a large amount of data. Since

SeLINA model building is based on unsupervised clustering, we expect the system

to automatically leverage information offered by these features to identify proper

classes of flows.

The metrics are computed by observing the TCP headers, and correlating them

with information in the correspoding TCP ACKs. For instance, Preord and Pdup are

computed by keeping track of TCP sequence number evolution over time, while

RT T Min is the minimum delay observed between a data segment and the corre-

sponding acknowledgement. Since TCP offers a bidirectional service, we consider

measurements for each half-flow, i.e., segments from the client to the server, and

vice versa. We denote them in the following by adding a subscript C or S for client

or server side, respectively. For instance RT T MinS is the minimum delay observed

at the probe between segments sent by the server and ACKs sent by the client, i.e., it

is the delay between the probe and the customer client – the access network delay.

3.6 YouTube use case 91

Conversely, RT T MinC measures the time since the probe observes the client segment

and the server ACK, i.e., it is the minimum RTT between the probe and the server –

the backbone network delay.

Additional attributes and measures are included in the final results flows aggre-

gated in the same cluster. Clusters are annotated by SeLINA before being presented

to the domain experts. The additional features are not considered during the model

building phase. For instance, once the cluster is built, the system computes Cumula-

tive Density Functions (CDF), average, percentiles, etc. of the per-metric distribution

of information extracted directly from features.

The datasets have been stored in a cluster at our University running Cloudera

Distribution of Apache Hadoop (CDH5.3.1). All experiments have been performed

on our cluster, which has 30 worker nodes, and runs Spark 1.2.0, HDFS 2.5.0, and

Yarn 2.5.0. The cluster has a total of 2.5TB of RAM, 324 cores, and 773TB of

secondary memory. The current implementation of SeLINA is a project developed

in Scala exploiting the Apache Spark framework.

3.6 YouTube use case

In this section we discuss the network traffic characterization of the YouTube dataset

first, as a result of the offline SeLINA component, and then we present an evaluation

of the online part. The default values of E psStep=0.001 and 3 clustering levels led

to meaningful results for this experiment. Increasing the number of levels brings no

improvement. After the third iteration, new clusters become very small and have

very low Silhouette values, a clear sign that the system is artificially aggregating data

that are actually very fragmented.

3.6.1 Offline cluster and model characterization

Clustering results provide meaningful insights into network traffic when enriched

by means of relevant statistics and features. As such, we present traffic analyses

provided by both the cluster statistics and the classification model.

92 Building a Big Data machine learning pipeline

Cluster statistics

Table 3.3 reports the clusters obtained by running SMDBScan on the YouTube

dataset of May 1st, 2013. For each cluster, SeLINA returns the top-3 attributes

according to VRR, i.e., it presents to the network analyst those features that best

represent the data inside the cluster itself. For instance, consider the cluster number

1. It is the biggest one, collecting approximately 60,000 (36%) flows. It is primarily

characterized by a rather low Pdup value (0.65%±0.71%), and clients requesting 4kB

of data on average (L7−DataC=3992±2422.4 bytes), a rather sizable HTTP request

size. RT T MinS is 33.7±16.1 ms, which suggests quite standard and not congested

DSL lines. The cluster thus collects the most common flows. This is the only cluster

identified during the first iteration of the multi-level clustering. During iteration 2

and 3, more clusters emerge (one in step 2, and two in step 3), each with several

thousands of flows. This confirms the ability of SMDBScan to identify large clusters,

despite different densities, thanks to the multi-level approach. At the end of the

whole clustering process, the noise cluster aggregates all remaining points. There

are 40,000 of them (23%), which are very sparse, as proven by the high variance in

their characterizing attributes.

Clusters 2 and 3 represent a sizable part of the traffic, with 16% and 22% of

the flows, respectively. Interestingly, those are characterized by two very different

RT T MinC values. Recall that RT T MinC represents the distance of the YouTube

CDN server to the probe. Servers in Cluster 2 are 25.3±1.4 ms far, while servers

in Cluster 3 are much closer (5.4±4 ms). Pdup is significantly different too, with

Cluster 2 Pdup being one order of magnitude smaller than cluster 3. This probably

reflects higher congestion in the path from the probe to the client in cluster 2.

Cluster 4 collects fewer points (5,500, 4%). Pdup and RT T MinC are similar to

Cluster 2, but here duration (51±32 s) is very large. This possibly hints for TCP

flows of long lived video sessions.

All of this reflects the typical scenario of the YouTube CDN [60], and proves the

ability of SeLINA to provide insights on the traffic mix. The analyst is offered few

and consistent clusters, instead of thousands of single measurements.

3.6 YouTube use case 93

Lev. Cl. Num. Top-3 representative attributes

id flows ranked by highest

variance reduction ratio

Attribute Avg. value Std. dev

1 1 59846

Pdup 0.65% 7.12E-03

L7−DataC 3992.1 2422.4

RT T MinS 33.7 16.1

2 2 27158

RT T MinC 25.3 1.4

Pdup 0.55% 6.42E-03

L7−DataC 5357.8 2916.9

3

3 37964

Pdup 2.97% 2.31E-02

RT T MinC 5.4 4.0

RT T MinS 52.6 42.2

4 5569

RT T MinC 25.5 1.2

Pdup 4.11% 1.28E-02

Duration 51464.0 31969.4

40318

Preord 0.000002% 3.12E-06

noise L7−DataS 14465449.3 30919388.4

RT T MinS 78.7 160.6

Table 3.3 YouTube dataset. Cluster characterization.

Cluster id Precision Recall

1 96.28% 80.17%

2 97.73% 93.02%

3 97.91% 99.25%

4 88.93% 98.22%

Table 3.4 Quality of the classification algorithm. 3-fold cross-validation

Classification rules

The decision-tree described in Section 3.3.3 and trained with a maximal depth of 4

levels has been evaluated with a 3-fold cross-validation scheme on the training data.

The average accuracy over the three cross-validation runs is 93%, and results for

precision and recall for each class are shown in Table 3.4. All clusters are extremely

well represented by the model for both precision and recall (93% to 99%), apart from

a lower value in Cluster 1 recall (80%).

Being the model so accurate, rules that form the decision tree can be used to

understand how the different clusters split the network traffic. Each path from the

94 Building a Big Data machine learning pipeline

root to one leaf of the decision tree is translated into a rule for the class of that leaf.

Each rule characterizes the data of its class (i.e., a cluster in our case). Rule-based

modeling provides further insights into correlations among attributes. Analying the

rules of such classifier, we observe the following:

• {(RT T MinC > 15.7ms) and (Pdup > 2.5%)}→Cluster4. This is the only rule

associated with cluster 4. It states that all flows of cluster 4 are simultaneously

characterized by a high RT T MinC and a high Pdup.

• {(RT T MinC > 21.5ms) AND (Pdup ≤ 2.5%)}→Cluster2. This rule provides

a characterization of cluster 2, where flows have an even higher RT T MinC but

a lower Pdup with respect to cluster 4.

Insights provided by such rules are relevant since we would not have been able

to easily distinguish the differences between clusters 2 and 4 by considering only

the available statistics. The rules, which simultaneously consider more than one

measure, allow supporting domain experts to more easily characterize the content of

the clusters and also perform comparisons among them by considering at the same

time many facets.

3.6.2 Online data characterization and model update

The decision tree model is exploited to assign new flows, in real time, to the most

appropriate class (which is one of the clusters). Every N assignements, SeLINA

evaluates the quality of the current cluster set, by means of the Silhouette quality

index and the distribution in number of flows assigned to each cluster. These two

indicators provide the self-evolution feature to SeLINA, which is able to trigger a

model rebuilding phase. The analysis of the Silhouette index indicates whether the

classifier model does not fit the current data anymore, and the distribution of the

flows among the clusters indicates whether the traffic patterns are changing. This

information is also valuable for the analyst since it reflects changes in the traffic mix.

The upper part of Figure 3.4 reports the value of the Silhouette index for three

different days (May 2nd, May 3rd, and May 29th from left to right). The lower part

reports the percentage of flows assigned to each cluster over time. The values are

computed every N = 10,000 flows, which corresponds to 2-3 hours at night, and

3.6 YouTube use case 95

-1

-0.5

 0

 0.5

 1

04 08 12 16 20 00

S
ilh

o
u
e
tt
e

Time

May 2

cluster 1
cluster 3
cluster 2
cluster 4

-1

-0.5

 0

 0.5

 1

04 08 12 16 20 00

Time

May 3

cluster 1
cluster 3
cluster 2
cluster 4

00 04 08 12 16 20 00
-1

-0.5

 0

 0.5

 1

Time

May 29

cluster 1
cluster 3
cluster 2
cluster 4

 0

 20

 40

 60

 80

 100

04 08 12 16 20 00

C
a
rd

in
a
lit

y
 (

%
)

Time

May 2

 0

 20

 40

 60

 80

 100

04 08 12 16 20 00

Time

May 3

00 04 08 12 16 20 00
 0

 20

 40

 60

 80

 100

Time

May 29

Fig. 3.4 YouTube dataset. Real-time data labeling: Silhouette and percentage of new flows

assigned to each cluster.

approximately 1 hour during peak traffic hours. Recall that the model had been

trained on the May 1st dataset. Traffic from following days is assigned to clusters

based on the classifier, but without re-running the clustering itself. The starting

point for the plots of May 2nd represents the Silhouette and cardinality value for that

cluster for the training data (May 1st).

As discussed by domain experts in [60], network traffic in the first part of May

is very similar to May 1st. On the contrary, in the second part of May, a change

in the YouTube CDN occurred. As such, we would expect the Silhouette to reflect

this situation, especially during peak time when the traffic is more significant. This

is indeed the case. The Silhouette value is rather stable for all clusters during the

first days of May, of whom we reported here May 2nd and May 3rd, meaning that

there are no important changes in the traffic with respect to the May 1st model. It

still fits the new data. Only cluster 2 and 4 show temporary and limited drops in

Silhouette values from 10am to 12am, but at that time, they only account for very

low percentages of the traffic (less than 10% each). The Silhouette of Cluster 3,

although always very close to 0, is costantly similar to the Silhouette of the training

96 Building a Big Data machine learning pipeline

data, May 1st. A possible explanation for the low Silhouette value is that the other

clusters surround Cluster 3, and compete to “steal” points assigned to this cluster,

and this situation does not vary over time.

The Silhouette values of clusters 2 and 4 during May 29th, when the significant

change in the YouTube CDN already occurred, drop suddenly from 12pm to 8pm of

May 29th. At that time, a sizable amount of traffic is assigned to these two clusters

(≈ 20% each), but the clusters 2 and 4 do not fit the data anymore, so that new flows

present un-modeled characteristics, and they fall into the low-Silhouette clusters.

Interestingly, cluster 1 still has a high Silhouette value (and counts for 30-40% of the

traffic), reflecting that not all traffic is affected by the change, like Cluster 3.

A detailed analysis of May 29th highlights a significant increase of the RT T MinC

values for cluster 2 and cluster 4 flows. While in May 1st and May 2nd, almost all

flows have an RT T MinC lower than 25ms, in May 29th there are many flows with

RT T MinC from 80ms to 100ms. The increase of the RT T MinC values is associated

with changes in the YouTube’s CDN previously identified in [60]. In the model built

by SeLINA on May 1st data, there are no clusters representing this traffic pattern.

Thus, the sudden drop of the Silhouette values automatically highlights the changes

and can be used to raise an alarm.

To better highlight the difference in SeLINA results, we ran a set of experiments

considering the first and last five days of May. We aim at identifying groups of similar

traffic days, by means of the Silhouette pattern. Fig. 3.5 shows the correlation matrix

of the per-day Silhouette indexes, i.e., for each pair of days, we measure how similar

the Silhouette trends are. We use the Pearson correlation coefficient [70] among the

Silhouette values during two days: when close to 1, the Pearson correlation depicts a

strong positive linear correlation; when the coefficient is close to -1, it highlights a

negative correlation, and when it is close to 0, negligible correlation is found. Left

plot of Fig. 3.5 clearly highlights that Cluster 1 Silhouette is always very similar

among those days, and stable over time. Cluster 1 consistently represents the part

of traffic not affected by the CDN change, and the model always fits the new data.

Right plot of Fig. 3.5, instead, clearly shows that Cluster 4 exhibits two patterns over

time: during the beginning of May, it is consistent with the model. But during the

last part of May (after the CDN change), its Silhouette daily pattern becomes very

different from before. These results prove the strong link between the change in the

3.7 P2P use case 97

Silhouette trends and the change in the traffic patterns, and the validity of using the

drop of the Silhouette as a trigger for the generation of a new model of the network.

Focusing on the percentage of new flows assigned to each cluster (bottom plots

in Fig. 3.4), we can detect changes related to the CDN allocation policy. For all days,

the distribution of the flows changes from the late morning till evening. In particular,

Cluster 1 traffic, which is characterized by low RT T Minc values, decreases from

60-70% (at night) to 30-40% in the 10am-9pm period. On the contrary, the number

of flows assigned to Clusters 2 and 4 increases from less than 5% to 20-30% each.

Clusters 2 and 4 are characterized by higher RT T Minc values, i.e., traffic is now

being served by far-away servers. The difference between the two days is that in

May 2nd and May 3rd the Silhouette values are high and stable, hence the changes

in the distribution of the flows among the clusters are meaningful. On the contrary,

on May 29th the drop in Silhouette values means that clusters cannot be trusted, and

thus a model rebuilding is required.

We let then SeLINA rebuild the whole model (clustering and classifier) on the

flows of May 29th from 10am to 9pm. This leads to a new characterization of the

network traffic, shown in Table 3.5. 10 clusters (instead of 4) are identified, with

very different characterizing features, both in terms of number of flows and statis-

tical distribution of values. The new model includes some clusters with very high

RT T MinC values, which means that the presence of new CDN servers that were not

properly represented by the previous clusters are now covered. For example, cluster

2, which contains about 12,000 flows, is characterized by an average RT T MinC

value of 99ms±11ms, a significantly higher value than those of the former clusters

(see Table 3.3). These results are consistent with those in [60], and confirm the

ability of SeLINA to automatically identify changes in traffic pattern. Moreover,

SeLINA extracts clusters which fit the new data and provide insightful analyses of

the network traffic evolution.

3.7 P2P use case

In this section we show how SeLINA can help characterize the flows of the P2P

dataset. We recall that this dataset contains all the TCP flows captured by Tstat,

except the HTTP and HTTPS ones. Also in this case, we executed the offline self-

learning phase by using the default values of E psStep=0.001 and the first 3 levels of

98 Building a Big Data machine learning pipeline

Lev. Cl. Num. Top-3 representative attributes

id flows Ranking by highest

variance reduction ratio

Attribute Avg. value Std. dev

1 1 36006

Pdup 0.97% 9.6E-03

L7−DataC 4738.4 2869.7

Duration 36037.7 22179.2

2

2 11965

Pdup 2.8% 1.5E-02

RT T MinC 99.4 11.2

Duration 52103.9 32688.7

3 11279

Pdup 5.2% 1.7E-02

RT T MinC 4.5 4.8

L7−DataC 5337.7 3638.9

4 4624

RT T MinC 38.2 9.0

Pdup 1.2% 8.9E-03

L7−DataC 6023.9 3013.9

5 1413

RT T MinC 3.3 2.1

Pdup 0.77% 6.6E-03

Duration 88390.6 22657.7

3

6 9063

RT T MinC 4.5 5.1

Pdup 1.5% 1.5E-02

L7−DataC 14291.3 9252.3

7 7270

Pdup 10% 0.04

RT T MinC 101.6 9.0

Duration 1.1E+05 6.1E+04

8 2259

RT T MinC 55.7 16.2

Pdup 3.1% 2.1E-02

Duration 60754.7 35240.9

9 1473

RT T MinC 4.8 5.4

Pdup 12% 1.8E-02

Duration 42006.0 33815.0

10 349

RT T MinC 122.4 4.5

Pdup 0.36% 3.7E-03

Duration 50917.6 31206.7

noise 14299

Preord 0.000017% 1.1E-05

RT T MinS 85.3 543.3

L7−DataS 1.6E+07 2.7E+07

Table 3.5 YouTube dataset. New clusters’ characterization. Clusters obtained by using

SMDBScan and setting E psStep=0.001

3.7 P2P use case 99

Fig. 3.5 YouTube dataset. Per-day correlation matrices of silhouettes for cluster 1 and 4.

clustering. Differently from the YouTube use case, here we have no ground truth at

our disposal, and thus SeLINA is used as a data exploration tool.

3.7.1 Offline cluster and model characterization

Table 3.6 reports the main characteristics of the extracted clusters and their top-3

characterizing attributes. We immediately notice a cluster with approximately 64%

of the flows (Cluster 1, 98186 flows) that is significantly larger than any other cluster.

Cluster 1 represents “standard” flows which are characterized by a similar average

value of RT T MINC and RT T MINS (i.e. the communication time is similar in both

directions of the flow). This balancing between RT T MINC and RT T MINS values is

normal when no congestions are present. Indeed, P2P traffic is exchanged between

residential clients, therefore, we can expect the distance between the probe and the

peers to be somewhat equal, and so the RTT.

Other clusters provide interesting knowledge to domain experts as well. For

instance, Cluster 2 has an average RT T MinS (235.5ms) that is two orders of magni-

tude higher than RT T MinC (9.4ms). These values highlight a significant asymmetry

between the server side and the client side. The RT T MinS is very high (the average

RT T MinS value of the “standard” flows in Cluster 1 is 33.5ms). This situation

describes a possible congestion in one direction of the communication flow. We

recall that we are analyzing P2P flows among ISP customers where many users are

100 Building a Big Data machine learning pipeline

Lev. Cl. Num. Top-3 representative attributes

id flows Ranking by highest

variance reduction ratio

Attribute Avg. value Std. dev

1 1 98186

RT T MinS 33.5 38.6

RT T MinC 35.0 45.7

Duration 33154.1 43104.8

2

2 15090

Pdup 3.30E-06 2.04E-04

RT T MinS 235.5 74.8

RT T MinC 9.4 22.2

3 12152

Pdup 2.37E-05 5.44E-04

RT T MinS 14.6 22.9

RT T MinC 295.3 72.9

4 4530

Pdup 4.44E-01 1.34E-03

RT T MinS 11.2 16.2

RT T MinC 18.5 12.9

3

5 3302

Pdup 1.31E-05 5.07E-04

RT T MinS 542.0 103.6

RT T MinC 5.2 13.6

6 2524

Pdup 2.80E-01 2.49E-02

RT T MinS 6.9 15.0

RT T MinC 32.5 37.9

7 1993

Pdup 1.05E-05 3.65E-04

RT T MinS 16.9 28.9

RT T MinC 608.1 101.5

8 1892

Pdup 1.60E-01 1.88E-02

RT T MinS 14.7 29.6

RT T MinC 35.6 42.1

13647

Duration 560334.5 4671692.5

noise L7−DataS 3585728.2 27938244.0

Preord 5.05E-03 2.90E-02

Table 3.6 P2P dataset. Cluster characterization. Clusters obtained by using SMDBScan and

setting E psStep=0.001

connected through an ADSL connection, with uplink capacity limited to 1Mbps.

When a remote peer downloads a large amount of data from a local peer, the uplink

of the latter may saturate, causing congestion (i.e., the average RT T MinS increases).

On the contrary, the small RT T MinC suggests that the remote peer is connected

via high speed FTTH technology (where access delay is much smaller being the

3.8 Related work 101

upling capacity >10Mbps). A similar situation is valid also for the flows of Cluster

7. However, in Cluster 7 the RT T MinC is very high (608ms) and the RT T MinS is

low (16.9ms). This second case reflects a simmetric scenario: high-speed local client

downloading a lot of data from ADSL remote peers, whose uplink results congested.

3.7.2 Online data characterization and model update

For the P2P dataset we applied the evolving part of the framework to analyze how

new flows are assigned to the clusters and identify possible changes in the type of

traffic. Results present no significant changes in the Silhouette. This trend, that is

confirmed by further statistics computed on the flows, highlights that there are no

anomalies or changes in the traffic for the P2P dataset. The clusters identified by

the clustering phase are still representative of the network flows, also of the future

traffic. Since the day we analyzed is a “normal” one, SeLINA correctly identifies no

changes and hence the re-execution of the clustering phase is not triggered.

3.8 Related work

A significant effort has been devoted to the application of data mining techniques and

statistical methods to network traffic analysis. The application domains include study-

ing correlations among network data (e.g., association rule extraction for network

traffic characterization [74, 75]; for router misconfiguration detection [76]; interest-

ing correlations from web-based e-business system [77]), extracting information for

prediction (e.g., multilevel traffic classification [78], Naive Bayes classification [79],

throughput prediction [80], analytics and statistical models for LTE Network Perfor-

mance [81], one-class SVM [82] for intrusion detection), grouping network data with

similar properties (e.g., clustering algorithms for intrusion detection [83–85, 61, 62],

for deriving node topological information [86], for automatically identifying classes

of traffic [87–90], for unveiling YouTube CDN changes [60]), and context specific

applications (e.g., multi-level association rules in spatial databases [91]).

However, in most cases no approach offloads the user from arbitrary parameter

choices, and can be easily adapted to domain-specific requirements and semantics

as the methodology proposed in this chapter. Differently from analytics approaches

tailored to a specific network application [60, 83, 84, 86, 85, 61, 62], SeLINA is a

102 Building a Big Data machine learning pipeline

general purpose methodology that can be easily exploited to analyze different and

transversal network data (e.g., network traffic headers, network flow characteristics,

statistical measurements of traffic flows). In the experiments of Section 3.6 we

considered a scenario firstly addressed by Youlighter [60]. Youlighter is a system

that detects very specific macro-changes in the YouTube traffic pattern involving

the CDN spatial distribution. It is not distributed nor scalable. SeLINA, instead,

introduces a general-purpose, distributed, and fully autonomous engine exploiting a

completely different methodology and addressing a more general research issue in

the network traffic analysis than the Youlighter system.

The performance of most state-of-the-art general purpose approaches [74, 75, 87–

90] depends on the choice of different parameters, and the optimal trade-off between

execution time and accuracy must be handpicked for a given application. On the

contrary, focusing itself on self-learning capabilities of state-of-the-art scalable ap-

proaches, SeLINA is able to build a model of the data with minimal user intervention

by offloading the user from the non trivial task of configuring the miner system and

highlighting possibly meaningful interpretations to domain experts.

Some research effort has been devoted to automatic setting of data mining algo-

rithm parameters (e.g., clustering algorithms [92, 93], itemset mining [94]). Authors

in [92, 93] proposed a hierarchical strategy to aggregate lower density regions dis-

covered through DBSCAN. Differently from [92, 93], SMDBScan automatically sets

DBScan parameters at each iteration level when DBScan is exploited in a multiple-

level fashion. Furthermore, the SeLINA clustering results include clusters with a

diverse degree of density, because each subset of clusters with a similar density

is discovered at a given iteration level. The method in [92, 93] instead gets a flat

partition composed of clusters extracted from local cuts through the cluster tree.

An intensive research activity has been devoted to designing innovative algo-

rithms and methodologies to support large scale analytics based on MapReduce,

such as [95–97]. A step further has been proposed in [98]. Apache Spark with its

Resilient Distributed Datasets and its smart APIs, outperforms Hadoop MapReduce

in terms of performance and overcomes its limitations, with particular focus on

iterative in-memory computation, which is a common characteristic of many data

mining algorithms. Its machine learning library MLlib [22] provides a broad range of

analytics algorithms. SeLINA exploits the computational advantages of distributed

computing frameworks, as the current implementation runs on Spark. Applications

3.9 Summary 103

of this techniques to network traffic analysis becomes natural, given the volume of

traffic [63, 99–101]. These works adopt Hadoop or Spark, and apply either standard

machine learning algorithms, or design specific solutions to their problem.

The idea of defining a generic framework and of tightly integrating self-learning

capability in a scalable data mining engine tailored to traffic data was first introduced

by ourselves in [57]. However, SeLINA significantly enhances the methodology pro-

posed in [57]. The SeLINA data mining engine (named SaFe-Nec in [57]) provides

an innovative and more accurate explorative approach coupled with self-configuring

strategies (i.e., the SMDBScan algorithm). Thus, SeLINA allows exploiting cluster

analysis on real datasets in a fully autonomous fashion. The SMDBScan algorithm

is characterized by configuration parameters whose setting is rather difficult. In [57]

the less effective, but easier to configure, K-means algorithm was used. SeLINA

also includes ad-hoc strategies to automatically tune the clustering parameter values,

which is a typically difficult task also for domain experts. The exploitation of a

multilevel DBScan-like algorithm jointly with self-configuring strategies allowed

for better clustering results than the ones produced by the K-means based approach

proposed in [57]. Moreover, SeLINA integrates innovative self-assessment features

and a new set of network domain statistics that are often vital to let the domain expert

interpret the results. Finally, with respect to [57], in this chapter we added a new

interesting case study on YouTube traffic analysis and a thorough analysis of the

results from a networking point of view.

3.9 Summary

This chapter presents a self-learning data analytics system that effectively mines

network traffic data. The proposed methodology is based on a two-phase approach

that

1. builds a self-evolving human-readable traffic model by autonomously splitting

traffic data into homogeneous groups;

2. classifies new data in real-time and identifies the presence of changes in the

traffic mix.

104 Building a Big Data machine learning pipeline

The SeLINA methodology features a distributed implementation in Apache

Spark. It is a general purpose approach, which can be easily exploited to analyze

network traffic data in different conditions. The approach has been tested in two real-

world use cases. The performed experiments highlighted its ability to autonomously

identify evolutions in the network and support the analyst by selecting characterizing

features.

3.10 Relevant publications

[56] Daniele Apiletti, Elena Baralis, Tania Cerquitelli, Paolo Garza, Danilo Gior-

dano, Marco Mellia, and Luca Venturini. Selina: a self-learning insightful network

analyzer. IEEE Transactions on Network and Service Management, 13(3):696–710,

2016

[57] D. Apiletti, E. Baralis, T. Cerquitelli, P. Garza, and L. Venturini. Safe-nec:

A scalable and flexible system for network data characterization. In NOMS 2016 -

2016 IEEE/IFIP Network Operations and Management Symposium, pages 812–816,

April 2016

Chapter 4

Data Science for urban security

In the last decades, municipalities and public bodies have used and produced large,

digital corpora of data, releasing part of it to the citizenry as Open Data, as part of a

broader set of policies usually reunited under the hat of a Smart City. Only recently

Smart Cities have understood the value of Data Science to extract precious insights

from these large corpora and other unstructured sources of information like social

media. One such scope of application of Data Science is that of urban security, to

help the police, the emergency responders, and the decision makers design solutions

that fit the problems that emerge from the data.

This chapter aims at answering the following research questions:

1. is it possible to retrieve social media messages and exploit the spatial informa-

tion hidden in them to help the understanding of an emergency?

2. are there temporal patterns in social issues like crimes, and is it possible to

mine the data to see them?

3. how do we integrate the discoveries of Data Science with the work of practi-

tioners and decision makers, and how do we present the insights on data in the

most timely and effective way?

The contents of this chapter were originally published in [102–104]. The chapter

is organized as follows. In Section 4.1 we analyze the spatial information contained

in tweets during mass emergencies, trying to answer our first question. In Section 4.2

we propose a methodology to find seasonal patterns in societal data and answer the

106 Data Science for urban security

second question. In Section 4.3 we propose an integrated data mining and Business

Intelligence architecture for the analysis of non-emergency data acquired in a Smart

City context, that is our attempt to answer the third question. Finally, 4.4 draws the

conclusions.

4.1 Analyzing spatial data from Twitter during a dis-

aster

In the last years, social media have met an unprecedented success and become a

widespread, fast, and economical tool to access and share information. As such, they

are an invaluable help in a mass emergency situation like that of a natural disaster,

and are already actively used to communicate to the population involved in the

preparation or in the aftermath of a disaster.

However, exploiting social media to lead decisions in a mass emergency presents

multiple challenges, including parsing information, handling the information over-

load, and prioritizing different types of information, as discussed in [105]. One of

these challenges is handling geographical information, which translates in identifying

the content produced or related to a specific area, and placing this content on a map.

Coping with these two issues would mean, in a scenario hit by a natural disaster,

being able to have instantaneous and immediate feedback from the population in the

area, possibly with reports of the damages, requests for support or availability of

food, shelters, or help.

This work is an exploratory study on the quantity and the quality of the geo-

graphical data officially provided by a social media service like Twitter, in contexts

of mass emergencies and natural disasters. The aim is to assess how many tweets

contain geographical information and of what kind, and whether these tweets contain

useful information for disaster relief and management.

4.1.1 Related work

In recent years, social media emerged as a potential resource to improve the manage-

ment of crisis situations (e.g., earthquakes, tsunamis, floods). Authors of [105] have

extensively investigated the subject, surveying the methods available in literature

4.1 Analyzing spatial data from Twitter during a disaster 107

and their shortcomings, among which important issues of privacy, reliability, and

accuracy of information. We refer the reader to this survey for a detailed review of

the literature on the topic.

The spatiality of social messages has been addressed in previous works and raised

concerns. The authors of [106] identify general spatial patterns in the occurrence

of tweets through statistical analysis. The results show that messages near (up to

10 km) to severe crisis areas have a much higher probability of being related to

the crisis. Although, in a review of the use of SMS and social media in the Haiti

earthquake [107], the authors note that the value of such information at a detailed

level was mainly useless on the field, while the aggregate information from various

sources proved very helpful to focus work to areas where relief was most needed.

Moreover, tweet datasets depict a specific period in time, typically defined by the use

of particular hashtags. Thus, the analysis of social media during and after a disaster

can resemble traditional media coverage, which has been often accused of paying

attention to only the most sensational stories in a truncated timeframe [108].

Several works outside the scope of mass emergencies have already showed that

social media contain very limited spatial information. In [109], for example, only

2% of the tweets in the study contained GPS location. The authors of [110] reported

that only 0.42% of all tweets in their study had GPS-provided coordinates, and thus

proposed a system to infer city-level location from the content of the tweet. In some

contexts, these percentages do not impede a thorough spatial analysis. In the large

dataset of tweets related to 2014 FIFA World Cup, for example, authors of [111]

found more than 300 thousand out of 23,5 million tweets to be geo-located, which

allowed a very large-scale analysis of the event.

4.1.2 Data collection and preprocessing

Twitter APIs provide access, with some restrictions, to the 140-character texts and

the rich source of metadata associated with it. Among the optional fields in the

metadata of a tweet we find geographical coordinates and a place id. The user, or

rather the application posting on his or her behalf, can choose to add the precise

location given by the GPS sensors, or instead associate the tweet to a nearby point of

interest, which translates to a place id. A place is defined as an area with predefined

geographical bounds, and can range from a venue to an entire region or country.

108 Data Science for urban security

The Twitter developers’ documentation states that roughly 1% of all tweets are

geo-located. In addition to these, the documentation hints that natural language

processing is used to enrich the results of a geo-spatial search. Thus, a search of

tweets around the coordinates of Rome would return tweets with coordinates in the

area and possibly tweets mentioning Rome in the text, or tweets by users who set

Rome as location in their profile. No filter by country code or state is possible with

the public APIs.

The two datasets used in this study were collected as follows.

Ischia The dataset scope is to represent all the tweets in Italy on 21/08/20171.

On that date, an earthquake with magnitude 4.2 hit the island of Ischia, causing 42

injuries and 2 deaths and extended damage to the buildings [112]. The tweets were

searched with two different queries. The first query searches for tweets in a radius

of 600 km from the city of Rome, which covers approximately all the country. The

second query searches for all tweets in Italian, which is a good proxy of all tweets

in Italy, as Italian is spoken by the majority in Italy and little spoken abroad. All

tweets belong to the day of 21/08/2017. The tweets coming from the first query were

labeled as geo-referenced, with the broad meaning of having either geographical

coordinates or NLP-enriched geographical references.

Texas The dataset aims to represent tweets in an area largely affected by hurricane

Harvey, an Atlantic hurricane formed on 17/08/2017 that has caused the death of 78

people and the evacuation of more than 30,000 [113]. The tweets were downloaded

within a circle of 300 km centered in Rockport, Texas, the city where the hurricane

made the first landfall. The radius was set as to cover all the Texas coastline. The

date of the tweets is 27/08/2017, the day after the initial landfall, when hurricane

Harvey reclassified to storm and the heavy raining caused widespread floods in the

whole state.

4.1.3 Discussion

The Ischia dataset contains 409392 tweets, of which 3566 (0.87%) are geo-referenced.

This percentage is similar to the one stated by Twitter. The earthquake in Ischia

hit the island at 20:57. The results for a search on a given date go until 2 in the

1note that Twitter developers’ guide states that some tweets and users may be missing from search

results

4.1 Analyzing spatial data from Twitter during a disaster 109

morning, which means the dataset contains 19 hours of tweets written before the

earthquake, and 5 after. 67813 tweets in the dataset contain one or more hashtags,

which thus offer a good sample of the topics discussed on the platform. The word

clouds in Figure 4.1 show the most frequent hashtags, where the size of the word

is proportional to its frequency. Figure 4.1(a) depicts the most frequent hashtags in

non-geo-referenced tweets before the earthquake. TV programs and football teams

take most of the social interest, with a little attention to exceptional events like the

solar eclipse, happening at 20:26 local time and not visible from this timezone. The

first tweet on the earthquake appears at 20:59. Figure 4.1(b) shows the frequent

hashtags from then to 1:59. Ischia is indeed the most frequent hashtag, and we can

spot other related terms like terremoto (earthquake) and Casamicciola, the location

of the epicenter. Most of the word cloud, though, is yet crowded with mentions of

TV shows broadcasted in that evening. The number of tweets containing the words

Ischia, Casamicciola, or synonyms of earthquake is 9668, 5.2% of the tweets after

20:57. Care must be taken in taking this number as a measure of the interest to the

event, as most tweets are made of stopwords and might follow up a conversation,

and are therefore less likely to contain keywords or refer directly to the fact.

Figures 4.1(c) and 4.1(d) show frequent hashtags for geo-referenced tweets,

respectively before and after the earthquake. These two clouds appear to speak

of the same topic, and the abundance of English terms and the vocabulary used

suggests that these are mainly promotional tweets that sponsor touristic areas, in

which the earthquake is mostly ignored. Indeed, the percentage of geo-referenced

tweets referring to the earthquake after 20:57 is only 2.8%.

Tables 4.1 and 4.2 show, respectively, the top 10 domain names of links in geo-

referenced and non-geo-referenced tweets in the Ischia dataset. Links can be a hint

on the kind of content posted, e.g. a video in the case of a link to Youtube, on the

app used to post the tweet, e.g. Swarm in the case of www.swarmapp.com, or on

an interaction on the Twitter platform, e.g. a reply to a tweet contains a link to the

original tweet. The top 10 websites linked in non-geo-referenced tweets (Table 4.2)

depict the behavior we would expect from a user of Twitter: an high interaction with

other users (twitter.com is the most linked domain), videos (Youtube is the third

most linked domain) and links to other popular social platform like Facebook and

Instagram, that are respectively the second most and the fifth most linked domains.

The top domains in geo-referenced tweets (Table 4.1) are very different, and in the

top 10 list we do not see any of the top 3 websites linked in non-geo-referenced

110 Data Science for urban security

(a) (b)

(c) (d)

Fig. 4.1 Frequent hashtags in the Ischia dataset in non-geo-referenced tweets, (a) before

the earthquake and (b) after the earthquake, and in geo-referenced tweets, (c) before the

earthquake and (d) after the earthquake.

tweets, i.e. Twitter itself (with retweets), Youtube and Facebook. The top two

domain names in geo-referenced tweets come from apps that post tweets from third

parties, like Instagram or Foursquare (Swarm). These differences are a second clue

of the different nature of geo-referenced tweets, and suggest that they are not a

representative sample of the whole stream of tweets.

Texas dataset is made only of geo-referenced tweets, but with different granu-

larities of geographical information. Its study can lead to a better assessment of

the quality of the geographical information inside a tweet corpus. Of 6938 tweets

resulting from the geographical query, 1275 have geographical coordinates, of which

1240 have also a place id. The remainder of the tweets is supposedly assigned to a

location through named entity recognition, though no metadata gives details on this.

Places divide further in three types (i.e. city, admin, and neighborhood), of which

city is the most numerous, with 1039 records. Figure 4.5 lists the names of top 10

locations with their frequency. Not surprisingly, 9 out of 10 are cities, although Texas

is the second most frequent place. Already the fifth most frequent city, Conroe, has

less than 25 geo-tagged tweets, and the tenth, Mission, has only 11 of them. Figure

4.2 shows a frequency map of tweets with coordinates, binned in hexagonal cells

of equal size. A large part of the map does not see any tweet, and most of the cells

have less than 50 tweets. The most of them are located in the bigger cities, probably

4.1 Analyzing spatial data from Twitter during a disaster 111

URLs #

https://www.instagram.com/ 845

https://www.swarmapp.com/ 51

https://goo.gl/ 25

https://www.trendsmap.com/ 16

http://dlvr.it/ 8

http://www.olevanometeo.it/ 5

http://n.mynews.ly/ 5

https://www.gpone.com/ 4

http://www.montedarena.com/ 3

http://crwd.fr/ 3

Table 4.1 Top 10 of domain names linked in geo-referenced tweets in Ischia dataset

URLs #

https://twitter.com/ 30890

http://fb.me/ 21139

http://youtu.be/ 7011

http://ift.tt/ 5484

https://www.instagram.com/ 4848

https://goo.gl/ 4516

http://bit.ly/ 3785

http://dlvr.it/ 3024

http://l.ask.fm/ 2271

https://curiouscat.me/ 1890

Table 4.2 Top 10 of domain names linked in non-geo-referenced tweets in Ischia dataset

URLs #

https://www.instagram.com/ 4000

http://waterdata.usgs.gov/ 871

http://bit.ly/ 360

https://www.swarmapp.com/ 240

http://bubly.us/ 165

https://mesonet.agron.iastate.edu/ 106

http://untp.beer/ 94

https://twitter.com/ 70

http://www.allaboutbirds.org/ 42

http://tour.circlepix.com/ 13

Table 4.3 Top 10 of domain names linked in tweets in Texas dataset

112 Data Science for urban security

Fig. 4.2 Frequency of tweets by area in Texas dataset

following the distribution of the population, and only the cell over Houston sees

more than 200 tweets. In the city, we see again a similar behavior, with more than

120 tweets located in the city center and the rest scattered around (Figure 4.3). If, as

it is likely, people tweeted from the blank spots of the map, their tweet was ignored

by this geographical search and there might be no information to link it to this area

of the world.

Table 4.3 lists the top 10 domain names in links in this dataset. Similarly to

Table 4.1, many of them link to Instagram and Swarm, and Facebook and Youtube

are totally absent. Among them we can also notice domains of public services, that

post warnings and tweets of public interest. Figure 4.4 shows the most frequent

hashtags. The vocabulary used, differently from Ischia, seems to be largely related

to the event. This can be due to the predictability of the hurricane, to the fact it

is weather-related, or to the large extent of the area and population affected. The

hashtags seem to belong mostly to weather warnings and automatic reports, with

tags that refer directly to the city or area involved or in several cases are specific to

the USGS service [114]. This, in line with the findings in Ischia dataset, shows how

geo-referenced tweets belong to a special subset of users, and are not apt to describe

the whole population, at least in a special situation like that of a natural disaster.

4.1 Analyzing spatial data from Twitter during a disaster 113

Fig. 4.3 Frequency of tweets by area in Texas dataset (place_id=Houston, TX)

114 Data Science for urban security

Fig. 4.4 Frequent hashtags in Texas dataset

0 100 200 300 400

Houston, TX

Texas, USA

Austin, TX

San Antonio, TX

Conroe, TX

New Braunfels, TX

Reynosa, Tamaulipas

Pearland, TX

Rosenberg, TX

Mission, TX

Fig. 4.5 Frequency of top 10 locations for Texas dataset

4.1 Analyzing spatial data from Twitter during a disaster 115

4.1.4 Suggestions for practitioners

The findings of this explorative study may outline some suggestions to the researcher,

or practitioner, whose aim is to set up an analysis of a mass emergency in a social

medium. These suggestions could be even useful for a social study of any kind, not

limited to the scope of emergencies. The experimental evaluation we have performed

is clearly limited, as it studied only two different events, and more analyses are

needed to generalize the results.

We can divide a study of the social medium in three main challenges: mes-

sage retrieval, message mapping, and the analysis itself. For each, we list some

considerations in the following.

Message retrieval. Twitter is the only social network to offer public APIs for

the retrieval of the posts on its platform. For the Streaming API, the limit is to

formulate a query that returns at most 1% of the messages, otherwise the result will

be subsampled. A spatially-bound query, like the one we used to retrieve the Texas

dataset, is not suggested, as as we have seen it returns a small fraction of all actual

tweets. One of the best options is to formulate a language-based query, and rely on

the automatic language recognition of the Twitter platform, which has hopefully a

small percentage of false negatives that will not be retrieved. This option, however,

is only viable when the language(s) spoken in the country is rarely spoken abroad,

and the volume of total messages does not exceed the 1%, as with Italian or Finnish.

It is clearly not suitable for English, French or Spanish. The third method, the most

used, is a keyword-based query. This method, in most cases, will ensure that the

volume of messages queried will be under 1%, and also on topic. The number of

false negatives, however, is potentially big, and care must be taken in the choice of

keywords.

Message mapping. Once the messages are retrieved, we may want to locate

them on a map. As said, only a few message will have spatial coordinates in the

metadata. However, spatial information might be hidden elsewhere. One possible

solution is to analyze the history of messages of the user to search for the last

mentioned location, which could be as well placed in his or her biography. In the

context of mass emergencies, though, this datum could be too old or imprecise to be

of a practical use. Another possibilty, often used, is geocoding [105]. Geocoding is

the retrieval of spatial coordinates from a string of text, which could be a toponym

116 Data Science for urban security

or an address. It is usually coupled with Named Entity Recognition (NER) [105], to

extract and identify geographical entities in the message. Though it augments the

number of messages that can be placed on a map, its resolution is often limited to

the city level, as users rarely write a complete street address in a message.

Message analysis. This is the most delicate part. As said above, there are many

potential source of bias in a such collected dataset, of which the analyst should be

aware. When studying tweets with spatial coordinates, for example, we are studying

a special subset of Twitter users, who want for some reason share their location with

the public, which is an option that is not active by default. The reasons they have

could vary: they could be incentivated by a third-party app that promotes the location

sharing through gamification, or they might want to improve the visibility of their

tweet for a marketing campaign. Whatever the reason, they are not the average user.

Moreover, this only adds to the fact that we are only studying one of many ways

people share messages, of which most are private, and that there is always a good

share of population that is not present on online social networks at all.

4.2 Spectral analysis of crimes

In the last decades, smart cities and administrations have released large amounts of

data as Open Data. First pulled by a part of the citizenry advocating for transparency,

Open Data have been lately pushed and supported by the same administrations,

willing to sustain new studies and foster innovative applications of the data, as

integrated visualizations or predictive models. In the years, wide, comprehensive and

structured datasets of heterogeneous categories have been growing to dimensions

that now allow significative insights and powerful applications.

Urban data, being strictly linked with human activities, usually hide repetitive

patterns, which occur over time and space. The exploration of these patterns can

follow the intuition of the scientist, inspired by a shared knowledge of the topic or by

the literature, or be the fruit of a systematic approach of data mining. Highlighting

reoccurring patterns gives valuable insights into the data and thus increases the

knowledge on the subject, laying also the basis for predictive or explanatory models.

In this work, we aim at finding spatio-temporal patterns in a large dataset of

urban crimes, through spectral analysis. Our research question is twofold: firstly,

4.2 Spectral analysis of crimes 117

we want to find out whether seasonal patterns exist in the data and can be found,

and secondly, whether such patterns are global or if they vary by the category of

crime. The answer to these questions can improve the current understanding of

these phenomena and drive future research on intelligence-led policing. To this aim,

we propose a methodology for mining seasonal components in a time series that

we borrow from signal processing theory. We couple this technique with heatmap

analysis to lay down an exploratory process able to highlight patterns in time and

space.

4.2.1 Time-series analysis

Description of the dataset and motivations

The dataset used in our analysis describes all the crime events in the city of San

Francisco from January 2003 to August 2016, as published by the San Francisco

Open Data portal [115]. The dataset counts 1952810 records, split in 39 major

categories of incidents, e.g. Assault, Vehicle Theft, Drug/Narcotic, and each record

can be assigned to one of these or to Other Offenses. Some incidents can consist

of several records, as in the case of multiple, contemporary arrests or of multiple

charges on the same person. Each record reports also a short description of the

incident and its resolution, namely if it led to an arrest. The metadata available

are the timestamp and the location, with the address, the district and the spatial

coordinates of the event.

The richness of this dataset spans multiple dimensions and allows a plethora of

interesting insights and analyses. Here we focus primarily on the temporal aspect,

and we show in Figure 4.6 a sample of the width of the data available, already

narrowed down to a single category, i.e. Burglary. Figure 4.6a shows a glimpse

on the more of 13 years of incidents recorded, with different scales of aggregation.

The plot of the number of records per month, with its respective trend, computed

as a moving average with a 12-month window, already shows how such events can

hugely vary within months, seasons or years. The hundreds of records per month

and the tens per day allow thorough, statistically significant analyses, on different

scales and resolutions.

118 Data Science for urban security

In Figure 4.6b we show a detail over the daily distribution, to highlight how the

distribution of the events greatly varies not only from one month to the other, but also

within consequent days and weeks. Thus, a model aiming at predicting or explaining

the evolution of the incidents in the city would need to cope with a great complexity,

result of several hidden seasonal components, each one potentially peculiar of only

some categories of crime, added to the natural variation of the datum.

Many social studies tackle the problem of the temporal distribution of crimes with

exploratory data analysis techniques, like histograms [116], radar charts [116, 117],

or boxplots [118]. Authors of [118], for example, investigate temporal variations

of crime in Campinas, Brasil with the use of boxplots. Among their findings, they

see a drop in the total number of burglaries during weekends. We reproduce the

same kind of plot in Figure 4.7, which shows the distribution of the daily count of

burglaries in San Francisco by weekday. The plot clearly shows a peak in Fridays,

while the weekend, contrarily to Campinas, does not see a significant drop. This

kind of analysis is clearly useful to hint patterns in the data. However, it does not

answer the question of whether the patterns repeat constantly through the dataset, or,

in other words, whether there are significant periodicities in the data.

Spectral analysis

In order to highlight the seasonal components of the dataset we resort to the Lomb-

Scargle periodogram [119, 120]. Periodograms, like the Lomb-Scargle, show the

most likely periods in a time series and are thus a kind of spectral analysis. The

Lomb-Scargle periodogram is usually preferred to the more known Fourier transform

when dealing with missing samples or uneven sampling steps, and it is therefore of

much wider application.

This technique is also known as least-squares spectral analysis, as it is a least-

square fit of sinusoidal functions over the data. The peaks found in the resulting

periodogram are thus the periods which best fit the dataset, with the y-axis showing

the gap in the Bayesian Information Criterion, a measure of how likely one period

fits better than other values.

4.2 Spectral analysis of crimes 119

(a) Temporal evolution of burglary from 2003 to 2016

(b) Daily evolution of burglary in 2008 (detail)

Fig. 4.6 Evolution of burglaries in San Francisco

120 Data Science for urban security

Mon Tue Wed Thu Fri Sat Sun

0

10

20

30

40

B
u
rg

la
ry

Fig. 4.7 Daily count of burglary by weekday

The Lomb-Scargle periodograms in our experiments were computed using the

Python package AstroML [121]. The code and data to reproduce the analysis of this

section are available online2.

4.2.2 Results

Before applying the Lomb-Scargle analysis, we isolate the seasonal components

of the series. We do this by subtracting the trend, computed with a simple 14-

day moving average of the data itself. Figure 4.6a shows this moving average for

burglaries. The result of the decomposition is shown in the upper part of Figure 4.8,

a scatter plot of the detrended signal, whose central value is zero, as wanted. Below

this signal, we see its periodogram, computed on a set of candidate values ranging

from 1.1 to 50 days, to find short and medium-term periods. The periodogram

evidences three significant periods for burglaries: one at seven days, one at 3.5

days, a sibling of the main peak, and one at a value between 30 and 31 days, which

corresponds most probably to the average length of a solar month. The prominent

period for burglaries is by far the one at 7 days.

We applied the Lomb-Scargle analysis to all the 39 categories of records, to find

temporal patterns in the dataset and to state whether a unique predictive model can

fit any category of crime, and thus all records, or if instead each category needs a

different model. Several categories do not have more than some hundred samples,

2https://github.com/lucaventurini/timecrime

4.2 Spectral analysis of crimes 121

Fig. 4.8 Periodogram of burglaries with detrending

though, and therefore do not produce significant periodograms. In Figure 4.9 we

show the periodograms for the 14 most-frequent categories of crime. Among them,

we see very specific categories like Vehicle Theft, and broader categories as Other

Offenses, Non Criminal and Secondary Codes. The latter did not show significant

periods, most probably because of the variety of events that belong to it. On the

other hand, the other very assorted category, that is Other Offenses, is depicted by a

very neat peak at 7 days, with no sign of other possible periodicities. Also almost

all the other categories show this clear weekly period. The second most represented

period is the monthly one, which is discernible in at least half of these 14 categories.

As seen with burglaries, this period is always slightly more than 30 days. This result

excludes the hypothesis of a 4-week pattern, and suggests the idea that these crimes

tend to happen at the same day of the month. Robberies, interestingly, as opposite

to all other kind of crimes, seem to have such monthly patterns way more likely

than the weekly ones. Also interesting is the fact that we never have periods of 14

days, and only 3 periodograms show peaks at 15 days. These results encourage the

investigation of seasonal modelings of the temporal evolution of crimes and suggest

to focus the attentions on weekly and monthly cycles primarily.

We now consider the spatial distribution of the events for one of the major

categories, Vehicle Theft. The periodogram drives us towards an inspection of

122 Data Science for urban security

Fig. 4.9 Periodogram of most frequent categories of crime

weekly patterns, but still does not say if the patterns are homogeneous in space, or

peculiar to some parts of the city. Figure 4.10 shows a heatmap of all the vehicle

thefts recorded in 2015, aggregated by day of the week. The two central weekdays

are thus where the hotspots of events are most extended, with a slight relaxation in

Mondays and Saturdays. Like in the time series, we can glimpse here a trend, in

the form of some core spots common to all days, and some components which are

peculiar to each day. Focusing on the hottest zones (in red in the plot) of Wednesdays

and Sundays, for example, we see in both two neat clusters, which are though

different in shape, position and extension. These trends might suggest that analyses

similar to what we have tried on time, are possible also on spatial dimensions.

4.2.3 Related Work

Seasonality in criminal incidents has been widely studied. Works like [122] and,

more recently, [116–118, 123–126] have already attempted a reasoning over the

reproduction of crimes on regular cycles. [117] considers the seasonal component

of climatic seasons, aiming primarily at finding differences correlated with weather

conditions and climate. Similarly, [116, 124, 125] deal with the link between some

categories of crime, like assaults or property crimes, and times of the year, searching

for peaks and correlations with external factors, using a number of statistical tech-

niques, among which histograms, ANOVA and regression analysis. Our approach

instead is agnostic towards any initial hypothesis of seasonality or correlations and

4.2 Spectral analysis of crimes 123

Fig. 4.10 Heatmap of vehicle thefts in different days of the week, in 2015

comprehensive of all categories of crimes. Closer to this effort is [123], which

studies the seasonality of different kinds of crimes, but always with a focus on month

periods. In our work we instead focused on short and medium-term cycles of few

days or weeks, that could be helpful for short-term predictions. The availability of

full timestamps for crimes is a must for a finer resolution of the analysis, e.g. at the

day scale; works like [123, 125], for example, rely on the Vancouver open dataset,

which exposes only the year and month of the happenings. In [118], the authors adopt

the routine activity perspective to study spatial and temporal variations in crimes in

Campinas, Brasil, on a number of crime categories. They do not find seasonalities in

rape, robbery, burglary and theft, while finding a significant seasonality in homicide,

confirming the results of [117]. Authors of [126] recently applied Fourier analysis

to the study of violent crimes in South Africa. Their findings include a significant

periodicity between 7 and 10 days, which is very alike the weekly period of assaults

we found in San Francisco.

The usage of Lomb-Scargle periodograms in a scope of social interest is, to our

knowledge, a novelty. Since its introduction in 1976 [119], it has been applied in its

birth domain of astronomical studies [120], seismology [127], and, more recently,

biology [128, 129], even though spectral analysis is a wide-spread technique in many

scientific domains.

124 Data Science for urban security

4.3 Monitoring the citizens’ perception on urban se-

curity in Smart Cities

Smart cities are urban environments in which the municipality fosters the use of

Information and Communication Technologies (ICTs) to engage citizens in city

management and development [130]. A key aspect in Smart City governance is

the participation of citizens in decision-making. The capability of ICTs to keep in

touch citizens with municipality actors (e.g., assessors, area operators) is crucial for

improving the effectiveness and efficiency of urban services.

Nowadays, non-emergency data on urban security issues are acquired by various

Smart Cities all over the world. They consist of citizen warning reports that do not

require an emergency response. Smart Cities allow citizens to signal these potential

warnings to the local administrators through Web portals, apps, emails, and contact

centers. To improve the citizens’ quality of life, non-emergency data are worth

analyzing because they represent the citizens’ perception on urban security from

different viewpoints. Based on the signaled warnings and their level of severity, the

municipality can plan targeted actions on the urban area, which may vary according

to the temporal evolution of the citizens’ perception on non-emergency issues.

The main research contributions to this scenario can be classified as follows:

(i) definition of collaborative models and open standards (e.g., Open311 [131]), to fa-

cilitate the development of smart applications [132, 133] and the cooperation between

cities, (ii) design and development of smart cities platforms by private vendors [134],

researchers [135, 136] and public administrators [137], and (iii) characterization and

analysis of the perception of urban security sensed by users [138–141]. An overview

of the key challenges in urban computing from the point of view of computer scien-

tists is given in [142]. However, state-of the-art approaches are challenged by the

increasing volume of analyzed data, which prompts the need for integrating data

mining and Business Intelligence tools in non-emergency data analyses.

This section presents Non-Emergency Data Analyzer (NED), a new integrated

data mining and Business intelligence environment targeted to the analysis of open

non-emergency data on urban security issues acquired in a Smart City context. The

NED system relies on an ensemble of open components, which are easily portable in

different Smart City contexts. To profitably analyze the citizens’ perception on urban

security, non-emergency data are acquired, enriched with additional information

4.3 Monitoring the citizens’ perception on urban security in Smart Cities 125

about the context of the warning reports (e.g., the related city area), and stored into

a unique data repository. Next, two complementary analyses are performed: (i)

Key Performance Indicator (KPI)-based analysis, and (ii) association rule discovery.

In our scenario, KPIs are quantitative indicators measuring the level of warning

of the citizens in a specific context, while association rules [143] are significant

associations between warnings and contextual features (e.g., between a specific

warning category and a city area). The aim of KPI generation is twofold: (i) to

provide useful feedback to municipality users by generating informative dashboards

on KPIs, and (ii) to automatically generate and notify alerting signals on critical

situations. The aim of association rule extraction is to evaluate the strength of the

correlations between warnings and contextual features and to automatically trigger

alerts in case the extracted patterns highlight potentially critical situations [144].

For example, the city areas with maximal incidence of a specific warning category

(e.g., urban blight and renewal) are those that may need maximal surveillance. On

the other hand, a percentage decrease in the number of non-emergency warning

signals from one year to the subsequent one may reveal a positive trend in the citizen

perception on that specific urban security issue. The municipality can exploit such

information, for example, to validate the effectiveness of the latest actions.

The effectiveness and usability of NED system have been evaluated on real

non-emergency data acquired in a real Smart City context. We considered as analysis

scenario the study of the non-emergency calls and emails received by the contact

center of the Local Police Department of Turin, an important city located in the

north-west of Italy, and we reported the results of a information and awareness

campaign launched in Turin in September 2014 during a Europe-wide public event,

namely the European Researchers’ night.

This section is organized as follows. Section 4.3.1 describes the NED system,

while Section 4.3.2 summarizes the experiments and the dissemination activities.

4.3.1 The NED system

Non-Emergency Data Analyzer (NED) is a new data mining and Business intel-

ligence environment aimed at analyzing non-emergency open data acquired in a

Smart City context. The main environment blocks are briefly introduced below and

126 Data Science for urban security

schematized in Figure 4.11. A more detailed description is given in the following

sections.

�����������	�

�����
����
�	��
���������	����������	
�����

�����������
��
����

�������

������
���	��

�����	������	�	
��	�����	�

�����������
��
����

����

������	�

�����������	�� �����	��������

�����

�	�	��

���������������

Fig. 4.11 Main architecture of NED system

Data preparation. To prepare non-emergency data to offline analyses, data is ac-

quired, enriched through external open data sources with contextual data related to

the warning reports, and then stored into a unique data repository (see Section 4.3.1).

Data analysis. From the prepared data, informative dashboards are generated based

on a selection of Key Performance Indicators (KPIs), which are quantitative indi-

cators reflecting peculiar data features. In parallel, association rules are extracted

using an established data mining algorithm [145]. Dashboards and association rules

provide complementary information on the perception of citizens on urban security

(see Section 4.3.1).

Notification. Based on KPIs and association rules, alerts on critical situations are

automatically generated and sent to the main municipality actors (e.g., city mayor,

assessors, area operators). Notifications are selectively forwarded based on the role

and authority of the municipality actors (see Section 4.3.1).

4.3 Monitoring the citizens’ perception on urban security in Smart Cities 127

Category Sub-category

Social tension
Vandalism

Other

Civil tension

Youth gathering

Disturbing behaviors

Disturbance from dogs

Disturbance from public venues

Disturbance from other animals

Noise nuisance

Improper use of common areas

Other

Urban quality

Urban blight and renewal

Abandoned vehicles

Other

Table 4.4 Categorization of non-emergency reports

The NED system implementation relies on the open FIWARE technologies3 for

Business Intelligence4 and notification5, while it uses the opensource RapidMiner

suite v.5.0 6 for data mining analyses.

Although the NED system is general and it can be applied to data acquired in

different Smart City environments, hereafter we will consider as use-case scenario

the analysis of the warnings perceived by the citizens of Turin.

Data preparation

The contact center of the Local Police department of the Turin Smart City acquires

non-emergency data and periodically integrates them into a unique data repository

to allow offline data analyses. Warning categories and sub-categories are assigned

according to the classification reported in Table 4.47. For example, citizens may

signal noise coming from the street adjacent to their house due to the presence of a

group of young persons raising their voice night-time. This warning may be classified

as Youth gathering, which belongs to the more general category Civil tension.

3www.fi-ware.org
4SpagoBI v. 4.2, available at www.spagobi.org
5CAP Context Broker, available at http://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/
6https://rapidminer.com
7http://aperto.comune.torino.it

128 Data Science for urban security

Fig. 4.12 Data warehouse dimensional fact model.

For each non-emergency report, the time and the address to which it refers to are

also stored. In addition, the NED system enriches the initial data schema with extra

contextual information acquired from external open data sources. Non-emergency

data enriched with contextual information is stored in a data warehouse whose

dimensional fact model [146] is depicted in Figure 4.12. More specifically,

(i) to analyze the temporal distribution of non-emergency data, the following time

granularities are considered: day, month, 2-month, 4-month, 6-month, and yearly

time periods. Moreover, the day is classified as working or high day, and the warning

report time is aggregated into the corresponding daily time slot (morning, afternoon,

evening, or night).

(ii) to analyze the spatial distribution of non-emergency data, higher-level space

granularities are also considered beyond the location addresses from which the

warning report refers to. Specifically, each address is mapped to the corresponding

city area and to the city district including that area. While the address and district are

recorded by the contact center employees, the city area corresponding to the address

is added as additional contextual feature to the final repository to aggregate data at

an intermediate granularity level. For warning reports referring to a green area, the

green area name and type (e.g., park, garden) are stored.

Furthermore, topological and demographic information about city areas, districts,

and green areas are integrated in the repository as well. Topologies are used to

graphically analyze the most significant spatial trends in non-emergency data, while

demographic information is exploited to characterize non-emergency data according

to the distribution of citizens per area, district, and gender (e.g., the number of

male citizens per city area). Demographic statistics and topologies about the city

areas and districts of Turin were acquired from the official GeoPortal of the Turin

4.3 Monitoring the citizens’ perception on urban security in Smart Cities 129

municipality8. Topologies were encoded in GeoJSON, which is a standard format

for encoding a variety of geographic data structures.

Data analysis

The prepared non-emergency data are analyzed to gain insights into the perceived

citizen’s warnings. The NED system performs two complementary (offline) analyses:

(i) KPI analysis and (ii) data mining based on association rule analysis. The aim of

data analysis is twofold: (i) to produce useful feedback to the municipality users by

generating informative dashboards (using KPIs) and (ii) to automatically generate

and notify alerting messages on critical situations (using KPIs and association rules).

In the following we present KPI and association rule analyses.

KPI analysis. In Business Intelligence, the analysis of Key Performance Indica-

tors (KPIs) is an established methodology [147]. KPIs help organizations define

and measure progress toward organizational goals by monitoring most significant

achievements. In our context, KPIs are quantitative indicators of the perception

of citizens on urban security. To apply KPI analyses to data coming from a real

scenario, we defined a set of KPIs related to the non-emergency data categories

and sub-categories reported in Table 4.4. These KPIs analyze non-emergency data

from two main viewpoints: (i) the temporal dimension and (ii) the spatial dimension

of warning reports. More specifically, to reveal potentially critical situations in a

specific urban area, we analyzed the incidence per city area/district/green area of

the perceived warnings related to a given category/sub-category. Furthermore, to

keep track of the temporal evolution of the citizen perception on urban security,

we also computed the percentage variation between the number of calls received

from a given city area/district/green area in a given time period (e.g., in year 2013)

and those received in the same area in a preceding time period (e.g., in year 2012).

To avoid bias due to the unbalanced distribution of citizens per city area/district,

we normalized both the aforesaid KPIs by the total number of citizens per city

area/district. For example, a positive yearly differential between the number of calls

related to sub-category Abandoned vehicles coming from a given city area may

reveal a negative trend, which may be due to an insufficient surveillance of the area.

Thus, for this area, the municipality may plan targeted actions.

8https://www.comune.torino.it/geoportale

130 Data Science for urban security

Association rule analysis. This step aims at discovering interesting associations

between warning categories/sub-categories and context features in the form of asso-

ciation rules. Association rules may represent underlying correlations among data

items which are hardly inferable by performing KPI analyses. In our context, they

represent sets of warning categories/sub-categories and contextual features (city

areas, time periods) that are strongly correlated with each other.

Many quality measures can be exploited to select the most interesting association

rules. In our context of analysis, co-occurrences between warnings and contextual

features are deemed to be reliable if they are frequent and the corresponding items

are strongly correlated with each other. Hence, in the NED system we selected all

the association rules whose support value is equal to or above a minimum support

threshold minsup, and the lift value is above or equal to the minimum positive

correlation threshold min+lift (min+lift>1) . The association rule extraction task is

accomplished by using the Java-based RapidMiner implementation of the FP-Growth

algorithm (Section 2.2.1). However, different association rule mining algorithms can

be easily handled by the NED system as well.

Notification

To allow the municipality to constantly monitor non-emergency data, the NED

system automatically generates periodic notification messages when KPIs and rules

may indicate potentially critical situations.

To receive notifications, users are asked to subscribe to the NED notification ser-

vice. Since municipality actors have different roles and authorities, the system grants

users to receive notification messages based on their area of expertise. Specifically,

NED first defines a set of roles and then assigns a geographical scope (e.g., at the

level of the municipality, district, or area) to each role based on its authority. During

the subscription phase, users have to indicate their role in the Municipality (e.g., city

mayor, area operator). According to the role and authority the NED system assigns

them a scope (i.e., at level of Municipality, District, or Area).

For example, authoritative actors at the level of the municipality (e.g., the city

mayor) receive all the notifications at the levels of city and district, but not those at

the level of city area, because the latter provide information at a too fine granularity

4.3 Monitoring the citizens’ perception on urban security in Smart Cities 131

level. Conversely, each area operator is granted to receive only the notifications of

the corresponding area.

To generate notification messages, a set of alerting rules is generated from the

KPIs and association rules mined at the previous step (see Section 4.3.1). Each

alerting rule has a scope and may be characterized by a severity level of the warning.

Each user receives by email the subset of alerting rules pertinent to his role scope,

enriched with dashboards on the corresponding KPIs.

For example, alerting rules related to vandalism acts to street furnitures in specific

city areas are sent to all users whose scope is at level of city area and whose area of

expertise comprises street furnitures (e.g., the area operators).

Alerting rules from KPIs. To generate alerting rules from KPIs, the NED system

considers the percentage differential between consecutive time periods per city area,

district, and green area. The aim is to monitor the variation of the citizens’ perception

on urban security over time in specific urban areas, and notify it to the municipality

actors. Based on KPI values, the severity level of the warnings is classified as stable,

substantial increase/decrease or critical increase/decrease, respectively. Stable KPI

variations indicate a relatively stable trend in the citizen perception on urban security.

Conversely, KPI variations falling in the other levels indicate moderately/significantly

decreasing/increasing trends. Usually, stable trends do not require triggering alerting

signals. Instead, levels substantial and critical trigger pre-alerting and alerting

signals, respectively. Notifications are selectively forwarded to the municipality

actors in charge of the specific issue, who may decide to perform targeted actions

(e.g., periodic surveillance of specific areas, redevelopment of green areas).

For each severity level of the warnings (stable, substantial, critical), the corre-

sponding KPI value ranges are analyst-provided. In our experiments, we classified

the KPI variations in the range [-2%; 2%] as stable, those in the ranges [-5%;-2%]

and in [2%;5%] as substantial decrease and increase, respectively, and those below

-5% and above 5% as critical decrease and increase, respectively.

Alerting rules from Association Rules. Association rules represent potentially criti-

cal situations arising from non-emergency data when a specific city area/district/green

area appears to be strongly correlated with a given combination of categories/sub-

categories. To define alerting rules, the NED system first extracts the association

rules from non-emergency data by enforcing minsup equal to 1% (i.e., the implica-

tions must hold for at most 1% of the source data) and min+lift equal to 10 (i.e., the

132 Data Science for urban security

rule antecedent and consequent must be strongly correlated with each other). The

top-K ranked rules in order of decreasing lift value (where K is an analyst-provided

parameter) are exploited to automatically generate notifications to the municipality

actors.

Rules represent implications between green areas/city areas/districts (one or

more) and a specific warning category/sub-category. They can be exploited to trigger

alerts related to a specific urban area. To trigger more detailed alerts, more complex

rules can be extracted by combining the spatial information about the green area/city

area/district with the day or the time slot at which the critical situation occurs.

For example, rule {(Green Area, Pellerina Park)} ⇒ {(Sub-category, Vandalism)}

may indicate a alerting situation related to a specific green area of Turin. Instead, rule

{(Green Area, Pellerina Park), (Time Slot, night)} ⇒ {(Sub-category, Vandalism)}

specializes rule {(Green Area, Pellerina Park)} ⇒ {(Sub-category, Vandalism)} by

providing also the information about the time slot at which most of non-emergency

data were received.

4.3.2 Analysis scenario

The NED system was validated on real non-emergency data acquired in the Turin

Smart City environment. More specifically, we analyzed an open non-emergency call

dataset consisting of 4,672 calls received by the contact center of the Local Police

Department of Turin in years 2012 and 2013, which is available in open municipality

portal AperTo9. The main dataset attributes are described in Section 4.3.1. The

experiments were performed on a quad-core 3.30 GHz Intel Xeon workstation with

16 GB of RAM, running Ubuntu Linux 12.04 LTS.

Two representative examples of dashboards generated from the KPIs defined in

the NED system are reported in Figures 4.13 and 4.14. They show the incidence

of calls for disturbance from public venues per district in years 2012 and 2013,

respectively. Districts are colored with a 4-level scale ranging from blue (low

percentage of calls) to red (high percentage of calls). District 1 (Centro Crocetta)

corresponds to the city center and it is characterized by an averagely high number of

calls in both years. Since the level of warning perceived by citizens in this district

remains critical over the two years, the municipality would need to undertake further

9http://aperto.comune.torino.it

4.3 Monitoring the citizens’ perception on urban security in Smart Cities 133

actions. Oppositely, in district 8 (Borgata Lesna) the number of calls decreased from

year 2012 to year 2013 thus the issue appears to be overcome.

Fig. 4.13 Incidence of disturbance from public venues per district in year 2012.

Fig. 4.14 Incidence of disturbance from public venues per district in year 2013.

Concerning district 1, the NED system extracted the following rules by enforcing

minsup=1% and min+lift=10:

{(District, 1)} ⇒ {(Category, Civil tension)} (sup=9%, conf=60%, lift> 105)

{(District, 1)} ⇒ {(Sub-category, Disturbance from public venues)} (sup=3%,

conf=19%, lift> 105)

134 Data Science for urban security

These rules indicate that 60% of the warnings raised the citizens of district 1

belong to category Civil tension. Among these rules, Disturbance from public venues

appear to be most correlated subcategory (i.e., the rule lift is maximal w.r.t. all the

rules in the form {(District, 1)} ⇒ {(Subcategory, *)}). Hence, the local police may

increase night-time surveillance close to restaurants, pubs, and discos located within

the city center.

4.4 Summary

In the exploratory study of Section 4.1, we shed light on a number of features of the

social medium during a mass emergency. First, we found that only a small fraction,

under 1%, of tweets is georeferenced, which is in line with the numbers in [109, 110].

This implies that a spatially bounded search, like the one that has produced our

Texas dataset, excludes from the results most of the messages and is therefore not

recommendable in the handling of an emergency. Furthermore, less than a fifth of

these tweets had precise GPS coordinates associated with them. Moreover, we have

shown as the kind of results that return from a geographical search belong to special

categories of users or services, e.g. tweets from third party apps like Instagram or

official weather warnings. In the case of the Ischia earthquake, these tweets did not

resemble, in their contents and in the vocabulary used, the entirety of the community.

Researchers and practitioners should therefore be aware of the bias introduced in

making a search of this sort.

In Section 4.2, we have analyzed the open dataset of San Francisco crimes and its

temporal evolution, proposing a methodology for seeking for seasonal patterns. The

spectral analysis has brought to evidence a number of interesting insights that were

not immediately clear from a simple look at the curves, hidden by the complexity of

the data. For example, we discovered the tendency of some categories of crime to

repeat on a monthly basis, like robberies, and how almost all show a weekly period,

like vehicle thefts.

In Section 4.3, we have proposed NED (Non-Emergency Data Analyzer). NED

is a new data mining and Business Intelligence environment aimed at supporting

the analysis of non-emergency data acquired in a Smart City context. Specifically,

the proposed system aims at supporting Smart City municipalities in studying the

perception of citizens on urban security. To this aim, it performs both KPI-based and

4.5 Relevant publications 135

data mining analyses. The analytical results are selectively notified to municipality

actors based on their role, authority, and area of expertise. As case study, we

evaluated the applicability of the proposed system in a real Smart City context, i.e.,

the analysis of the non-emergency reports received by the contact center of the local

police department of Turin (Italy). The results demonstrate the effectiveness of the

proposed systems in monitoring citizens’ perception on different warnings and thus

its ability to alert the municipality as soon as a potentially critical situation emerges.

These studies highlight the crucial role played by voluntary reports made by

the citizens, but do not exclude the integration of new forms of interaction. The

monitoring of a social medium is subordinated to the ability of retrieving messages

from the area of interest. Future research should aim at searching for tweets related

to the emergency in ways that do not rely on spatial information, like for example

[148]. As evidenced in the Ischia scenario, these methods should be able to identify

a stream of tweets that may not surge in the trends and make not exclusively use

of hashtags, as already suggested in [108]. Another interesting approach is that of

improving citizenry’s participation through gamification, like in [149], even though

the use in a mass emergency would be very limited.

The methodology of Section 4.2 can uncover valuable information, but its results

need to be digested in a way that can be easily understood by decision-makers, before

being integrated in a framework like NED. As an example, the spectral analysis can

be the first component of an algorithm aimed at predicting near-future crime events,

like the one in [150]. The discovered temporal seasonalities and the stationarity of

the time series support the design of predictive models based on weekly and monthly

patterns.

4.5 Relevant publications

[102] Luca Venturini and Evelina Di Corso. Analyzing spatial data from twitter

during a disaster. In Proceedings of 2017 IEEE International Conference on Big

Data, pages 3779–3783. IEEE, 2017

[103] Luca Venturini and Elena Baralis. A spectral analysis of crimes in san

francisco. In Proceedings of the 2nd ACM SIGSPATIAL Workshop on Smart Cities

and Urban Analytics, page 4. ACM, 2016

136 Data Science for urban security

[104] Luca Cagliero, Tania Cerquitelli, Silvia Chiusano, Pierangelo Garino,

Marco Nardone, Barbara Pralio, and Luca Venturini. Monitoring the citizens’ percep-

tion on urban security in smart city environments. In Data Engineering Workshops

(ICDEW), 2015 31st IEEE International Conference on, pages 112–116. IEEE, 2015

Chapter 5

Conclusion

This dissertation contributes to the state of art in Big Data developments in several

ways.

To scale distributed classification algorithms beyond current limits, we needed to

know what these limits are. In Chapter 2, we found that a large domain of features,

namely a very large number of distinct categories, is a tough challenge for current

distributed implementations. The proposal of a Distributed Associative Classifier

tackles these limits, raising the bar for the training of classification algorithms for a

large Volume of data. Moreover, it also improves the scaling on another important

dimension, Velocity, as the training of the model of DAC requires significantly less

time than state-of-the-art solutions, while keeping the prediction time the same or

even lower.

To assess the state-of-practice of a Big Data machine learning framework, we

field-tested Apache Spark MLlib algorithms on a real Big Data scenario, like the one

of computer networks measurements. This scenario is very challenging especially on

the Variety of the data, as the behaviour, the size, or the expected measurements of a

network are not known in advance, change from network to network and do not hold

for long periods of time. Therefore, a Big Data solution in such a scenario must cope

with the absence of a ground truth, adapt to the domain expert and the application

that is calling it, and react to changes. We successfully tested our proposed solution,

SeLINA, together with domain experts, building a tool that answers as ad-hoc

solutions tuned by experts, but learns all the needed setup from the data.

138 Conclusion

To validate the effectiveness of a data science process in improving urban safety,

we first investigated on the potential use of social messages and on the amount and

quality of spatial information they contain, in the context of a mass emergency. A

spatial footprint is essential in querying a social medium like Twitter for messages

coming from a delimited area, e.g. a city. Unfortunately, a very small percentage of

tweets provide this information, and of this another small portion contains precise

coordinates. Moreover, from our study, presented in Chapter 4, it appears that this

subset of tweets is dominated by digital marketing and automated bots, which are

not interesting when sensing the opinion of the citizenry or searching for requests for

intervention. However, “traditional” sources can still provide important insights on

the data. In the following of the chapter, we presented a methodology to mine tempo-

ral patterns in social phenomena, and applied it to crimes in San Francisco. We also

proposed to mine patterns and track the evolution of a phenomenon with association

rules and KPIs, respectively, and integrated these techniques in an automated system,

NED.

Through all the chapters, we stressed the major importance of the “fourth” of

the three Vs of Big Data, that is Value. In Chapter 2, Value is preserved maintaining

a readable model, whereas the only scalable alternative needed the features to be

irreversibly hashed. Moreover, the Value of the model is augmented, with an higher

quality of predictions. In Chapter 3, the Value relies in the insights provided to the

domain expert, than can help him or her detecting anomalies in the network or even

attacks, or understand how the network is legitimately used. All this, without his or

her intervention on the algorithm or its parameters, in a self-learning fashion that can

also automatically trigger model updates, if desired. In Chapter 4, Value is generated

by giving actionable insights to decision makers, timely and automatically. This can

lead to the definition of policies to fight the issues found, as for example an augment

of vandalism in green areas.

Future work can improve our findings in several ways. The work on a scalable

associative classifier can be extended with a mixed strategy, that combines both the

data and the search split approach of frequent itemsets miners. The integration of

multiple machine learning algorithms in a Big Data pipeline should be improved

with the addition of a self-learning feature selection technique. The potential of such

a framework make it a promising tool for other fields of application as well, and

it should thus be tested in different scenarios. The potential applications of Data

Science to urban safety are numerous. The methodology proposed to find temporal

139

patterns needs to be further developed and integrated with tools that can make its

results comprehensible to the final users of the analysis. A very promising field

of application for the periodogram would be as a first step in a machine learning

pipeline, as an automated tool to produce meta-features for time series.

Appendix A

Further investigations on the

performance of distributed FIM

algorithms

This Appendix contains a set of experiments and results that investigate further the

performance of the algorithms surveyed in Section 2.2. In Section 2.2.4, we have

already analyzed the empirical limitations of each solution, summarized in Section

2.2.5. With this Appendix, we inspect in detail the reasons of the above-mentioned

limitations, by measuring several internal metrics of the algorithms’ performance

like load balancing, communication cost or resource utilization. The results confirm

and strengthen the findings already outlined in Section 2.2.4, and may be of possible

use to the researcher interested in improving the algorithms that are subject of the

study.

The contents of this Appendix were originally published in [3]. The Appendix

is structured as follows. Section A.1 gives details on the horizontal scalability

of the algorithms. Section A.2 experiments with different configurations of the

underlying framework. Section A.3 analyzes the impact on the total execution time

of the different phases of the algorithms. Section A.4 studies the performance of the

algorithms in two real use case scenarios. Section A.5 analyzes the load balancing

of the algorithms. Finally, Section A.6 studies the communication costs.

142 Further investigations on the performance of distributed FIM algorithms

Fig. A.1 Speedup with different parallelization degrees (Dataset #14, minsup 0.4%, the green

line represents the optimal behavior.)

A.1 Scalability in terms of parallelization degree

We analyzed the speedup by running the same mining problem with increasing

numbers of parallel tasks. The dataset selection and the minsup parameter choice

are difficult since we need to identify a mining problem satisfying two conditions:

(i) allowing all the executions to complete with any number of parallel tasks, and,

at the same time, (ii) being very demanding so that the distributed framework is

actually exploited. We selected minsup 0.4% and Dataset #14 (see Table 2.3) to be

light enough for condition (i) and demanding enough for condition (ii). The speedup

of a configuration with a parallelization degree equal to p is computed as

speedup(paral_degree = p) =
Exec_Time(paral_degree = 1)

Exec_Time(paral_degree = p)

Ideally, the speedup should be equal to the parallelization degree p itself, i.e.,

increasing the number of resources (parallel tasks) of a factor p, should lead to a

speedup equal to p.

A.2 Impact of framework and hardware configurations 143

Figure A.1 shows the speedup results. A parallelization degree equal to 1 cor-

responds to the minimal computational resource setting. In our case, it matches a

configuration with only two parallel independent tasks. Its executiion time is used as

reference to compute the speedup related to the other, more robust, configurations.

For instance, the speedup related to a parallelization degree equal to five is measured

through a configuration exploiting five times the amount of resources related to the

basic configuration (i.e. ten parallel independent tasks).

In this experiment, it is clear that the FP-Growth-based implementations provide

a better speedup. BigFIM, on the contrary, is not able to leverage a number of

parallel tasks higher than 6. Because of the size of the dataset, DistEclat is not able

to perform the mining.

A.2 Impact of framework and hardware configura-

tions

We performed a set of experiments to test the behavior of the algorithms with

different framework and hardware configurations to identify possible bottlenecks.

We selected a set of configurations characterized by different combinations of (i)

parallelization degree, (ii) computational power (cores per task) and (iii) memory

(memory per task). The selected configurations are reported in Table A.1. Conf. 1 is

considered the reference configuration. The differences of the other configurations

with respect to Conf. 1 are reported in bold in Table A.1.

Conf. 1, Conf. 2, and Conf. 3 are used to evaluate the impact of the computational

power (in terms of number of cores per task), Conf. 1 and Conf. 4 are used to evaluate

the impact of the available memory, while Conf. 1, Conf. 5, and Conf. 6 are used to

compare the impact of the previous features with respect to the parallelization degree.

Experiments have been performed on dataset #1, with a fixed minsup set to 0.2%,

and on dataset #5, with a minsup value set to 1.5%.1 The main difference between

the two datasets is the average transaction length (10 attributes per transaction in

Dataset #1, 50 attributes per transaction in Dataset #5). In this way, it is possible

to evaluate if the impact of hardware configuration is affected by data distribution.

1This support value is higher than that used in Section 2.2.4 to allow the execution of the

experiments also for the BigFIM algorithm with all the selected hardware configurations.

144 Further investigations on the performance of distributed FIM algorithms

Fig. A.2 Performances with different hardware configurations (Dataset #1, minsup 0.2%)

For DistEclat, in the experiments with Dataset #1, we were forced to reduce the

dataset size to 1/10. In this way we were able to complete its experiments in all

configurations (please note that the intra-algorithm comparison is still possible in

percentage). As evidenced in Section 2.2.4, DistEclat does not suit large transactions

length and, for this reason, we were not able to run any experiment with Dataset #5.

Configuration Parallelization Number Memory

name Degree of cores per task

per task (GB)

Conf. 1 5 1 1.5

Conf. 2 5 2 1.5

Conf. 3 5 3 1.5

Conf. 4 5 1 3

Conf. 5 2 1 1.5

Conf. 6 10 1 1.5

Table A.1 Framework and Hardware configurations

Figure A.2 and A.3 present the normalized execution time for each algorithm

over different configurations on Dataset #1. For each algorithm, the normalized

A.2 Impact of framework and hardware configurations 145

Fig. A.3 Performances with different hardware configurations (Dataset #5, minsup 1.5%)

execution time is computed by dividing the execution time of each configuration by

the execution time of the slowest configuration. Hence, for each algorithm, 100% is

associated with the slowest configuration.

The comparison of Conf. 1, 2, and 3 shows that the number of cores per task does

not impact on the execution time of the algorithms. Only in the second experiment

(Figure A.3), MLlib PFP seems to take advantage of the superior computational

power. This means that the work assigned to each task, in the majority of the cases,

can be performed by one single core. Hence, increasing the number of cores per task

is not much effective.

Similarly, the main memory assigned to each task does not impact on the execu-

tion time of the algorithms (see Conf. 1 and 4). Specifically, the main memory per

task impacts only on the size of the sub-problem that can be managed by each task,

but not on its execution time. Hence, a proper setting of the main memory per task

is required to be able to complete the execution and obtain the results, but not for

its efficiency and performance. Finally, Configurations 1, 5, and 6 confirm that the

parallelization degree is the most important factor affecting the execution time of the

considered algorithms, as deeply investigated in Section A.1, and especially in the

cases with a large amount of attributes per transactions Figure A.3.

146 Further investigations on the performance of distributed FIM algorithms

Fig. A.4 BigFIM: Execution time of its phases

A.3 Execution time breakdown into phases

To investigate possible bottlenecks inside multi-phase algorithms, we compared the

execution times related to each phase. Specifically, for each algorithm, we computed

the percentage of time associated with the execution of each phase with respect to

the total execution time of the algorithm.

We selected Dataset #1 and we set minsup to 0.15%, which allowed us to

complete the full set of experiments with all algorithms.2

As reported in Figure A.4, for BigFIM the length of the prefixes extracted in

the first phase strongly affects the weight of that phase in the overall process. For

DistEclat (Figure A.5), instead, the difference is not that heavy.

The last phase of both algorithms (i.e. the top dotted part on the graphs), that is

associated with the mining of the itemsets with a length greater than the prefix-length

threshold, has a lower impact on the execution time of the algorithms, especially

when a higher prefix threshold is set. These data, and the failures reported in the

2In this set of experiments, we used a smaller configuration of our cluster to guarantee network

isolation. For this reason, we had to use a reduced version of Dataset #1 (1/10) for DistEclat, very

sensitive to memory issues.

A.3 Execution time breakdown into phases 147

Fig. A.5 DistEclat: Execution time of its phases

Fig. A.6 Mahout and MLlib PFP algorithms: Execution time of their phases

148 Further investigations on the performance of distributed FIM algorithms

experiments of the previous subsections, indicate that the first two phases are the

main bottlenecks for both algorithms. For BigFIM, each phase is strongly exposed

to memory issues, as resumed in Table A.2. The experiments demonstrate that the

Apriori phase is particularly challenging. For DistEclat, instead, the very first stage

is dedicated to the mining of 1-itemsets and it is mostly affected by high reading and

communication costs. However, we have experienced some memory issues, which

are probably related to the handling of the tidlists. The other stages, instead, are

more likely to be affected by memory constraints.

Figure A.6 reports the results for the PFP implementations. Mahout PFP spends

1/3 of the time in the first phase, in which the F-list is generated, while MLlib PFP is

on the second phase for almost 90% of the time.3 The difference between the two

approaches is motivated by the less elastic handling of the different jobs by Hadoop

with respect to the Spark framework. Even if, especially for the Mahout PFP, the

F-list generation could take a good amount of time, it is not a possible bottleneck of

the whole mining. Firstly, it is a very flat WordCount-like application, characterized

by high reading and communication costs, and secondly, it has never shown to be a

point of failure in any previous experiment. From Figure A.6, the bottleneck for the

FP-growth-based algorithms is the itemset extraction phase (i.e., the second phase of

both MLlib PFP and Mahout PFP), strongly constrained by memory.

All the algorithms and the majority of their phases are strongly bottlenecked by

memory issues. Memory availability is the main factor affecting the ability of each

algorithm to complete the itemset extraction. Interestingly, we have seen that it does

not affect the execution time performances (Subsection A.2).

We have also tried to track and measure the resource utilization in terms of

disk usage (read and write phases of HDFS), network communication, and CPU

usage. Please note that the values are normalized with respect to the maximum

resource utilization. Specifically, Figures A.7a and A.7b report the achieved results

for BigFIM and DistEclat, while Figures A.8a and A.8b show the results for the

PFP-based implementations.

Figures A.7a and A.7b highlight two main peaks in resources utilization for

BigFIM and DistEclat.4 For BigFIM the first peak is related to the Apriori phase

3Please note that we have forced the materialization of all the preliminary results with the Spark-

based MLlib PFP.
4For the sake of clarity we have used a prefix length of 1 to enhance the effect of the last mining

phase.

A.4 Real use cases 149

Algorithm Phases Bottleneck

FP-growth-based

Algorithms

F-List Reading and Communication Cost

FP-Tree Mining Memory

BigFIM

Apriori Phases Memory

K+1 Prefixes Memory

Eclat Mining Memory

DistEclat

Singletons Read. and Comm. Cost + Memory

Prefixes Memory

Eclat Mining Memory

Table A.2 Stage Bottlenecks

and the k+1-prefixes generation, while the second is related to the depth-first mining.

Similarly, for DistEclat the first peak is related to the singleton and prefixes generation

while the second to the depth-first mining.

In Figure A.8a it is shown the behavior in terms of resource utilization of Mahout

PFP. The first peak in terms of HDFS and Network communication is related to the

initial F-list generation. After that, the tree exploration starts and the CPU is more

exploited. The last peaks are related to the aggregation job used to extract the top-k

frequent closed itemsets. Figure A.8b shows instead the MLlib PFP resource usage.

Also the MLlib implementation of PFP is characterized by an initial peak in terms

of HDFS operations followed by a peak in terms of CPU usage, associated with the

intensive mining phase.

A.4 Real use cases

In the following, we analyze the performance of the mining algorithms in two real-

life scenarios: (i) URL tagging of the Delicious dataset and (ii) network traffic flow

analysis. The characteristics of the two datasets are reported in Table A.3.

ID Name Num. of Avg. len Transactions Size

different items per transaction (GB)

15 Delicious 57,372,977 4 41,949,956 44.5

16 Netlogs 160,941,600 15 10,729,440 0.61

Table A.3 Real-life use-cases dataset characteristics

150 Further investigations on the performance of distributed FIM algorithms

(a)

(b)

Fig. A.7 Resource utilization of (a) BigFIM (b) DistEclat

A.4 Real use cases 151

(a)

(b)

Fig. A.8 Resource utilization of (a) Mahout PFP (b) MLlib PFP

152 Further investigations on the performance of distributed FIM algorithms

A.4.1 URL tagging

We evaluated the selected algorithms on the Delicious dataset [151], which is a

collection of web tags. Each record represents the tag assigned by a user to a URL

and it consists of 4 attributes: date, user id (anonymized), tagged URL, and tag value.

The transactional representation of the Delicious dataset includes one transaction

for each record, where each transaction is a set of four pairs (attribute, value), i.e.,

one pair for each attribute. The dataset stores more than 3 years of web tags. It is

very sparse because of the huge number of different URLs and tags. Additional

characteristics of the dataset are reported in Table A.4.

This experiment simulates the environment of a service provider that periodically

analyzes the web tag data to extract frequent patterns: they represent the most

frequent correlations among tags, URLs, users, and dates. Many different use cases

can fit this description: tag prediction, topic classification, trend evolution, etc. Their

evolution over time is also interesting. To this aim, the frequent itemset extraction

has been executed cumulatively on temporally adjacent subsets of data, whose length

is a quarter of year (i.e., first quarter, then first and second quarter, then first, second,

and third quarter, and so on, as if the data were being colleted quarterly and analyzed

as a whole at the end of each quarter). The setting of minsup in a realistic use-

case proved to be a critical choice. Too low values lead to millions of itemsets,

which become useless as they exceed the human capacity to understand the results.

However, too high minsup values would discard longer itemsets, which are more

meaningful as they better highlight more complex correlations among the different

attributes and values. Because of the high sparsity of the dataset, we identified the

setting minsup=0.01% as the best tradeoff.

Table A.4 reports the cumulative number of transactions for the different periods

of time (i.e., the cardinality of the input dataset) and the number of frequent itemsets

extracted with a fixed minsup of 0.01%, while the execution times of the different

algorithms are shown in Figure A.9.

MLlib PFP consistently proves to be the fastest approach, with DistEclat follow-

ing. However, while DistEclat is slightly faster than MLlib PFP only with the first,

smallest dataset (up to Dec 2003, with 150 thousands transactions), when the dataset

size increases, DistEclat execution time does not scale. DistEclat eventually fails

for the final 40-million-transaction dataset of Dec 2005, due to memory exhaustion.

A.4 Real use cases 153

Up to year, Number of Number of

month, quarter transactions frequent itemsets

2003 Dec, Q4 153,375 7197

2004 Mar, Q1 489,556 6013

2004 Jun, Q2 977,515 5268

2004 Sep, Q3 2,021,261 5084

2004 Dec, Q4 4,349,209 4714

2005 Mar, Q1 9,110,195 4099

2005 Jun, Q2 15,388,516 3766

2005 Sep, Q3 24,974,689 3402

2005 Dec, Q4 41,949,956 3090

Table A.4 Delicious dataset: cumulative number of transactions and frequent itemsets with

minsup 0.01%.

Fig. A.9 Execution time for different periods of time on the Delicious dataset

(minsup=0.01%)

BigFIM and Mahout PFP consistently provide 2 to 3 times higher execution times.

Apart from DistEclat, all algorithms complete the task with similar performance

despite increasing the dataset cardinality from 150 thousand transactions to 41 mil-

lions, thanks to the constant relative minsup threshold which reduces the number of

frequent itemsets for decreasing density of the dataset. Hence, MLlib PFP is the best

154 Further investigations on the performance of distributed FIM algorithms

choice for this dataset characterized by short transactions (the transaction length is

4).

A.4.2 Network traffic flows

Fig. A.10 Number of flows for each hour of the day.

This use case entails the analysis of a network environment by using a net-

work traffic log dataset, where each transaction represents a TCP flow. A network

flow is a bidirectional communication between a client and a server. The dataset

has been gathered through Tstat, in a way that is analogous to the one in Sec-

tion 3.5. Each transaction of the dataset is associated with a flow and consists of pairs

(f low f eature,value). These features can be categorical (e.g., TCP Port, Window

Scale) or numerical (e.g., RTT, Number of packets, Number of bytes). Numerical

attributes have been discretized by using the same approach adopted in [152]. Fi-

nally, we have divided the set of flows (i.e., the set of transactions) in 1-hour slots,

generating 24 sub-datasets. The number of flows in each sub-dataset is reported in

Figure A.10.

In this use case, the network administrator is interested in performing hourly

analysis to shape the hourly network traffic. Hence, we evaluated the performance of

the four algorithms, comparing their execution time, on the 24 hourly sub-datasets.

A.5 Load balancing 155

Fig. A.11 Execution time of different hours of the day. (dataset 16, minsup=1%)

For all the 24 experiments minsup was set to 1%, which was the tradeoff value

allowing all the algorithms to complete the extraction.

The results are reported in Figure A.11, where the performance of the different

approaches show a clear trend: DistEclat always achieves the lowest execution time,

followed by MLlib PFP and BigFIM. Mahout PFP is the slowest. The execution time

is almost independent of the dataset cardinality, as it slightly changes throughout the

day. The low dataset size (less than 1 Gigabyte overall) and cardinality (less than

1 million transactions) make this the ideal use case for DistEclat, which strongly

exploits in-memory computation.

A.5 Load balancing

We analyzed load balancing on a 1-hour-long subset of the network log dataset

(Table A.3) with a fixed minsup of 1%. We consider the most unbalanced jobs of

each algorithm and compare the execution times of the fastest and the slowest tasks.

To this aim, we are not interested in the absolute execution time, but rather in the

normalized execution times, where the slowest task is assigned a value of 100, and

the fastest task is compared to such value, as reported in Figure A.12.

156 Further investigations on the performance of distributed FIM algorithms

Hour of Number of Number of

the day transactions frequent itemsets

0.00 437,417 166,217

1.00 318,289 173,960

2.00 205,930 163,266

3.00 162,593 166,344

4.00 122,102 157,069

5.00 123,683 164,493

6.00 121,346 170,129

7.00 127,056 159,921

8.00 211,641 169,751

9.00 357,838 187,912

10.00 644,408 191,867

11.00 656,965 183,021

12.00 648,206 184,279

13.00 630,434 180,384

14.00 544,572 175,252

15.00 729,518 192,992

16.00 735,850 189,160

17.00 611,582 177,808

18.00 719,537 179,228

19.00 607,043 174,783

20.00 477,760 161,153

21.00 470,291 159,065

22.00 534,103 144,212

23.00 531,276 164,516

Table A.5 Network traffic flows: number of transactions and frequent itemsets with

minsup 0.1%.

MLlib PFP achieves the best load balancing, with comparable execution times

for all tasks throughout all nodes, whose difference is in the order of 10%. Mahout

PFP, instead, shows the worst load balancing issues, with differences as high as

90%. The difference between MLlib PFP and Mahout PFP can be correlated to

the granularity of the subproblems. The smaller the subproblems, the better the

load balancing because their execution times are more similar. MLlib PFP allows

specifying the number of partitions, i.e., of subproblems, which obviously impacts

on the granularity of each subproblem. Hence, setting opportunely this parameter, a

good load balancing result is achieved. Differently, Mahout PFP automatically sets

A.6 Communication costs 157

Fig. A.12 Normalized execution time of the most unbalanced tasks.

the number of subproblems and the current heuristic used to set it does not seem to

work well on the considered datasets (unbalanced subproblems are generated).

We included BigFIM and DistEclat with 2 different first-phase prefix sizes. For

these algorithms, the experiment confirms that a configuration with longer prefixes

leads to a more balanced mining tasks than a configuration with short-sized prefixes,

as mentioned in Subsection 2.2.3.

A.6 Communication costs

To evaluate the communication cost, we measure the amount of data transmitted and

received through the nodes network interfaces. This information has been retrieved

by means of the utilities provided by the Cloudera Manager tool.

The experiments have been performed on Dataset #1 with a fixed minsup value of

0.1%, which was the lowest value for which all algorithms completed the extraction.

Figure A.13 reports, for each algorithm, the average value among transmitted and

received traffic, compared to the total execution time. Firstly, the two measures

do not seem to be correlated: higher communication costs are associated with low

158 Further investigations on the performance of distributed FIM algorithms

Fig. A.13 Communication costs and performance for each algorithm, Dataset #1,

minsup 0.1%. The graph reports an average between transmitted and reveiced data.

execution times for BigFIM and DistEclat, whereas MLlib reports both measures

with high values. Mahout PFP has a communication cost 4 to 5 times lower than all

the others, which exchange an average of 2 Gigabytes of data. Mahout PFP average

communication cost is around 0.5 Gigabytes, which is approximately the dataset

size. The difference between DistEclat and BigFIM is not large because with only

2-length prefixes just an extra iteration is done by BigFIM. Even though Mahout PFP

is the most communication-cost optimized implementation, the very low amount of

data sent through the network is related to the adoption of compression techniques,

which lead to higher execution times.

References

[1] United Nations Department of Economic and Social Affairs. World’s popula-
tion increasingly urban with more than half living in urban areas. UN News
Center, 2014.

[2] United Nations Department of Economic and Social Affairs. World population
prospects: The 2017 revision, key findings and advance tables. In Working
Paper No. ESA/P/WP. 248, pages 1–53. 2017.

[3] Daniele Apiletti, Elena Baralis, Tania Cerquitelli, Paolo Garza, Fabio Pul-
virenti, and Luca Venturini. Frequent itemsets mining for big data: A compar-
ative analysis. Big Data Research, 9:67 – 83, 2017.

[4] Luca Venturini, Paolo Garza, and Daniele Apiletti. Bac: A bagged associative
classifier for big data frameworks. In East European Conference on Advances
in Databases and Information Systems, pages 137–146. Springer, 2016.

[5] Luca Venturini, Elena Maria Baralis, and Paolo Garza. Scaling associative
classification for very large datasets. JOURNAL OF BIG DATA, 4(1):1–24,
2017.

[6] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern mining:
Current status and future directions. Data Min. Knowl. Discov., 15(1):55–86,
August 2007.

[7] Bart Goethals. Survey on frequent pattern mining. Univ. of Helsinki, 2003.

[8] Charu C Aggarwal and Jiawei Han. Frequent pattern mining. Springer, 2014.

[9] Rakesh Agrawal, Tomasz Imilienski, and Arum Swami. Mining association
rules between sets of items in large databases. In SIGMOD’93 , Washington
DC, May 1993.

[10] Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classification and associa-
tion rule mining. In Proceedings of the Fourth International Conference on
Knowledge Discovery and Data Mining, pages 80–86. AAAI Press, 1998.

[11] Fadi Thabtah. A review of associative classification mining. The Knowledge
Engineering Review, 22(01):37–65, 2007.

160 References

[12] P.-N. Tan and V. Kumar. Interestingness measures for association patterns: A
perspective. KDD 2000 Workshop on Postprocessing in Machine Learning
and Data Mining, 2000.

[13] Leo Breiman. Some properties of splitting criteria. Machine Learning,
24(1):41–47, 1996.

[14] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules in large databases. In Proceedings of the 20th International
Conference on Very Large Data Bases, VLDB ’94, pages 487–499, San
Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[15] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without
candidate generation. In SIGMOD ’00, pages 1–12, 2000.

[16] Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and
Wei Li. New algorithms for fast discovery of association rules. In KDD’97,
pages 283–286. AAAI Press, 1997.

[17] Lan Vu and Gita Alaghband. Mining frequent patterns based on data charac-
teristics. In Proceedings of 2012 International Conference on Information
and Knowledge Engineering, pages 369–375, 2012.

[18] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing
on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[19] Hongjian Qiu, Rong Gu, Chunfeng Yuan, and Yihua Huang. YAFIM: A
parallel frequent itemset mining algorithm with spark. In IPDPSW’14, pages
1664–1671, May 2014.

[20] Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, and Edward Y. Chang. Pfp:
parallel fp-growth for query recommendation. In Proceedings of the 2008
ACM conference on Recommender systems, RecSys ’08, pages 107–114, New
York, NY, USA, 2008. ACM.

[21] Sandy Moens, Emin Aksehirli, and Bart Goethals. Frequent itemset mining
for big data. In SML: BigData 2013 Workshop on Scalable Machine Learning.
IEEE, 2013.

[22] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean
Owen, Doris Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei
Zaharia, and Ameet Talwalkar. Mllib: Machine learning in apache spark. J.
Mach. Learn. Res., 17(1):1235–1241, January 2016.

[23] The Apache Mahout Project. The Apache Mahout machine learning library.
Available: http://mahout.apache.org/ Last access on March 2013. 2013.

[24] Sandy Moens, Emin Aksehirli, , and Bart Goethals. Dist-eclat and bigfim.
https://github.com/ua-adrem/bigfim, 2013.

References 161

[25] N. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance
perspective. In IEEE TKDE, 5(6), 1993.

[26] Cloudera, last Accessed: 16/10/2015.

[27] Elena Baralis and Paolo Garza. A lazy approach to pruning classification
rules. In Data Mining, 2002. Proceedings. IEEE International Conference on,
pages 35–42. IEEE, 2002.

[28] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2005.

[29] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[30] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[31] C.L. Blake and C.J. Merz. UCI repository of machine learning databases,
1998.

[32] Wenmin Li, Jiawei Han, and Jian Pei. Cmar: Accurate and efficient classifica-
tion based on multiple class-association rules. In Data Mining, 2001. ICDM
2001, Proceedings IEEE International Conference on, pages 369–376. IEEE,
2001.

[33] Elena Baralis, Silvia Chiusano, and Paolo Garza. A lazy approach to associa-
tive classification. IEEE Transactions on Knowledge and Data Engineering,
20(2):156–171, 2008.

[34] Sara Landset, Taghi M Khoshgoftaar, Aaron N Richter, and Tawfiq Hasanin.
A survey of open source tools for machine learning with big data in the hadoop
ecosystem. Journal of Big Data, 2(1):24, 2015.

[35] Dilpreet Singh and Chandan K Reddy. A survey on platforms for big data
analytics. Journal of Big Data, 2(1):8, 2015.

[36] Olivier Chapelle, Eren Manavoglu, and Romer Rosales. Simple and scalable
response prediction for display advertising. ACM Transactions on Intelligent
Systems and Technology (TIST), 5(4):61, 2015.

[37] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.
In Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 785–794. ACM, 2016.

[38] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh
Attenberg. Feature hashing for large scale multitask learning. In Proceedings
of the 26th Annual International Conference on Machine Learning, pages
1113–1120. ACM, 2009.

162 References

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[40] Andy Liaw and Matthew Wiener. Classification and regression by randomfor-
est. R News, 2(3):18–22, 2002.

[41] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Mining:
Practical machine learning tools and techniques. Morgan Kaufmann, 2016.

[42] Andrew P Bradley. The use of the area under the roc curve in the evaluation
of machine learning algorithms. Pattern recognition, 30(7):1145–1159, 1997.

[43] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM
Comput. Surv., 34(1):1–47, March 2002.

[44] Guozhu Dong, Xiuzhen Zhang, Limsoon Wong, and Jinyan Li. Caep: Clas-
sification by aggregating emerging patterns. In International Conference on
Discovery Science, pages 30–42. Springer, 1999.

[45] Guoqing Chen, Hongyan Liu, Lan Yu, Qiang Wei, and Xing Zhang. A new
approach to classification based on association rule mining. Decision Support
Systems, 42(2):674–689, 2006.

[46] Xiaoxin Yin and Jiawei Han. Cpar: Classification based on predictive associ-
ation rules. In Proceedings of the 2003 SIAM International Conference on
Data Mining, pages 331–335. SIAM, 2003.

[47] Jianyong Wang and George Karypis. Harmony: Efficiently mining the best
rules for classification. In Proceedings of the 2005 SIAM International Con-
ference on Data Mining, pages 205–216. SIAM, 2005.

[48] Fadi Thabtah, Peter Cowling, and Yonghong Peng. Mcar: multi-class clas-
sification based on association rule. In Computer Systems and Applications,
2005. The 3rd ACS/IEEE International Conference on, page 33. IEEE, 2005.

[49] Fadi A Thabtah, Peter Cowling, and Yonghong Peng. Mmac: A new multi-
class, multi-label associative classification approach. In Data Mining, 2004.
ICDM’04. Fourth IEEE International Conference on, pages 217–224. IEEE,
2004.

[50] Alessio Bechini, Francesco Marcelloni, and Armando Segatori. A mapre-
duce solution for associative classification of big data. Information Sciences,
332:33–55, 2016.

[51] Osmar R Zaïane and Maria-Luiza Antonie. Classifying text documents by
associating terms with text categories. In Australian computer Science com-
munications, volume 24, pages 215–222. Australian Computer Society, Inc.,
2002.

References 163

[52] Alípio M Jorge and Paulo J Azevedo. An experiment with association rules
and classification: Post-bagging and conviction. In International Conference
on Discovery Science, pages 137–149. Springer, 2005.

[53] Xiaoyuan Xu, Guoqiang Han, and Huaqing Min. A novel algorithm for
associative classification of image blocks. In Computer and Information
Technology, 2004. CIT’04. The Fourth International Conference on, pages
46–51. IEEE, 2004.

[54] Y. Sun, Y. Wang, and A. K. C. Wong. Boosting an associative classifier. IEEE
Transactions on Knowledge and Data Engineering, 18(7):988–992, July 2006.

[55] Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, and Edward Y Chang. Pfp:
parallel fp-growth for query recommendation. In Proceedings of the 2008
ACM conference on Recommender systems, pages 107–114. ACM, 2008.

[56] Daniele Apiletti, Elena Baralis, Tania Cerquitelli, Paolo Garza, Danilo Gior-
dano, Marco Mellia, and Luca Venturini. Selina: a self-learning insightful
network analyzer. IEEE Transactions on Network and Service Management,
13(3):696–710, 2016.

[57] D. Apiletti, E. Baralis, T. Cerquitelli, P. Garza, and L. Venturini. Safe-nec:
A scalable and flexible system for network data characterization. In NOMS
2016 - 2016 IEEE/IFIP Network Operations and Management Symposium,
pages 812–816, April 2016.

[58] Pedro Casas, Alessandro D’Alconzo, Pierdomenico Fiadino, Arian Bär,
Alessandro Finamore, and Tanja Zseby. When youtube does not work - analy-
sis of qoe-relevant degradation in google CDN traffic. IEEE Transactions on
Network and Service Management, 11(4):441–457, 2014.

[59] Arian Bär, Alessandro Finamore, Pedro Casas, Lukasz Golab, and Marco
Mellia. Large-scale network traffic monitoring with dbstream, a system for
rolling big data analysis. In 2014 IEEE International Conference on Big Data,
Big Data 2014, Washington, DC, USA, October 27-30, 2014, pages 165–170,
2014.

[60] D. Giordano, S. Traverso, L. Grimaudo, M. Mellia, E. Baralis, A. Tongaonkar,
and S. Saha. Youlighter: A cognitive approach to unveil youtube cdn and
changes. IEEE Transactions on Cognitive Communications and Networking,
1(2):161–174, June 2015.

[61] Pedro Casas, Johan Mazel, and Philippe Owezarski. Unsupervised network
intrusion detection systems: Detecting the unknown without knowledge. Com-
puter Communications, 35(7):772–783, 2012.

[62] Juliette Dromard, Gilles Roudiere, and Philippe Owezarski. Unsupervised net-
work anomaly detection in real-time on big data. In New Trends in Databases
and Information Systems - ADBIS 2015 Short Papers and Workshops, BigDap,

164 References

DCSA, GID, MEBIS, OAIS, SW4CH, WISARD, Poitiers, France, September
8-11, 2015. Proceedings, pages 197–206, 2015.

[63] Yeonhee Lee and Youngseok Lee. Toward scalable internet traffic measure-
ment and analysis with hadoop. ACM SIGCOMM Computer Communication
Review, 43(1):5–13, 2013.

[64] M. Mellia, M. Meo, L. Muscariello, and D. Rossi. Passive analysis of tcp
anomalies. Computer Networks, 52(14):2663–2676, 2008.

[65] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In Proceedings of the Second International Conference on Knowledge Dis-
covery and Data Mining (KDD-96), Portland, Oregon, USA, pages 226–231,
1996.

[66] DBScan. DBScan — Wikipedia, the free encyclopedia, 2011. [Online;
accessed 15-June-2018].

[67] Dario Antonelli, Elena Baralis, Giulia Bruno, Tania Cerquitelli, Silvia Chiu-
sano, and Naeem A. Mahoto. Analysis of diabetic patients through their
examination history. Expert Syst. Appl., 40(11):4672–4678, 2013.

[68] Lior Rokach and Oded Maimon. Data Mining with Decision Trees: Theory
and Applications. World Scientific Publishing Co., Inc., River Edge, NJ, USA,
2008.

[69] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen.
Classification and regression trees. CRC press, 1984.

[70] Pang-Ning T. and Steinbach M. and Kumar V. Introduction to Data Mining.
Addison-Wesley, 2006.

[71] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and vali-
dation of cluster analysis. Journal of Computational and Applied Mathematics,
20:53 – 65, 1987.

[72] A. Finamore, M. Mellia, M. Meo, M. Munafò, and D. Rossi. Experiences of
internet traffic monitoring with tstat. IEEE Network, 25(3):8–14, 2011.

[73] J. L. Garcia-Dorado, A. Finamore, M. Mellia, M. Meo, and M. Munafo.
Characterization of isp traffic: Trends, user habits, and access technology
impact. IEEE Transactions on Network and Service Management, 9(2):142–
155, June 2012.

[74] Daniele Apiletti, Elena Baralis, Tania Cerquitelli, and Vincenzo D’Elia. Char-
acterizing network traffic by means of the netmine framework. Computer
Networks, 53(6):774–789, 2009.

References 165

[75] M. Hossain, SM Bridges, and RB Vaughn Jr. Adaptive intrusion detection with
data mining. IEEE Internation Conference on Systems, Man and Cybernetics,
4, 2003.

[76] Franck Le, Sihyung Lee, Tina Wong, Hyong S. Kim, and Darrell Newcomb.
Minerals: using data mining to detect router misconfigurations. In MineNet

’06, pages 293–298, New York, NY, USA, 2006. ACM Press.

[77] Manoj K. Agarwal, Manish Gupta, Gautam Kar, Anindya Neogi, and Anca
Sailer. Mining activity data for dynamic dependency discovery in e-business
systems. IEEE Transactions on Network and Service Management, 1(2):49–
58, 2004.

[78] Thomas Karagiannis, Konstantina Papagiannaki, and Michalis Faloutsos.
Blinc: multilevel traffic classification in the dark. In SIGCOMM, pages
229–240, 2005.

[79] Andrew W. Moore and Denis Zuev. Internet traffic classification using
bayesian analysis techniques. In SIGMETRICS ’05, pages 50–60, New York,
NY, USA, 2005. ACM Press.

[80] José Everardo Bessa Maia et al. Network traffic prediction using pca and
k-means. In Network Operations and Management Symposium (NOMS), 2010
IEEE, pages 938–941. IEEE, 2010.

[81] Ye Ouyang, M. Hosein Fallah, Sanqing Hu, Yong Ren Yong, Yirui Hu,
Zhichang Lai, Mingxin Guan, and Wenyuan Lu. A novel methodology of
data analytics and modeling to evaluate LTE network performance. In 2014
Wireless Telecommunications Symposium, WTS 2014, Washington, DC, USA,
April 9-11, 2014, pages 1–10, 2014.

[82] Mennatallah Amer, Markus Goldstein, and Slim Abdennadher. Enhancing
one-class support vector machines for unsupervised anomaly detection. In
Proceedings of the ACM SIGKDD Workshop on Outlier Detection and De-
scription, ODD ’13, pages 8–15, 2013.

[83] L. Portnoy, E. Eskin, and S. Stolfo. Intrusion detection with unlabeled data
using clustering. Proceedings of ACM CSS Workshop on Data Mining Applied
to Security, PA„ November, 2001.

[84] Q. Wang and V. Megalooikonomu. A clustering algorithm for intrusion
detection. Proc. SPIE, 5812:31–38, 2005.

[85] Philippe Owezarski. Unsupervised classification and characterization of
honeypot attacks. In 10th International Conference on Network and Service
Management, CNSM 2014 and Workshop, Rio de Janeiro, Brazil, November
17-21, 2014, pages 10–18, 2014.

[86] Elena Baralis, Andrea Bianco, Tania Cerquitelli, Luca Chiaraviglio, and
Marco Mellia. Netcluster: A clustering-based framework to analyze internet
passive measurements data. Computer Networks, 57(17):3300–3315, 2013.

166 References

[87] Luigi Grimaudo, Marco Mellia, Elena Baralis, and Ram Keralapura. Select:
Self-learning classifier for internet traffic. IEEE Transactions on Network and
Service Management, 11(2):144–157, 2014.

[88] Jeffrey Erman, Martin Arlitt, and Anirban Mahanti. Traffic classification
using clustering algorithms. In Proceedings of the 2006 SIGCOMM workshop
on Mining network data, pages 281–286. ACM, 2006.

[89] Jao Yoon Chung, Byungchul Park, Young J Won, John Strassner, and James W
Hong. An effective similarity metric for application traffic classification. In
Network Operations and Management Symposium (NOMS), 2010 IEEE, pages
286–292. IEEE, 2010.

[90] Marcus Fabio Fontenelle do Carmo, Jose Everardo Bessa Maia, GP Siqueira,
et al. An internet traffic classification methodology based on statistical dis-
criminators. In Network Operations and Management Symposium, 2008.
NOMS 2008. IEEE, pages 907–910. IEEE, 2008.

[91] F.A. Lisi and D. Malerba. Inducing multi-level association rules from multiple
relations. Machine Learning, 55(2):175–210, 2004.

[92] Ricardo J. G. B. Campello, Davoud Moulavi, and Jörg Sander. Density-based
clustering based on hierarchical density estimates. In Advances in Knowledge
Discovery and Data Mining, 17th Pacific-Asia Conference, PAKDD 2013,
Gold Coast, Australia, April 14-17, 2013, Proceedings, Part II, pages 160–172,
2013.

[93] Ricardo J. G. B. Campello, Davoud Moulavi, Arthur Zimek, and Jörg Sander.
Hierarchical density estimates for data clustering, visualization, and outlier
detection. TKDD, 10(1):5, 2015.

[94] Gregory Buehrer, Roberto L. de Oliveira Jr., David Fuhry, and Srinivasan
Parthasarathy. Towards a parameter-free and parallel itemset mining algorithm
in linearithmic time. In 31st IEEE International Conference on Data Engineer-
ing, ICDE 2015, Seoul, South Korea, April 13-17, 2015, pages 1071–1082,
2015.

[95] Yaobin He, Haoyu Tan, Wuman Luo, Shengzhong Feng, and Jianping Fan.
MR-DBSCAN: a scalable mapreduce-based DBSCAN algorithm for heavily
skewed data. Frontiers of Computer Science, 8(1):83–99, 2014.

[96] Sandy Moens, Emin Aksehirli, and Bart Goethals. Frequent itemset mining
for big data. In Proceedings of the 2013 IEEE International Conference on
Big Data, 6-9 October 2013, Santa Clara, CA, USA, pages 111–118, 2013.

[97] Biswanath Panda, Joshua Herbach, Sugato Basu, and Roberto J. Bayardo.
PLANET: massively parallel learning of tree ensembles with mapreduce.
PVLDB, 2(2):1426–1437, 2009.

References 167

[98] Devendra Dahiphale, Rutvik Karve, Athanasios V. Vasilakos, Huan Liu, Zhi-
wei Yu, Amit Chhajer, Jianmin Wang, and Chaokun Wang. An advanced
mapreduce: Cloud mapreduce, enhancements and applications. IEEE Trans-
actions on Network and Service Management, 11(1):101–115, 2014.

[99] Vernon KC Bumgardner and Victor W Marek. Scalable hybrid stream and
hadoop network analysis system. In Proceedings of the 5th ACM/SPEC
international conference on Performance engineering, pages 219–224. ACM,
2014.

[100] Yousun Jeong. Big Telco Real-Time Network Analytics Avail-
able: https://spark-summit.org/eu-2015/events/big-telco-real-time-network-
analytics/. Spark summit, Amsterdam, Netherland, October 27-29, 2015.

[101] KV Swetha, Shiju Sathyadevan, and P Bilna. Network data analysis us-
ing spark. In Software Engineering in Intelligent Systems, pages 253–259.
Springer, 2015.

[102] Luca Venturini and Evelina Di Corso. Analyzing spatial data from twitter
during a disaster. In Proceedings of 2017 IEEE International Conference on
Big Data, pages 3779–3783. IEEE, 2017.

[103] Luca Venturini and Elena Baralis. A spectral analysis of crimes in san fran-
cisco. In Proceedings of the 2nd ACM SIGSPATIAL Workshop on Smart Cities
and Urban Analytics, page 4. ACM, 2016.

[104] Luca Cagliero, Tania Cerquitelli, Silvia Chiusano, Pierangelo Garino, Marco
Nardone, Barbara Pralio, and Luca Venturini. Monitoring the citizens’ per-
ception on urban security in smart city environments. In Data Engineering
Workshops (ICDEW), 2015 31st IEEE International Conference on, pages
112–116. IEEE, 2015.

[105] Muhammad Imran, Carlos Castillo, Fernando Diaz, and Sarah Vieweg. Pro-
cessing social media messages in mass emergency: A survey. ACM Computing
Surveys (CSUR), 47(4):67, 2015.

[106] Joao Porto De Albuquerque, Benjamin Herfort, Alexander Brenning, and
Alexander Zipf. A geographic approach for combining social media and
authoritative data towards identifying useful information for disaster manage-
ment. International Journal of Geographical Information Science, 29(4):667–
689, 2015.

[107] Julie Dugdale, Bartel Van de Walle, and Corinna Koeppinghoff. Social media
and sms in the haiti earthquake. In Proceedings of the 21st International
Conference on World Wide Web, WWW ’12 Companion, pages 713–714,
2012.

[108] Kate Crawford and Megan Finn. The limits of crisis data: analytical and
ethical challenges of using social and mobile data to understand disasters.
GeoJournal, 80(4):491–502, 2015.

168 References

[109] Scott H Burton, Kesler W Tanner, Christophe G Giraud-Carrier, Joshua H
West, and Michael D Barnes. “right time, right place” health communication
on twitter: value and accuracy of location information. Journal of medical
Internet research, 14(6), 2012.

[110] Zhiyuan Cheng, James Caverlee, and Kyumin Lee. You are where you
tweet: a content-based approach to geo-locating twitter users. In Proceedings
of the 19th ACM international conference on Information and knowledge
management, pages 759–768. ACM, 2010.

[111] Xin Xiao, Antonio Attanasio, Silvia Chiusano, and Tania Cerquitelli. Twitter
data laid almost bare: An insightful exploratory analyser. Expert Systems with
Applications, 90:501–517, 2017.

[112] Elisabetta Povoledo. Deadly earthquake hits italian island of ischia, 8 2017.

[113] Eva Moravec. Storm deaths: Harvey claims lives of more than 75 in texas, 10
2017.

[114] USGS. U.s. geological survey. last access: October 2017.

[115] San francisco open data portal. https://data.sfgov.org/. Accessed: 2016-09-01.

[116] Vania Ceccato and Adriaan Cornelis Uittenbogaard. Space–time dynamics of
crime in transport nodes. Annals of the Association of American Geographers,
104(1):131–150, 2014.

[117] Vânia Ceccato. Homicide in São Paulo, Brazil: Assessing spatial-temporal
and weather variations. Journal of Environmental Psychology, 25(3):307–321,
2005.

[118] Silas Nogueira de Melo, Débora VS Pereira, Martin A Andresen, and Lin-
don Fonseca Matias. Spatial/temporal variations of crime: a routine activity
theory perspective. International journal of offender therapy and comparative
criminology, page 0306624X17703654, 2017.

[119] N. R. Lomb. Least-squares frequency analysis of unequally spaced data.
Astrophysics and Space Science, 39(2):447–462, 2 1976.

[120] J. D. Scargle. Studies in astronomical time series analysis. II - Statistical
aspects of spectral analysis of unevenly spaced data. The Astrophysical
Journal, 263:835, 12 1982.

[121] Jacob VanderPlas, Andrew J. Connolly, Zeljko Ivezic, and Alex Gray. Intro-
duction to astroML: Machine learning for astrophysics. In 2012 Conference
on Intelligent Data Understanding, pages 47–54. IEEE, 10 2012.

[122] Lee R. McPheters and William B. Stronge. Testing for seasonality in reported
crime data. Journal of Criminal Justice, 1(2):125–134, 22 1973.

References 169

[123] Martin A. Andresen and Nicolas Malleson. Crime seasonality and its varia-
tions across space. Applied Geography, 43:25–35, 2013.

[124] G. D. Breetzke and E. G. Cohn. Seasonal Assault and Neighborhood Depriva-
tion in South Africa: Some Preliminary Findings. Environment and Behavior,
44(5):641–667, 9 2012.

[125] Shannon J Linning. Crime seasonality and the micro-spatial patterns of
property crime in Vancouver, BC and Ottawa, ON. Journal of Criminal
Justice, 43:544–555, 2015.

[126] Gregory D. Breetzke. Examining the spatial periodicity of crime in South
Africa using Fourier analysis. South African Geographical Journal, 98(2):275–
288, 5 2016.

[127] Stefan Baisch and Götz H.R. Bokelmann. Spectral analysis with incom-
plete time series: an example from seismology. Computers & Geosciences,
25(7):739–750, 1999.

[128] H. P. A. Van Dongen, E. Olofsen, J. H. VanHartevelt, and E. W. Kruyt.
Searching for Biological Rhythms: Peak Detection in the Periodogram of
Unequally Spaced Data. Journal of Biological Rhythms, 14(6):617–620, 12
1999.

[129] E. F. Glynn, J. Chen, and A. R. Mushegian. Detecting periodic patterns in un-
evenly spaced gene expression time series using Lomb-Scargle periodograms.
Bioinformatics, 22(3):310–316, 2 2006.

[130] S. Pellicer, G. Santa, A.L. Bleda, R. Maestre, A.J. Jara, and
A. Gomez Skarmeta. A global perspective of smart cities: A survey. In
Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS),
2013 Seventh International Conference on, pages 439–444, July 2013.

[131] Open311. A collaborative model and open standard for civic issue tracking.
Available at http://www.open311.org/. 2014.

[132] Winnipeg311. Winnipeg 311 Mobile App. Available at
http://www.winnipeg.ca/Interhom/contact/app.stm/. 2014.

[133] Bloomington. Open Source GeoReporter and uReport tools for Open311.
Available at http://bloomington.in.gov/. 2014.

[134] IBM-IOC. IBM Intelligent Operations Center. Available: http://www-
03.ibm.com/software/products/it/intelligent-operations-center. Last access on
November 2014. 2014.

[135] M. Hamilton, F. Salim, E. Cheng, and S. L. Choy. Transafe: A crowdsourced
mobile platform for crime and safety perception management. SIGCAS
Comput. Soc., 41(2):32–37, December 2011.

170 References

[136] M. Behrens, N. Valkanova, A. Fatah Schieck, and D. Brumby. Smart citizen
sentiment dashboard: A case study into media architectural interfaces. In
Inter. Symp. on Pervasive Displays, 2014.

[137] Smartdatanet. Smart data platform. Available at http://www.smartdatanet.it/.
2014.

[138] Mark Blythe, Peter C. Wright, and Andrew F. Monk. Little brother: could
and should wearable computing technologies be applied to reducing older
people’s fear of crime? Personal and Ubiquitous Computing, 8(6):402–415,
2004.

[139] Morris Williams, Owain Jones, Constance Fleuriot, and Lucy Wood. Children
and emerging wireless technologies: investigating the potential for spatial
practice. In Conf. on Human Factors in Computing Systems 2005, pages
819–828.

[140] Farida Naceur. Impact of urban upgrading on perceptions of safety in informal
settlements: Case study of bouakal, batna. Frontiers of Architectural Research,
2(4):400–408, December 2013.

[141] Cédric Bach, Regina Bernhaupt, Caio Stein D’Agostini, and Marco Winckler.
Mobile applications for incident reporting systems in urban contexts: lessons
learned from an empirical study. In European Conference on Cognitive
Ergonomics 2013, ECCE ’13, Toulouse, France, August 26 - 28, 2013, page 29,
2013.

[142] Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. Urban computing:
Concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol.,
5(3):38:1–38:55, September 2014.

[143] R. Agrawal, T. Imielinski, and Swami. Mining association rules between sets
of items in large databases. In ACM SIGMOD 1993, pages 207–216, 1993.

[144] Rakesh Agrawal and Giuseppe Psaila. Active data mining. In KDD 1995,
pages 3–8.

[145] Jiawei Han, Jain Pei, and Yiwen Yin. Mining frequent patterns without
candidate generation. In SIGMOD’00, Dallas, TX, May 2000.

[146] Matteo Golfarelli, Dario Maio, and Stefano Rizzi. The dimensional fact
model: A conceptual model for data warehouses. International Journal of
Cooperative Information Systems, 7:215–247, 1998.

[147] Ralph Kimball and Margy Ross. The Data Warehouse Toolkit: The Complete
Guide to Dimensional Modeling. John Wiley & Sons, Inc., New York, NY,
USA, 2nd edition, 2002.

[148] Alexandra Olteanu, Carlos Castillo, Fernando Diaz, and Sarah Vieweg. Cri-
sislex: A lexicon for collecting and filtering microblogged communications in
crises. In International AAAI Conference on Web and Social Media, 2014.

References 171

[149] A. Frisiello, Q. N. Nguyen, and C. Rossi. Gamified crowdsourcing for disaster
risk management. In 2017 IEEE International Conference on Big Data (Big
Data), pages 3727–3733, Dec 2017.

[150] Alex Chohlas-Wood, Aliya Merali, Warren Reed, and Theodoros Damoulas.
Mining 911 calls in new york city: Temporal patterns, detection, and forecast-
ing. In AAAI Workshop: AI for Cities, 2015.

[151] Robert Wetzker, Carsten Zimmermann, and Christian Bauckhage. Analyzing
social bookmarking systems: A del.icio.us cookbook. In Mining Social Data
(MSoDa) Workshop Proceedings, pages 26–30. ECAI 2008, July 2008.

[152] Daniele Apiletti, Elena Baralis, Tania Cerquitelli, Silvia Chiusano, and Luigi
Grimaudo. Searum: A cloud-based service for association rule mining. In
11th IEEE International Symposium on Parallel and Distributed Processing
with Applications, ISPA-13, pages 1283–1290, 2013.

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Dissertation plan and research contribution
	1.1.1 Scaling associative classification to very large datasets
	1.1.2 Building a Big Data machine learning pipeline
	1.1.3 Data Science for urban security
	1.1.4 Dissertation plan

	2 Scaling associative classification to very large datasets
	2.1 Theoretical background
	2.1.1 Frequent itemset mining
	2.1.2 Associative classification

	2.2 Frequent Itemset Mining and distributed frameworks
	2.2.1 Centralized algorithms
	2.2.2 Itemset mining parallelization strategies
	2.2.3 Distributed itemset mining algorithms
	2.2.4 Experimental evaluation
	2.2.5 Digest of the experimental session
	2.2.6 Choosing an approach for scaling associative classification

	2.3 BAC: a Bagged Associative Classifier
	2.3.1 Background
	2.3.2 The proposed approach
	2.3.3 Experimental evaluation

	2.4 DAC: a Distributed Associative Classifier
	2.4.1 The proposed approach
	2.4.2 Experimental evaluation

	2.5 Related work
	2.6 Summary
	2.7 Relevant publications

	3 Building a Big Data machine learning pipeline
	3.1 Introduction
	3.2 Methodology overview
	3.3 Offline self-learning model building
	3.3.1 Self-tuning clustering phase
	3.3.2 Cluster and data characterization
	3.3.3 Classification model training

	3.4 Online characterization and model update
	3.4.1 Quality index
	3.4.2 Characterization and self-evolution policy

	3.5 Experiments and datasets
	3.6 YouTube use case
	3.6.1 Offline cluster and model characterization
	3.6.2 Online data characterization and model update

	3.7 P2P use case
	3.7.1 Offline cluster and model characterization
	3.7.2 Online data characterization and model update

	3.8 Related work
	3.9 Summary
	3.10 Relevant publications

	4 Data Science for urban security
	4.1 Analyzing spatial data from Twitter during a disaster
	4.1.1 Related work
	4.1.2 Data collection and preprocessing
	4.1.3 Discussion
	4.1.4 Suggestions for practitioners

	4.2 Spectral analysis of crimes
	4.2.1 Time-series analysis
	4.2.2 Results
	4.2.3 Related Work

	4.3 Monitoring the citizens' perception on urban security in Smart Cities
	4.3.1 The NED system
	4.3.2 Analysis scenario

	4.4 Summary
	4.5 Relevant publications

	5 Conclusion
	Appendix A Further investigations on the performance of distributed FIM algorithms
	A.1 Scalability in terms of parallelization degree
	A.2 Impact of framework and hardware configurations
	A.3 Execution time breakdown into phases
	A.4 Real use cases
	A.4.1 URL tagging
	A.4.2 Network traffic flows

	A.5 Load balancing
	A.6 Communication costs

	References

