
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Battery-aware design exploration of scheduling policies for multi-sensor devices / Chen, Yukai; JAHIER PAGLIARI,
Daniele; Macii, Enrico; Poncino, Massimo. - ELETTRONICO. - (2018), pp. 201-206. (Intervento presentato al  convegno
ACM Great Lakes Symposium on VLSI (GLSVLSI) tenutosi a Chicago, Illinois, USA nel May 23-25, 2018)
[10.1145/3194554.3194588].

Original

Battery-aware design exploration of scheduling policies for multi-sensor devices

Publisher:

Published
DOI:10.1145/3194554.3194588

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2709747 since: 2020-02-22T22:24:57Z

ACM



Battery-aware Design Exploration of
Scheduling Policies for Multi-sensor Devices
Yukai Chen, Daniele Jahier Pagliari, Enrico Macii and Massimo Poncino

Department of Control and Computer Engineering
Politecnico di Torino, Turin, Italy

ABSTRACT
Lifetime maximization is a key challenge in battery-powered multi-
sensor devices. Battery-aware power management strategies com-
bine task scheduling with dynamic voltage scaling (DVS), account-
ing for the fact that the power drawn by the device is different
from that provided by the battery due to its many non-idealities.
However, state-of-the-art techniques in this field do not take into
account several important aspects, such as the impact of sensing
tasks on the overall power demand, the (operating point depen-
dent) losses due to multiple DC-DC conversions, and the dynamic
modifications in battery efficiency caused by different distributions
of the currents in the temporal and in the frequency domains. In
this work, we propose a novel approach to identify optimal power
management solutions, that addresses all these limitations. Specif-
ically, using advanced battery and DC-DC converter models, we
propose methods to explore the scheduling space both statically (at
design time) and dynamically (at runtime), accounting not only for
computation tasks, but also for communication and sensing. With
this method, we show that the battery lifetime can be increased
by as much as 23.36% if an optimal power management strategy is
adopted.

1 INTRODUCTION
Dynamic power management (DPM) of battery-powered multi-
sensor devices (ranging from wearable electronics to wireless sen-
sor nodes) has been intensively studied by researchers, and many
strategies have been proposed over the years[1--7]. Many of these
solutions are battery-aware, in the sense that they specifically take
into account the fact that there is a substantial difference between
the power consumed by the hardware and the one actually provided
by the battery [3--7]. The reason for this discrepancy is twofold:
first, a DC-DC converter is typically placed between the battery and
the load. Second, a battery cannot provide any arbitrary amount of
power with the same efficiency; this is due to the so-called ‘‘rated
capacity’’ effect, which states that a battery is less efficient in pro-
viding increasingly larger currents.

The many solutions in the literature that account for these non-
idealities are mostly focused on the power management of the
hardware in terms of scheduling of the computational tasks executed
on the microprocessor[3, 4, 6]. While these works provide relevant
general guidelines for task scheduling, they show several short-
comings. First, the great majority of these works focuses only on
computational tasks, despite the fact that sensing tasks normally
have significantly larger power demands [7, 8], and thus impact
on the battery depletion. Moreover, sensing tasks are typically in-
dependent from each other, thus they can be freely parallelized
or serialized, if this is beneficial for the battery (e.g. in order to

minimize peak currents or to maximize idle intervals). In some
cases, the impact of sensing on the total power demand could be so
high as to render the many alternative schedules of computational
tasks roughly indistinguishable from the perspective of battery
lifetime optimization. Second, most works neglect the fact that
each system component may work at a different voltage level. In
general, each sensor requires a dedicated DC-DC converter, dif-
ferent from that of the micro controller unit (MCU) or core and
from that of the RF transceiver. Each of these converters will be
working in a different operating point, with consequently different
efficiencies. Third, the battery models used in these works (e.g., the
one of [9]) are steady-state: they are not able to track the instanta-
neous changes in voltage and state-of-charge (SOC) of the battery,
and rather calculate the overall duration of the battery for a given
workload. Therefore, most solutions only propose static scheduling
algorithms, i.e. in which the schedule is fixed throughout the sys-
tem operation [3, 4, 6, 7]. Moreover, many of these works overrate
the so-called recovery effect in batteries, providing solutions that
are biased towards the insertion of idle times among operations.
However, recent works have shown that in typical Li-Ion batteries
the recovery effect is virtually absent [10].

In this work we proposed a novel design exploration method
for battery-aware power management in multi-sensor devices, that
targets all the aforementioned limitations. Our approach accounts
for the impact of all major system tasks, including sensing and com-
munication, and considers the scheduling freedom offered by the
independence of sensing operations as a new optimization dimen-
sion for battery lifetime optimization. Moreover, it makes use of a
DC-DC converter efficiency model that accounts for dependencies
on the operating point of each component [11], and of an advanced
circuit-equivalent battery model [12], capable of expressing battery
non-idealities related to instantaneous current values distribution
and frequency spectrum. Thanks to these models, we are able to
show that a dynamic scheduling solution, in which the scheduling
is recomputed at the beginning of every sampling interval, can
provide additional lifetime benefits compared to a static approach.
In Section 4, we show that scheduling according to our exploration
can provide up to 18.48% lifetime increase if computed statically,
and up to 23.36% if updated dynamically.
2 MOTIVATION
The workload of a multi-sensor device is structured as a periodic
sequence of the following major tasks: sensing, computation, and
transmission. Figure 1-(a) shows an example timing diagram in
which the sensing tasks are started in parallel at the start of the
period, and followed by processing and transmission. After these
operations (of a total duration ofTactive ) the system enters an idle
state for a time Tidle ≫ Tactive , resulting in a typically very low
duty cycle D = Tactive/Tidle .



Figure 1: Conceptual workload of the system considered
in this work: (a) one in which Tactive is minimized, and (b)
one inwhichTactive ismaximizedwhile keeping the current
peaks as low as possible.

This schedule is driven by the objective of maximizing the idle
time. Therefore, multiple sensing operations are run in parallel, and
for the same reason the computation task is run at the maximum
possible speed in order to shorten Tactive as much as possible.
While this might be reasonable from the perspective of the power
consumed by the system, it might lead to sub-optimal results when
a battery is involved. As a matter of fact, it is well-known that a
battery is particularly sensitive to large current variations [13, 14].
Stacking together multiple sensing tasks, which are incidentally
the most power-hungry operations, would unnecessarily deplete
battery charge. Similarly, relaxing execution speed of the MCU
might help avoid a too strong depletion of the battery. Figure 1-(b)
shows an alternative schedule with the sensing tasks serialized
and the computing task executed at the lowest possible speed. This
yields a duty cycle D ′ = T ′

active/T
′
idle > D.

Nevertheless, when the system is in idle state, the power con-
sumption Pof f is likely to be 2 or 3 orders of magnitude smaller
than in the active phase. Therefore, there will be a limit in stretching
the activity phase after which an increase of the duty cycle will not
be convenient any more. The objective of this work is to provide an
insight of such trade-off by exploring different alternatives using
a power model of a battery that can accurately track the battery
efficiency as a function of current distribution (and not just instan-
taneous current values) [12] in order to derive the optimal tasks
scheduling policy for prolonging the lifetime of designed system.

3 METHOD AND ALGORITHMS
3.1 System Characterization

3.1.1 System Architecture. The device consists of the following
components:

• A wireless transceiver implementing some given protocol.
We assume that each received and sent message has a fixed-
size payload so that transmission requires always the same
timeTtx andTrx . Power consumed during transmission and
reception are Ptx and Prx respectively, with Ptx > Prx .
We assume also that the transceiver has approximately zero
power when idle. Notice that in our scenario, without loss
of generality, we assume that the devices only transmit the
sensed information to a central gateway and do not receive
any data.

• A set of Ns sensors, each sensing a different quantity. Each
sensor takes a time Ts,i to complete sensing and requires
a power Ps,i . Notice that we assume that the sensing task
includes analog-to-digital conversion.

• A micro controller unit (MCU) that executes a given algo-
rithm on the sensed data. We assume that the MCU has Np
power states associated to different voltage/frequency points.
At a given voltage/frequency point i = 1, ...,Np , the MCU
takesTc,i to execute and requires a power Pc,i . Without loss
of generality we assume that lower indices represent lower
power levels, Tc,i > Tc,i+1 and Pc,i < Pc,i+1.
Besides these active states, the MCU has an off state in which
it consumes a power Pof f > 0 due to static power consump-
tion. In this state the CPU cannot execute instructions.

Table 1 summarizes the key parameters of the components of
the system.

Component Mode Exec. Time Power

Transceiver TX Ttx Ptx
RX Trx Prx

Sensors Active Ts,i Ps,i
Idle -- Pof fs,i

MCU Active Tc Pon (Tc )
Idle -- Pof fmcu

Table 1: Power/Performance parameters of the system.

3.1.2 Workload Characterization. As described in Section 2, the
workload is structured as a periodic sequence of the following
major tasks: sensing, computation, and transmission. We assume
that there exist two degrees of freedom in the possible temporal
sequence of the workload: (1) the scheduling of the sensing opera-
tions, and (2) the power state at which the computational phase is
executed. Transmission is assumed to take a fixed time. How these
two phases are executed will determine the resulting Tactive , and
since T is considered to be fixed (determined by the application
constraints), it will also determine the duty cycle D.

3.1.3 Characterization of the Power Domains. An accurate anal-
ysis of the impact on the battery of the different workload distribu-
tions in a period implies an accurate characterization of the various
power domains involved in the system. Considering only the power
consumed by each task as in Table 1 to determine the battery de-
pletion in each cycle would not be accurate at all. Conversely, it is
essential to consider the actual voltage and current levels of each
component.

Figure 2: Characterization of the power domains involved.
Figure 2 suggests that each component operates in a different

power domain with its own voltage level and current consump-
tion [15]. Furthermore, such power level is in general different
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from the output power of the battery, and therefore each power
domain must be ‘‘adapted’’ by an appropriate DC/DC converter.
Obviously, if multiple components share the same voltage level, a
single DC/DC converter can be shared accordingly. This has im-
portant consequences for the assessment of the battery lifetime for
two reasons:

(1) the DC-DC converters are not ideal components, and each
one does not fully convert 100% of the battery power into
usable power. The lost power is dissipated as heat. This
is represented by an efficiency factor η < 1; for instance,
PMCU = ηMCU · Pbattery . This implies that the power con-
sumption by a component actually translates in a larger
power demand to the battery P/η.

(2) Due to the implementation of such converters, normally
the efficiency decreases for low output currents [15], which,
incidentally, is the exactly what we target whenwemaximize
the idle time.

Therefore, besides an accurate battery model that can track cur-
rent variations and its distribution, a model of DC/DC converters in
which efficiency is (at least) sensitive to output current is needed.

3.2 Models
3.2.1 Component Models. From the perspective of the battery

energy, all components can be regarded as generic loads that con-
sume an instantaneous power given by the product of a current
demand and a voltage level. Therefore, components that are as-
sumed to be non power-manageable such as the transceiver and
the sensors, are simply characterized by their current and voltage
(Figure 2).

Conversely, the MCU has Np power states, each one correspond-
ing to a given (voltage, frequency) pair and an associated current
consumption Ii . The frequency of power state i impacts the com-
putation time Tc,i , whereas the voltage Vi and Ii determine the
power level. Notice that as each power state is associated to a dif-
ferent voltage level, it will result in a different efficiency of the
corresponding DC/DC converter.

3.2.2 Battery Model. Analyzing the impact of workload sched-
uling on battery lifetime requires an advanced battery model, able
to accurately account for the effects of load current variations on
the usable battery capacity. Specifically, the model must express
both the capacity dependency on currentmagnitude, and on current
dynamics [12]. Indeed, recent works have shown that the available
capacity is influenced by the current value distribution (e.g. con-
stant and varying load currents with the same average value affect
the capacity differently), as well as by its frequency spectrum (e.g.
periodic load currents with the same amplitude and shape, but
different frequencies). To account for all these effects, we employ
the circuit equivalent battery model described in [12], shown in
Figure 3.

Figure 3: Battery model incorporating current magnitude
and frequency dependence.

The circuit consists of two main sections. On the left, the capaci-
tor C represents the nominal battery capacity in Ah; the current
generatormodels the load current (Ibatt ), and the two voltage gener-
ators express the dependency of capacity on load current magnitude
and frequency respectively. On the right side, the voltage-controlled
oscillator models the dependence of the battery open-circuit voltage
Voc on the SOC of the battery. Finally, the RC network represents
the internal impedance of the battery. All the model parameters
can be extracted directly from the battery datasheet [12].

3.2.3 Converter Model. DC-DC converters connecting different
power domains to the battery are characterized by an efficiency
factor η < 1, defined as:

η =
Pout

Pbattery
=

Pout
Pbattery + Ploss

(1)

We use the efficiency model introduced in [11], which expresses
η as a quadratic function of the converter input voltage, output
voltage, and current.
3.3 Exploration Algorithm
We envision two scenarios of increased accuracy and complexity.
A static scenario, in which the schedule is determined off-line
based on the effect of each possible schedule on the battery charge,
with the latter assumed to be 100% charged. Such optimal schedule
is then kept fixed throughout the lifetime of the battery. In the
dynamic scenario, the schedule is re-determined at the beginning
of each new sampling interval; this is because, as the battery gets
discharged, its capability of handling large current decreases, and
therefore it is possible that the best schedule changes according to
the battery state-of-charge.

3.3.1 Static Scenario. In this case, the optimal scenario is ob-
tained by evaluating off-line all possible schedules and assessing
their impact on the SOC of battery. Since the degrees of freedom
in the schedule are the arrangement of the sensing tasks and the
power/speed of the computation task, the evaluation simply con-
sists of an exhaustive exploration of all possible schedules. This is
feasible since both the number of possible sensors and the power
states of the MCU are small (< 10, and typically about 3--5).

In spite of the small number of sensors, the possible combinations
of schedules increases rapidly. The number of combinations is 14
for 3 tasks, 81 for 4 tasks, and 821 for 5 tasks. Figure 4 shows the 13
possible schedules of three sensing tasks, shown for simplicity as
all requiring the same time and current. The top left configuration
does all the sensing in parallel, whereas those on the second row
are different combinations of a serialized sensing.

Figure 4: The 13 possible schedules of three sensing tasks.

Notice that in principle we should consider all possible orders of
executions, since the battery is sensitive to different current demand
over time. However, as shown in [4], it can be proved that among
all possible schedules of a set of tasks, those in non-increasing
order of power consumption are always the most battery-efficient
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ones. This well-known result implies that some schedules will be
dominated by non-increasing ones and can simply be disregarded.
For instance in Figure 4, three of the schedules in the first row
(i.e., (3), (1 + 2), (2), (1 + 3), and (1), (2 + 3)) can be neglected in the
enumeration. As a result, the actual number of possible schedules to
be explored depends on the specific power consumption associated
to each task and cannot be enumerated analytically.

The search algorithm is thus a straightforward exhaustive search
in the space of the possible schedules:

3.3.2 Dynamic Scenario. In this scenario, the only difference
with respect to the previous case is that the calculation of the
battery SOC loss resulting from the schedule ∆SOC (Line 7 in the
algorithm) is done not by calculating it on a fully charged battery
but rather accumulating them over each cycle. More precisely if
the optimal schedule in cycle i results in a loss ∆SOCi for a battery
with capacityCi at the beginning of that cycle, in the next cycle the
power demand impact of the schedules will be applied to a battery
of capacity Ci+1 = Ci − ∆SOCi .

Notice that the implementation of this scenario requires that
at the beginning of an interval some code calculates or estimates
such optimal, SOC-aware scheduling and arranges the tasks accord-
ingly. Notice that in this case the timing profile Figure 1 should be
slightly modified to insert a small computation/estimation task at
the beginning of the period.

The calculation of the optimal schedule would clearly have a
significant overhead and an exhaustive exploration could not be
executed in a real-life implementation; we therefore report results
for the dynamic scenario mostly as a reference, in order to show
how accounting for the battery SOC in the calculation might affect
the overall battery lifetime and the resulting schedule.

Given the unfeasibility of an on-line implementation of the
search, an interesting challenge becomes the extraction of a rule
of thumb for the selection of the scheduling that could help at
least approaching the optimal solution. For instance, a qualitative
indication about preferring a compact (with minimal Tactive ) vs.
a stretched schedule as a function of the battery SOC. In the re-
sult section we will try to infer some possible policy that could be
quickly estimated at the beginning of each cycle.
4 EXPERIMENTAL RESULTS
4.1 Simulation Setup

4.1.1 System used in the simulation. Weused SystemC to specify
a multi-sensor device equipped with four sensors, namely, infrared,

wind speed and direction, gas and PM2.5 sensors. The multi-sensor
device is based on the system proposed in [7]; we added two addi-
tional sensors in our experiment to enlarge the space for exploration
in order to extend our analysis to a more complex system. We as-
sume that the MCU takes care of the scheduling of the sensors
activities by controlling their power state (idle, active).

Table 2 lists all components in such system, and their correspond-
ing electrical characteristics, power supply voltage and current,
within different modes.

Component Mode Voltage (V) Current (mA)

CC2420 [16]
TX 1.8 18.8
RX 1.8 17.4
Idle 0.0 0.00

Infrared Sensor [7] Active 5.0 10.0
Idle 2.5 0.0001

Wind Sensor [17] Active 12.0 50.0
Idle 5.0 0.0010

Gas Sensor [7] Active 5.0 168.9
Idle 2.0 0.0015

PM2.5 Sensor [18] Active 5.0 220.0
Idle 2.0 2.00

Atmega128l [19] Active 2.0 − 3.0 − 5.0 1.0 − 6.0 − 18.0
Idle 3.0 0.002

Table 2: Electrical parameters of the designed system.

The different voltage and current values of the 8-bit Atmega1281
microcontroller shown in the last row of table 2 mean that it has
three different power modes, they are 2.0V with 1.0mA, 3.0V with
6.1mA and 5.0V with 18.0mA.

Parameters UR16650ZT CSC93-3B0024
Rated Capacity 2100mAh 2000mAh
Nominal Voltage 3.7V 3.9V

Weight 41.0g 17.0g
Cut-off voltage 3.0V 2.0V

Table 3:Manufacturer’s parameters of the selected batteries.

4.1.2 Battery used in the simulation. We selected two popular
rechargeable Lithium batteries for our experiments, namely, the
PANASONIC UR16650ZT and the ELECTROCHEMCSC93--3B0024.
Table 3 shows the key specifications of both batteries. They have
similar nominal capacities, 2100mAh and 2000mA respectively. The
weight of battery is a critical point when design such kind of multi-
sensor devices, therefore, themain advantage of CSC93-3B0024 is its
lightness (less than half of the weight of the Panasonic UR16650ZT),
while its weak point is its lower power rating, which makes it more
sensitive to the larger currents compared to the UR16650ZT.

We used the methodology described in [14] to extract a circuit-
equivalent model of the two batteries that includes also the de-
pendence on current magnitude and load frequency as shown in
section 3.2. This model cannot track the capacity recovery-effect
during idle intervals, which was widely used in many previous
works on scheduling of wireless sensor nodes. However, as shown
in recent research [10], the recovery effect is overrated and often
misinterpreted; the experimental analyses of [10] do not show any
evidence of the recovery effect in Lithium-Ion batteries.

4.1.3 DC-DC converter used in the simulation. Each component
has its individual DC-DC converter to connect to the battery in the
system. We selected LTC3789 buck-boost switching mode DC-DC
converter from Linear Technology [20], whose main applications
are distributed DC power systems and high power battery-operated
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devices. Similar to the battery model, we used the manufacturer’s in-
formation to extract the parameters for the converter lossmodel[15].
We adopted the model proposed in [11] and whose conversion effi-
ciency is function of input voltage, output voltage and current as
shown in section 3.2.
4.2 Static scheduling
In this experiment, we first simulate the UR16650ZT. As illustrated
in [14], the rated capacity effect of such battery becomes very ev-
ident when battery current exceeds ≈ 0.9A. For this reason, only
schedules in which all the sensors work in parallel can strongly
affect the available capacity of this battery, while the others ones
only limitedly stress the battery. Figure 5 shows the distribution of
the battery lifetime for all possible scheduling policies. Since the
PANASONIC UR16650ZT has good capability to provide higher cur-
rent without losing much available capacity, the difference between
shortest lifetime and longest lifetime is only 4.53%.
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Figure 5: UR16650ZT Lifetime Distribution.

The longest lifetime shown in the Figure 5 is 2.6156 ·105 seconds,
whose corresponding optimal scheduling is illustrated in Figure 6.
The PM sensor and GAS sensor work in series at first, then WIND
sensor and IR sensor work in parallel. Although the MCU has three
different power states related to different voltage and current, the
optimal scheduling does not select the low power state. The reason
is that the current in 5.0V power state is only 18mA which does not
significantly deplete the available capacity of the battery. Therefore,
the optimal policy select the 5.0V power state to save computation
time then increase the idle period.

Figure 6: The Optimal Static Scheduling for UR16650ZT .

Our experiments also reveal that, as expected, the worst sched-
uling policies are the ones with all sensors working in parallel,
because the aggregate currents impact the usable capacity. Due
to space limits, we do not show the temporal diagram of worst
case; Figure 7 shows the battery current profile for both worst- and

best-case scheduling over four cycles. Notice that these current
profiles do not match the current values listed in Table 2, because
the actual battery current is determined by (i) the voltage ratio
between battery and each component, and (ii) by the efficiency of
DC-DC converter.
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Figure 7: Battery Current Profiles of Worst/Best Schedules.
We then used the CSC93-3B0024 and run all possible schedules.

Figure 8 exhibits the battery lifetime distribution for all possible
schedules. The difference between the best and worst scheduling is
now more pronounced due to the higher sensitivity of the CSC93-
3B0024 to larger currents. The best/worst battery lifetimes are
2.5952 · 105/2.1155 · 105, respectively, a 18.48% difference. The
scheduling that yields the longest battery duration almost identical
to the one for the UR16650ZT shown in Figure 6, with the minor
difference that the execution by the MCU uses 3.0V power state
as opposed to the 5.0V of the UR16650ZT which scales down one
level compare to 5.0V power state, but the ones of MCU works in
2.0V and 5.0V power states have very tiny difference compare with
MCU works in 3.0V power state that is reason why there are three
scheduling policies occupy the longest lifetime column in Figure 8.
Compare with PANASONIC , such more pronounced difference
verifies ELECTROCHEM CSC93-3B0024 is more sensitive to the
current values, which leads our exploration process becomes more
useful. The battery current profiles within worst- and best-case
of ELECTROCHEM are similar to ones shown in Figure 7, the
differences are current values.
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Figure 8: CSC93-3B0024 Lifetime Distribution.

In the above analysis we set the period T at 1 s. While this is a
reasonable value, for some applications it might be case that the
system does not need to sense data that frequently. For the designer
it is important to know for which values ofT the impact of different
schedules is relevant. Intuitively, asT gets larger, the active section
of the period (sensing + computation + transmission) will take an
increasingly smaller portion and the power consumption will be
dominated by idle power. We therefore ran the same exploration
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of static schedules for different lengths of the cycle time and for
both batteries. We used values of T of 1s, 60s, 600s and 1800s and
calculated the normalized range (max-min) of the battery lifetime.
Figure 9 shows the results: the lifetime range expectedly decreases
with larger cycle times.The percentage value of y-axis in Figure 9
means the different battery lifetimes between optimal scheduling
policy and worst scheduling policy, it illustrates the space of our
design exploration reduced when the period is increased.
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Figure 9: Lifetime difference between optimal and worst
scheduling with different period values.

This analysis is essential to assess if and when the scheduling
is a relevant dimension of the power optimization of the device.
Our analysis show that for cycle times longer than a few minutes
the impact of the scheduling in terms of battery duration becomes
negligible (below 2% for the weakest battery). Therefore, our ex-
ploration of schedules is relevant for multi-sensor devices with
activation periods in the order of seconds to minutes. Notice that
this consideration applies to all methods in the literature discussed
in Section 1; however, such analysis was not carried out before.
4.3 Dynamic Scheduling
For the dynamic scheduling scenario, we assume that at the be-
ginning of each cycle, the MCU executes a small task in which it
explores the optimal schedule in order to get smallest SOC loss,
as described in Section 3.3.2. We assume that the MCU consumes
approximately the same power required for the processing of the
sensing data in the state that consumes the most power in Table 2.

Since a cycle-specific schedule aims at the smallest SOC loss
per cycle, the corresponding lifetime of battery will be longer than
the static scheduling scenario. For instance, when T = 1s, our re-
sults show that the longest battery lifetimes of UR16650ZT and
CSC93-3B0024 are 2.6999 · 105 and 2.7604 · 105 seconds, respec-
tively, the lifetimes are prolonged of 3.266% and 6.368% compared
to the longest lifetimes for the same batteries under the optimal
static schedule.

We tested above two batteries usingT = 1s andT = 60s. Results
show that the resulting schedules are identical for both periods
and for both batteries and change three times during the battery
lifetime. Initially, the optimal schedule is the same as the static
schedule shown in Figure 6; in the first change, wind and IR sensor
eventually start to operate serially; the second and third changes
correspond to the MCU switching to a lower power state. Notice
that the time-points at which the changes of scheduling occur are
different for the two batteries with two different T , as reported in
Table 4. As expected, the CSC93-3B0024 battery always changes
schedule before the earlier than UR16650ZT due to its higher sensi-
tivity to higher current values.

T = 1s
Battery 1st Change 2nd Change 3rd Change

UR16650ZT 68133s 204399s 233715s
CSC93-3B0024 54499s 163156s 201244s

T = 60s
Battery 1st Change 2nd Change 3rd Change

UR16650ZT 733320s 2380380s 2777160s
CSC93-3B0024 641040s 2014860s 2289720s

Table 4: Times of schedule change with T = 1s and T = 60s.

5 CONCLUSIONS
In this paper, we present a framework to evaluate static and dy-
namic schedules to optimize the lifetime of multi-sensor devices
powered by batteries. We use advanced battery and DC-DC con-
verter models in our experiments to get more accurate results. The
two proposed scheduling algorithms have been applied to two
different batteries and two different working situations for estimat-
ing the increment of lifetime. Our results show that the optimal
schedule according to our exploration can achieve a 18.48% lifetime
increment when using a static schedule, and as much as 23.36% for
the dynamic schedule.
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