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Abstract: In the last few years, a large number of smart meters have been deployed in buildings
to continuously monitor fine-grained energy consumption. Meteorological data deeply impact
energy consumption, and an in-depth analysis of collected and correlated data can uncover
interesting and actionable insights to improve the overall energy balance of our communities and to
enhance people’s awareness of energy wasting. To effectively extract meaningful and interpretable
insights from large collections of energy measurements and multi-dimensional meteorological
data, innovative data science methodologies should be devised. Research frontiers are addressing
self-learning approaches, which allow non-experts to exploit machine learning techniques more
easily, and algorithmic transparency of models, hence providing actionable, explicit, declarative
knowledge representation. This paper presents METeorological Data Analysis for Thermal Energy
CHaracterization (METATECH), a data mining engine based on both exploratory and unsupervised
data analytics algorithms, devised to build transparent models correlating weather conditions
and energy consumption in buildings. METATECH exploits a joint approach coupling cluster
analysis and generalized association rules to allow a deeper yet human-readable understanding of
how meteorological data impact heating consumption. First, a partitional clustering algorithm is
applied to weather conditions. Then, resulting clusters are characterized by means of generalized
association rules, which provide a self-learning explainable model of the most interesting correlations
between energy consumption and weather conditions at different granularity levels. The experimental
evaluation performed on real datasets demonstrates the effectiveness of the proposed approach
in automatically extracting interesting knowledge from data, and provide it transparently to
domain experts.

Keywords: data exploration; clustering algorithms; correlation analysis; pattern extraction;
energy data; meteorological data; sensor data

1. Introduction

Nowadays large volumes of energy data are continuously collected through a variety of smart
meters from different smart-city environments. The analysis of energy-related data collections
has received increasing attention from different and cross-research communities, including energy,
data mining, databases and statistics communities. These data collections have great potential because
an interesting subset of actionable knowledge (e.g., detailed patterns and models to characterize energy
consumption at different granularity levels) can be discovered to support the decision-making process
of different stakeholders (e.g., energy managers, energy analysts, consumers, building occupants).
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Data mining emerged during the late 1980s and focused on studying algorithms to find implicit,
previously unknown, and potentially useful information from large volumes of data. Data mining
activities include studying correlations among data (e.g., association rules at different levels of
abstraction [1]), grouping data with similar properties (e.g., clustering [2]), and extracting information
for prediction (e.g., classification, regression [3,4]). The first two classes of algorithms are also known
as exploratory methods because they do not require a-priori knowledge (such as the target class
to be predicted), thus supporting different and interesting targeted analyses. The exploitation of
these approaches on energy-related data is of paramount importance to bring interesting, actionable,
and hidden knowledge to the surface. Extracted knowledge items have a great potential to influence
the overall energy balance of our communities, in particular by optimizing the building thermal
energy consumption, which mainly consists of (i) a static contribution, that is determined by the
building structure (e.g., walls, windows, materials, captured by the building energy signature) and
appliance energy ratings, and (ii) a dynamic component, that is provided by the usage behaviors
and the lifestyle of the people living inside the buildings. With the aim of reducing energy demand,
people should be more aware about their building consumption to pursue energy-saving actions.
Innovative analytics methodology should be devised to provide interesting and actionable knowledge
items about energy consumption in buildings. The knowledge items should be easily interpretable by
people to be effectively exploitable.

Furthermore, the influence of multi-dimensional weather data on energy consumption has been
condensed into few attributes (e.g., the temperature and humidity) in most existing approaches, due to
the complex nature of the full set of meteorological conditions, and the difficulty of automatically
identifying the most relevant correlations with many variables. Hence the need to address such
correlations with self-learning transparent approaches, which harness the power of complex algorithms
to the benefit of energy-domain experts and citizens.

In this paper, Section 2 discusses related works on heating consumption in buildings. Section 3
introduces an overview of the METATECH approach, while a thorough description of its main
components is presented in Section 4. An experimental evaluation performed on real data collected
in a major Italian city is presented in Section 5. Finally, Section 6 draws conclusions and presents the
future development of this work.

2. Related Work

The wide diffusion of smart meters in recent years allows monitoring indoor and outdoor
environmental parameters in buildings and collecting huge archives of measures with temporal
and spatial references. The analysis of such data collections brings to the facility managers interesting
and useful knowledge items to support them in the decision making process. A lot of research
activities have been carried out to exploit database management systems, data mining and machine
learning techniques, and statistical tools in the field of storage and analysis of energy-related data
with different research challenges: (i) identifying the main factors that increase energy consumption
(e.g., floors and room orientation [5], location [6]); (ii) supporting data visualization and warning
notification [7]; (iii) efficient storing and retrieval operations based on NoSQL databases [8]. Differently
from the above research works, this paper proposes a data mining engine to understand thermal
energy consumption in buildings by exploiting both supervised and unsupervised algorithms. In [9],
the authors analyze the major cause of high energy consumption for air conditioning in indoor
space, analyzing the physiological signals (temperature and humidity) within concrete structures.
Authors in [10] focus on the cost-recovery of WSNs (Wireless sensor networks) and on the reduction
of air conditioning energy consumption in convenience stores. Our main goal is the analysis of
residential building thermal energy consumption data enriched with weather condition information.
Moreover, data-driven models are also promising in other domains, such as gas utilization ratio (GUR)
prediction. To measure the operating status and energy consumption of blast furnaces, the authors
in [11] present a soft-sensor approach, i.e., a novel on-line sequential extreme learning machine
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based on the GUR indicator. Unsupervised techniques are also used for estimating consumption
in other environments. Authors in [12] detail two models for estimating small power consumption
in office buildings, alongside typical power demand profiles. Both models were tested through
a blind validation demonstrating a good correlation between metered data and monthly predictions of
energy consumption.

A great deal of research attention has been devoted to characterizing energy consumption
profiles among different users [6,13] or buildings [14,15]. The works in [14,15] presented two Big
data oriented systems exploiting scalable technologies to compute a variety of key performance
indicators (KPIs): basic KPIs in [15] (e.g., energy consumption per unit of volume during specific
outdoor conditions) and advanced KPIs in [14] (e.g., inter/intra-building KPIs based on the energy
signature that estimates the total heat loss coefficient of a building) have been proposed. Such previous
works [14,15] proposed by authors have completely different target and analysis approach, and a
substantially different architecture (the only similarity lays in the datawarehouse design). The current
work aims at understanding energy consumption in buildings through unsupervised algorithms.

The first implementation of METATECH tailored to energy-related data was first introduced
in [16]. The current approach is more focused on capturing multi-dimensional correlations in
meteorological data. To this aim, the engine proposed in this work significantly enhances the data
analytics techniques proposed in [16], by providing different exploratory algorithms. In particular,
(i) METATECH exploits the DBSCAN algorithm to automatically identify the subset of outliers,
thus reducing the manual interaction with an expert or the user during the outlier detection phase;
(ii) generalized association rules are exploited instead of the traditional-only rules, hence bringing to
the surface energy consumption patterns at different abstraction levels; (iii) a different methodology
(i.e., the Silhouette-based cohesiveness gain) has been exploited to automatically identify the input
parameter of the K-means clustering algorithm (i.e., the desired number of clusters) with respect to the
approach presented in [16,17].

Several studies have been made to analyze the electricity system. New technologies such
as sensor networks have been incorporated into the management of buildings for organizations
and cities. Consumption patterns should be extracted for the purpose of energy and monetary savings.
Electricity smart-meter consumption data is enabling utilities to analyze consumption information
at unprecedented granularity [18]. The authors in [19] present an interesting analysis related to
the reliability of the electricity system. A major cause of the increasing of energy consumption in
residential buildings is the growing home comfort. The purpose of the author in [19] is to assess how
network reliability and distribution efficiency can be improved through the reduction of building
energy consumption. On the other hand, authors in [18] enhance the K-Means clustering performance
including time series analysis and wavelets by harvesting inherent structure from the smart meter data.

Rural buildings have been analyzed by authors in [20]. Their studies aim to establish
an appropriate strategic plan for promoting rural building energy efficiency by conducting
a strength-weakness-opportunity-threat analysis. The authors propose several strategies obtained by
the analysis of multiple sources which can contribute to the customization and prioritization of policy
recommendations for governments. Moreover, the methodology proposed in [21] extracts electric
energy consumption patterns in big-data time series, to draw valuable conclusions for managers and
governments. Authors in [22] propose a methodology to determine the appropriate time interval and
time length for the analysis, based on the weather characteristics, clustering analysis methods and
statistical principles.

Authors in [23] propose a methodology for the study of the envelope airtightness of residential
buildings. The paper presents a statistical sampling method to determine the most useful dwellings to
be tested, including several variables concerning airtightness (e.g., climate zone, year of construction,
and typology). These variables are also being studied by authors in [24] to extract interesting
knowledge information on the standard energy performance, thermo-physical and geometrical-related
properties of existing buildings at different coarse granularities. Additionally, authors in [25] focus
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their attention in the analysis of the daily wind patterns and their relational associations with other
metocean variables (i.e., oceanographic and meteorological) to capture the seasonal pattern from
the hourly observed meteorological covariates. Finally, authors in [26] define a model predictive
control (MPC) formulation framework able to critically discuss the outcomes of different existing MPC
algorithms for heating ventilation and air conditioning systems.

The huge amounts of data generated by heterogeneous transactions are too many and too complex
to be processed and analyzed by traditional methods in several different domains. Data mining
provides the methodology and technology to transform these mounds of data into useful information
for decision making. In healthcare, data mining and machine learning are becoming increasingly
popular generating information that is very useful to all parties involved in the healthcare industry [27].
Authors in [28] propose learning models to characterize the specificity-determining residue-nucleotide
interactions of different known DNA-binding domain families.

Moreover, large volumes of textual data are being collected at an ever increasing rate in
various modern applications (e.g., social networks like Twitter, Facebook, e-learning platforms,
digital libraries) [17]. Authors in [29] propose a text classification model based on convolutional
neural networks for cyber-bullying and hate speeches and observe significant improvements thanks
to the proposed 2D TF-IDF features. Authors in [30] proposed a distributed self-tuning engine to
analyze and characterize a real crisis tweet collection. Experimental results show the effectiveness
of the engine in discovering interesting groups of correlated tweets without selecting neither the
algorithms nor their parameters. Moreover, emergency management is a dynamic process conducted
under stressful conditions, requiring flexible and rigorous planning, cooperation, and vigilance [31].
All human endeavors involve uncertainty and risk. Risk management has become a vital topic both in
academia and practice during the past several decades. Data mining is demonstrated on a financial
risk set of data for the basic classification algorithms as presented by the authors in [31]. The authors
have demonstrated small-scale application of the basic algorithms. The intent is to make data mining
less of a black-box exercise, thus hopefully enabling users to be more intelligent in their application of
data mining.

Increasing amounts of data are being collected in all kinds of sports, and automated data analysis
has become an important and rapidly developing field [32]. The contribution of the authors in [32] is
to build a variety of learning approaches (e.g., deep learning, Bayesian networks, archetypal analysis)
focusing on spatio-temporal player trajectories, regularly conducted physiological measurements,
or player career data from independently drawn instances.

3. The METATECH Approach

This paper presents a data mining engine, named METATECH (METeorological data Analysis for
Thermal Energy CHaracterization), covering the whole analytics work-flow of energy-related data.
METATECH analyzes energy data collections enriched with meteorological data through a two-fold
methodology based on cluster analysis and generalized association rules to automatically extract and
transparently describe energy consumption patterns correlated with meteorological data. The joint
approach based on both cluster analysis and generalized association rules allows an efficient
characterization of the energy consumption. Specifically, the clustering analysis targets the
unsupervised discovery of groups of different thermal energy consumption that occurred with similar
weather conditions. Each cluster is then locally characterized by a set of interesting patterns at
different granularity levels to summarize the cluster content and to highlight interesting correlations
among thermal energy consumption and meteorological conditions. METATECH exploits the K-means
algorithm [33] to cluster weather data, jointly with a self-tuning strategy to automatically discover
the desired number of groups, while the generalized association rule miner [34] extracts correlations
among energy data and meteorological conditions. A categorization of rules into few reference
classes according to their meaning is proposed to ease the manual inspection of the results and their
understanding. The model of the data is transparent as it consists of rules, in the form of correlations
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among different attribute values, which are directly readable by humans. The full process is designed
to self-learn from the data how to proceed at each step, by tuning parameters, partitioning the data,
and identifying the most relevant rules among the full set of correlations that exist in the data.

Extracted knowledge items can support energy managers in the decision-making process,
for example through the definition of proper strategies to efficiently satisfy the energy demand
for different buildings. Furthermore, extracted knowledge items can enhance people’s (consumers
and building occupants) awareness of energy consumption and plan ad-hoc strategies to reduce the
building consumption during some critical time slots (e.g., energy peak demand) or when rooms
are empty.

The main novelties of METATECH are twofold. (1) It is a self-learning joint approach, based on
both cluster analysis and generalized association rules, able to automatically extract interesting
knowledge patterns and make them easily interpretable to characterize thermal energy consumption.
In particular, the model self-learns, i.e., automatically infers from data the patterns and their
correlations, without prior knowledge and with limited user interaction, thanks also to the automatic
tuning strategies of the algorithm parameters. (2) It analyzes real-world data collected in a heating
system available in a major Italian city and presents experimental results of interest for domain experts.

Figure 1 shows the overall architecture of the METATECH system, and presents the whole
data analytics work-flow, from input data sources to result presentation. METATECH includes four
main components, named Data collection and integration, Data preprocessing, Knowledge extraction and
Knowledge visualization.

These components are briefly described below and a more detailed description is given in Section 4.
In METATECH the Data collection and integration component stores measurements from sensors as
they asynchronously arrive, and it is in charge of their temporal synchronizations and aggregation.
For the purpose of the analysis, these data are enriched with spatial and temporal information at
different abstraction levels. The enriched dataset is stored in a datawarehouse as proposed in [15].
Different phases of Data preprocessing are then performed to prepare data for the subsequent analysis.
The Knowledge extraction component exploits a joint approach based on both clustering and generalized
association rule mining to automatically identify and describe the patterns in the data.

Lastly, the Knowledge visualization component presents the results with special attention to
highlighting the rationale of the extracted patterns and to make them easily interpretable by people
and effectively exploitable.

Figure 1. The METATECH system architecture, with its main building blocks.

4. The METATECH Components

METATECH is a data analytics engine aimed at characterizing correlations between meteorological
data and energy consumption. The analysis process is applied on data as modeled in [15].
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The METATECH components addressing the different phases of the analysis process are described in
the following subsections.

4.1. Data Collection and Integration

The Data collection and integration component collects energy consumption measurements as they
asynchronously arrive from sensors, then aggregates data at hourly intervals. These data are enriched
with temporal information at different granularity levels as well as with various meteorological
conditions available from open-data sources.

In our case study, energy measurements are sampled every 5 min from a large number of smart
meters deployed in a major Italian city, and meteorological data was collected from the Weather
Underground service [35], which gathers data from Personal Weather Stations (PWS) registered by
users. In Turin, a major Italian city where buildings providing energy data are located, tens of PWSs are
present. Weather data associated with a specific building are computed as a distance-based weighted
mean of the values provided by the three nearest PWSs. The weight is inversely proportional to the
distance from the PWS to the building location, hence three equally distant PWSs would have the
same weight in determining the outdoor values of a given building. When a high concentration of
PWSs is available, they reasonably reflect the real conditions registered in their precise neighborhood,
as opposed to other services providing more precise values, but related to a much wider area.

4.2. Data Preprocessing

Extracting actionable knowledge from data is a multi-step process. The knowledge extraction
phase is preceded by a preprocessing phase, which aims to smooth the effect of possibly unreliable
measurements. Preprocessing entails the following steps: (i) outlier detection and removal, (ii) missing
value handling, and (iii) correlation analysis.

Outlier detection and removal. An outlier is an observation that lies outside the expected range
of values. It may occur either when a measurement does not fit the model under study or when an error
in measurement happens (e.g., faulty sensors may provide unacceptable measurements of thermal
energy consumption). For identifying and removing outliers, METATECH exploits a clustering
algorithm based on the density concept, named DBSCAN (Density-Based Spatial Clustering of
Application with Noise) [36]. DBSCAN allows the detection of clusters of arbitrary shape, and the
automatic identification of noise points and outliers. Specifically, DBSCAN detects clusters on the
basis of a density reachability concept, where clusters are defined as higher-density regions separated
by lower-density regions. DBSCAN needs two parameters to be provided, the minimum number of
nearby points (MinPts) and a distance: the epsilon radius (Eps). Each data point is either marked
as (i) core point, or (ii) border point, or (iii) noise point. A core point has more than MinPts within Eps.
A border point has less than MinPts within Eps, but is in the neighborhood of a core point (the epsilon
radius determines the neighborhood distance). All other points are noise points.

Missing value handling is an important and crucial step that significantly impacts the mining
process. Since our aim is the characterization of energy consumption, we disregarded data records with
missing consumption values. Instead, for meteorological data, METATECH exploits two strategies to
handle missing values: (i) replacement with the daily average value or (ii) replacement with the hourly
average value computed at the same time in the previous week. The choice is mainly determined by
the physical meaning of each considered attribute: case (i) is applied to the precipitation and wind
direction attributes, while case (ii) is applied to the solar radiation and UV index attributes.

Correlation analysis. Couples of strongly correlated attributes provide no additional contribution
to the analysis process. Hence, to reduce the space and time complexity of data mining algorithms,
we remove one of each pair of correlated meteorological attributes before executing the analysis.
METATECH leverages the correlation matrix [37] to analyze the dependence between multiple
variables at the same time. For each pair of attributes (X,Y), METATECH computes the correlation
coefficient through the Pearson correlation defined as ρX,Y = cov(X,Y)

σXσY
, where cov(X, Y) is the
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covariance between X and Y, σX is the standard deviation of X and analogously σY for Y. The higher
the absolute coefficient value is, the stronger the correlation becomes: for each couple of correlated
attributes, whose value is higher than a threshold (0.9 in our use case), METATECH we remove one
of them. Since we aim at characterizing energy consumption, to select the meteorological attribute to
be removed between the two, its correlation with the energy consumption data is exploited and the
most correlated is kept.

4.3. Knowledge Extraction

To extract meaningful and interesting knowledge from data while maintaining the number of
extracted results within manageable limits, METATECH must be able to automatically identify the most
interesting subsets of the input data, so that the specific results can be manually evaluated by a human
domain expert. Selecting specific subsets from which interesting knowledge can be independently
derived is of paramount importance to bring hidden knowledge to the surface. For this purpose,
METATECH exploits a clustering algorithm to identify specific data subsets from which interesting
data correlations can be discovered. Specifically, since energy consumption is strongly influenced
by weather conditions, the identification of energy consumption records that occurred with similar
weather conditions reduces both the complexity of the correlation analysis and the cardinality of the
extracted knowledge to be manually validated. METATECH uses a clustering algorithm to partition
weather data into relevant subsets. Before the clustering phase, the dataset is normalized with the
range transformation (0, 1). Each cluster is then locally characterized by a set of association rules to
model the most interesting correlations among weather data and energy consumption. METATECH
also includes a categorization of the extracted rules according to specific templates, to ease manual
interpretation by domain experts, and to drive the knowledge extraction. The template-driven
extraction of association rules builds a so-called transparent model of the data, which is directly
readable by humans, easily interpretable, and actionable, differently from black-box models such as
Artificial Neural Networks.

4.3.1. Cluster Analysis

Cluster analysis groups data objects based only on information found in the data that describes the
objects and their relationships. The goal is that objects within the same group are similar to each other
and different from the objects in other groups. The greater the similarity within a group, the better the
clustering result [4]. METATECH computes the similarity between two objects by using the Euclidean
distance, and integrates a partitional algorithm, the K-means algorithm [33], which divides the input
dataset into K non-overlapping subsets (i.e., clusters) such that each data object is in exactly one subset.
The procedure is to randomly define K centroids, one for each cluster. Then each point is iteratively
associated to the nearest centroid. Next, the centroids are updated. These steps are repeated by the
algorithm until the centroids do not move any further.

Even if K-means identifies the clusters in a limited computational time by producing a quite
good cluster set, it requires the number of clusters to be specified in advance, which is one of its main
drawbacks. To address this issue, METATECH automatically tests several configurations by varying
the input parameter K of the algorithm (i.e., number of desired clusters). These solutions are then
compared through the analysis of Silhouette-based indices to measure the cohesion and separation
of each cluster set. METATECH includes a variation of the standard Silhouette index [38] to evaluate
the quality of the discovered cluster set, which is presented in [17]. This variation is the weighted
distribution of the silhouette index (WS). The Silhouette index measures both intra-cluster cohesion
and inter-cluster separation by evaluating the appropriateness of the assignment of a meteorological
measurement to one cluster rather than to another. It assumes values in [−1; 1]. Negative and positive
Silhouette values represent wrong and good record placements, respectively: the higher the index,
the better the clustering. However, smaller values of K reduce the probability of error. Instead, the WS
index (assuming values in [0; 1]) represents the percentage of meteorological records in each positive
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bin properly weighted with an integer value w ∈ [1; 10] (the highest weight is associated with the bin
[1 −0.9] and so on) and normalized within the sum of weights. The higher the weighted silhouette
index, the better the identified partition. In this study, METATECH includes a new index to measure
the cohesiveness gain obtained using the weighted Silhouette with respect to the Silhouette index.
The cohesiveness gain is represented by means of two values: (i) the ratio and (ii) the delta between
the weighted and the standard Silhouettes. METATECH chooses the clustering characterized by the
highest value of cohesiveness gain, since it represents a good trade-off between the number of selected
clusters and the values of both Silhouettes.

4.3.2. Association Rules

Association rule extraction [39] is one of the most powerful exploratory techniques in data mining,
it aims at finding interesting relationships among data. Since clusters are anonymous groups of records
of energy consumption that occurred with similar weather data, METATECH characterizes each
cluster with a set of relevant patterns, i.e., association rules, able to summarize interesting correlations.
Such approach improves the understanding of the analysis results.

An association rule is expressed in the form X → Y, where X and Y are disjoint and non-empty
itemsets, i.e., X ∩ Y = ∅. X is also called rule antecedent or rule body and Y rule consequent or
rule head. Typical correlations involve energy consumption, meteorological data (e.g., wind direction,
UV index) and temporal data (e.g., daily time slot).

Association rule mining requires a transactional dataset of categorical attributes. A transactional
dataset D is a set of transactions in which each one is a set of items (also called itemset). To this aim,
a discretization step is applied to convert the original continuously-valued measurements into
categorical bins of a transactional dataset.

METATECH includes a two-fold characterization: (i) fine-grained correlations based on traditional
association rules, and (ii) high-level correlations based on generalized association rules.

Traditional association rule mining extracts fine-grained correlations because its results are
recurring patterns (i.e., rules) among specific categorical values. Such level of details provides clear
advantages when the phenomena under exam exhibit patterns with specific values, but presents
the drawbacks of depending on the discretization bins and to limit the abstraction capabilities.
For this reason, a second characterization block exploits generalized association rule mining to capture
higher-level correlations.

Generalized association rule mining [34] is an exploratory data mining technique that has been
largely used to extract hidden correlations at different granularity levels. To introduce the concept of
generalized association rules, we first recall the notion of generalized itemset. A generalized itemset
is a set of generalized items (attribute = generalized value) where generalized value is defined through
a taxonomy. A taxonomy is a forest of generalization trees, each one representing a hierarchy of
aggregations defined on an attribute domain. Traditional (non-generalized) itemsets are a special case
of generalized itemsets in which all items assume values in the lowest levels of the corresponding
taxonomy (i.e., leaves of the generalization trees).

Figure 2 shows an example of the generalization tree for the temperature attribute. Leaf nodes are
labeled with values in the temperature attribute domain (after a discretization step), while non-leaf
nodes are aggregations of lower nodes, up to the root which represents all values in the domain.
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Figure 2. Example of a generalization tree for the temperature attribute.

4.4. Association Rule Categorization

Even if rules are a human readable result, experience shows that experts from application
domains, such as energy, benefit from semantic frameworks that drive them into interpreting the
results. To this aim, the traditional approach is to sort the rules according to an interestingness score.
In METATECH, resulting rules are sorted by score and additionally grouped together by their meaning.
The meaning of a rule is determined by its template, which includes specific attributes characterizing
the data. Two templates currently provided by METATECH and presented in this paper stem from our
experience and experimental results. They are reported in Table 1. More templates can be easily added
to address specific needs and questions by domain experts.

The first template, at row T1, highlights the most peculiar weather conditions characterizing each
cluster. Hence, the rule body must contain the cluster id, whereas the attributes considered in the rule
head are all those describing the weather. No other attributes must be present, and only rules of length
2 are considered, so only a single specific meteorological attribute is highlighted in each rule head,
to keep it focused. An example of T1 is {cluster = Cluster_4} ⇒ {temperature = warm}. It means
that the Cluster_4 is characterized by warm temperatures.

Template T2 in Table 1 models temporal periods, weather conditions, and energy consumption.
In particular, we noticed that rules identified as interesting by domain experts often correlate energy
consumption with weather conditions in specific time periods, which can be as short as intra-day
periods, or as long as weeks. To capture such richness, this template targets rules having in the body
both a daily time slot and a fortnight (14-day period), together with any number of attributes describing
weather conditions. The rule head, instead, must contain only the energy consumption level, which is
the end goal of the analysis. An example of T3 is { f ortnight = 16–31 December, daily time slot =

Midday, UV index = minimum, precipitation = no rain, humidity = very high, temperature =

very cold, wind direction = North} ⇒ {energy consumption level = very high}. It means that in the
period from 16 to 31 December, in the given context of weather conditions during the day, a high
energy consumption occurred. Very cold temperatures and high humidity make the body feel a greater
sense of cold and then physical discomfort, and the winds from North are strong and cold.

Table 1. Association rule templates included in METATECH and their interpretation.

TId Question Rule Template

T1 What are the most specific weather
conditions characterizing each cluster? {cluster} ⇒ {weather condition}

T2

Given a fortnight and a daily time slot,
what kind of consumption level
characterizes them under different
weather conditions?

{ f ortnight, daily time slot ,
weather conditions} ⇒
{consumption level}
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Association Rule Evaluation

To rank the most interesting rules, METATECH uses three quality scores named support, confidence
and lift.

The rule support is the percentage of records containing both X and Y. It represents the prior
probability and the support condition of transaction X ∪ Y is defined as s(X ∪ Y)/N of X ∪ Y,
where s(X ∪Y) is the observed frequency in the full dataset and N is the total number of transactions.
The rule support is an indication of how frequently the itemset appears in the dataset.

The rule confidence is the conditional probability that the consequent Y is true under the condition
of the antecedent X. It is computed as c(X → Y) = s(X ∪ Y)/s(X). Given a set of transactions D,
METATECH finds all the rules having support ≥ minsup and confidence ≥ mincon f , where minsup
and mincon f are the corresponding support and confidence thresholds that are user-specified
parameters. The rule confidence is an indication of how often the rule has been found to be true.

High-confidence rules can sometimes be misleading because the confidence measure ignores
the support of the itemset appearing in the rule consequent. A way to address this problem is the
analysis of the lift value. The lift index [4] is defined as li f t(X → Y) = s(X ∪ Y)/(s(X) · s(Y)),
which computes the ratio between the rule’s confidence and the support of the itemset in the rule
consequent. Lift measures how many times more often X and Y occur together than expected if
they were statistically independent. A lift ratio larger than 1.0 implies that the relationship between
the antecedent and the consequent is more significant than would be expected if the two sets were
independent. The larger the lift ratio, the stronger the association.

5. Experimental Results

We performed an experimental meteorological data analysis for thermal energy characterization
on a real dataset, including energy consumption of 15 residential buildings, using the
METATECHẽngine. We considered energy data related to a complete winter period from 15 October
2014 to 15 April 2015 because, in Italy, central heating systems are operated only in such period,
hence dates outside this range were not considered as they would collect only zero consumption
values. Data collected through the energy smart meters are integrated with meteorological information
collected from the Weather Underground web service [35], which gathers data from Personal Weather
Stations (PWS) registered by users. Experiments addressed the following issues:

1. Feature-correlation analysis (Section 5.2)
2. Thermal energy characterization in terms of data distribution (Section 5.3)
3. Cluster characterization in terms of data distribution within each cluster (Section 5.4)
4. Cluster characterization in terms of association rules (Section 5.5)
5. Knowledge visualization (Section 5.6)

Since data collected from sensors are expected to be dirty, collected measurements are analyzed
through the DBSCAN algorithm, which is able to automatically identify outliers. Outliers are often
considered noise points when proper density parameters are set. To select the algorithm parameters
(i.e., Eps and MinPoints) the k-distance plot has been analyzed. We performed many runs with
varying values of k (i.e., MinPoints parameter) between 2 and 20. We noticed that the resulting curve
was very similar with values k = 12 and k = 13. For both plots we have looked for the knee. The Y-axis
value in which the knee is formed corresponds to a good Eps value for that particular MinPoints value.
If Eps is chosen too small, a large part of the data will not be clustered; whereas for a too high value of
Eps, clusters will merge and the majority of objects will be in the same cluster. METATECH sets as
good possible configuration for the DBSCAN algorithm MinPoints = 12 and Eps = 0.2.

To address the problem of centroids initialization for the K-means algorithm, we randomly
chose the initial centroids.The K-means algorithm requires the number of clusters (K) as input
parameter. Generally, this is a difficult parameter value to choose, given the wide range in which it
may vary. To address this issue, METATECH automatically performs many runs of the algorithm
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with varying values of K. For each run, the cluster set is evaluated by computing the standard and
weighted Silhouettes. Table 2 shows the cohesiveness gain obtained for each run of the algorithm.
Finally, METATECH selects the best value for the parameter, which is K = 4 in our experiments,
providing the maximization of the cohesiveness gain.

Also association rule extraction requires parameters to be defined. However, these are less
important, since they act as a pruning factor of the result set, by automatically removing the less
important rules based on their value of support, confidence and lift. Hence, the best values of these
parameters depend on how much time and resources domain experts can devote to the manual
inspection of the rules. Based on the experimental results, the following parameter settings have been
used as the reference default configuration for METATECH:

• Number of clusters K = 4,
• Minimum confidence value mincon f = 10%,
• Minimum support value minsup = 0.1%,
• Minimum lift value minli f t = 1.1.

The minsup parameter has been intentionally set to a low value to avoid missing relevant
correlations. The resulting number of rules is then very large (e.g., more than 20 thousands), and the
most interesting ones have been selected according to decreasing lift. Support, confidence, and lift
have been computed on the overall dataset when characterizing the clusters (in Table 5), and on the
subset of records of each cluster to identify interesting correlations within each group (in Table 6).

The Java-based RapidMiner toolkit [40] has been used for correlation analysis, cluster analysis,
and association rule extraction, while the data distribution analysis has been performed using
MATLAB [41]. Experiments performed on a 2.66-GHz Intel(R) Core(TM)2 Quad PC with 8 GBytes of
main memory and Linux Ubuntu 14.04 yielded to an average execution time of 48 s, considering the
complete work flow, from clustering to rule extraction and ranking, over the whole season of data.

Table 2. Cohesiveness gain trend of the clustering results for different values of the K parameter
(number of clusters).

Cohesiveness Gain

K Standard
Silhouette

Weighted
Silhouette Ratio Delta (%)

3 0.40 0.45 1.13 5.39

4 0.37 0.44 1.17 6.34

5 0.34 0.39 1.15 5.14

6 0.33 0.38 1.14 4.83

7 0.32 0.36 1.15 4.80

8 0.32 0.37 1.15 4.88

9 0.32 0.37 1.15 4.78

10 0.32 0.36 1.13 4.35

5.1. Data Description

To address the temporal analysis of the thermal energy consumption, each record, whose raw
version has only a timestamp, is enriched with the following information:

• Date, holiday (yes or no), week of the year (1–52), month (1–12), 2-month, 3-month, 4-month,
6-month periods;

• Daily time slots, i.e., morning [4–8], midday [9–13], afternoon [14–17], evening [18–22];
during the night, from 22 to 4, the heating system is switched off in the buildings under study.
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Weather attributes and their corresponding units of measure, including a briefly description are
listed in Table 3; their mean values are collected once every hour. Summarizing, each building is
characterized by 10 attributes.

Table 3. Weather data features included in the experimental dataset.

Attributes Unit of Measurement Description

Air Temperature ◦C
mean hourly temperature, provided by PWS
(Personal Weather Stations)

Outdoor Temperature ◦C
mean hourly temperature, provided by
a sensor on the roof of buildings

Precipitation mm mean hourly value of precipitation

Wind Direction azimuth mean hourly value of Wind Direction

Solar Radiation W/m2 mean hourly value of Solar Radiation

UV index - mean hourly value of UV index

Humidity percentage mean hourly value of Humidity

Pressure hPa mean hourly value of pressure

5.2. Feature-Correlation Analysis

METATECH exploits the correlation matrix to analyze the dependence between multiple variables
at the same time. The correlation matrix shown in Table 4 contains the correlation coefficients
between each couple of attributes computed as discussed in Section 4.2. This matrix is symmetric
(i.e., the correlation of column i with column j is the same as the correlation of column j with column i),
and its generic element (i, j) models the correlation between the attribute in row i and the one in
column j. Correlation coefficients always lie in the range [−1, 1]. A positive value ([0, 1]) implies a
positive correlation between attributes i and j. Thus, large (small) values of attribute i tend to be
associated with large (small) values of attribute j. A negative value ([−1, 0]) means a negative or
inverse association. In this case, large values of i tend to be associated with small values of j and vice
versa. A value near 0 indicates weakly correlated or uncorrelated data.

Table 4. Correlation matrix among weather data features.

Attributes Air
Temperature

Outdoor
Temperature Precipitation Wind

Direction
Solar

Radiation
UV

Index Humidity Pressure

air temperature 1 0.97 −0.06 −0.03 0.48 0.48 −0.49 −0.01

outdoor
temperature 0.97 1 −0.03 −0.01 0.41 0.4 −0.46 −0.03

precipitation −0.06 −0.03 1 0.08 −0.07 −0.06 0.15 −0.06

wind
direction −0.03 −0.01 0.08 1 0.02 0.01 −0.08 −0.12

solar
radiation 0.48 0.41 −0.07 0.02 1 0.91 −0.4 0.06

UV
index 0.48 0.4 −0.06 0.01 0.91 1 −0.42 0.04

humidity −0.49 −0.46 0.15 −0.08 −0.49 −0.42 1 −0.07

pressure −0.01 −0.03 −0.06 −0.12 0.06 0.04 −0.07 1

The matrix shown in Table 4 highlights two strong correlations, i.e., whose value is above the
experimental threshold set at 0.9: (1) a positive and strong correlation (0.97) between air temperature, i.e.,
the mean external temperature monitored through PWS, and outdoor temperature monitored through
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a sensor deployed on the roof of the building; (2) a very high correlation (0.91) between UV index and
Solar Radiation.

Since highly correlated attributes are similar in behavior, for each couple of attributes highlighted
in the matrix, the attribute which is less correlated with the thermal energy consumption is removed
from the analysis to reduce both the computational cost and the cardinality of the extracted knowledge.
Based on the above results, we do not consider Outdoor Temperature and Solar Radiation in the subsequent
analysis process.

5.3. Thermal Energy Consumption Distribution

To describe the thermal energy consumption behavior during the full winter period, we exploit
the histogram of the response variable. To construct the histogram, the first step is to bin the range of
values (i.e., to divide the entire range of values into a series of intervals) and then count how many
values fall into each interval. The bins are usually specified as consecutive and non-overlapping
intervals of a variable. We divided the entire interval into 10 bins to analyze the deciles.

In Figure 3 we reported the histogram and the cumulative distribution. The histogram shows
a skewed distribution to the right, i.e., it is positively skewed. This kind of distribution has a large
number of occurrences in the lower value cells (left side) and few in the upper value cells (right side).
Most of the values (90%) are below 12.23 KW/m3, i.e., within the 4th decile, and almost 70% of the
values are below 8.73 KW/m3, i.e., within the 3rd decile.

METATECH provides such basic quantitative information to domain experts to allow a better
understanding of the next analysis steps. In particular, as discussed in Sections 4.4 and 5.5, values of
thermal energy consumption will be discretized into bins to allow association rule extraction.

Figure 3. Histogram and cumulative distribution of thermal energy consumption.

5.4. Cluster Characterization

The cluster analysis is exploited by METATECH to identify energy consumption patterns
occurred in similar meteorological conditions. The K-Means clustering algorithm has been applied to
meteorological data related to a complete winter period. METATECH supports domain experts
in capturing the rationale of the clustering results by exploiting two representations: (i) the
singular value decomposition (SVD) [4] to show the clustered points in a graphical and friendly
two-dimensional space; (ii) an attribute-based box-plot comparison, to better understand the
distribution of the attribute values characterizing each cluster.

SVD is a matrix factorization method that factorizes the input data matrix into three matrices.
It can be easily exploited to reduce the data dimensions by only considering the most representative
attributes. Figure 4 shows the SVD decomposition of the cluster set discovered by K-means with K = 4.
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All clusters are well-separated, and indeed K-means was able to identify a good partition of records
that occurred with similar meteorological conditions.

Figure 4. Cluster set representation through SVD, where each point is represented with the color of the
cluster it belongs to.

Figure 5 compares the value distributions of the meteorological attributes to characterize the
clustering results through the boxplot analysis [42]. In more detail, Figure 5a (left) shows the humidity
distribution in the four clusters. Cluster1 and Cluster2 have high median values and are characterized
by positive skewness. Cluster3 and Cluster4 have low median values, with the former exhibiting
negative skewness. In case of positive skewness, more observations with lower values are present,
while in the case of negative skewness, more observations fall in correspondence of the highest
values. For instance, considering Cluster1 and Cluster2 that have a negative skewness, (Q3 −Me) <
(Me−Q1), where Me is the median, Q1 the first quartile and Q3 the third quartile.

Figure 5a (right) shows the pressure distribution. All clusters exhibit a similar behavior in terms of
both skewness and median values, hence the pressure is not a characterizing attribute for the clustering
result. Figure 5b (right) shows the wind direction distribution separately for each cluster. With respect
to the humidity distribution, Cluster1 and Cluster3 are characterized by positive skewness. Instead
Cluster2 is characterized by negative skewness, while Cluster4 is almost symmetric. In more details,
Cluster1 has 212.5 as median value, a value that is related to winds that blow from the South-West.
Half of records of Cluster1 fall within the range [187.5, 250.0], corresponding to winds that blow from
South-East, East and South-West.

Overall, on a per cluster basis, we can see that each cluster is characterized by specific ranges of
values for different variables. For instance, Cluster3 shows low humidity and high temperature values,
whereas pressure is not a characterizing feature of the cluster. On the contrary, Cluster1 exhibits high
humidity, low temperature, and “high” wind direction values.

The current cluster characterization, as provided by the boxplots, is coarse. However, it is provided
as a support for the following association-rule extraction experiment (Section 5.5). Association rules
and their corresponding quality metrics allow to describe not only the information provided by
boxplots, but also deeper insights on the data, in a more human-readable fashion, also for non-expert
end-users.
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(a)

(b)

(c)

Figure 5. (a) (left) humidity distribution and (right) pressure distribution; (b) (left) air temperature
distribution and (right) wind direction distribution; (c) uv index distribution. Characterization of the
cluster set through the box-plot distribution of the attribute values.
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5.5. Analysis of Extracted Patterns at Different Abstraction Levels

In this subsection we discuss the most interesting correlation patterns found by METATECH,
in the form of association rules. Since association rule mining requires a transactional dataset of
categorical values, METATECH performs the discretization of continuously-valued measurements to
obtain categorical bins.

In our case study, the knowledge discovery process is driven by a taxonomy. The taxonomy
in the context of the association rule mining is called generalization tree, since it allows rules to be
generalized. Discretization bin values are provided by a domain expert, so that they are based on their
meaning in the energy and meteorological contexts, as described in the following.

(1) Energy consumption per unit of volume (denoted as consumption level): two bins until 5.5 KW/m3

(off until 0.05 KW/m3, low until 5.5 KW/m3), a bin each 10 KW/m3 for values until 25.5 (medium
consumption until 15.5, high consumption until 25.5) and an additional bin for values exceeding
25.5 KW/m3 (very high). Thus, the corresponding generalization tree includes 5 leaf values ([0.0, 0.05]
(0.05, 5.5] (5.5, 15.5] (15.5, 25.5] (25.5, +∞)), each one associated to a range of non-overlapping values.
The tree also includes an intermediate level with three aggregate values (i.e., [0, 5.5] (5.5, 15.5]
(15.5, +∞)) and the root including all values in the corresponding domain.

(2) Humidity: a bin each 20% from 0 to 100% (i.e., very low until 20%, low until 40%,
medium until 60%, high until 80% and very high until 100%). The corresponding generalization
tree includes 5 leaf values ([0.0, 0.20] (0.20, 0.40] (0.40, 0.60] (0.60, 0.80] (0.80, 1.0]) and the root
(representing all values).

(3) Temperature: values are discretized in five bins (very cold up to 5 ◦C, cold up to 10 ◦C, mild up
to 18 ◦C, warm up to 25 ◦C, hot up for higher values). The corresponding generalization tree includes
5 leaf values ((−∞, 5] (5, 10] (10, 18] (18, 25] (25, +∞)), an intermediate level with values (−∞, 10],
(10, 18], and (18, +∞)), and the root including all values in the corresponding domain.

(4) Temporal data: the timestamp is aggregated into the corresponding daily time slot (e.g., morning,
midday, afternoon, evening). Each day is classified as holiday or working, and aggregated in week,
fortnight, month, 2-month, 3-month, 4-month and 6-month periods.

(5) Meteorological measurements have been discretized based on the criteria available in [43–46]:
precipitation level values and wind direction have been categorized in eight leaf values each, UV index
in six leaf values, and atmospheric pressure in two leaf values.

From experimental experience, to avoid pruning interesting correlations with low confidence but
high lift, recommended values of support and confidence thresholds for association rule mining in the
current context are 0.1% and 1% respectively. Moreover, we also recommend a minimum lift threshold
equal to 1.1 to prune both negatively correlated and uncorrelated item combinations.

5.5.1. Fine-Grained Association Rule Extraction

This section presents the most interesting correlations in the form of traditional (fine-grained)
association rules. To this aim, the rule templates presented in Section 4.4 are exploited.

Table 5 shows the top-three rules, sorted by descending lift, characterizing each cluster according
to the first template. Support, confidence, and lift are computed on the overall dataset, as the cluster
is a feature of the dataset itself. Rules R1 − R12 identify the most representative meteorological items
in each cluster.

Rules describe Cluster1 as the group modeling “bad” weather data (drizzling, cloudy,
low UV index), Cluster2 has cold humid measurements, Cluster3 warm sunny days, and Cluster4

mild dry ones. The characterization of the clusters by means of the rules provides insights that from
a boxplot would be hard to spot. For instance, Cluster1 from the boxplot seems to have zero UV index
as main value. However, the proportion of zero UV index records in Cluster1 is lower than the overall
presence in the dataset. Hence, Cluster1 is actually characterized by the minimum UV index instead of
the zero value, because minimum UV index values are more present in Cluster1 than in other clusters.
Such information is provided by the lift quality index, which is above 1.0, specifically in rule R3.
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These weather items are subsequently combined with other meteorological items to characterize
each cluster in more detail through the second template.

Table 5. Fine-grained traditional rules according to the first template.

RId Rule Supp % Conf % Lift

R1 {cluster = Cluster1} ⇒ {Precipitations = drizzling} 8.1 20.5 1.8

R2 {cluster = Cluster1} ⇒ {Pressure = low} 17.4 43.9 1.2

R3 {cluster = Cluster1 } ⇒ {UV index = minimum} 37.5 94.6 1.1

R4 {cluster = Cluster2 } ⇒ {Humidity = high} 13.2 45.3 1.3

R5 {cluster = Cluster2 } ⇒ {Precipitations = no rain} 26.1 89.2 1.1

R6 {cluster = Cluster2 } ⇒ {Temperature = cold} 12.3 42.1 1.1

R7 {cluster = Cluster3 } ⇒ {Temperature = warm} 2.8 41.7 5.8

R8 {cluster = Cluster3 } ⇒ {UV index = medium} 2.9 43.1 1.5

R9 {cluster = Cluster3 } ⇒ { Pressure = high} 4.6 68.2 1.1

R10 {cluster = Cluster4 } ⇒ {Humidity = low} 8.0 33.1 3.1

R11 {cluster = Cluster4 } ⇒ {Temperature = mild} 13.9 57.0 1.5

R12 {cluster = Cluster4 } ⇒ {Wind Direction = South} 7.9 32.7 1.5

Table 6 reports a subset of extracted rules according to the third template. Support, confidence,
and lift are computed separately on the subset of the dataset of each cluster.

Rules R1, R2 and R5 describe the weather conditions correlated with a very high level of thermal
energy consumption. For instance, the first rule of Cluster1 (R1) applies to drizzling evenings in
January, with very high humidity, and cold temperature, besides the presence of South wind, which is
a very weak and moist wind, accentuating the body’s discomfort. All three rules correlate very high
energy consumption with minimum UV index, very high humidity, and cold or very cold temperatures.
Daily time slot changes from evening (for two rules) to morning (for the third one), as well as the
fortnights, from December to January. Two rules have very high confidence values, from 92% to 100%,
while the other rule has a relatively high confidence at 73.4%.

Rules R7, R8 and R11 instead characterize periods with no thermal energy consumption (off value).
Common conditions are absence of rain, high pressure, warm or mild temperatures, winds from the
South or Southeast. The period is in March or April. All rules have very high confidence values,
from 95% to 100%, meaning that when the meteorological conditions are met, then the thermal energy
consumption is almost always off.

Identified correlations are confirmed by domain experts and for some aspects are obvious,
e.g., the energy consumption is higher in December and January when it is colder. However,
the interestingness of such results is twofold. First, the correlations are automatically inferred
from data, showing that they correctly model a more or less known phenomenon, i.e., they actually
make sense. Second, the results are human readable, and add meaningful details to trivial correlations,
e.g., they specify the most correlated daily time slots and wind directions.
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Table 6. Fine-grained traditional rules according to the second template.

Rule Body Rule Head

CId RId Forthnight:
15 Days

Daily
Time Slot Temperature UV

Index Humidity Pressure Wind
Direction Precipitation Consumption

Level
Supp

%
Conf

% Lift

C1

R1
16–31

January Evening Cold Minimum Very high Low South Drizzling Very high 0.2 100.0 153.5

R2
1–15

January Morning Cold Minimum High Low South High 0.2 66.7 7.5

R3
16–31

December Morning Very cold Minimum Very high SouthWest Very high 0.2 73.4 5.6

C2

R4
16–31

December Midday Cold Minimum High No rain Medium 0.6 62.5 11.3

R5
1–15

December Evening Cold Minimum Very high High North No rain Very high 0.2 92.0 3.8

R6
1–15

January Morning Very cold Minimum Very high North No rain High 0.1 100.0 3.8

C3

R7
1–15
April Evening Warm Low Low High South No rain Off 0.5 100.0 52.8

R8
16–31
March Afternoon Warm Medium Very low High South No rain Off 0.4 95.0 52.8

R9
1–15

March Midday Warm Low Very low High South No rain Medium 0.9 95.0 4.2

C4

R10
16–31

October Evening Mild High SouthEast Low 0.1 90.2 2.7

R11
1–15

March Afternoon Mild Low Medium High SouthEast No rain Off 0.1 100.0 2.3

R12
1–15

February Midday Mild Low High South Medium 0.4 90.1 1.9

5.5.2. High-Level Generalized Association Rules

This Section discusses the most relevant generalized association rules, extracted by METATECH
and classified according to the rule template presented in Section 4.4. These kind of rules allow us to
extract interesting relationships at a higher level among data under analysis, capturing correlations
that in the fine-grained extraction would be missed.

Table 7 shows the top-three interesting generalized association rules (with the highest lift value)
characterizing each cluster. We concentrate directly on the second template, which yields the most
interesting rules. Resulting rules can contain both original leaf values (e.g., morning, afternoon,
cold, hot, etc.), and generalized values, such as “root” to indicate the full domain of the attribute, e.g.,
any value of temperature, or different levels of aggregation, i.e., 4-week period or 8-week period
aggregating two or four adjacent fortnights.

We remind that rules described Cluster1 as the group modeling “bad” weather data
(drizzling, cloudy, low UV index), Cluster2 has cold humid measurements, Cluster3 warm sunny days,
and Cluster4 mild dry ones.

Rules with the highest confidence typically correlate low consumption levels. For instance,
all Cluster3 and Cluster4 top correlations (R8 to R12) present low consumption levels (only R7 has
a medium level). R11 stems out from this group of rules because it targets a very large 8-week period
from October to December (late Autumn), and states that independently of the temperature (“root”
level of generalization), during the midday time slot (from 9 a.m. to 1 p.m.), the consumption level is
low, with confidence 74%. A similar behavior is presented by R8, which states that in afternoons from
mid February to mid March (4 week aggregation of two fortnights), independently of the temperature
(“root” value), the consumption level is low, with a very high confidence (90%).

Other rules stem out due to their high support. For instance R9 presents a correlation verified
for 16% of the Cluster3 observations. Typically, generalized association rules, since collect more
observations, present higher support than fine-grained rules, which are more specific and intuitively
describe quantitatively-limited conditions.
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Table 7. Generalized association rules according to the second template.

RuleBody Rule head

CId RId Fortnight (4 or 8 Weeks) Daily Time Slot Temperature Consumption
Level

Supp
%

Conf
% Lift

C1

R1 December-January Midday Cold High 0.4 27.8 2.5

R2 January-February Midday Cold High 1.1 21.0 1.9

R3 February-March Midday root Medium 2.1 96.3 1.5

C2

R4 October-November Midday Mild Low 3.1 80.0 2.31

R5 October-November Afternoon Mild Low 1.5 66.7 1.9

R6 November-December Midday root Medium 3.3 65.2 1.2

C3

R7 February-March Midday Mild Medium 10.9 79.3 3.3

R8 February-March Afternoon root Low 4.7 90.1 1.2

R9 March-April Afternoon Hot Low 16.1 87.2 1.14

C4

R10 March-April Evening Mild Low 5.0 79.2 1.8

R11 October-December (8 w) Midday root Low 3.1 74.2 1.8

R12 February-April (8 w) Afternoon Mild Low 2.1 29.6 1.7

5.6. Summarizing and Comparing Energy Consumption

To present the rule results at a glance, METATECH summarizes energy consumption
levels over time in similar meteorological conditions by exploiting a graphical representation,
where self-explaining bubble symbols are used for different energy consumption levels.

Figure 6 shows the proposed graphical representation to simplify and synthesize the energy
consumption patterns over time in a compact, human-readable, detailed and exhaustive representation.

The four graphs refer to the four clusters identified by the experimental session. Specifically,
for each cluster, rules in the form of the second template are partitioned for each daily time slot
and fortnight. The rule with the highest lift value is selected and the symbol associated with the
corresponding energy consumption level is reported in the graph.

Cluster1 and Cluster2 graphs (Figure 6 top) include a large number of symbols modeling very
high and high consumption levels. In particular, in the mornings of the winter months consumption
is high due to the bad weather conditions. In spring and autumn there was a reduction of the
consumption level, while evenings are typically characterized by a medium consumption level (in
Cluster1). Instead the Cluster4 graph is characterized by lower consumption levels because this
cluster represents mild weather conditions. Especially in spring and autumn, consumption levels are
low or negligible during the day and afternoon time slots, while during the winter, low or medium
consumption levels are frequent.
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(a) (top) Cluster1, (down) Cluster2

(b) (top) Cluster3, (down) Cluster4

Figure 6. Energy consumption levels over time grouped according to similar meteorological conditions.
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Hierarchical Graphical Representation

The hierarchical graphical model that METATECH uses to display the extracted knowledge can
simultaneously compare the energy consumption levels at different granularity levels as shown in
Figure 7. From top to bottom, the three graphs are characterized by coarse to detailed time periods:
the upper graph has an 8-week granularity, the middle one presents 4-week periods, and the lower
one details fortnights. The first two graphs differentiate three energy consumption levels: “high”
aggregates the values “very high” and “high” in a five-level scale; and “low” aggregates “low” and
“off”. The third graph, besides the more detailed time granularity, presents energy consumption levels
on a five-value scale (very high, high, medium, low, and off).

Figure 7. Cluster1 energy consumption over different time-period aggregation levels.

As an example, Cluster1 results are reported. The graphs are built from rules extracted from
the dataset and belonging to the second template. When no rules are present, no bubble is indicated.
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For instance, in the period 1–15 October, rules characterize the morning, while no correlations have
been identified for the other periods of the day.

The graph can be analyzed in two ways: a (i) bottom-up approach and a (ii) top-down approach.
The lower graph is obtained using the third template (i.e., correlations between weather conditions and
energy consumption level at a different time granularity) of the traditional association rules, while the
two upper graphs are obtained using the generalized association rules with the fortnight aggregation
to 4 weeks and 8 weeks respectively. The graphical model is able to summarize in a friendly and simple
way the consumption of each cluster. Specifically, for each cluster, rules in the form of the second
template with the highest lift value are selected and the symbol associated with the corresponding
energy consumption level is reported in the graph.

6. Conclusions and Future Works

In this paper we presented METATECH, a data mining engine devised to build transparent
models correlating weather conditions and energy consumption. METATECH exploits a joint approach
coupling cluster analysis and generalized association rules to allow a deeper yet human-readable
understanding of how meteorological data impact heating consumption. Experimental results on
a real dataset demonstrate the effectiveness of the proposed methodology in automatically extracting
interesting transparent knowledge for domain experts.

We are currently extending the METATECH system to actively engage users to pursue
energy-saving behaviors within a social platform, and to measure their changes in energy consumption
over time. Users could be engaged with rewards, promoting virtuous behaviors, and introducing
gaming approaches. We are also adding new predictive features to METATECH, such as exploiting
data mining algorithms (e.g., Artificial Neural Networks and Support Vector Machines) to forecast
fine-grained energy consumption. Such extension would allow a better comparison with the real
consumption patterns, enriching also the planned activity of collection and measurement of inhabitants
reactions and changes in energy-related behaviors when their awareness is risen as a result of the
proposed approach.
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