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Abstract

As a fundamental infrastructure, power systems play a vital role in modern society,
but it can be damaged by different adverse events e.g. natural, accidental, and
malicious, of which the adverse natural events, especially extreme weathers, with
huge destructive force can bring tremendous damages and economic losses. The
high exposure and comprehensive geographical coverage of the power system make
it highly vulnerable to extreme weathers, resulting in equipment damage which leads
to cascading failures and blackouts.

Traditional methods only focus on modeling and analysing the reliability of
the power system under extreme weathers, without focusing on the propagation of
the cascades. In this thesis, innovative methods of studying the cascading failure
were proposed, and further extend to collectively consider the impact of extreme
weathers on the transmission networks. The proposed models were further validated
by applying them to a study system (IEEE-30 bus system) and a real system (Italian
transmission network).

A so called normal failure model based on probabilistic graphs was proposed
to describe how a cascading failure propagates under a contingency analysis. This
model employed Monte Carlo simulation to consider most of the possible operating
conditions to establish directed probabilistic graphs to identify the cascading propa-
gation by tripping all branches one by one under each operating condition. Obviously,
the results of the model can clearly and legibly show the main cascading path of a
given network without considering the initial operating condition and the triggering
contingency. Further, an index based on branch vulnerability was designed to select
the triggering event to increase the effectiveness of the failure in the simulation.

Furthermore, by integrating a probabilistic model of extreme weather impact into
the normal failure model, the extreme weather model was proposed based on failure
networks, which maps a physical electricity network into a graph in the cascading
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propagation dimensions. Based on the generated failure networks, a new method
based on clustering techniques was proposed to fast track the cascading failure path
from any initial contingencies without recalculating the cascading failure in the
physical network. The high similarity of the simulation results on the IEEE 30 bus
system from the two proposed models indicates the validity of the models.

Further, to demonstrate the extreme weather model, we selected a winter storm,
which could happen in Northwest of Italy as an example. The data of snowfall on
the Alps was collected and modeled by probability density function and probability
mass function. By applying the proposed extreme weather model, the propagation
paths can be predicted.

The values of the study provide two powerful tools which can 1) clearly present
the inherent characteristic of any one given network, i.e. main propagation paths
exist regardless of the initial network and failure condition; 2) fast and reasonably
predict the cascading paths in a network under extreme weather conditions.
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Chapter 1

INTRODUCTION

1.1 Literature review of cascading failures

Cascading failures (CF), as the main reason for almost all blackouts, pose severe
threats to the security of power systems. In terms of the process of a cascading
failure, it usually begins with the initial failure of one or more components, and then
the initial failure leads to a sequence of cascading events and finally ends up with a
massive power outage. There are many historical records for the blackout caused by
the cascading failures. For example, a planned routine disconnection in Northwest
Germany caused a cascading failure in European electrical grids and finally affected
about 15 millions of European households [1]. Besides technical problem , some
adverse/extreme weather can also lead to a cascading failure, such as the blackout
that happened in Italy September 2003. Owing to a storm, a cascade disconnection
of the transmission line interconnecting North Europe to Italy eventually led to a
blackout, and it affected around 60 million people and the disrupted energy reached
180 GWh [2]. Thus, it can be seen that cascading failures have a huge negative
impact on the society.

Currently, there are two main methods which have been developed to study
cascading failures: Graph Analysis of Grid Topology and Power Flow Based
Analysis [3].

The essential of Graph Analysis of Grid Topology is to map a complex network
to the power grid topology, which is to convert substations and generators to nodes
while convert transmission lines and transformers to links. There are several graph
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analysis techniques to study cascading failures including betweenness centrality,
small-world network, scale-free network.

Betweenness centrality is a method to measure the centrality for transport flow
in a network based on shortest paths, and the means of betweenness centrality is
assumed to be the loads on nodes or links of a network [4–8]. If the betweenness
centrality of a link or node exceeds a pre-specified critical value, the link or node
will be overloaded and removed from the network, then all betweeness centrality will
be redistributed [3, 9, 10]. A cascading failure propagates along with the iteration
process carries on.

The small-world network is a network model with relative small average path
length and relative large clustering coefficient [11]. A cascading failure based on
small-world networks assumed that a node will fail if a given value of its neighbours
has failed [3, 12–15]. At the beginning, the failure happens on some isolated nodes,
then the initial failure will cause subsequent failures as a result of exceeding of the
given value [3, 16–18].

The scale-free network has two significant features: 1) the degree distribution
follows the power law distribution; 2) some nodes have a large amount of links while
most of the node just has a few links [11]. It was found that the network’s electrical
structure can share some properties with the scale-free network [19]. Furthermore,
cascading failures in the scare-free network was investigated by proposing the nodes
with high centrality as defence nodes and then to mitigate cascading failure [20–25].

Based on steady-state modeling, Power Flow Based Analysis can be performed
to study cascading failures by some typical models such as OPA model, CASCADE
model, and Manchester model.

OPA model employed DC load flow and LP dispatch of the generation to present
cascading line overloads and outages [26–28]. More specifically, when a line fails,
generations and loads are re-dispatched by employing the linear programming
method [29–31]. The iteration of generator re-dispatch and power flow redistri-
bution can overload further lines [32]. OPA model represents a simple dynamic
process of cascading outages.

CASCADE model estimated the failure propagation by considering the overloads
of some components after adding an initial disturbance load [26, 33, 34]. To be
specific, adding loads to each component as the initial disturbance to cause some
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components to fail. As some components fail because of exceeding their loading
limit, further components would fail in the subsequent stages.

According to AC power flow, the Manchester model represents a range of cascad-
ing failure reciprocal actions [35–37]. The interactions include generator instability,
under frequency load shedding, redistribution of active and reactive resources, and
cascading outages of transmission lines [35, 38, 39].

1.2 Tasks encountered

The above reviews the state of the art of cascading failures, thus it can be seen that
there is little research to investigate the cascading failures under adverse weather
conditions. It is not uncommon to model how the weather will impact on power
systems, but most existing studies focus on exploring the potential catastrophic
consequence of cascading failures on account of the extreme weather. For example,
some researchers previously proposed the reliability model under extreme weather
conditions [40–42]. Some difficulties to model cascading failures caused by the
extreme weather temporarily restrained researchers to have a further insight into this
area. The difficulties can be addressed in three parts:

Firstly, how to model the weather. As power grids can be affected by various
types of adverse weather such as earthquakes, ice storms, volcanic eruption, landslide,
tsunami, etc. It is rarely possible to model a genera asthmatic model to represent
different types of adverse weather.

Secondly, to combine the weather model and cascading failure model. The
weather model and cascading failure model belong to different areas, so integrating
them seems to be not simple. Besides, because of the uncertainty of adverse weather,
sometimes it is hard to predict the failures of electrical components resulting from
the adverse weather.

Thirdly, the areas impacted by the adverse weather in power grids are not regular.
Traditionally, researchers always assumed that the cascading failure began with the
vulnerable component. However, when a power grid is affected by natural disasters,
then the initial failure of cascading failures will happen randomly. Therefore, pre-
dicting the cascading failure propagation (CFP) with random initial failures at the
current is not only hard but also demanding.
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1.3 Innovations and contributions

In this thesis, we proposed two models to study the cascading failures: one is
the normal failure model and another is the extreme weather model. The normal
failure model is subject to a cascading failure that happens in the power transmission
network under a normal situation(without considering the factor of weather), while
the extreme weather model is a model to study cascading failures under the extreme
weather(specifically focusing on the snowfall).

The normal failure model took the engineering characteristics of power systems
into account to implement vulnerability assessment, and combined the probabilis-
tic graph to illustrate the CFP. Probabilistic graph is a graph model to present the
conditional dependence structure between random nodes (variables) [43]. To put
it simply, we adopted the Monte Carlo (MC) method, with consideration of the
uncertainty of loads and generations, to produce random operating states to identify
vulnerable transmission lines in a power system. Based on the most vulnerable trans-
mission line, the probabilistic graph was applied to simulate the CFP. The proposed
methodology employed four large samples size to implement Monte Carlo method
to identify and compare the component which has the highest failure probability.
Compared with other methods, this result could be more accurate and persuadable as
it was concluded from a great deal of simulation result. After implementing Monte
Carlo, a table which contained a mass of cascading failure chains can be obtained.
Statically analysing this table, we can transfer this table into a probabilistic graph to
simulate the CFP. This probabilistic graph can help researcher clearly understand
how a cascading failure will propagate.

The extreme weather model consisted of a weather (snowfall) model and a partial
method of the normal failure model. The reason why to choose the snowfall is
because we wanted to apply this extreme weather model on Italian transmission
network and studied how the snowfall on Alps will lead to cascading failures on
Italian power grids. At the beginning, we used the historical data of snowfalls on
Alps to model the probability density function (PDF) of snowfalls. Based on the PDF
of snowfalls and a partial method of the normal failure model, we produced a "Failure
Network". "Failure Network" refers to a network which combines all possible CFP
in a system. Then we established two parameters to reveal how the cascading failure
propagates and when the cascading failure stops in "Failure Network". The extreme
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weather model not only integrates the weather factor to analysis cascading failures,
but it also can predict the CFP with random initial failures.

As mentioned above, the extreme weather model used a partial method of the
normal failure model. Fig. 1.1 shows the detailed relation between those two models.
Both of those two models belong to cascading failure model and either of them
contains four parts. Furthermore, it can be observed that the extreme weather model
shares two parts with the normal failure model.

Fig. 1.1 Relation between the normal weather model and the extreme weather model

1.4 Structure of the thesis

The remaining chapters of the dissertation are organised as following:

• Chapter 2 gives a short but comprehensive description about the category
of extreme weather and the impact of the extreme weather on power grids.
Specifically, this chapter recalls some historical major extreme weather and
how they affected the power grids globally.

• Chapter 3 introduces the normal failure model. Starting from the definition
of the normal failure model, this chapter then introduces the method of the
model, and finally presents how to apply this model to a 30-bus system.
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• Chapter 4 describes the extreme weather model based on the normal failure
model. This chapter begins with the method of modeling the probability
distribution of the snowfall data, and then introduces how to establish the
failure networks to display the cascading failure propagation under the extreme
weather condition.

• Chapter 5 applies the extreme weather model to the Italian transmission net-
work. It firstly introduces the extreme weather in Italy and the georeferenced
model of the Italian transmission network. After that, the process of imple-
menting the extreme weather model on a real transmission network is described
in details.

• Chapter 5 applies the extreme weather model to the Italian transmission net-
work. It firstly introduces the extreme weather in Italy and the georeferenced
model of the Italian transmission network. After that, the process of imple-
menting the extreme weather model on a real transmission network is described
in details.

• Chapter 6 summaries the whole dissertation and briefly introduces how to
carry on the research in the future.



Chapter 2

BACKGROUND

2.1 Motivation of this chapter

This chapter introduces the theoretical background for the dissertation, which helps
readers understand the remaining chapters. This chapter mainly introduce some basic
concepts of two mathematical theories: graph theory and conditional probability
which is a part of probability theory. This chapter also mentions the background
information of extreme weather. Graph theory is the fundamental theory to establish
the normal failure model and the extreme weather model. In terms of conditional
probability, it is used to establish the probabilistic graph in the normal failure model.
Knowing the basic information of extreme weather can be helpful to understand the
extreme weather model.

2.2 Graph theory

2.2.1 Brief introduction

The performance of many physical systems depends not only on the characteristics
of the components, but also on the locations of the components. For example, in a
structure, if the location of a component is relocated, the structure’s properties will
become differently. Therefore, the topology of the structure affects the performance
of the whole structure. As a result, it is significant to represent a system by using a
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graph model so that its topology can be clearly understood [44]. Graph Theory is an
important area of Discrete Mathematics, which was used to model pairwise relations
between objects [45]. Graphs are very simple to explain discrete structures, but are
useful for a basic functional structure. This theory can be used to model numerous
discrete things. For instance, a collection of computers and communication links
between the machines, and the relationship between each user of Facebook.

2.2.2 Basic concepts of graph theory

A graph G consists of a finite set V of elements called vertices and a set E of elements
called edges [45]. The graph can be represented by Equation (2.1). in Equation (2.2),
u and v are two vertices of the graph.

G = (V,E) (2.1)

E = {{u,v} : u,v ∈V} (2.2)

There are two main types of graphs: one is undirected graph and another is
directed graph. An undirected graph is a graph whose edges have no direction while
a directed graph defines as a set of vertices that are connected and all the edges are
directed from one node to another [46]. Fig. 2.1 displays the examples of undirected
graph and directed graph.

(a) An undirected graph (b) A directed graph

Fig. 2.1 Examples of undirected and directed graphs
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Taking Fig. 2.1a for instance, V = { a, b, c} and E = { {a, b}, {a, c}, {b, c}}. If
e = { a, b} ∈ E, it means the edge e connects the vertex a and b. Furthermore, a and
b are called the endpoints of edge e. In a directed graph like Fig. 2.1b, e = { a, b}
and e = { b, a} cannot represent a same connection between two vertices.

Fig. 2.2 An directed graph with weights

Sometimes, edges of the graph are associated with weights. With each edge
of a graph let there be associated a real value w(e), called its weight [47]. Those
weights can represent capacity, length etc. of the connection between two vertices
[48].The graph with weights is called the network, and it can be defined as Equation
(2.3), where w represents the weight of a edge. Fig. 2.2 displays the example of the
directed graph with weights.

G = (V,E,w) (2.3)

Considering Fig. 2.2, where V = { a, b, c} and E = { {a, b}, {a, c}, {b, c}}. The
weight of each edge can be understood by Table 2.1.

Table 2.1 Weight of each edge in Fig. 2.2

edge e ∈ E {a, b} {a, c} {b, c}
weight w(e) 3 2 5

There are some basic and important concepts in the graph theory such as degree,
path, cycle, acyclic and tree. The degree of a vertex is the total number of of edges
connecting to the vertex [47]. The degree of a vertex is denoted as deg(v). If the
degree of a vertex equals to zero, the vertex is called an isolated vertex. In case of
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the directed graph, the degree can be classified into two types: in-degree (degin(v))
and out-degree (degout(v)) [49]. In terms of in-degree and out-degree, they can
be defined as the total number of edges incoming to a vertex and the total number
of edges outgoing to a vertex respectively [47]. The relationship between degree,
in-degree and out-degree can be described as Equation (2.4).

deg(v) = deg in(v)+degout(v) (2.4)

Path in a graph means a sequence of unrepeatable vertices such that two vertices
are adjacent [50]. The first vertex of a graph is called start vertex whereas the last
vertex is called end vertex [50]. Those two vertices are called terminal vertices of a
path. In a path, if the start vertex equals to the end vertex, the sequence is defined as
a closed path. A closed path which has the distinct edges and vertices (except that
the start vertex is the same as the) end vertex) is called a cycle. For example, in Fig.
2.3, (a, b, c) is a path whereas (a, b, c, d, a) is a cycle

a b 

d c 

Fig. 2.3 Graph to explain path and cycle

.

There is no cycles in a graph and this graph can be called a acyclic graph.
Additionally, a connected acyclic graph can be called a tree [50]. Fig. 2.4 shows an
example tree.
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a 

c b d 

e f g h 

Fig. 2.4 A tree example

.

2.3 Conditional probability

2.3.1 Brief introduction

The probability theory handles patterns that occur in random events [51]. Probability
theory is useful in many areas such as the physical, economics, management, com-
puter sciences, etc. It can be used to model complex systems and make decisions
when there is uncertainty. Moreover, It also helps in proving theorems in other
mathematical fields including but not limited to graph theory, game theory, commu-
nications theory, etc. Classical probability applies in situations where there are just a
finite number of equally likely possible consequences [52]. However, conditional
probability answers the question that how the probability of an event changes if the
extra information is previously obtained.

2.3.2 Independent and dependent events

When two events are independent of each other, which means that the probability that
one event happens in no way influences the probability of the other event occurring
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[53]. Simply, the independent events are not possibly affected by previous events. A
typical example of two independent events is the coin tossing. The probability of
obtaining any number face on the die in no way affects the probability of getting a
tail or a head on the coin.

If A and B are independent evens, then the probability of both events happening
can be described as Equation (2.5).

P(A∩B) = P(A)×P(B) (2.5)

When two events are dependent, the probability of one event happening affects
the likelihood of the other event. In other words, dependent events are affected
by previous events. The typical example is the to pull out marbles from a bag.
Supposing there are 2 red marbles and 2 blue marbles in a bag. Firstly, pulling out
one marble (might be blue or red). Now only 3 marbles are left in the bag. What
is the probability that the second marble will be red? From this example, it can be
understood that the outcome of the first affects the outcome of the second if two
events are dependent.

If A and B are dependent evens, then the probability of both events occurring can
be described as Equation (2.6) [53]. In Equation (2.6), P(B|A) means probability of
event B given event A.

P(A∩B) = P(A)×P(B |A) (2.6)

2.3.3 Concepts of condition probability

Conditional probability is the probability of one event occurring with some relation-
ship to another event or more other events [54]. If the interest is A and the event B is
assumed to have occurred, the situation can be described as the conditional probabil-
ity of A given B, and it is usually written as P(A|B). the conditional probability of
event A given B can be defined as Equation 2.7.

P(A |B) =
P(A∩B)

P(B)
(2.7)
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If event A and event B are independent events, Equation (2.7) can be extended to
Equation (2.8).

P(A |B) =
P(A∩B)

P(B)
=

P(A)×P(B)
P(B)

= P(A) (2.8)

If event A and event B are dependent events, Equation (2.7) can be extended to
Equation (2.9).

P(A |B) =
P(A∩B)

P(B)
=

P(A)×P(B |A)

P(B)
(2.9)

2.3.4 Law of total probability

In probability theory, the law of total probability is a fundamental rule to the condi-
tional probability. The law of total probability is a solution to calculate the likelihood
of an event whose occurrence is influenced by several other disjoint events [55]. It
can be defined as Equation (2.10) or Equation (2.11).

P(A) = ∑
n

P(A∩Bn) (2.10)

P(A) = ∑
n

P(A |Bn )×P(Bn) (2.11)

2.4 Extreme weather against power systems

2.4.1 Brief introduction

Various definitions of extreme weather have been proposed. It was defined as all
atmospheric, hydrologic, geologic and wildfire phenomena that, has the potential to
affect the human health, activities or even the constructions [56]. Some researchers
suggested that they referred to weather phenomena that are at the extremes of the
historical distribution and are rare for a particular time and/or place, especially
unseasonal or severe weather [57]. In this thesis, considering the involvement of
power systems, we define extreme weather as a potential event or a set of events
happened around the world with different scales (local, national, continental) and
different short time frames (instantaneously, minutes, days), and it is not directly
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involved by human’s activities but it would affect the operation of power systems
with a large scale disruption of electricity supply.

2.4.2 Classification of extreme weather

Based on the definition of extreme weather, we proposed a classification for studying
their impact on electricity infrastructures. Extreme weather can be classified into
three categories which are hydrology, meteorology, and climatology. Fig. 2.5 shows
the classification of the most typical extreme weather against the secure operation of
power systems.

Extreme weathers 

Hydrology 

Meteorology 

Climatology 

Flood 

Tropical Cyclone  

Heat Wave 

Winter Storm 

Drought 

Fig. 2.5 Classification of extreme weather

It should be noted that the difference between “meteorology” and “climatology”
mainly lies in the time perspective. Meteorology is intended to indicate the weather
conditions over the short-term while climatology employs a long-term perspective
[58]. With references to Fig. 2.5, a flood is a land covered by water that is not usually
covered by water [59]. A tropical cyclone is a rotating, organized system of clouds
and thunderstorms that originates over tropical or subtropical waters and has a closed
low-level circulation (hurricane, tornado, and typhoon are the same phenomena in
different places) [60]. A heat wave is an extended period of extreme heat and is often
accompanied by high humidity [61]. A winter storm is an event in which the main



2.4 Extreme weather against power systems 15

types of precipitation are snow, sleet or freezing rain [62]. A drought is a lengthy
period of time, stretching months or even years in which time land has a decrease in
water supply [59].

2.4.3 Impact of extreme weather on power systems

Bulk power systems are easily threatened by extreme weather due to the large
exposure to the environment. However, the components of a power system such as
generator, transformer, substation, overhead line, cable, control center, etc., can be
affected differently by extreme weather [63]. In general, tropical cyclones primarily
affect transmission and local distribution systems, while floods could damage the
generating equipment as well. Although heat waves and droughts normally cannot
straightforwardly destroy elements of the power system, unless the temperature
reaches extremely high, they can significantly increase the cooling/air conditioning
consumption while decrease the generation capacity of hydrological power plants.
However, under extreme situations, flood can damage or put out of service the
underground substations or control centers, whereas heat waves may trip transformers
or overhead lines due to the temperature protection or short circuits caused by the
elongation of the wires. In terms of the winter storm, the ice may result in the
damage of transmission towers or short circuits in substations. Table 2.2 shows the
potential impact on power systems from almost all common extreme weather, which
is based on the assumption that all the events are serious enough.
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Table 2.2 Threat and impact of extreme weather

Flood
Tropical
Cyclone

Heat
Wave

Winter
Storm

Drought

Threats

Generator H H H M M
Transformer H H N M N
Substation N H N N N
Overhead
line

M H N H N

Cable N N N N N
Control
centre

N H N N N

Possible
impact

Equipment
damage

✓ ✓ ✓

Short circuit ✓ ✓ ✓

Overload ✓ ✓ ✓

H:Huge impact M: Moderate impact N:Negligible impact

Table 2.3 shows some historical instances of extreme weather and how they
brought the huge loss to power systems. The tropical cyclones happened in 1982
and 1992 are two of the most severe natural disasters which posed a huge threats to
America’s power grid. The total economic loss reached to about 2 G$, and the failure
of critical equipment of power system caused blackout for a few days [64]-[65].
The winter storm happened on 1st April 1998 in North American caused 7.4 G$ of
economic loss, 980 casualties, 5 million people without electricity up to one month
[66]. In addition, more than 3.5 thousand poles, 5 thousand transformers, and 1.3
thousand steel pylons were in need of repair [67]. A severe heat wave happened in
Europe in June 2003 and continued through July until mid-August, which raised
summer temperatures by 20% to 30% higher than the seasonal average temperature
[68]. It also affected a large area which was extended from northern Spain to the
Czech Republic [68]. With a death toll more than 30 thousands, the heat wave
of 2003 become one of the most serious natural disasters in Europe for the last
100 years, and it ended up with a great financial loss at 14.5 G$ [69]. Moreover,
four nuclear power plants were forced to shut down because of the dramatic rise
temperature of rivers used to cool the reactors, which engendered to loss 4 GW
power generation during the summer of 2003 [69]. Although there was no direct
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damage to the infrastructures of power systems, electricity demands dramatically
soared due to the cooling loads.

Table 2.3 Major extreme weather against power systems

Country Type Time
Affected power
subscriber (M)

Affected power
Transmission
line (miles)

Affected
power
plant

Lossing
power
(GW)

Duration of
power outage
(day)

USA
Tropical
cyclone

19/11/1982 0.23 30

USA
Tropical
cyclone

11/9/1982 280 90

China
Winter
storm

10/1/2008 0.054 6500 6209 28

North
America

Winter
storm

4/1/1998 5 1850 30

Europe Heat wave 1/6/2003 4 4
UK Flood 25/06/2007 0.13 2 10 5

Australia

Tropical
cyclone
and
flood

17/1/2013 0.3 133.8

A more complicated situation is that sometimes blackouts are attributed to
combinations of multiple natural disasters. They are more complex than a single
one as they often involve cascading events. Explanatorily, the primary failure
triggers a sequence of secondary failures and failures of propagation will finally
lead to a blackout in a large area. The event that happened on 17th January 2011 in
Australia was a typical instance. A tropical cyclone was first identified in the Gulf
of Carpentaria on January 17th, but it became destructive wind and produced over
1000 mm of rainfall in some areas during 48 hours. A major flooding took place
within the following weeks caused 133.8 GW power outages, l.7 G$ economic loss
and great impact on 0.3 million power customers [70].
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2.4.4 Discussion

Although no single failure will have a significant effect on the electricity system
considering most utilities maintain sufficient generation and transmission reserves to
withstand such failures, if an extreme event happens, it will bring on several damages
on substations, the transmission system and even loads would suffer from a great
loss. Extreme weather, as the unneglectable risks for power systems, happen rarely
but their occurrences will lead to enormous losses for the society.

The large geographical exposure of power systems in the natural environment
indicates the vulnerability of power grids when facing destructive adverse natural
events. They do not only directly damage power facilities, but may also lead to
blackouts through cascading failures. This would further result in huge economic
loss and a large number of casualties. The gradually increasing population and
electricity demand have a tendency to ascend losses for each country around the
world. The extreme weather recorded in the history already alerted humans that
the huge damage can pose apparent and considerable threats to the power systems,
so it is important to understand the effects of extreme weather and develop proper
approaches and tools to efficiently reduce the negative consequences of extreme
weather. To improve the security of a power grid, a possible way to achieve this
is to consider the impact of extreme weather and model the cascading failure in
power grids under the extreme weather. Therefore, it is necessary to have appropriate
approaches and models to work on the influences of extreme weather on the power
systems.



Chapter 3

CASCADING FAILURES IN THE
NORMAL FAILURE MODEL

3.1 Brief introduction

The traditional way to predict the CFP is firstly to implement vulnerability assess-
ment, and then based on the vulnerable part as the starting failure to simulate the CFP.
The essential idea of the normal failure model is still unchanged, but the innovation
of normal failure model is to adapt the probabilistic graph theory to predict the CFP.

We take the engineering characteristics of power systems into account to im-
plement vulnerability assessment, and combine the probabilistic graph to illustrate
the cascading failure propagation. In simple terms, we adopted the Monte Carlo
method, with consideration of the uncertainty of loads and generations, to produce
random operating states to identify vulnerable transmission lines in a power system.
Based on the most vulnerable transmission line, the probabilistic graph was applied
to simulate the cascading failure propagation. The proposed methodology employed
four large samples size to implement Monte Carlo method to identify and compare
the component which has the highest failure probability. Compared with other meth-
ods, this result could be more accurate and persuadable as it was concluded from
a great deal of simulation result. After implementing Monte Carlo, all cascading
failure chains can be obtained. Statically analysing those chains, we can transfer this
result into a probabilistic graph to simulate the cascading failure propagation. This
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probabilistic graph can help researcher clearly understand how a cascading failure
will propagate.

The scheme based on MC is displayed in Fig. 3.1. The initial step is to select a
power system condition which can withstand the loss of any one electrical component.
The next step is to ensure the sampling size (K) of MC, and use the original power
system condition to produce random operating states. The following step is to choose
a random operating condition to implement "N-1". After implementing all random
conditions, the final step is to assess the vulnerability and simulate the CFP.

Fig. 3.1 Flow Chart of the normal failure model
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3.2 Methodology of the normal failure model

3.2.1 Random operating conditions

With consideration of the uncertainty of loads and generations, the model producing
random operating conditions was established by the combination of MC and ZIP
model. Specifically, ZIP are the coefficients of a load model which consists of
constant impedance, constant current, and constant power loads [71]. The coefficients
Z, I, P were determined by experiments for modern residential, commercial, and
industrial loads [72]. Fig. 3.2 presents details of the model to simulate random
operating conditions.

Random Z1, I1, P1 
…

 
The initial 

condition s0 

The sampling 

size of MC (K)  

Inputs 

…
 

System load 

state L1 

System load 

state L2 

System load 

state Lk 

Outputs 

…
 

System 

generation 

state G1 

Calculations 

…
 

Results 

The combination of                             

MC and ZIP model 

Random Z2, I2, P2 

Random Zk, Ik, Pk 

 

  

System 

generation 

state G2 

System 

generation 

state Gk 

Operating 

condition s1 

Operating 

condition s2 

Operating 

condition sk 

Fig. 3.2 The model to simulate random operating conditions

To simulate random operating states, an initial system condition (s0) and the
sampling size (K) of MC are firstly given as inputs, then randomly selecting ZIP
coefficients (Zk, Ik, Zk) to produce different system load states (Lk). Based on
a system load state, dispatching the active power balance of the system to each
generator and then a system generation state (Gk) can be produced. After ensuring a
system load state and a system generation state, an new operating condition (sk) can
be acquired. Therefore, the operating conditions are defined, in this thesis, as the
combination of system load states and system generation states. A system load state
is defined as a vector represented consuming active powers of each load node in a
power system, while in a similar way, a system generation state refers to a vector
which contains active powers of each generator node. Their relation is shown by
Equation (3.1):

sk = [Lk,Gk] (3.1)
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where
k : the k-th random time of MC
s : an operating state
L : a system load state
G : a system generation state

The set of operating states (S ) can be represented by a collection of different
random operating states (sk) as:

S = {s1,s2, ...,sk} (3.2)

s.t.

|S |= K (3.3)

where
k : the k-th random time of MC
K: the sample size of MC
s : an operating state
S : the set of operating states

Furthermore, a system load state is expressed mathematically as Equation (3.4).
Combining all system load states, the matrix of system load states can be obtained
as Equation (3.6). Similarly, a system generation state and the matrix of system
generation states can be defined as Equation (3.5) and Equation (3.7):

Lk = [lk1, lk1, ....lki] (3.4)

Gk = [gk1,gk1, ....gk j] (3.5)

ML =

∣∣∣∣∣∣∣∣∣∣
L1

L2
...

Lk

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
l11 l12 . . . l1i

l21 l22 . . . l2i
...

... . . . ...
lk1 lk2 . . . lki

∣∣∣∣∣∣∣∣∣∣
(3.6)

MG =

∣∣∣∣∣∣∣∣∣∣
G1

G2
...

Gk

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
g11 g12 . . . g1 j

g21 g22 . . . g2 j
...

... . . . ...
gk1 gk2 . . . gk j

∣∣∣∣∣∣∣∣∣∣
(3.7)
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where
k: the k-th random time of MC
i : the index of load nodes
j : the index of generator nodes
l : the consumed active power of a load node
g : the active power of a generator node
L : a system load state
G : a system load state
ML : the matrix of system load states
MG : the matrix of system generation states

3.2.1.1 System load states

As mentioned above, a system load state is based on the consumed active powers
of each load node. In order to generate the random consumed active powers of a
lode node, ZIP load model was applied in our research. The coefficients Z, I, P were
determined by experiments for modern residential, commercial, and industrial loads
[72]. Table 3.1 presents the range of each coefficient (Z, I, P) with different types of
loads.

Table 3.1 The range of ZIP coefficients

Residential Loads Commercial,Loads Industrial,Loads
Minimum Maximum Minimum Maximum Minimum Maximum

Z 0.96 1.57 0.27 0.77 1.21 1.21
I -2.49 -1.17 -0.84 0.24 -1.61 -1.61
P 1.21 1.93 0.21 1.07 1.41 1.41

According to ZIP coefficients, the loads can be estimated by [72]:

l = l0[Z(
V
V0

+ I × V
V0

+P)] (3.8)

where
V : operating voltage
V0 : rated voltage
l : active powers of a load node at operating voltage
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l0 : active powers of a load node at rated voltage
Z, I,P : coefficients for the ZIP model

In this thesis, we assumed that all load nodes contained three types of loads
(residential loads, commercial loads and industrial loads). Moreover, the proportions
of those three loads at each load node were randomly generated. Based on Equation
(3.8), we provided a new method to obtain random active power of each load node
as shown in Equation (3.9) and Equation (3.10):

li =l0i{(αi ×ZRLi +βi ×ZCLi +δi ×ZILi)

× [
Vi

V0i

+(αi × IRLi +βi × ICLi +δi × IILi)×
Vi

V0i

+(αi ×PRLi +βi ×PCLi +δi ×PILi)]}

(3.9)

s.t.

αi +βi +δi = 1 (3.10)

where
i : the index of load nodes
l : the active powers of a load node at the current stage
l0 : the active powers of a load node at the initial stage
V : the operating voltage
V0 : the rated voltage
ZRL, IRL, PRL : coefficients for the residential loads
ZCL, ICL, PCL : coefficients for the commercial loads
ZIL, IIL, PIL : coefficients for the industrial loads
α , β , δ : proportions of three types of loads

Considering the uncertainty of loads is not enough, but the correlation of each
load should also be taken into consideration. After employing ZIP model, the matrix
of system load states (MLZIP) can be obtained, but this step can only solve the
"uncertainty issue". In order to indicate the correlation between each load, a random
correlation matrix (Mrc) was generated, which presented the correlation between
each load node. Then Cholesky Decomposition [73] was used to decompose the
random correlation matrix to obtain the lower triangular matrix (U). Finally, (U)
multiplied (MLZIP), then the final matrix of system load states (ML) can be finally
obtained. Equation (3.11) and Equation (3.12) explain the method to get ML which



3.2 Methodology of the normal failure model 25

can reveal the uncertainty and the correlation of loads:

Mrc =U∗U (3.11)

ML = MLZIP ×U (3.12)

where
Mrc : the random correlation matrix (this matrix should be a positive definite matrix)
U : the lower triangular matrix
U∗ : the conjugate transpose of U
MLZIP : the matrix of system load states after employing ZIP model
ML : the final matrix of system load states which can reveal the uncertainty and the
correlation of loads

3.2.1.2 System generation states

According to Fig. 3.2, it can be understood that a system generation state depends
on a system load state. When a new random system load state is produced, the
unbalance active power might exist, and it equals to the difference between the
total consumption of the new random system load state and the total generation of
the initial generation state. Dispatching ∆p based on that assuming the droop of
generator is around 4%−5% [74] and considering both the residual power and the
active reserve for the primary control [75]. The method is defined as:

∆p =
I

∑
i=1

li −
J

∑
j=1

g0 j (3.13)

g j = g0 j +∆p∗
min{gmax j −g0 j ,10%gmax j}

J
∑
j=1

min{gmax j −g0 j ,10%gmax j}
(3.14)

where
j : the index of generator nodes
i : the index of load nodes
∆p : the unbalance active power
g : the generations of a generator node after dispatching ∆p
g0 : the generations of a generator node at the initial stage
l : the consumed active power of a load node
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gmax : the maximum allowable power output of a generator
J : the total number of generator nodes
I : the total number of load nodes

3.2.2 Generation of cascading failure chains

A CF begins with an initial failure and the initial failure will further lead to the
transmission line overload and\or the bus voltage violation in subsequent stages,
and eventually to cause the failure of the entire grid. Overloads are determined by
the power flow on the transmission line. If the power flow on a transmission line
exceeds 10% of its capacity, then we ensure there is overload. In terms of the voltage
violation, we assume the acceptable voltage range from 0.9 (p.u.) to 1.1 (p.u.). If the
bus voltage is beyond this limit, then it is a voltage violation.

Basically, components of each stage could contain two parts: overloads and\or
bus voltage violations, but in this thesis, the components of each stage are simplified
to one indicator which is the total removing lines (TRL). Therefore, TRL actually
consists of two parts: one is the overloading transmission lines (OTL) and another is
the transmission lines which are related the voltage violations (LBVV).

T RL = [OT L, LBVV] (3.15)

where:
T RL : total removing lines
OT L : overloading transmission lines
LBVV : transmission lines which are connected to the bus when it happens voltage
violations

Another indicator which is the the criteria of ending cascading failures (ECF)
also needs to be explained, as the propagation depends on two indicators: ECF and
TRL. ECF is composed of three factors: Island, blackout and voltage collapse, and it
is expressed as Equation (3.16). If there is more than one island in a power system,
IF equals to 1. Otherwise, it equals to 0. Similarly for BF and VCF , they equal to 1
respectively when there is a blackout or a voltage collapse (the method to determine
the voltage collapse was based on the singularity of power flow Jacobian matrix [76]).
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Fig. 3.3 presents how the two indicators, ECF and T RL, affect the propagation.

ECF = IF +BF +VCF (3.16)

s.t.

IF ∈ {0,1} (3.17)

BF ∈ {0,1} (3.18)

VCF ∈ {0,1} (3.19)

where
ECF : the criterion of ending cascading failures
IF : the island factor
BF : the blackout factor
VCF : the voltage collapse factor

ECF 

≥ 1 

< 1 

Not exist TRL  The cascading failure will stop 

Exist TRL  The cascading failure will stop 

Not exist TRL  There is no cascading failure 

Exist TRL  The cascading failure will propagate 

Fig. 3.3 How ECF and TRL affect the cascading failure propagation

Therefore, the chain of a cascading failure will be terminated when ECF is not
less than 1. To describe a CF chain, two important issues should be considered: 1)
how many stages of the CF there are and 2) what the components of each stage are.
Equation (3.21) was used to present the CF chains. d was employed to represent
the stages of a CF and the total removing lines (TRL) was proposed to present the
components of each stage.

Fkt = [ fk1, fk2, ..., fkd] (3.20)

s.t.

fd = T RLd (3.21)
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where
k : the k-th random time of MC
t : the index of transmission lines
d : the stage index of a CF
f : the component of each stage of a CF
T RL : the total removing lines
F : CF chains

Algorithm 1 illustrates the details how to generate CF chains. T is the total
number of lines; ∆p is the unbalanced power; ECF and T RL are the post-contingency
result that will affect the CFP; fd is the component of each stage of a CF. The first
step is to choose a random operating condition, and disconnecting a transmission
line. Then it is necessary to re-dispatch ∆p and run power flow to obtain the post-
contingency result which contains the criteria of ending cascading failures (ECF) and
TRL. The propagation depends on those two indicators. When the cascading failure
is terminated, recording the CF chain resulted from the disconnecting transmission
line. Then implementing "N-1" (it means to disconnecting all transmission lines
one by one), we can obtain the CF chains under a random operating condition.
Finally, implementing all random operating conditions, all possible CF chains can
be obtained.
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Algorithm 1 Algorithm for generating cascading failure chains in a random system
operating condition
Input: A random operating condition
Output: Cascading failure chains

1: for t = 1 → T do
2: Disconnect the t-th line
3: Re-dispatch ∆p
4: Run power flow
5: Obtain ECF and T RL
6: d=1
7: if ECF ⩾ 1 then
8: fd= the disconnecting t-th line
9: else if ECF<1 and there is T RL then

10: fd= the disconnecting t-th line
11: else if ECF<1 and there is no T RL then
12: fd= empty
13: end if
14: while ECF < 1 do
15: if there is T RL then
16: Disconnect T RL
17: Re-dispatch ∆p
18: Run power flow
19: Obtain ECF and T RL
20: d=d+1
21: if ECF ⩾ 1 then
22: fd= T RL
23: else if ECF<1 and there is T RL then
24: fd=T RL
25: else if ECF<1 and there is no T RL then
26: fd=empty
27: end if
28: end if
29: end while
30: end for
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3.2.3 Vulnerability assessment and cascading failure propaga-
tion prediction

The method is based on all CF chains to establish a directed probabilistic graph,
which represents the conditional dependence structure between random variables
[77]. The probabilistic graph indicating CFP can be defined as Equation (3.22).

G = {N,E} (3.22)

where
G : the probabilistic graph
N : nodes in the probabilistic graph
E : edges in the probabilistic graph

We defined three types of nodes in the probabilistic graph, which are initial
node (IN), spread node (SN) and end node (EN). Fig. 3.4 shows an example of
probabilistic graph. In Fig. 3.4: node A is IN (it means the initial failure of a CF);
node C is SN (it means the CF can be continued from this node); node F is EN (It
means the CF is terminated). To introduce the CFP more clearly, other two concepts
also need to be notable: parent node (PN) and child node (CN). For example: in Fig.
3.4, node B, C and D are CNs of node A while node A is PN of node B, C and D.

A 

B D C 

E F 

Fig. 3.4 Example of an probabilistic graph
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Algorithm 2 Algorithm for predict the cascading failure propagation
Input: All cascading failure chains
Output: Cascading failure propagation

1: Vulnerability assessment
2: The most vulnerable transmission line as the IN
3: CFP=[IN]
4: d=2
5: Calculate the weight of all directed links from IN to its CNs
6: obtain SNd

7: CFP=[IN, SNd]
8: while SNd is not ENd do
9: d=d+1

10: Calculate the weight of all directed links from SNd to its CNs
11: if SNd is ENd then
12: ENd=SNd

13: CFP = merge (CFP, ENd)
14: CFP stops
15: else
16: CFP = merge (CFP, SNd)
17: end if
18: end while
19: return CFP = [IN, SNd ,..., ENd]

Algorithm 2 Introduces how to predict CFP. At the beginning, vulnerability
assessment is implemented to find the most vulnerable transmission line as IN. After
that, calculating the weight of all directed links from IN to its CNs. The CN which
has the highest weight can be the next SN. The CF will be not terminated until SN
becomes EN. If SN has no CN, then SN will be transferred to EN.

In terms of vulnerability assessment, one of the most effective solution to assess
the vulnerability is to employ the risk assessment [78], which considers the compre-
hensive severity as well as the failure rate. However, in this thesis, the influences
of all cascading failure are considered as a same level. The consequence is either
to isolate a large number of consumers or to cause the failure of the entire grid.
Therefore, we proposed a new indicator which is the vulnerability index (VI) at the
second stage (the first stage of a CF implements "N-1", so the failure probability for
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each transmission line is the same), and it is defined as the probability of a branch
affected by other failures as shown in Equation (3.23). The transmission line which
has the highest VI is the most vulnerable point of a power system.

V It =
FOt

K ∗T
(3.23)

where
t : the index of transmission lines
V I : the vulnerability index
FO : the fault occurrence of a branch affected by other failures
K : the sample size of MC
T : the total number of transmission lines

Besides vulnerability assessment, other indicators (weight and probability of
CN) and methods (SN and CFP) are necessary to be further explained. The weight
is described as Equation (3.24), which shows conditional dependence between two
nodes. The probability of each CN is calculated by the law of total probability [79]
as shown in Equation (3.25). The method to obtain SN at each stage was mentioned
above, and it is defined as Equation (3.26). Collecting all SN and the EN in the
probabilistic graph, CFP can be finally obtained, and it is described as Equation
(3.27).

w(PN,CNc) = Pr(CNc|PN)Pr(PN) (3.24)

Pr(CNc) =
M

∑
m=1

Pr(CNc|PNm)Pr(PNm) (3.25)

SNd =

{
IN d = 1

max(w(SNd−1,CNc)) d > 1
(3.26)

CFP = [IN, SNd, ...,ENd] (3.27)

where
d : the stage index
c : the index of CN
m : the index of PN
w : the weight between two nodes
M : the total number of PN of a CN
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Notably, for each node, it may contain more than one component. For example,
No.2 transmission line is disconnected from a system because of the overload, and it
leads to the overloads of No.3 and No.4 transmission line, so the node at the first
stage is No.2 line while the node at the second stage consists of No.3 and No.4 line.

3.3 The normal failure model test

The normal failure model was applied to a 30-bus system ("case30.m") in Matpower
[80], and the network was modified from IEEE 30-bus system [81]. This network
system has 30 buses, 41 transmission lines, 6 generators and 20 loads. The network
is shown as Fig. 3.5. To clearly introduce the normal failure model, we numbered
the transmission line with red colour.

Fig. 3.5 30-bus system in Matpower

To test the normal failure model on the 30-bus system, we firstly employed
MC to produce random operating conditions. In order to appropriately execute this
methodology and compare the results, four sample sizes (1000, 2000, 3000 and
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4000) of MC were chosen. Therefore, the final results will be composed of four
results. After that, we implemented "N-1" (focusing on transmission lines) for all
random operating conditions, then we can get all CF chains. The result of all CF
chains can help us discover the transmission line with the highest VI as the starting
point of a CF and establish the probabilistic graphs to predict the cascading failure
propagation. To evaluate the vulnerability, VI was calculated by Equation (3.23),
whereas the cascading failure propagation can be estimated by Equation (3.24) to
(3.27).

(a) Result of sample size of 1000 (b) Result of sample size of 2000

(c) Result of sample size of 3000 (d) Result of sample size of 4000

Fig. 3.6 Vulnerability assessment results of different sample sizes

After evaluating VI for all transmission lines, Fig.3.6 displays vulnerability
assessment results of different sample sizes. According to Equation (3.23), there is
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relation between VI and FO, so the figure also displays the FO of all transmission
lines. From Fig. 3.6, it can be seen that four transmission lines, which are No.10,
No.29, No.30 and No.35, have higher VI compared with other transmission lines.
Even though the VI of No.10 the VI of No.29 are very close, the VI of No.10
is slightly higher than No.29’s VI. Consequently, No.10 is the most vulnerable
transmission line in this power system. To simulate the cascading failure propagation,
No.10 was selected as the starting point.

(a) Result of sample size of 1000 (b) Result of sample size of 2000

(c) Result of sample size of 3000 (d) Result of sample size of 4000

Fig. 3.7 Probabilistic graphs based on different sample sizes
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After choosing the initial failure, probabilistic graphs based on different sample
sizes were established. Fig. 3.7 presents the simulation results of different sample
sizes. As presented in Fig. 3.7a, the propagation with the sample size of 1000 is
different from others’ because the sample size is not large enough, but increasing the
sample sizes more than 1000, then the CFP are consistent as displayed in Fig 3.7b,
Fig. 3.7c and Fig. 3.7d. According to the comparison of four results in Fig. 3.7, the
CF due to the failure of No.10 transmission line should propagate as:

CFP = [(10), (40,41), (30), (28,31,32)]

Another unexpected discovery in Fig 3.7 is that No. 28 has a comparatively higher
“degree” (it means connections of a node) than other nodes. We tried to analyse
two results (all CF chains and FP) to explain this discovery. 1) as shown in Fig.3.6,
No. 28 has a very low FP, which means it is not a vulnerable transmission line in
the system, so FP and degree seem to be unrelated. 2) analysing all CF chains, we
found that many CF chains with the starting point of No.10 passed through No.28.
Moreover, considering the final result of CFP, we could conclude that the node which
has a higher degree could be a part of CFP.

3.4 Discussion

After implementing the Monte Carlo method, statistical results were obtained from
the power flow analysis, while the study of cascading failure propagation employed
the theories of probability and graph. Therefore, the main contribution of this
work is to take advantage of random operating states to investigate the vulnerability
of a network, and then establishing directed probabilistic graphs to identify the
cascading failure propagation if the vulnerable part of a system is attacked, in this
way, the large sample size of random operating states can make the results more
accurate and reliable, and directed probabilistic graphs are possible to illustrate the
cascading failure propagation legibly. In short, the probabilistic graph makes the
probability model visualized, so that the relationship between some variables can
be easily observed from the figure; at the same time some complex calculations of
probability can be understood as the transmitted information between two variables.
However, there is an issue with this methodology, which is the computing time.
It is necessary to take a large random sampling in this methodology to make the
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propagation results consistent. Finding a way to reduce the sample size or using the
distributed computing can efficiently decrease the computing time, but the accuracy
still needs to be taken into consideration. In the future, the importance of this method
is to find an optimized solution which is not only fast but also accurate.



Chapter 4

CASCADING FAILURES IN THE
EXTREME WEATHER MODEL

4.1 Brief introduction

Although investigating CFP under the extreme weather is significant, there is little
research focusing on this topic. Based on this consideration, we proposed the extreme
weather model to have a insight that how the weather will cause outages and lead to
a cascading failure propagation in power systems.

Many extreme weather conditions can make a great damage to power grids such
as earthquakes, tornadoes, hurricane/tropical storms, lighting, winds/rains, ice storms,
etc. The severe weather condition considered in this thesis is the snowstorm, as it is
one of typical adverse weather conditions which can cause wide-scale electric power
outages. Specifically, we evaluate the snowstorm based on the snowfall amounts.

To predict the CFP under the snowstorm condition, the basic method is to model
the snowstorm. To model this adverse weather, it is necessary to consider two
important facts: one is the severity of snowfall and another is the occurrence of
snowfall. Solving those two issues, we employing probability distribution (PD) to
estimate the probability of different snowfall amounts. Applying the PD of different
snowfall amounts into the normal failure model, we can establish a "failure network"
to achieve the purpose of estimating the CFP under the snowstorm condition.
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Start 

Collect the weather data 

Assume the impact of weather on 

power grids 

Ensure the sample size (K) of MC 

Model PD of the weather data 

Produce (K) random operating 

conditions 

Choose an operating condition 

Randomly implement “N-k”  

Record the CF chain 
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simulation for 

K times? 

NO 

Predict CFP 

End 

YES 

Fig. 4.1 Flow chart of the extreme weather model

The flow chart of extreme weather model is presented as Fig.4.1. Initially, two
steps including modeling PD of snowfalls and producing random operating condition
are paralleled. The method to produce random operating conditions can be adopted
by the same method as mentioned in Section 3.2.1 (so this method will be described
below again). To model PD of the snowfall amounts, the first step is to collect
a large amount of historical snowfall data in a certain area, and then to make a
statistical analysis to establish the PD for the snowfall data. After modeling the PD,
it is indispensable to assume that how the different snowfall amounts will affect the
power transmission networks. The next process is to generate CF chains and it will
run in a loop. This process dose not terminate until all random operating conditions
are implemented by "N-k". k is the random disconnecting transmission lines because
of the different snowfall amounts. After this process, all CF chains can be obtained
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to establish a "failure network". Finally, based on the failure network, it is possible
to estimate the CFP under the snowstorm condition.

4.2 Methodology of the extreme weather model

4.2.1 Probability distribution of snowfall amounts

There are two types of probability distribution, which are probability mass function
(PMF) and probability density function (PDF). According to [82], they can be defined
as:

• if random variables equate finite values, then they are discrete random variables.
Probability distribution of the discrete random variables is known as the
"probability mass function".

• If random variables equate infinite values, then they are continuous random
variables. Probability distribution of continuous random variables are known
as the "probability density function".

We summarised some important probability distributions for PMF and PDF in
Table 4.1.

Table 4.1 Some important probability distributions

PMF

Bernoulli It only has two possible outcomes: 0 or 1

Binomial
It is the sum of identically and independent
distributed Bernoulli random variable

Poisson
It presents the number of occurrences of random
events occurring in a fixed interval of space and/or time

PDF
Uniform It is a distribution that has constant probability.
Normal It represents the distribution as a symmetrical bell-shaped graph.
Exponential It describes events between the time in a Poisson process

As shown in Table 4.1, Exponential Distribution is suitable to model the PD
of snowfall amounts. However, Poisson Distribution can be also adopted to model
the PD of snowfall amounts. In order to apply Poisson distribution, the snowfall
data needs discretization. According to the National Oceanic and Atmospheric
Administration (NOAA), the snowfalls can be categorised into 5 levels [83] as
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shown in Table 4.2. The original category is based on the unit of "inch", to be more
convenient, we use"mm" as shown in the third column of Table 4.2. Beside the
severity category, we made an assumption in the last column on which is the adverse
impact of different severity levels on power grids. The "impact" can be explained by
examples. For instance, 0% impact means there is no affect on the power grids. 10%
impact means 10% of total transmission line in the affected area will fail and finally
be removed.

Table 4.2 Severity category of snowfall amounts

Level Range (inch) Range (mm)
Impact on
power grids (%)

Level 0 [0, 2) [0, 50) 0
Level 1 [2, 4) [50, 100) 10
Level 2 [4, 6) [100, 150) 20
Level 3 [6, 8) [150, 200) 30
Level 4 [8, 100) [200, 1000) 40

After ensuing the severity level of snowfall amounts and its impact, Equation
(4.1) presents PMF of snowfall amounts:

Pr(X = SL) =

 eλ × λ SL

SL! SL = [0,1,2,3]

1−
3
∑

X=0
Pr(X) SL = 4

(4.1)

where
e : the Euler’s number
λ : the average probability per severity level
SL : the severity levels
SL! : the factorial of SL

λ is equal to the expected value of SL [84], as shown in Equation (4.2):

λ = E(SL) (4.2)

4.2.2 Generation of cascading failure chains

To produce CF chains under a snowstorm, two issues need to be figured out:
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• how the transmission lines will be affected by the snowfall amounts. For
example, if the snowfall amounts are already known, it is necessary to know
how many transmission lines will be disconnected because of the severity level
of the snowfall amount.

• what the frequency of each severity level is. For example, the sample size of
MC is 1000, so it is necessary to know the proportion of each severity level in
the samples of 1000. Knowing the frequency of each severity can be useful to
implement MC method.

In order to solve the first issue, random fault line (RFL) was proposed and it can
be calculated as Equation (4.3):

RFL =



0 SL = 0
T ×10% SL = 1
T ×20% SL = 2
T ×30% SL = 3
T ×40% SL = 4

(4.3)

where
RFL : the randomly disconnecting lines
T : the total transmission lines in a certain area
SL : the severity level

Furthermore, to solve the second issue, the frequency of each severity level (FSL)
can be calculated as:

FSL = K ×Pr(X = SL) (4.4)

where
FSL : the frequency of each severity level
K : the sample size of MC
SL : the severity levels

To be more understandable, we transformed Equation (4.3)-(4.4) to Table 4.3:



4.2 Methodology of the extreme weather model 43

Table 4.3 Details of RFL and FSL at different severity levels

Level RFL FSL
Level 0 0 K*Pr(X=0)
Level 1 T *10% K*Pr(X=1)
Level 2 T *20% K*Pr(X=2)
Level 3 T *30% K*Pr(X=3)
Level 4 T *40% K*Pr(X=4)

Algorithm 3 introduces the procedure to generate CF chains under a severe
weather. This is similar to the one introduced in Chapter 3.2.2, but there is still a
great difference. Under extreme weather conditions, the method implements "N-
RFL" instead of implementing "N-1". Therefore, it is unnecessary to disconnect
all transmission line once in this method. At the preparing stage, the process is to
estimate PMF of historical snowfall data, and calculate RFL and FSL. The next step
is a loop, which is to choose a unrepeatable random operating condition and remove
RFL from the system, and then to implement step 1 to step 29 of Algorithm 1. After
implementing K −K ×Pr(X = 0) times, all CF chains can be obtained. In Algorithm
1, the repeated times depend on the sample size of MC, but unlike Algorithm 1,
the repeated times of Algorithm 3 are based on FSL, as the first level of snowfall
amounts has no impact on power grids.

Algorithm 3 Algorithm for generating cascading failure chains under the extreme
weather condition
Input: All random operating conditions, historical snowfall data, and RNSL
Output: Cascading failure chains

1: Estimate the PMF of historical snowfall data
2: Calculate RFL and FSL
3: for level=1 → 4 do
4: for repeated times=1 → FSL(level) do
5: Choose an unrepeatable random operating condition
6: Disconnect RFL(level)
7: Implement step 3 → step 29 of Algorithm 1
8: end for
9: end for
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4.2.3 Prediction of the cascading failure propagation

After obtaining all CF chains, implementing two steps can help us to identify the
CFP. The first step is to establish a failure network and the second step is to propose
a method to ensure how the cascading failure will propagate.

4.2.3.1 Failure network

A failure network was established by transforming all CF chains into an adjacency
matrix. An adjacency matrix is used to represent a finite graph and it indicates
whether pairs of vertices are not in the graph or adjacent [85]. The failure network,
in this thesis, is defined as a undirected graph with weights. We defined the failure
network as undirected graph because we found the edges between two nodes in a
failure network were always bidirectional if the sample size of MC is large enough.

G = (N,E) (4.5)

where
G : the failure network
N : nodes in the failure network
E : edges in the failure network

A general adjacency matrix is a (0, 1)-matrix [47]. Zero means there is no
connection between two nodes while one means two nodes exist the connection.
Moreover, the diagonal of adjacency matrix equals zero. However, in order to
transform the adjacency matrix into a failure network, we made two changes for the
adjacency matrix: 1)the diagonal of the adjacency matrix is defined as the degree
of the node rather than zero; 2)the connection between two nodes is not only euqal
to 1 or 0, but it equals to the total number of connections between two nodes (it is
defined as weight). The new defining adjacency matrix is shown as Equation (4.6).
As the adjacency matrix of a undirected graph is a symmetric matrix [47], Equation
(4.7) indicates the character of a symmetric matrix.
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Ai j =


W (Ni,N j) i f i ̸= j and E(Ni,N j) ∈ E(G)

0 i f i ̸= j and E(Ni,N j) /∈ E(G)

Deg(Ni) i f i = j
(4.6)

s.t.

Ai j = A ji (4.7)

W (Ni,N j) = ∑E(Ni,N j) (4.8)

where:
i, j : the index of nodes
G : the failure network
A : the adjacency matrix of failure network
W : weights between two nodes
N : nodes in the failure network
E : edges in the failure network
Deg : degrees of a node

To illustrate the method to transform CF chains into the adjacency matrix, Fig.
4.2 displays an example. The assumptions are that there are 4 nodes (node 1, node
2, node 3 and node 4) and 3 CF chains (F1 = [(1,2), 3, 4], F2 = [2, (3,4), 1] and
F3 = [2, 3, (1,4)]). The first chain (F1 = [(1,2), 3, 4]) means that node 1 connects
to node 3, node 2 connects to node 3 and node 3 connects to node 4, so (N1,N3),
(N2,N3), and (N3,N4) equal to 1. On the other hand, there is no connection between
node 1 and node 2, node 1 and node 4, as well as node 2 and node 4, so (N1,N2),
(N1,N4) and (N2,N4) equal to 0. The degrees of node 1, node 2, node 3 and node
4 equal to 1, 1, 3 and 1, respectively, then filling in the diagonal of matrix with
degrees of each node. The second and the third step are the same to the first step, but
the weights between two nodes and the degrees of each node will increase. As the
adjacency matrix of undirected graph is a symmetric matrix, we can firstly transform
the CF chains into the upper triangular matrix, and then to transpose the upper
triangular matrix. After that, the final adjacency matrix can be obtained.
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  N1 N2 N3 N4 

N1 1 0 1 0 

N2   1 1 0 

N3     3 1 

N4       1 

F1=[(1,2), 3, 4] 

F2=[2, (3,4), 1] 

F3=[2, 3, (1,4)] 

  N1 N2 N3 N4 

N1 3 0 2 1 

N2   3 2 1 

N3     5 1 

N4       3 

  N1 N2 N3 N4 

N1 4 0 3 1 

N2   4 3 1 

N3     8 2 

N4       4 

Step 1 

Step 2 

Step 3 

Step 4 
  N1 N2 N3 N4 

N1 4 0 3 1 

N2   4 3 1 

N3     8 2 

N4       4 

  N1 N2 N3 N4 

N1  4  0  3 1 

N2  0  4  3 1 

N3  3  3  8 2 

N4  1  1  2 4 

Fig. 4.2 Method of transforming CF chains to the adjacency matrix

After obtaining the adjacency matrix, we can transform it into a failure network.
Fig. 4.3 displays the method to transform the result of Fig. 4.2 into a simple failure
network. Different from a probabilistic graph, a failure network has undirected edges.
Besides, the node in a probabilistic graph may have more than one component, but
a node in the failure network only contains one component. Additionally, the size
of a node indicates the degree and the size of edge between two nodes indicates the
weight.
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  N1 N2 N3 N4 

N1  4  0  3 1 

N2  0  4  3 1 

N3  3  3  8 2 

N4  1  1  2 4 

4 

Fig. 4.3 Method of transforming the adjacency matrix into a failure network

4.2.3.2 Method of predicting the cascading failure propagation

Before identifying the CFP based on a failure network, three issues need to be
considered:

• how to choose the initial failure
• how the CF will propagate
• when the CFP will end

In a normal failure model, the initial failure happens on the most vulnerable part
of a power system, but in a extreme weather model, the failure could happen on any
transmission line in the affected area. Therefore, the initial failure in the extreme
weather model can be randomly chosen in the affected area.

To reveal the propagation of cascading failures, we cluster the CN of SN into
two clusters according to their weights. One cluster contains the CN which have
higher weights, then the CN in this cluster will be turned into the SN at the next
stage of CF. In order to achieve this purpose, we employed Hierarchical Clustering
method to cluster the weights of CNs into two clusters. Hierarchical Clustering is
a type of clustering methods to build a hierarchy of clusters [86]. To implement
Hierarchical Clustering, the first step is to calculate the distance between each weight
until the distances between all the pairs have been calculated, and then we can get a
matrix which contains the distances between each weight. After that, to search the
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closest pair based on the distance matrix to create a hierarchical cluster tree with two
hierarchies [87].

However, the traditional methods of Hierarchical Clustering cannot be the com-
prehensive solutions to cluster the CN in the failure network, as the clustering result
might contain the CN with low weight (the situation can be explained by Fig. 4.5).
Under some circumstances, the traditioal methods can be very useful to cluster the
CN. For example, Fig. 4.4a shows a typical distribution of some CN. After adopting
the traditional methods such as singel linkage, compelet linkage and average linkage
[88], we can obtain the result as displayed in Fig. 4.4b. The components in "Cluster
A" can exactly present the wanted results.
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(a) Weight distribution example of some child nodes
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(b) Result of implementing traditional method

Fig. 4.4 Employing the traditional method of Hierarchical Clustering on the typical example

Nevertheless, under some special conditions, the traditional methods of Hierar-
chical Clustering cannot work properly. For example, if the weight is distributed
as shown in Fig. 4.5a, adopting the traditional methods to cluster the CN into two
groups, the result will be like in Fig. 4.5a, which is not a satisfied outcome. The
result we want should be the same as Fig. 4.5c. Essentially, the traditional method
of Hierarchical Clustering is possible to find the "Cluster A" in Fig. 4.5c, but the
problem is that the number of clusters will be more than two. To ensure the number
of clusters of CN at different stages of the cascading failure propagation is greatly
difficult, as the process of cascading failure is dynamic. Therefore, it is necessary to
propose a new solution to solve this problem.
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Fig. 4.5 Comparing the result of employing traditional methods and the desirable result

The new proposed clustering method is still on account of distance. The idea is
to calculate the distances between two neighbour weights and find the first distance
which had hugest increase. To be preaise, we defined the distances between two
neighbour weights as neighbour distance (ND), and we used changing rate (CR)
to indicate the change between two neighbour distances. The normal method to
calculate the distance is the Euclidean distance [89]. The basic idea to calculate the
distance still relied on Euclidean distance, but we ignored the x-axis of CN as it
indicates the transmission line number and it is meaningless to calculate the distance.
Therefore, we assumed the value of x-axis is equal to zero for all CN. The formula
to calculate the neighbour distances of weights is shown in Equation (4.9)). Based
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on the neighbour distances, the changing rates can be calculated as Equation (4.10):

ND(Wi,Wi+1) =

{ √
(Wi −Wi+1)

2 i < T N

0 i = T N
(4.9)

CRi =

{
Wi−Wi+1

NDi−NDi+1
NDi ̸= NDi+1

0 NDi = NDi+1
(4.10)

where
i : the index which can represents the locations of CN, weights and neighbour
distances
ND : the neighbour distances between two weights
T N : the total number of weights
W : weights between CN and their SN
CR : the changing rates between two nearest neighbour distances

Algorithm 4 Algorithm for new clustering method
Input: Weights of all CN
Output: Two clusters of weights

1: Sort the weights from the largest to the smallest
2: Calculate neighbour distances
3: for i=1 → TN do
4: calculate CRi

5: if CRi > 1 then
6: The first i is the required location
7: end if
8: end for
9: Cluster weights from W1 to Wi into "Cluster A"

10: The remaining weights will be grouped into "Cluster B"

Algorithm 4 introduces the steps of the new clustering method. As we want to
find the cluster for the the components that have higher weights, the first step was to
sort the weights in descending order. Based on the new location of each weight, we
calculated the distance between two neighbour weights and calculated the change
rate between two neighbour distances. Then we looked for the weight which its
changing rate is firstly more than 1. After that, we can cluster the first weight to the
found weight in the last step into "Cluster A". Consequently, the rest weights will be
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grouped into another cluster. Finally, the CN which its weight in "Cluster A" will
become the SN at the next stage.

In order to point out the termination of cascading failure, we proposed an indicator
named residual degree (RD). The inspiration to propose this indicator is the process
of transmitting energy. At the beginning, there is a total energy and it will transmit
to other nodes, but when it reaches a node, the node will consume energy, and the
energy will become increasingly less. When the remaining energy is less to a value,
the transmission process will stop. As described in this example, the degrees of all
nodes in a failure network are the total energy; the residual degree is the remaining
energy; the degree of a node is the consumption of the node. When the residual
degree is less than the average degree of the failure network, cascading failure will
be terminated. The methods to calculate the total degree and the residual degree and
are respectively presented as Equation (4.11) and Equation (4.12). It is important to
note that, in Equation (4.12), PN refers specifically to the PN of SN and PN should
be SN at the previous stage.

T D = ∑Deg(Ni) (4.11)

RDd(SNk) =


T D−Deg(IN j) d = 1

M
∑

m=1
RDd−1(PNm)

M −Deg(SNk) d > 1
(4.12)

where:
k, i, j,m : the indexes of CN, nodes, IN, and PN respectively
d : the stage of CF
T D : the total degrees
RD : the residual degrees
Deg : degrees of a node
M : the total number of PN
N : the node

Algorithm 5 introduces the method to identify the CFP from a failure network.
At the initial stage, a failure network should be established by transforming all CF
chains. When the failure network is formed, the next step is to randomly choose
IN, and then IN will become SN. The next step is to calculate RD for SN. If RD is
greater than half to TD, the CFP will continue. After that, it is necessary to find the
next SN. Employing Hierarchical Clustering method, the next SN can be obtained.
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to continue the CFP, RD needs to be calculated again for the new SN. CFP will not
terminate until RD is less than half of the total degrees.

Algorithm 5 Algorithm for identifying cascading failure propagation under the
extreme weather condition
Input: All cascading failure chains
Output: A failure network and the cascading failure propagation

1: Transform all CF chains to a adjacency matrix
2: Transform the adjacency matrix to a failure network
3: Randomly choose IN in the failure network
4: CFP=[IN]
5: SN=IN
6: Calculate RD for SN and calculate AD
7: while RD > TD\ do
8: Find the CN of SN
9: Cluster the CN into two clusters

10: Choose the components in the cluster with higher degrees as SN
11: CFP=merge(CFP, SN)
12: Calculate RD for SN
13: end while

4.3 The extreme weather model test

The process of the extreme weather model is composed of three steps. The first step
is the preparatory stage which is to produce random operating conditions and model
the PD of snowfall amounts. The next step is to generate all possible CF chains. At
last, the failure network can be established, based on the CF chains, to identify the
CFP.

To produce random operating conditions, we also employed the 30-bus system
("case30.m") in Matpower [80], and the example system was introduced in Section
3.3. We additionally assumed that Area 1 in the 30-bus system suffered from the
snowstorm.

To model PD of the snowfall amounts, we firstly collected the data from National
Snow and Ice Data Center (NSIDC), and it recorded monthly snowfall amounts for
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18 stations in the western Italian Alps [90]. The recording period in the collecting
data varies with each station, with the longest station record of 119 years from
1877 to 1996, and the average station record duration is around 61 years. Table 4.4
presents the 18 stations and their record periods. Besides, Fig. 4.6 illustrates the
accurate location of all stations (the locations were marked with the yellow pins).

Table 4.4 Details of snowfall data

Station Record Period Station Record Period
Lago Toggia 1932-1996 Gressoney D’Ejola 1928-1996
Lago Alpe Cavalli 1931-1996 Rimasco 1925-1996
Lago Goillet 1947-1996 Ceresole Reale 1926-1996
Lago Gabiet 1928-1996 Lago Valsoera 1959-1996
Lago Cignana 1927-1996 Balme 1929-1996
Lago Serru’ 1955-1996 Lago della Rossa 1938-1996
Lago Moncenisio 1931-1996 Lago Castello 1943-1996
Lago Rochemolles 1925-1996 Cuneo 1877-1966
Bardonecchia 1925-1996 Lago Chiotas 1979-1996

Fig. 4.6 Locations of the 18 stations
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4.3.1 PMF of the snowfall data

To estimate the PMF of snowfall amounts in the western Italian Alps, two steps were
implemented. The first step was to clean and integrate data. From the original data,
we found that there was barely snow from June to October for all stations, so the data
during those 5 months were excluded. Moreover, we deleted extraordinarily huge
values such as "9999". To simplify the method, we ignored two factors, record period
and elevation, to integrate the data of all stations into a data set. After the preparation,
we made Fig. 4.7 to present the distribution of snowfall amounts. Approximately,
the larger snowfall amounts, the less frequencies it seems.
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Fig. 4.7 Scatter graph of the snowfall amouts

The next step was to estimate λ . Based on Equation (4.2), λ can be calculated as
the expect value of severity levels and it is about equal to 0.8. After obtaining λ , the
PMF of snowfall amounts can be present as Equation (4.13).

Pr(X = SL) =

{
e0.8 × 0.8SL

SL! ×100% SL = [0,1,2,3]
0.908% SL = 4

(4.13)

Transforming the formula to a graph, Fig. 4.8 visually displays the probability
function of snowfall amounts. Comparing Fig. 4.7 and Fig. 4.8, we can reach
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the same conclusion, which is that the probabilities of snowfall amounts gradually
decrease with the increase of the snowfall severity levels.
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Fig. 4.8 PMF of the snowfall amounts

4.3.2 Failure network and cascading failure propagation

Based on the probability distribution of snowfall amounts and the their different
impact on power grids, we can run the simulation to get all CF chains. According
to the method mentioned in Fig. 4.2, all CF chains can be transformed to the
failure network. Adopting the method of predicting the CFP in Chapter 3.2.3.2,
we can finally estimate the CFP. As we cannot ensure how many random samples
are sufficient, we used four sample sizes (1000, 2000, 3000, 4000) to compare the
results. If the results become stable, it indicates that the employed sample sizes are
sufficient.

For the purpose of comparing the normal failure model and the extreme weather
model, we still chose No. 10 line as the initial failure in the extreme weather. Fig.
4.9 displays the results of choosing No. 10 as the initial failure, and the results are
composed of four failure networks after employing four different sample sizes. In
those four failure networks, it also indicates the propagation of cascading failures
with different edge colours.
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(a) Failure network when samples are 1000

(b) Failure network when samples are 2000

Fig. 4.9 First part of failure network with the initial failure of Node 10
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(c) Failure network when samples are 3000

(d) Failure network when samples are 4000

Fig. 4.9 Second part of failure networks with the initial failure of Node 10
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The different edge colours in Fig. 4.9 mean:

• the red colour indicates that the cascading failure propagates from the first
stage to the second stage,

• the light blue colour indicates that the cascading failure propagates from the
second stage to the third stage,

• the dark blue colour indicates that the cascading failure propagates from the
third stage to the fourth stage, and

• the grey colour indicates that one or both of connecting nodes will not partici-
pate the cascading failure.

To be more clear, we used Table 4.5 to present the CFP in four failure networks.
From Table 4.5, it can be seen that the previous three stages of different sample
sizes are exactly the same, and only at the last stage, there are some differences.
However, when increasing the random samples from 3000 to 4000, then the results
keep consistent.

Table 4.5 Cascading failure propagation in four failure networks

Sample size First stage Second stage Third stage Fourth stage
1000 (10) (40, 41) (29, 30, 35) (3, 28, 31, 32, 36)
2000 (10) (40, 41) (29, 30, 35) (28, 31, 32, 36)
3000 (10) (40, 41) (29, 30, 35) (28, 32, 36)
4000 (10) (40, 41) (29, 30, 35) (28, 32, 36)

Therefore, the final CFP can be concluded as:

CFP = [(10), (40,41), (29,30,35), (28,32,36)]

The above example is intent to compare the normal failure model and the extreme
weather model, so only No. 10 transmission line was chosen as the initial failure
in both models but under the extreme weather condition, the initial failures can
randomly happen in the affected area, which means the initial failures might contain
more components in the extreme weather model. Therefore, we implemented another
simulation to present the results of cascading failure propagation if the initial failures
are more than one component. We randomly chose two invulnerable transmission
lines, No. 6 and No. 25, as the initial failures.
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(a) Failure network when samples are 1000

(b) Failure network when samples are 2000

Fig. 4.10 First part of failure network with the initial failures of Node 6 and 25
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(c) Failure network when samples are 3000

(d) Failure network when samples are 4000

Fig. 4.10 Second part of failure networks with the initial failure of Node 6 and 25
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Fig. 4.10 displays the failure networks with initial failures of node 6 and 25.
Analysing the degrees of each node in Fig. 4.10, it can be concluded that the nodes
which have higher degrees are mode vulnerable. In terms node 6 and node 25, node 6
has much higher degrees than node 25, which means node 25 are much more secure
than node 6. As a result, the connections of node 25 are barely to be observed.

In order to see the cascading failure propagation more clearly, we transformed
the result of Fig. 4.10 into Table 4.6. When the random samples are 1000, the
cascading failure has three stages, but the cascading failures only have two stages
after increasing the random samples more than 1000. Especially for the random
samples of 3000 and 4000, the results of cascading failure propagation become
consistent with two cascading stages.

Table 4.6 Cascading failure propagation with the initial failures of two nodes

Sample size First stage Second stage Third stage
1000 (6, 25) (22, 10, 29, 30) (7, 40, 41)
2000 (6, 25) (22, 10, 29, 30)
3000 (6, 25) (10, 29, 30)
4000 (6, 25) (10, 29, 30)

Consequently, the final cascading failure propagation only has two stages. the
components at the initial stages are obviously included node 6 and node 25, whereas
the components at the second stages consist of node 10, node 29 and node 30. The
details are shown below:

CFP = [(6, 25), (10, 29, 30) ]

4.4 Discussion

Comparing with the normal failure model, the first advantage of the extreme weather
model is to solve the issue of the impact of extreme weather on power grids, and
this model can further identify the cascading failure propagation under the extreme
weather condition. Employing the extreme weather model, it can truly help us
discover how the cascading failure will propagate in power grids under the extreme
weather condition. Even though we used snowfall amounts as an example in the
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extreme weather model, this model can be extended to other types of weather such
as rains, winds, thunders, etc.

The second contribution of the model is that the initial failures to simulate the
cascading failure can be randomly chosen. In the normal failure model, the initial
failure of cascading failure can only choose one transmission line. However, in the
extreme weather model, the initial failure can choose more than one transmission
line (the limitation is that the choosing transmission lines must be within the area
affected by the extreme weather).

The third contribution is that we proposed a new propagation mechanism in the
complex network. Traditionally, the route problems can be solved by Hamiltonian
path [91], Minimum spanning tree [92], Shortest path problem [93] and so on.
Moreover, many researchers previously proposed some efficient algorithms to solve
the issue of propagation such as Bellman–Ford algorithm [94], Dijkstra’s algorithm
[95], Prim’s algorithm [96] and so on. We even tried the epidemiological models
such as SIR model [97] and SIS model [98] to reveals the propagation in a network.
However, those algorithms seems to be inappropriate for the complex network which
is transformed by all cascading failure chains. Considering the features of the
cascading failures in power grids, we proposed new indicators to reveal to cascading
failure propagation in the failure network.

Table 4.7 Comparing the results of two models with the same initial failure

The normal failure model The extreme weather model
First stage (10) (10)
Second stage (40, 41) (40, 41)
Third stage (30) (29, 30, 35)
Fourth stage (28, 31, 32) (28, 32, 36)

Comparing the results of the normal failure model and the extreme weather
model (both results are due to choose No. 10 line as the initial failure), we find that
those two results are very similar. The comparison results are displayed in Table
4.7. At the first stages, the components in both models are exactly the same. The
difference happens from the third stage, but the components of both models at the
third and fourth stage are not completely different. For example, No. 30 appears
at the third stage of both models, and No. 28, No.32 appears at the fourth stage of
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both models. Therefore, we believe the results in the extreme weather model are
acceptable and reliable.

However, the extreme weather model still has much to improve. Without adequate
information, we assumed that the impact of different severity levels of snowfall
amounts on power grids. If the data which presents the impact of the extreme
weather on power grids can be collected, it is possible to predict the number of fault
transmission lines because of the different snowfall amounts. Finally, the accuracy
and reliability of the extreme weather model can be further improved.



Chapter 5

APPLYING THE EXTREME
WEATHER MODEL TO ITALIAN
TRANSMISSION NETWORK

5.1 Brief introduction

The work presented in the chapter aims to predict cascading failure propagation in
Italian power grids by considering the snowfall amounts on western Italian Alps.
The original datasets for building the transmission systems were from a few of EU
projects and open resources, such as ENTSO-E System Study Model (STUM), the
FP-project Pan European Grid Advance Simulation and state Estimation (PEGASE),
Platts, etc. In terms of the extreme weather, we still used the snowfall data mentioned
in Section 4.3.

5.2 Extreme weather in Italy

Italy is one of southern European countries, which is adjacent to France, Switzerland,
Austria, and Slovenia. Italy has a large amout mountainous; Alps in the north
and Apennines along the peninsula [99]. Landslides, earthquakes, and volcanic
eruptions happen frequently in Italy because of the special geography, additionally
the frequencies of some extreme weather conditions, such as floods and storms, are
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also highly frequent. Collecting the data from The Emergency Events Database
(EM-DAT) [100], Table 5.1 presents extreme weather happened in Italy from 1990
to 2017. It can be seen from Table 5.1 that floods and storms are the most frequent
extreme weather conditions in Italy. In the past hundred years, the severe floods
happened more than 40 times, and they caused around 1000 deaths. Even though the
extreme temperatures happened less frequently, it has brought the greatest damage to
this country comparing with other extreme weather conditions. Extreme weather in
Italy not only occurs frequently but also leads to a great damage. Therefore, extreme
weather, in Italy, is a issue that cannot be ignored.

Table 5.1 Extreme weather in Italy

Type Subtype Events count Total deaths
Drought Drought 4 0

Extreme temperature
Cold wave 3 45
Heatwave 4 20115
Severe winter storm 1 9

Flood
Flash flood 28 893
Riverine flood 18 208

Storm
Convective storm 19 242
Extra-tropical storm 1 3
Tropical cyclone 1 35

5.3 Georeferenced model of Italian transmission net-
work

In order to study how the snowfall on Alps will affect Italian power systems, espe-
cially for the northwestern part of Italy, we developed fully georeferenced models of
the Italian transmission system with four typical power/demand snapshots (winter
peak, winter off-peak, summer peak, summer off-peak) in 2014, then the worst case
(in terms of post-contingency severity) “winter peak” was chosen.

Georeferenced models in power systems are used for planning, reinforcing, mon-
itoring, and managing the transmission networks. The sophisticated spatial analysis
is greatly useful for formulating scenarios, determining optimum generation poten-
tial, studying environmental impact, and managing facility assets. Owing to the
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geographically-oriented view which combines the electric generation with transmis-
sion structures, devices, and network, a georeferenced model not only can be applied
to the stability, protection and coordination, contingency analysis, and economic
modeling, but also helps utilities to discover new issues about the investments and
risks of building a transmission network, and allows the simultaneous assessment of
technical, financial, and environmental factors [101].

The georeferenced model improves visualization of power systems by associating
spatial data with transmission assets to display geographically referenced real-time
power system data such as the voltage and line flow monitoring. Geographical
information is stored in geographical map layers making it easy to integrate relevant
information such as weather, vegetation growth, and road networks with related
transmission network. Data of real-time weather integrated into a geographical map
of power system increases the operator’s situational awareness. For example, with the
help of such model, the identification of a natural threat front moving towards a given
area enables operators to rapidly determine transmission facilities with increased
risks of outage

The georeferenced model of “winter peak” snapshot is shown in Fig. 5.1. This
snapshot contains a complete set of buses and branches (lines, transformers) of the
220-380 kV Italian transmission network. Besides, network structures of important
neighboring countries are simplified (the total numbers of buses, generators, lines,
and transformers are around 1.2, 0.24, 1.4, and 0.2 thousands respectively). The
maximum error of the power flow results, compared with the real network situation, is
less than 2%. In order to combine the power system with the geographic information
[102], the longitude and latitude of each bus, generator, and transmission tower
were found from Google maps and mapped into the Italian power transmission
network. Therefore, this model gives the precise location of each element in the
system. Overall, the georeferenced model is highly similar to the network that is
being used by the Italian transmission system operator (Terna S.p.A) for operation
from the perspective of the static power flow. [103].
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Fig. 5.1 Georeferenced model of Italian transmission network

5.4 Extreme weather model tests on the Italian trans-
mission network

5.4.1 PDF of the snowfall data

In Section 4.2.1, we estimated the probability distribution of snowfall amounts based
on the Poisson distribution. In order to employ Poisson distribution, we transform
the snowfall data into discrete data, which was to used severity levels to represent
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all snowfall data. In this section, we tend to use another solution to estimate the
probability function of snowfall data. This solution is to treat snowfall data as
continuous data and estimate its PDF. By evaluating the integral of its PDF, we can
obtain the probability of each severity level of snowfall amounts.

We want to construct a curve (mathematical function) that has the best fit to
the snowfall data, and the process is called curve fitting [104]. Many functions
can be used for fitting curves to data such as linear function, exponential function,
power function, logarithmic function, polynomial function, etc. [105]. Based on the
distribution of snowfall data (Fig. 4.7 already shown the distribution of snowfall data
on the western Italian Alps), two functions, polynomial function and exponential
function, can be adopted.

Given a polynomial of degree n [106] (Euqation (5.1)), where a’s are the coeffi-
cients. Curve fitting is the estimation of such coefficients. When fitting the data using
a polynomial function, a polynomial of degree 3 in a normal situation is enough as
increasing the degree cannot efficiently improve the accuracy after degree 3 [107].

f (x) = anxn +an−1xn−1 + ...+a2x2 +a1x+a0 (5.1)

A exponential function [108] can be described as Equation (5.2), and a and b are
coefficients of the exponential function. Sometimes in order to improve the accuracy
of curve fitting, the exponential function can be extended as shown in Equation (5.3).

f (x) = a× ebx (5.2)

f (x) = a× ebx + c× edx (5.3)

By using Matlab, we can estimate the two fitting functions of the snowfall data.
One fitting function is based on a polynomial function of degree 3, and another
is based on Equation (5.3). The two fitting functions can present the PDFs of the
snowfall data, and the estimated fitting functions are presented as Equation (5.4) and
Equation (5.5). The fitting of the curves to the snowfall data is displayed in Fig. 5.2.
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(a) Exponential function to fit the snowfall data
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(b) Polynomial function to fit the snowfall data

Fig. 5.2 Fitting curves to the snowfall data

fpolynomial(x) =−5.5×10−8x+5.08×10−5 −0.015x+1.4 (5.4)

fexponential(x) = 6.5× e−23.6x +1.23× e−0.013x (5.5)

From Fig. 5.2, it is difficult to distinguish which fitting curve is more accurate.
The root-mean-square error (RMSE) is a frequent solution to measure how close the
observed data points are to the predicted values [109]. A better fit can be indicated
by lower values of RMSE. RMSE, as one of the most important criteria for the fit, is
a good measure of how precisely the model predicts the response [109]. RMSE can
be describe as Equation (5.6), where n is the samples; ŷt and yt are the predictive
values and the original values respectively.

RMSE =

√
1
n

n

∑
t=1

(ŷt − yt)
2 (5.6)

Based on Equation (5.6), we calculated RMSE for both fitting functions. RMSE
of the polynomial fitting function equals to 0.43 while RMSE of the exponential
fitting function equals to 0.24. Therefore, we have chosen the exponential fitting
function as PDF of the snowfall data.
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The PDF of the snowfall data is displayed in Fig. 5.3a. The probabilities of
different severity levels can be obtained by calculating the red areas in Fig. 5.3a. In
other words, calculating the red areas can be transformed to evaluate the integral of
the exponential fitting function. The solution is shown in Equation (5.7), where SL
presents the severity levels and fexponential(x) is the exponential function to fit the
snowfall data. Accumulated those probabilities, we draw the cumulative distribution
function (CDF) of the snowfall data as shown in Fig. 5.3b.

Pr(X = SL) =



50∫
0

fexponential(x)d(x) SL = 0

100∫
50

fexponential(x)d(x) SL = 1

150∫
100

fexponential(x)d(x) SL = 2

200∫
150

fexponential(x)d(x) SL = 3

1−
3
∑

SL=0
Pr(X = SL) SL = 4

(5.7)
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(a) PDF of the snowfall data
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(b) CDF of the snowfall data

Fig. 5.3 Estimate the probabilities of different severity levels
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5.4.2 The prediction of the cascading failure propagation in the
Italian transmission network under extreme weather

Considering the probabilities of different severity levels, as shown in Fig. 5.3, we
randomly disconnected the transmission lines in the affected area (as the snowfall data
was recorded on the western Italian Alps, the northwestern part of Italy was chosen
as the affected area). Fig. 5.4 displays the affected area of the Italian transmission
network, and the blue area is the affected area. To observe the transmission lines in
the affected area, we zoomed in Fig. 5.4 and showed the affected transmission lines
in Fig. 5.5

Affected area

Fig. 5.4 Affected area in the Italian transmission network

To distinguish the affected transmission lines, we numbered those transmission
lines based on their locations in the original data. The numbers of transmission lines
in the affected area are 739, 740, 466, 747, 908, 514, 283, 285, 284, 518, 345, 84,
83, 85 and 896. If a line has two numbers, it means that this is a transmission line
with two circuits. Overall, there are total 15 transmission lines in the affected area.
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Fig. 5.5 Transmission lines in the affected area

The method to establish failure networks to predict the cascading failure propa-
gation in Italian transmission network is similar with Section 4.2.3. The difference
is that the new established failure networks will be the directed graphs. In Chapter 4,
the extreme weather model was implemented on a small system, and we found that,
increasing the sample size, the edges between two nodes were always bidirectional.
Therefore, we assumed the failure networks in Chapter 4 were undirected graphs.
However, the situation is different from establishing a failure network based on real
power grids. A real system contains a large number of components, so the edges
between two nodes are rarely bidirectional in the new established failure network.
Consequently, failure networks based on the Italian transmission network are directed
graphs.

As the failure networks are directed graphs, we made another difference which
was that we used "in-degree" instead of degree to present the size of a node in the
failure networks. In case of directed graphs, the degree of a node can be classified
into two types: "in-degree" and "out-degree". In-degree of the corresponding node is
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number of edges going into a node and number of edges coming out from a node is
known as out-degree of the corresponding node [110]. To illustrate the importance
of nodes in failure networks, in-degree is much more persuadable. If we presented
the size of a node by using degree, the result would be that the initial nodes had the
highest degrees, which was meaningless for the failure network. However, using
in-degree to present the size of a node can indicate that a node with a higher in-degree
would have a higher possibility to involve the cascading failure propagation.

Fig. 5.6 displays the failure networks based on the Italian transmission network.
As the Italian transmission network is much larger than the 30-bus system, we
increased the minimum sample sizes from 1000 to 5000. As a result, the samples
sizes to implement the extreme weather model were 5000, 6000, 7000 and 8000.
In terms of the initial failures, we assumed that two transmission lines happened
failures because of the heavy snowfall, and the two transmission lines were 908 and
285.

As shown in Fig. 5.6, we can conclude that the cascading failure propagates
through three stage, and then the system happens blackout. In Fig. 5.6a, there are
just two stages when the sample size is 5000 and the components at the second stage
contain 140, 518 and 783. Increasing the samples to 6000 as shown in Fig. 5.6b, the
propagation is extended to four stages. 514 and 60 are the components at the third
stage and the fourth stage respectively. After increasing the sample size more than
6000, the results become consistent. To be more clearly, we establish Table 5.2 to
compare the results of different sample sizes.

Table 5.2 Cascading failure propagation in Italian transmission network

Sample size First stage Second stage Third stage Fourth stage
5000 908, 285 140, 518, 783
6000 908, 285 140, 518, 783 514 60
7000 908, 285 140, 518, 783 514 60, 141, 204
8000 908, 285 140, 518, 783 514 60, 141, 204

The final result is displayed as below. Based on the result, we illustrate the
propagation of cascading failure in the georeferenced model as shown in Fig. 5.7

CFP = ([908, 285], [140, 518, 783], [514], [60, 141, 204])
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(a) Failure network when samples are 5000

(b) Failure network when samples are 6000

Fig. 5.6 First part of failure network with the initial failures of 908 and 285
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(c) Failure network when samples are 7000

(d) Failure network when samples are 4000

Fig. 5.6 Second part of failure networks with the initial failures of 908 and 285
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(a) First stage of cascading failure

(b) Second stage of cascading failure

Fig. 5.7 First part of cascading failure propagation
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(c) Third stage of cascading failure

(d) Fourth stage of cascading failure

Fig. 5.7 Second part of cascading failure propagation
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As evidenced by Fig. 5.7, the cascading failure did not propagate through the near
areas. At the first stage, the failures happened in western part of Italian transmission
network, but at the next stage, not only did the west happened a failure but the
middle and the east also happen failures. At the third stage, the cascading failure
only propagated through the west, but at the last stage, the failures happened around
the middle and the east again.

5.5 Discussion

Comparing the application of the extreme weather model to the 30-bus system, we
mainly made two differences to employ the extreme weather model to estimate the
cascading failure propagation in the Italian transmission network.

The first difference is the method to model the snowfall data. In Chapter 4, we
transformed the snowfall data into discrete data, and then using Poisson distribution
to model the PMF of the snowfall data. However, in this chapter, we modeled
the snowfall data without any data transformation and the snowfall data still was
continuous data. Next, we employed the techniques of curve fitting to estimate
the PDF of snowfall data. Overall, the results of adapting those two different
methodologies to estimate the probability distribution of the snowfall data are very
similar.

Another difference is the method to establish the failure network. In Chapter 4,
the established failure networks based on a small system were undirected graphs,
since we found that combining all cascading failure chains and they would propagate
through all transmission lines if the sample size was large enough. Nevertheless, in
this chapter, the failure networks were established as directed graphs. We assumed
that the affected area of the extreme weather only a small part of the power grid,
so all the cascading failure chains cannot propagate all transmission lines. If the
assumption that the entire power grid would be affected by the extreme weather was
made, then the failure networks can be established as undirected graphs.

It is noteworthy that, even though the Italian transmission network is much larger
than the 30-bus system, the failure networks based on the 30-bus system are more
complicated, in terms of the number of links and nodes, than the failure networks
established by Italian transmission network. This means that the complexity of the
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extreme weather model is not related to the size of a electrical system. Another
evidence is the computing time. The time to establish the failure networks based on
the two electrical systems is similar. As a consequence, to identify the cascading
failure propagation, the extreme weather model is also suitable for the large power
transmission system.



Chapter 6

CONCLUSION AND FUTURE
WORK

This thesis mainly focused on investigating the cascading failure propagation under
the normal situation and the extreme weather condition. At the beginning of this the-
sis, a normal failure model was proposed to study the cascading failure propagation
without considering the extreme weather. Based on the normal failure model, the
following paragraphs introduced the extreme weather model to have an insight into
the cascading failure under the extreme weather.

Taking no account of the extreme weather, the normal failure model is an accurate
solution to predict the propagation of cascading failure in a power grid. At the same
time, it can evaluate the vulnerable parts of a system. As the original intention
of proposing this model, it can only handle the situation without considering the
weather. Another significant drawback was the necessary time to finish the whole
process. The sacrifice of the accuracy was due to the computing time, so at the
current stage, the normal failure model is much more suitable for academic research.
Now to estimate the cascading failure in a 30-bus system, it still needs several hours.

In the future, to apply the normal failure model to a real power grid, the facing
problem is to shorten the computing time. To solve this problem, new advanced
computer techniques, such as cloud computing, distributed computing, paralleled
computing, etc., will be indispensable.

Considering the factor of extreme weather, the extreme weather model is an
effective solution to predict the cascading failure propagation under the extreme
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weather condition. As mentioned before, there are no fewer references to investigate
the propagation of cascading failure under a extreme weather. The extreme weather
model proposed in this thesis can fill this gap. Moreover, The extreme weather is
less time consuming than the normal failure model, as the computing time will not
greatly increase when the size of a system becomes larger

To implement the extreme weather model, two points need to be noticed. One
is the method to model the weather data. There were two methods to model the
weather data. One was to transform the weather data into the discrete data and
estimated its PMF by using Poisson distribution. Another was to use the techniques
of curve fitting to directly estimate the PDF of the weather data. There is no obvious
advantage or disadvantage for those two methods, but employing the two different
methods can validate the results of modeling the probability distributions.

Another interesting aspect is the established failure networks. In this thesis, the
method to establish failure networks was proposed and those failure networks can be
understandable how a cascading failure will propagate in a network. Additionally,
the failure network could be the undirected graph or the directed graph. It depends on
the size of the system. If the failure network is established based on a small system,
then the failure network would be a undirected graph. Otherwise, the failure network
would be a directed graph. The special case is that the failure network based on a
large network also could be a directed graph if the extreme weather would affect the
entire grid.

Predicting the cascading failure propagation under the extreme weather can actu-
ally help the design of power systems. Installing intelligent sensors and measuring
equipment for the transmission lines which have high possibility to cause cascading
failures, it can efficiently improve the protection of those transmission lines and
finally prevent the occurrence of cascading failures. Strengthen the monitoring and
early warning of dangerous line running conditions in extreme weather, and make
prediction plans. The thesis can be helpful for the engineer to forecast cascading
failures, diagnose sudden incidents, and then make corresponding health mainte-
nance and decision scheme, which will provide theoretical support for ensuring the
realisation of intelligent functions in Smart Grid, such as anti-accident ability.

Although the extreme weather model proposed in this thesis revealed the propaga-
tion of cascading failure from a new perspective, some aspects also can be improved
to make this model as good as possible.
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In the extreme weather model, an assumption was made to assume about the
impact of the extreme weather on power grids. To improve the accuracy of the
model, in the future, a new method can be provided to solve this problem. The idea
of this method can be implemented as following steps: 1) the most important step
is to collect the reliable data which indicates the impact of the extreme weather on
power grids; 2)the next step is to use the techniques of machine learning to train the
collecting data; 3) the final step is to establish a learning model to predict how the
extreme weather will affect the power grids

As only one extreme weather was considered in this thesis, more extreme weather
could be addressed to reveal the mechanism from other different angles. For example,
references [111–113] mentioned that wind and lighting are the two major weather
conditions to cause the failures in distribution systems. Therefore, it is significantly
important to extend the extreme weather model to consider other major weather
conditions in the future.
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