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LAPSE: Low-Overhead Adaptive Power Saving and
Contrast Enhancement for OLEDs

Daniele Jahier Pagliari, Student Member, IEEE, Enrico Macii, Fellow, IEEE, and Massimo Poncino, Fellow, IEEE

Abstract—Organic Light Emitting Diode (OLED) display
panels are becoming increasingly popular especially in mobile
devices; one of the key characteristics of these panels is that
their power consumption strongly depends on the displayed
image. In this paper we propose LAPSE, a new methodology
to concurrently reduce the energy consumed by an OLED
display and enhance the contrast of the displayed image, that
relies on image-specific pixel-by-pixel transformations. Unlike
previous approaches, LAPSE focuses specifically on reducing the
overheads required to implement the transformation at runtime.
To this end, we propose a transformation that can be executed
in real time, either in software, with low time overhead, or in a
hardware accelerator with a small area and low energy budget.

Despite the significant reduction in complexity, we obtain com-
parable results to those achieved with more complex approaches
in terms of power saving and image quality. Moreover, our
method allows to easily explore the full quality-versus-power
tradeoff by acting on a few basic parameters; thus, it enables
the runtime selection among multiple display quality settings,
according to the status of the system.

I. INTRODUCTION

Organic Light Emitting Diode (OLED) displays are an
increasingly used alternative to classic TFT LCDs in mobile
devices [1]. OLED technology owes its popularity to a number
of advantages compared to LCD, such as higher brightness and
better viewing angles, as well as the possibility of building
thinner and flexible screens [2].

The most peculiar feature of OLED displays is that they
are composed of emissive devices, and therefore do not
require an external light source. This has the important
consequence of making OLEDs power consumption strongly
image-dependent. While generally more efficient than tradi-
tional LCDs, OLEDs consume significantly more power for
bright images [1], [2]. Thus, since the display subsystem
is a significant contributor to the total consumption of a
mobile device [3], [4], a proper management of OLED energy
consumption becomes fundamental.

This need for efficiency has spurred a wide body of methods
for reducing consumption in OLEDs, most of which exploit
the image dependency of power, trading off the “quality”
of the displayed image and the achievable saving [4]–[13],
[17], [18]. Some of these methods, being specifically targeted
at Graphical User Interfaces (GUIs), are not applicable to
other use-cases, such as displaying pictures or videos [4]–
[7]. Others require modifications of the analog hardware of
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the panel, and therefore are not suitable for off-the-shelf
displays [8], [9]. Lastly, some techniques are appropriate for
general images, and rely only on altering the display content to
reduce power [10]–[13]. Specifically, methods in the last group
transform an input image Ii into an output image Io = T (Ii),
so that the power consumption of the latter is reduced, while
perceived visual quality is preserved as much as possible.
The parameters of the transformation function T are generally
image-dependent, so that the amount of power reduction and
quality loss can be tailored to the displayed image. However,
this implies that the parameters must be recomputed in real
time, every time a new image is stored in the Frame Buffer
(FB) of the display. Typical display refresh rates are in the
order of 50-60 Hz, thus the computation of parameters and the
application of T must be repeated every 15-20 ms. Moreover,
OLEDs also allow faster response times, possibly making
timing constraints even tighter in future scenarios [1].

Most approaches in literature pay very little attention to the
analysis of time and energy overheads. Indeed, they propose
image transformations that involve computationally intensive
operations, such as the solution of nonlinear optimization
problems [10], [11], or complex histogram processing [12],
[13]. Implementing these operations in software could con-
sume a significant percentage of CPU time, eating up process-
ing power for other tasks. Alternatively, dedicated hardware
could be used, but in both cases the energy overhead for
the computation of parameters and evaluation of T could
drastically reduce the achievable savings. The only solutions
that tackle overheads reduction do it relying on a custom
camera application [17], [18], and cannot be applied to images
obtained from different sources.

This paper extends our previous work of [19], in which
we proposed an alternative low-overhead technique for OLED
displays energy optimization. Our method is specifically de-
signed to favor hardware acceleration, with very small energy
costs. This is achieved thanks to two key factors: (i) the use of
a “hardware-friendly” transformation function T and (ii) the
offloading of part of the computational burden to a training
phase, performed offline. A high-level scheme of the proposed
framework is shown in Figure 1. The computationally inten-
sive Offline Phase produces a fitting model that puts in relation
simple features of an image (namely the mean µ and variance
σ2 of its luminance) with the corresponding optimal parame-
ters (a) of the transformation function T . This information is
then used to reduce the complexity of the Online Phase, which
becomes linear in the size of the panel. In this phase, µ and
σ2 are computed for the target image, and the parameters of
T are derived according to the aforementioned fitting model.
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Fig. 1. Flow of the proposed framework.

Finally, the actual low-complexity transformation is applied to
produce a low-energy output image.

The following are the main contributions of this paper with
respect to the work of [19]:
• We describe the proposed low-overhead framework for

OLED energy optimization in greater detail, and we
discuss the details of its hardware implementation, at the
level of individual components.

• We analyze alternative low-cost image transformations
and compare them to our proposed solution. We also
consider a new “universal” LAPSE variant.

• We present the results of a subjective test, showing that
our method is distinctly superior to simple brightness
scaling in terms of perceived image quality at the same
power level.

• We demonstrate that our method can obtain results com-
parable to those of more complex techniques (e.g. [10]),
in terms of power saving and image quality.

• We show the applicability of our transformation to video
sequences, and its ability to closely match the desired
quality level throughout sequences of frames.

• Finally, we thoroughly analyze the time and power over-
heads to implement the image transformation at runtime
in either SW or HW.

The rest of the paper is organized as follows. Section II,
recaps previous works on display energy consumption opti-
mization. Section III is devoted to the theoretical foundation
for our proposed method. Section IV and Section V detail the
offline and online phases of the flow introduced in Figure 1,
while Section VI presents an even lower-overhead alternative
to the proposed transformation. In Section VII we present
experimental results, and Section VIII concludes the paper.

II. BACKGROUND

In classic LCDs, the main contributor to power consumption
is the backlight, which is either a Cold Cathode Fluorescent
Lamp (CCFL) or an array of Light Emitting Diodes (LEDs).
Previous studies have shown that it can account for up to 80%
of the total display subsystem power [20]. Intensities of pixels
in the displayed image have limited impact on LCD power
consumption. Consequently, most energy reduction techniques
for LCDs rely on some form of backlight scaling [20]–[28].
Image transformations are commonly used, but not directly

to reduce power. Instead, their purpose is to compensate the
brightness reduction due to backlight scaling, so that the
perceived image quality is preserved.

In OLEDs, conversely, there is no backlight, and light is
directly produced by pixels. Each pixel is formed by three
emissive devices, corresponding to the components of the RGB
color space [4]. The intensity of a component depends on the
current flowing through the corresponding device. Therefore,
the total power consumption of the panel is therefore strongly
dependent on the brightness of the displayed image, and on
the balance between colors. Measurements on real panels
in [4] allowed to build an empirical model for the power
consumption of an OLED:

Ptot =
W∑
i=0

H∑
j=0

(w0 + wr ·Rγi,j + wg ·Gγi,j + wb ·Bγi,j) (1)

where W and H are the width and height of the panel,
(Ri,j , Gi,j , Bi,j) are the sRGB components of the pixel at
position (i, j), and wx and γ are panel-dependent coefficients,
obtained via characterization. For most displays, γ ∈ [2 : 3].

Power optimization techniques for OLEDs are tailored to
this image-dependent power model, and can be broadly split
in two categories: those targeting GUIs, and those applicable
to general images.

Techniques in the first group are based on the observation
that, for GUIs, usability is more important than visual fidelity.
For example, he authors of [4] and [5] propose algorithms that
drastically change GUI colors to exploit the color dependency
of power consumption. In [6] and [7], power reduction is
obtained selectively dimming pixels that are outside of the
area of user interest, i.e. the section of the screen on which a
user is expected to focus his/her attention. All these approaches
are not applicable to general images or videos, where fidelity
is a fundamental aspect of the perceived quality.

An interesting solution for general images, proposed in [8],
consists in applying Dynamic Voltage Scaling (DVS) to the
OLED panel to reduce power consumption. Voltage scaling is
obtained via a custom driver circuit, which limits the maxi-
mum brightness emitted by pixels. Similarly to LCD backlight
scaling, this is then compensated acting on pixel values. The
same principle is applied in [9] at fine granularity, i.e. using
different supply voltages for different areas of the panel.
Although these techniques are effective, they require custom
analog drivers and control circuits, and are not applicable to
off-the-shelf OLED displays that do not support DVS.

To overcome this limitation, several techniques have been
proposed that act only on pixel values via an image trans-
formation T , (see Section I). A seminal approach in this
category is Power Constrained Contrast Enhancement (PCCE),
first proposed in [10]. This algorithm obtains an image-
dependent pixel intensity mapping that concurrently reduces
the power consumption of the target image while enhancing
its contrast to preserve visual quality. A variant of PCCE
based on multiscale retinex is described in [11], while [12]
shows that similar results can be obtained without an iterative
optimization procedure. Finally, [13] combines Histogram
Shrinking with contrast enhancement to achieve the same goal.
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While effective, these methods suffer from two major draw-
backs. Firstly, they do not allow to set a hard constraint on the
maximum image “alteration” allowed. Thus, they may yield
unpredictable results, and produce too dramatic modifications
of the target image. Secondly, and most importantly, the
computation of transformation parameters and its subsequent
application involve very complex operations. For instance,
in [10] a nonlinear optimization problem has to be solved in
order to identify the optimal transformation for a given image.
Although this is avoided in [12], the proposed alternative still
requires several loops involving divisions and fractional pow-
ers. The execution times of these approaches, when reported
in the papers, are normally not acceptable for a real-time
application on high-definition panels. Moreover, these times
always refer to a software implementation on a high-end CPU,
which is likely to consume a large amount of energy, offsetting
or even nullifying the savings on the display.

More recent works in [14], [15] focus on image-adaptive
forms of brightness scaling for OLED displays. Although
effective, these solutions do not propose ways to compensate
for brightness reduction (e.g. by contrast enhancement), and
therefore are not comparable with our method. Moreover, for
both techniques, the reported execution times for transforming
still images are in the order of 1 − 2µs per pixel, which
corresponds to > 1s per HD image. Thus, these methods are
not suitable for real-time application in a power-constrained
computational environment (e.g. a mobile device). A very
effective approach for speeding up a “PCCE-like” transfor-
mation is proposed in [16]. However, this solution only works
assuming that γ = 2 in the power model of equation (1). In
contrast, our technique is applicable regardless of the specific
value of this parameter, and in particular when γ is not integer,
i.e. the most general and realistic case [4].

Two solutions that directly tackle the overhead problem are
presented in [17] and [18]. In both cases, the majority of the
computational effort is moved to the image acquisition phase,
exploiting a custom “camera” application in a mobile device.
In [17] the image is transformed directly during acquisition,
while in [18] the acquisition phase is used to analyze the
image and store metadata, which are then used at display-
time to optimize power and quality. The advantage of these
solutions is that image acquisition does not have the same tight
performance constraints of the display. The obvious disadvan-
tage, however, is that images need to be acquired through the
specific camera application proposed by the authors. Hence,
these methodologies do not apply to synthetic images (e.g.,
GUIs, computer graphics, etc.) as well as photos obtained from
different sources (e.g., downloaded from the Web).

III. THEORETICAL FOUNDATION

In this paper we present LAPSE (Low-overhead Adap-
tive Power Saving and contrast Enhancement), a new image
transformation for power reduction in OLEDs. LAPSE yields
power and visual quality results comparable to those of
previous solutions [10]–[13], yet significantly reducing the
computational complexity of the transformation.

This section presents the basic theoretical foundation of
LAPSE, and motivates the main choices done in the following,

most importantly the choice of the transformation function T .
In Sections IV and Sections V we will detail the offline and
online phases of the flow of Figure 1, respectively.

A. Transforming Luminance

Regardless of the involved optimizations, most of the pre-
vious image transformations for OLED power reduction [10]–
[13] eventually produce a pixel-by-pixel intensity mapping.
The latter normally involves only the luminance component of
each pixel, while chrominance components are left untouched.
This choice is motivated by the fact that, especially for photos
and videos, color alteration dramatically affect the perceived
visual quality [10]–[12]. In summary, the image transformation
function reduces to:

Yout,i,j = T (Yi,j) ∀ 0 ≤ i < W, 0 ≤ j < H (2)

where Yi,j and Yout,i,j are respectively the input and output
luminance components of the pixel in position (i, j). LAPSE
also follows this approach. The main difference with previous
literature is the selection of the shape of T .

Since most systems internally store images in RGB, pixels
must be converted to YCbCr color space (where the Y
component represents luminance) before applying the trans-
formation [29]. Therefore, the complete image transformation
is composed of three steps: (i) color space conversion from
RGB to YCbCr, (ii) application of an intensity mapping to the
first component of each YCbCr pixel (iii) conversion of the
output image back to RGB. The two color space conversions
are obtained through linear operations:

[Yi,j , Cbi,j , Cri,j ]
T = C · [Ri,j , Gi,j , Bi,j ]T + [0, 128, 128]T

(3a)
[Ri,j , Gi,j , Bi,j ]

T = K · [Yi,j , Cbi,j , Cri,j ]T − [0, 128, 128]T

(3b)
where superscript T indicates the vector transpose, and
C,K ∈ R3x3 are matrices of constant coefficients. Using the
JPEG standard for YCbCr conversion [31], both RGB and
YCbCr pixels are represented on 24-bit, with each component
spanning the range [0, 255].

B. Choice of the Generic Transformation Function

Power reduction in OLED displays can be trivially achieved
by decreasing pixels luminance: in fact, from (1) and (3b),
it follows that P (Yi,j) ∝ Y γi,j . However, pure “scaling” of
luminance degrades significantly the perceived quality. There-
fore, as mentioned in Section II, most literature solutions
combine a reduction of the total luminance with contrast
enhancement [10]–[13], [32]. The shapes of the pixel intensity
mappings produced by these solutions share some common
characteristics. In order to enhance contrast, they are gener-
ally non linear. Additionally, in most cases, they have non-
monotonic concavity, in order to alter the contrast of dark and
bright areas of the image differently [10], [13].

Since the primary goal of our approach is overhead contain-
ment, the chosen form of T must be computable with simple
operations. One obvious choice is to use polynomials, which
only require additions and multiplications, i.e. some of the
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Fig. 2. PCCE output with β = 1, for two example images, and corresponding
cubic fittings. RMSE = 1.6% and 0.6% respectively.

TABLE I
CUBIC FITTING OF PCCE PIXEL TRANSFORMATIONS, AGGREGATE

RESULTS FOR THE DATASETS DESCRIBED IN SECTION VII.

Data R2 RMSE [%]
Live 0.999 ± 0.001 0.858 ± 0.376

BSDS 0.997 ± 0.003 1.464 ± 0.907

least expensive operations to implement in HW. In general,
the lower the order of a polynomial, the less operations are
required to evaluate it. Therefore, in an attempt to minimize
overheads, the ideal choice would be to use a third order
polynomial, which is the lowest order transformation that can
take shapes similar to those observed in previous solutions,
since it can have varying concavity.

Figure 2 shows two motivating examples for the choice of
this pixel transformation. Red solid curves represent luminance
mappings obtained by the PCCE algorithm of [10] for the
famous Lena and Monarch images. Black dashed lines are the
best third order polynomial fittings of the PCCE output. As
shown, cubic curves can approach PCCE output transforma-
tions very closely for both images. For a more quantitative
estimate of this similarity, we have determined the best cubic
fitting of the PCCE output when applied to each of the images
in the two datasets used in our experiments of Section VII.
Table I reports the average R2 score and Root Mean Squared
Error (RMSE) obtained for each dataset, and the corresponding
standard deviations. The small error values and high scores
confirm that, despite its simplicity, a cubic polynomial is
effective in producing a very similar mapping to previous
power reduction and contrast enhancement algorithms.

Given this analysis, in our method, we transform the lumi-
nance of each pixel according to the following equation:

Yout,i,j = T (Yi,j) = a3Y
3
i,j + a2Y

2
i,j + a1Yi,j + a0 (4)

The coefficients ax in (4) are set to a numeric value that
minimizes power while enhancing contrast, and are adapted
to the target image, as described in Section IV.

Even in its most general form, (4) only requires 6 multi-
plications and 4 additions per pixel. However, the degrees of
freedom for the general expression of T can be further reduced
imposing some additional constraints, similar to those of [10].
Specificallly, we constrain the transformation T to:

1) Have an output that spans the entire range of
luminance intensities, i.e. [0 : 255]. Since one of the goals
of the transformation is to enhance contrast, it is desirable

-765 -510 -255 510 765

Y

-765

-510

Fig. 3. Examples of first-order derivatives that ensure a monotonically
increasing transformation.

to have it span the full range of luminance values, so that the
image dynamic range is preserved. This is achieved imposing:

T (Ymin) = Ymin T (Ymax) = Ymax (5)

where Ymin and Ymax are the minimum and maximum lu-
minance values, i.e. Ymin = 0 and Ymax = 255 in YCbCr.
Hence substituting (5) into (4) yields:

a0 = 0 a3 =
1− a1 − 255a2

2552
(6)

Yout,i,j =
1− a1 − 255a2

2552
Y 3
i,j + a2Y

2
i,j + a1Yi,j (7)

2) Be monotonically increasing in [0 : 255]. This contraint
is to avoid the creation of artifacts due to inversions of lumi-
nance relations between the input and output images [10]. It
allows to set a relation between the two remaining coefficients
a1 and a2, and defines the search space for the optimal
(image dependent) transformation parameters. Monotonicity is
imposed forcing the derivative of T to be non negative for the
entire luminance range:

T ′(Yi,j) = 3
1− a1 − 255a2

2552
Y 2
i,j + 2a2Yi,j + a1 ≥ 0,

∀Yi,j ∈ [0, 255] (8)

Geometrically, T ′(Yi,j) is represented by a parabola. The
Forbidden Region, i.e. the region of plane that the parabola
must not intersect in order to meet the constraint expressed
by (8), is shown in Figure 3. The figure also reports one
example for each of the four (infinite) families of parabolas
that meet the constraint, together with the corresponding
mathematical relations on a1 and a2. The four families differ
in the orientation of the curves, determined by the sign of the
coefficient that multiplies Y 2

i,j , and in the value of the two
solutions of T ′(Yi,j) = 0.

Parabolas with upward orientation (i.e. tending to +∞ for
Y → ±∞) assume negative values when Y is between Y1 and
Y2. In particular, parabolas with upward orientation and no real
solutions are always positive, hence they meet the constraint.
This is represented by the example labeled CASE1 in Figure 3.
Similarly, if there are real solutions, but they are both smaller
than 0 or greater than 255, the negative part of the curve will
not intersect the Forbidden Region. Examples of these two
categories are shown as CASE3 and CASE4. These groups
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also include the limit cases of two coincident solutions. In the
case of downward orientation, conversely, the curve is positive
for Y ∈ [Y1, Y2]. Therefore, to meet (8), we must have Y1 ≤ 0
and Y2 ≥ 255, as in the example labeled CASE2.

These four subsets can be further reduced to two based
on the following observation: the inflection point of T (Yi,j)
i.e. the point in which the cubic pixel transformation changes
concavity, corresponds to the stationary point (minimum or
maximum) of T ′(Yi,j). For CASE3 and CASE4, this point
always occurs outside of the [0, 255] interval. Hence, using
coefficients from these two cases would significantly reduce
the flexibility of the transformation. Additionally, the relations
between a1 and a2 that can be derived in CASE3 and CASE4
define unbounded regions (semi-planes). Thus, they do not
permit the identification of a finite domain for the search of
the optimal coefficient values.

For these reasons, we discard CASE3 and CASE4, and
limit our analysis to CASE1 and CASE2. Explicit relations
between a1 and a2 in the latter two cases are obtained simply
solving the two systems of inequalities reported in the labels
of Figure 3. The results are two bounded plane regions:

RCASE1 :

{
0 ≤ a1 ≤ 2
1−a1
255 < a2 <

3−2a1
255

(9a)

RCASE2 :

{
0 ≤ a1 ≤ 4
−3a1−

√
3(4a1−a21)

2·255 ≤ a2 ≤
−3a1+

√
3(4a1−a21)

2·255
(9b)

The union of RCASE1 and RCASE2 is the largest bounded
area of R2 for which T is monotonically increasing in [0 :
255], and defines the search domain used in the following to
determine the optimal transformation coefficients.

Notice that the theoretical formulation above, although
presented for the case of 24-bit RGB/YCbCR is mostly
independent on the chosen pixel representation format. In
principle, all operations in (4)-(9b) are executed on real
numbers, and therefore do not rely on a specific data for-
mat. For example, the methodology could be extended also
to process high dynamic range images (e.g. in LogLuv or
RGBE format) [30]. The only modification needed in this
case would be in the rightmost constraint of (6), where the
value 255 should be replaced with the maximum luminance
value of the corresponding representation. Clearly, changing
the format will have an impact on the complexity of a practical
implementation of our method, and especially on the hardware
acceleration described in Section V-A. However, since this
is the most common format in energy-constrained portable
devices, we focus only on 24-bit RGB in the following.

IV. OFFLINE PHASE

A. Training Algorithm

In Section III-B we have determined the mathematical
form of the generic image transformation T , and the search
domain for its free parameters a1 and a2. The offline phase
of LAPSE consists in the optimization of the value of these
two parameters for a set of training images. The information
gathered during training is then used to identify a relation

among the optimal values of a1 and a2 and simple quantitative
features of the target image.

Parameters are optimized according to the cost function:

F (I) = wp · Ptot(I)− σ(Luminance(I)) (10)

In this equation, I represents the image pixel matrix and Ptot
is its total power consumption on an OLED panel, obtained
according to the model of (1). Luminance(I) corresponds to
the operation of extracting the luminance component of pixels,
e.g. from RGB using (3a), σ is the standard deviation of the
luminance matrix, and wp is a weighting factor. This function
tries to concurrently minimize power consumption (Ptot) and
maximize contrast, of which σ is a simple measure, thanks to
the minus sign. The two goals are balanced by means of wp.

Moreover, we also constrain our optimization, limiting
the amount of image alteration that can be introduced by
the transformation. This constraint, not present in previous
solutions [10]–[13], controls the quality impact of our method.
To measure alteration we leverage the popular Mean Structural
Similarity Index (MSSIM) [33]: during training, we only
consider solutions for which MSSIM(I, It) ≥ MSSIMmin,
where I and It are the input and transformed images, and
MSSIMmin is a user-imposed threshold.

1: procedure TRAINING
2: for I ∈ Training Images do
3: (Y, Cb, Cr) = YCbCrComponents(I)
4: aopt = [1, 0]
5: Fopt = F(I)
6: for a ∈ RCASE1 ∪ RCASE2 do
7: Yt = T (Y, a)
8: It = Image(Yt, Cb, Cr)
9: if F(It) < Fopt and Ptot(It) ≤ Ptot(I) and

10: MSSIM(I,It) ≥ MSSIMmin then
11: Fopt = F(It)
12: aopt = a
13: end if
14: end for
15: Store [aopt, µ(Y), σ(Y)] in a database.
16: end for
17: end procedure

Fig. 4. Training phase algorithm.

The pseudocode for the training phase is reported in Fig-
ure 4. For clarity, the two transformation parameters have been
grouped to form a vector a = [a1, a2]. Matrices Y, Cb and
Cr indicate the three YCbCr components of image I, while
the subroutines YCbCrComponents() and Image() encompass
color space conversions and components separation/grouping.
F and Fopt are the current and optimal values of the objective
function, and wp is a weighting coefficient used to balance
the impact of power and contrast in F. The remaining symbols
are defined as in previous sections. The additional constraint
Ptot(It) < Ptot(I) in line 9 ensures that the transformed image
consumes less than the original. It is inserted because power
reduction is the primary goal of LAPSE, and is always favored
over pure contrast enhancement.

The initial optimal parameter values aopt = [1, 0] cor-
respond to the identity transformation, i.e. T (Y) = Y, as
evident from (7). The search space for aopt is explored
exhaustively, with a granularity that depends on the desired
accuracy. In our experiments, we considered a grid of 40000
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points. Exhaustive search is necessary for global optimality,
since both the objective function and the constraints are not
convex [34]. However, the resulting computational effort is
acceptable, given the relatively limited search space and that
training is performed only once, offline.

B. Linear fitting of Transformation Coefficients

To obtain an adaptive transformation that is flexible (i.e.
image-adaptive) but simple enough for online usage, coeffi-
cients of T have to be put in relation with elementary features
of the image being processed. Since the transformation affects
the Y component of pixels, the features that we select are also
luminance-related. The two simplest choices are the average
brightness and contrast, measured by the luminance mean (µ)
and standard deviation (σ) respectively [33]. However, in order
to simplify the hardware implementation of the transformation,
as explained in Section V, we substitute σ with σ2.

We use a linear regression model to put in relation a with µ
and σ2. This model is trained with the outputs of the previous
optimization phase (Section IV-A), using a Least Squares cost
function, to produce coefficients P ∈ R2x2 and q ∈ R2x1, that
identify the regression plane:

aT = P ·
[
µ
σ2

]
+ q (11)

P and q can then be used to determine the transformation
parameters for new images.

The values of a1 and a2 used as training data, and con-
sequently the values of P and q, depend on the MSSIMmin
constraint set in the algorithm of Figure 4. Therefore, when
estimating a1 and a2 for a new image, the regression model
will output parameters that, apart from the estimation er-
ror, generate a transformation that meets the same quality
constraint. Repeating training with different MSSIM con-
straints yields different fitting coefficients. For example, if
training is performed setting first MSSIMmin = 0.95 and then
MSSIMmin = 0.90, it will produce coefficients (P0.95,q0.95)
and (P0.90,q0.90) respectively. When these are used for new
images, the latter will produce larger power reductions in the
display, but will also cause more visible image alterations.

Notice that, while model training is performed offline, its
evaluation according to (11) must be executed online, in real
time. Hence, the choice of a linear model was dictated by
its low evaluation complexity. As shown in Section VII this
simple model is sufficient to obtain transformations that are
very similar to the optimal ones, from both visual inspection
and quantitative analysis.

V. ONLINE PHASE

Having determined the fitting coefficients that link the basic
features of an image (µ, σ2) to the optimal values of a, we
can adapt the pixel-by-pixel transformation expressed by (7)
to the content of the OLED display at runtime. A flow diagram
summarizing the online part of LAPSE is shown in Figure 5a.
Globally, these operations take an input image Ii in RGB
format and transform it into an energy-efficient output image
Io, in the same format. Internally, the flow can be subdivided

TABLE II
NUMBER OF ADDITIONS/SUBTRACTIONS AND MULTIPLICATIONS

REQUIRED IN EACH PART OF THE ONLINE TRANSFORMATION.

Phase Add/Sub Mul
RGB to YCbCr 6WH 9WH

Compute µ and σ2 2WH + 1 WH + 3

Compute a1 and a2 4 2

Apply T() 4WH 5WH

YCbCr to RGB 6WH 4WH

into three main phases. The complexity of each phase in terms
of number of required operations, with respect to the size of
the OLED panel, is reported in the figure.

The first part, labeled Phase 1, consists in the conversion
from RGB to YCbCr space and in the computation of the
average luminance and contrast of the input image. Both
these tasks need to execute operations on every pixel, hence
the complexity is linear, i.e. O(WH). Notice, however, that
the two tasks can be completely overlapped: as soon as one
pixel has been converted to YCbCr space, its luminance can
immediately be used for the calculation of µ and σ2.

The section labeled Phase 2 consists in the evaluation of
the fitting model described in Section IV-B. It takes as input
the fitting coefficients P and q, as well as the values of µ
and σ2, computed in the previous phase. Since the number of
transformation parameters is 2 (a1 and a2) regardless of the
size of the panel, the complexity of this phase is constant.

Phase 3 includes the actual application of the transforma-
tion T to the luminance component of each pixel, and the
conversion of the transformed image to RGB. As for Phase 1
complexity is linear, since both tasks must be executed once
per pixel. Again, the two tasks can be overlapped, applying
the color space conversion to a pixel as soon as it has been
transformed.

Overall, the scheme of Figure 5a is significantly simpler
than those proposed in previous works [10]–[13]. First, as
detailed in Section V-A, the only operations involved in the
online transformation, apart from some basic control flow,
are additions, subtractions and multiplications. Second, very
few of such operations are required to process each pixel of
the image, and the overall complexity grows linearly with the
OLED panel size. Table II shows a breakdown of the number
of basic operations required in each block of Figure 5a.

One important aspect of this flow is the possibility of
changing coefficients P and q at runtime. According to the
analysis of Section IV-B, this permits runtime switching of
the transformation “quality mode”, i.e. the amount of allowed
image alteration. For example, this change can be triggered
by external conditions (e.g. battery state of charge, ambient
illumination), or by a user-driven quality setting. Conversely,
previous methods for concurrent power reduction and contrast
enhancement do not allow to directly set a maximum alteration
constraint on their transformations. In [10], [11], [13], different
degrees of alteration can be obtained acting on algorithm
parameters, but this requires non-trivial tuning. Other works,
such as [12], propose transformations that reach a target power
saving, without taking alteration into account.
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Fig. 5. Online phase of LAPSE and hardware implementation.

A. Hardware Implementation Details

While a software implementation of Figure 5a is relatively
trivial, the online part of LAPSE also lends itself to hardware
acceleration, for better performance and energy efficiency. One
possible hardware implementation of the blocks that compose
Figure 5a is shown in Figures 5c-5g, whereas Figure 5b
contains a legend of the main elementary components used
in the different blocks. All circuits work on fixed-point data,
and only use addition, multiplication and shift operations. The
choice of σ2 in place of σ as a feature eliminates the need of
computing a square root. Moreover, the divisions required to
compute µ and σ2 can be implemented as multiplications via
inversion. In fact, the denominator W · H is the size of the
panel, which is constant.

Figure 5c implements equation (3a) to convert each image
pixel from RGB to YCbCr. Square blocks represent constant
multiplications, which do not require full hardware multipliers.
Figure 5d shows the circuit used to compute µ and σ2. The
block labeled SQR represent the squaring operation (i.e. Y 2

i,j).
Mean luminance is obtained from the basic sample average
formula, whereas for variance we use the expression:

σ2 =
(
∑W,H
i=0,j=0 Y

2
i,j)− µ ·

∑W,H
i=0,j=0 Yi,j

WH
(12)

The advantage of this factorization with respect to other
alternatives is that µ is not included in the summation. Hence,∑
Y 2
i,j can be computed in parallel with

∑
Yi,j , and both

µ and σ2 can be calculated with a single scan of all pixels.
Cancellation errors typical of floating point implementations
of this equation do not occur in fixed point.

Figure 5e shows the hardware for evaluating the fitting
model described in Section IV-B. This is the circuit with the

largest power consumption, since it includes four multipliers,
although with small bit-widths (12x12-bit according to the
precision analysis described in the following). However, it is
only active for two clock cycles per image. Thus, low-power
optimization techniques such as clock and/or power gating can
be used to dramatically reduce its energy impact.

The circuit in Figure 5f implements the actual pixel lu-
minance transformation of (7). To this end, parameter a3 is
first extracted from a1 and a2 using (6). In this operation,
the constant 255 can be replaced with 256 = 28 without
a significant impact on the output error. Using a power of
two allows to replace multiplication with proper wiring, with
zero hardware cost. Thus, the computation of a3 reduces
to a simple addition. This circuit is pipelined, so that one
transformed pixel is produced at each clock cycle. A non
pipelined implementation can be easily designed to obtain even
smaller hardware, loosing in throughput.

Finally, Figure 5g shows the hardware for converting the
transformed pixels back to RGB color-space, according to
equation (3b). The circuit is similar to that of Figure 5c,
with the difference that some constant multiplications can
be replaced by proper wirings, thanks to the fact that the
corresponding elements of matrix K are either 1 or 0 [29].

Given that both inputs and final outputs are 8-bit values,
most intermediate operations do not need large bit-widths to
obtain sufficient accuracy. For example, the constant factors in
the multiplications of Figure 5c and 5g must be represented
on 9-bit and 10-bit two’s complement respectively, with proper
ranges, to generate color-space conversions that are accurate
up to one intensity unit, with respect to a double precision
floating point reference. With similar considerations, it is
possible to devise the bit-widths of all other operations. For
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the fitting model evaluation, we select bit-widths that make the
hardware arithmetic error negligible with respect to the fitting
RMSE on a set of test images [36], [37].

Since both RGB and JPEG YCbCr formats represent pixels
on 24-bits, no additional memory is required to implement the
transformation, except for the intermediate registers shown in
the figures. In fact, pixels can be overwritten in place after
color-space conversions and luminance transformations. The
memory used for this purpose can be either the main system
memory or the display Frame Buffer (FB) depending on the
global system architecture.

It should be remarked that the ones presented are just some
of the possible implementations for the tasks of Figure 5a. For
instance, most of the operations involved in the transformation
lend themselves to parallelization. Hence, vectorized versions
of the circuits can be designed, in order to improve throughput,
at the cost of an equivalent increase in area and power. On the
other hand, architectures that favor hardware reuse (e.g., non-
pipelined) are also possible, in order to reduce the number
of required adders and multipliers. In general, the optimal
architecture depends on system-specific requirements.

VI. UNIVERSAL LAPSE

An interesting variant of the method described in Sec-
tions III-V consists in maintaining the cubic form of T , but
making its parameters independent of the considered image.
We call this variant universal LAPSE. In practice, rather
than computing the optimal image-dependent parameters of
the transformation through fitting, two constant values are
assigned to a1 and a2 throughout the online phase. These
constants are chosen as the averages of the a1 and a2 values
obtained in the training algorithm of Section IV-A.

The advantage of the universal solution is a reduction in the
complexity of the online phase. Specifically, the computation
of µ and σ, as well as the fitting of a1 and a2 (i.e. tasks labeled
2 and 3 in Figure 5a) are not necessary. The obvious drawback
is that the transformation is not adapted to the considered
image. As a consequence, its effect on visual quality, and
especially on the MSSIM between input and output images,
will vary significantly from one image to the other. The choice
between universal and adaptive LAPSE identifies a tradeoff
between quality of results and overhead impact, which will be
analyzed further in Section VII.

VII. EXPERIMENTAL RESULTS

A. Setup

In the following experiments, we used the model of equa-
tion (1) to estimate the power consumption of an OLED panel.
Model coefficients have been set to the same values used
in [10], i.e. (γ,w0, wr, wg, wb) = (2.2, 0, 70, 115, 154). To
evaluate image similarity, we used the MSSIM [33].

We tested the proposed solution on two publicly available
image datasets: the LIVE dataset, for visual quality assessment
(29 images) [36] and the Berkeley Segmentation Dataset
(BSDS), originally designed to test image segmentation al-
gorithms (500 images) [37]. Both contain images with a wide
variety of subjects, luminance and contrast. For videos, we

considered sequences from the Open Video Project [38] and
from the Derf’s Test Media Collection [39].

We implemented the offline part of LAPSE in Python 3.5.
In the algorithm of Figure 4, we set wp to:

wp =
255

W ·H[w0 + (wr + wg + wb)255γ ]
(13)

The denominator of this equation is the maximum power
consumed by a panel of size W ·H , corresponding to a totally
white image. Thus, using this value for wp normalizes power
to the [0 : 255] range, and makes it comparable to the values
assumed by the luminance standard deviation σ ∈ [0 : 255

2 ].
This guarantees a good balance between power reduction and
contrast enhancement during training. The search space for
aopt, defined by equations (9a) and (9b) has been divided
into a regular grid of 40.000 points for exhaustive search.
Smaller discretizations of the search space do not produce a
significant difference in the power saving and visual quality
achieved during training.

The online part of the transformation has been implemented
in both software and hardware. For the former we wrote a
single-thread program in C, and compiled it with GCC version
6.3.0 for a high-end x86 64 platform (Intel Xeon E3-12, 8MB
L3, Linux Kernel v. 2.6). We measured execution times with
the Linux real time clock library, averaging the results of
1000 runs. The hardware version was designed at Register
Transfer Level (RTL) using VHDL. It was then synthesized
with Synopsys Design Compiler v2016.03, targeting a 45nm
CMOS standard-cell library from ST Microelectronics. The
clock frequency for synthesis was set to 1GHz for all blocks.
The execution of the synthesized hardware was evaluated by
means of simulations in Mentor Graphics Questa Sim v10.6.
Power consumption was estimated in Synopsys PrimeTime
Suite v2016.6, using annotated switching activity from simu-
lations. Since the number of operations required by the online
transformation is independent on data, the hardware time is
constant for a given panel size.

B. Fitting and universal transformation

In a first experiment, we evaluated the fitting model of Sec-
tion IV-B, and assessed its accuracy in relating image features
with optimal transformation parameters. We also compared it
with polynomial models of different order. For this, we used
the BSDS dataset [37], which is already conveniently split into
training and test sets. We ran the algorithm of Figure 4 on all
training images, and used the corresponding values of µ, σ2,
and a to train the different models. We then evaluated the
goodness of each model on test images. As accuracy metric,
we used the (normalized) RMSE of a1 and a2, and that of
the output MSSIM. The latter was computed transforming all
test images with fitted a1 and a2 and evaluating the MSSIM
difference with respect to the image obtained with ideal
parameters, directly generated by the algorithm of Figure 4.

Results of this evaluation for the constraint MSSIMmin =
0.80 are shown in Figure 6, where the x axis shows the order
of the polynomial. The 0 point corresponds to a constant
polynomial, i.e., a model that estimates a1 and a2 as constant
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Fig. 6. Fitting RMSE versus fitting model order for BSDS images.

values, using the average of the training set. It is evident that
this corresponds to universal LAPSE described in Section VI.

These results confirm the validity of the choice of a linear
model (order 1) for fitting 1. In fact, with respect to the con-
stant approximation, all errors drop significantly. In particular,
the RMSE on MSSIM decreases from 6.7% to 1.5%. On the
other hand, increasing the model order beyond 1, the error on
MSSIM remains approximately constant (1.3% for a 3rd order
model). Thus, the linear solution represents a knee-point, and
is a good tradeoff between evaluation complexity and accuracy.
Moreover, the low errors obtained for the different models
also demonstrate that the mean and variance of the image
luminance are sufficient features to determine close-to-optimal
parameters for the transformation T of LAPSE. Although more
complex features could provide even better fitting results, they
would also require more complex calculations to be extracted,
hence increasing the transformation overheads. Finally, notice
that the universal solution could be still acceptable, depending
on the system requirements. Obviously, it will produce images
whose similarity with the input is sometimes significantly
lower than the imposed constraint. However, this loss in
accuracy must be traded off with the advantages in terms of
complexity, detailed in Section VII-H.

C. Subjective evaluation

Although simpler than previous solutions, LAPSE still in-
troduces some overheads for implementing the online part of
the transformation. To justify these overheads, the subjective
quality of the transformed images must be superior to simple
luminance scaling, i.e. the standard approach used in mobile
devices today. To determine whether this was the case, we
performed a subjective evaluation test, using the entire Live
dataset, together with the first 50 images of the BSDS training
set. The number of images has been limited in order to gather
a sufficient number of votes per image. We compared LAPSE
with luminance scaling under the same power consumption
conditions. To do so, we first transformed all benchmark
images with LAPSE, setting the minimum MSSIM constraint
to 0.80. We then computed the power saving obtained for
each image. Finally, we applied luminance scaling to the input
images, setting the scaling factor k to a value that produces
the same power saving as LAPSE. This value can be obtained

1The order of the fitting model (linear) should not be confused with the
order of the polynomial used for transforming pixels (cubic).

TABLE III
SUBJECTIVE EVALUATION RESULTS. NUMBER AND PERCENTAGE OF

PREFERENCES FOR EACH DATA SET.

Data Images LAPSE Scaling Draw
Live 29 24 (82.8%) 5 (17.2%) 0 (0.0%)

BSDS 50 38 (76.0%) 11 (22.0%) 1 (2.0%)
Total 79 62 (78.5%) 16 (20.3%) 1 (1.3%)

numerically using a bisection method. The luminance scaling
transformation that we implemented is the same adopted in the
work of [15]. The generated pairs of images were shown to a
pool of 169 subjects, not expert in image or video processing.
Each subject was asked to evaluate 10 pairs of images, and for
each pair, select the version that he or she preferred. Results
are shown in Table III.

Columns “LAPSE” and “Scaling” report the number of
images for which the proposed approach was preferred over lu-
minance scaling by the voters, and vice versa. The last column
report draws. This result confirms that, for the large majority of
images, LAPSE produces subjectively better outputs compared
to luminance scaling, at the same power level.

D. Comparison with PCCE

PCCE, presented in [10], is one of the most popular
image transformations for OLED power reduction and contrast
enhancement. Although PCCE is significantly more complex
than LAPSE, it achieves a similar objective, hence we chose
this technique as state-of-the-art reference for comparison.
Notice that the goal of LAPSE is to produce images that
are visually and quantitatively comparable to (rather than
better than) those generated by more complex transformations;
our technique does not aim at improving the state-of-the-
art in terms of sheer output quality, but at dramatically
reducing the transformation complexity. Therefore, although
there are countless transformations for power saving and
contrast enhancement in literature [10]–[13], some more recent
than PCCE, we limited our comparison in terms of image
quality to one representative and well-recognized approach.
In Section VII-G, instead, we considered one of these most
recent methods, together with PCCE, when comparing the
performance of LAPSE in terms of software execution time.

Unlike the case of brightness scaling (Section VII-C), it
is not possible to compare the two methods for equal power
consumption. In fact, both PCCE and LAPSE do not allow
to fix the desired power saving. Rather, PCCE performs
an unconstrained optimization of power and contrast, only
controlled through the parameter β, whereas in our solution,
power is minimized under a MSSIM constraint. Thus, we com-
pared the two methods in same similarity (MSSIM) conditions,
and evaluated whether they obtain similar power savings and
image enhancement scores. To do so, we applied PCCE to all
the images in the BSDS and Live datasets. We then computed
the MSSIM between each original and transformed image, and
set that value as a constraint in our framework. As metric of
image enhancement we used the popular EME [40]. Finally,
we also computed the Peak Signal-to-Noise Ratio (PSNR)
between input images and LAPSE or PCCE outputs, to analyze
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Fig. 7. Comparison between PCCE [10] and the proposed LAPSE algorithm (images).
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Fig. 8. Comparison between PCCE [10] and the proposed LAPSE algorithm (luminance transformation curves).

TABLE IV
COMPARISON WITH PCCE, DETAILED RESULTS.

Data Power Saving [%] EME MSSIM PSNR

PCCE LAPSE
Ideal

LAPSE
Fitted PCCE LAPSE

Ideal
LAPSE
Fitted PCCE LAPSE

Ideal
LAPSE
Fitted PCCE LAPSE

Ideal
LAPSE
Fitted

Cat 37.1 32.1 36.4 28.5 23.9 24.3 0.812 0.842 0.825 24.14 24.69 24.09
Boat 47.1 51.1 44.0 29.3 25.3 23.0 0.794 0.795 0.805 22.13 22.27 22.41
Fish 52.7 59.8 58.1 12.6 11.3 10.3 0.755 0.756 0.791 19.34 18.80 19.18

Lighthouse 61.0 62.2 60.3 17.2 15.6 14.7 0.764 0.768 0.782 18.64 18.49 18.99
Parrots 51.8 55.1 51.2 14.4 5.9 5.6 0.724 0.725 0.772 19.16 19.08 19.54
Bikes 49.3 42.0 36.4 31.6 33.7 36.1 0.778 0.778 0.788 22.33 22.78 23.51

whether the two algorithms produce images with comparable
“similarity”, even when considering a different metric with
respect to the one used as constraint for LAPSE training (i.e.
the MSSIM).

Table V shows aggregate results of this analysis. For power
savings, EME and PSNR, the table reports average values and
standard deviation intervals over the entire datasets. Under
the same MSSIM conditions, the two methods achieve almost
identical power savings and similarity, although PCCE has
less variation over different images. In terms of quantitative
enhancement, PCCE is slightly better than our approach, due

to its greater flexibility in the shape of the pixel transformation
T . It must be remarked, however, that the primary goal of
our method not to improve PCCE performance, but rather to
achieve comparable results at a much lower overhead cost.
Thus, results should be read taking into account the difference
in complexity among the two methods.

A more detailed comparison for six example images is
shown in Figure 7 and Table IV. In addition to the original
images and PCCE outputs, two sets of LAPSE outputs are
reported. The first was obtained with ideal parameters, i.e.
running the algorithm of Figure 4 directly on the target
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TABLE V
COMPARISON WITH PCCE, AGGREGATE RESULTS.

Data Power Saving [%] EME PSNR
LAPSE PCCE LAPSE PCCE LAPSE PCCE

Live 47.5± 15.9 49.5± 10.9 24± 16.1 28.7± 15.1 20.45± 2.85 20.18± 2.21

BSDS 44.2± 20.1 44.6± 10.6 19.7± 14.4 25.9± 12.8 21.34± 3.93 21.19± 3.00

(a) Original (b) MSSIM = 0.95 (c) MSSIM = 0.85 (d) MSSIM = 0.75 (e) Scaling

Fig. 9. Examples of power versus quality tradeoff.

TABLE VI
EXAMPLES OF POWER VERSUS QUALITY TRADEOFF, DETAILED RESULTS.

Target MSSIM 0.95 0.85 0.75

Image Saving [%] Out MSSIM Saving [%] Out MSSIM Saving [%] Out MSSIM
Butterfly 24.0 0.961 41.3 0.881 57.9 0.765
Android 27.7 0.977 43.7 0.849 54.4 0.777

TABLE VII
POWER VERSUS QUALITY TRADEOFF, AGGREGATE RESULTS.

Target MSSIM = 0.95 MSSIM = 0.85 MSSIM = 0.75

Data Sav. [%] Sav. [%] Sav. [%]
Live 24.87 ± 5.91 39.38 ± 8.73 49.37 ± 10.41

BSDS (Test) 23.35 ± 7.77 37.51 ± 11.88 47.21 ± 13.84
Data Out MSSIM Out MSSIM Out MSSIM
Live 0.959 ± 0.015 0.855 ± 0.026 0.773 ± 0.038

BSDS (Test) 0.950 ± 0.019 0.855 ± 0.042 0.776 ± 0.051

image, setting the MSSIM of the PCCE output as constraint.
The second shows the transformation with fitted parameters,
according to the model of equation (11). These images are
affected by fitting error, and are the actual outputs of LAPSE at
runtime. Fitting coefficients for each image have been obtained
running training with the MSSIM of PCCE as constraint,
after removing the image from the training set. To better
evaluate the similarity of the two methods, Figure 8 shows
the luminance transformation curves obtained by PCCE and
the two LAPSE variants for the six images of Figure 7.

These examples highlight the similarity between the outputs
of our solution and those of PCCE. Looking at the images, it is
very hard to notice any difference in terms of quality and level
of detail. This is confirmed also by the plots of Figure 8, which
show that the luminance transformations obtained by LAPSE
are very close to the ones of PCCE. The occasional differences
are due to the higher number of degrees of freedom available

to PCCE for shaping the luminance intensity mapping, but, as
clear from the figure, they are typically very small.

Moreover, the examples also show that the fitting error
does not worsen the performance of our transformation sig-
nificantly, neither in terms of visual quality nor quantitative
metrics. The latter is shown both by the similar values of
saving and EME in Table IV, and by the fact that the fitted
luminance transformations in Figure 8 are almost exactly
superimposed to the ideal ones.

E. Quality versus power tradeoff

LAPSE directly takes a maximum alteration (minimum
MSSIM) constraint for its training phase. This allows to easily
change “quality-modes” at runtime, as explained in Section V.
Notice that none of the previous solutions for concurrent power
reduction and contrast enhancement allows to set a similar
constraint; some receive as input a target power consumption
(e.g. [12]), while some others have parameters specifying
the balance among power reduction and contrast increase
(e.g. [10]). However, none of them allows to directly limit the
alteration on the output image. To show this novel aspect of our
framework, we trained LAPSE on BSDS images, setting three
different MSSIM constraints: 0.95, 0.85 and 0.75. Then, we
calculated regression coefficients for each of these conditions
and used them to transform two example images, not included
in the training set. Results are shown in Figure 9 and Table VI.
The last column of the figure shows the output of a simple
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(e) Dead Poets Society

Fig. 10. Power saving and MSSIM for video sequences.

brightness scaling, with a scaling factor that guarantees the
same power saving as LAPSE in the case MSSIM = 0.75.
Notice how the contrast and details (e.g. the butterfly wings)
are preserved better by LAPSE. For completeness, Table VII
shows the aggregate power saving and output MSSIM results
when the experiment described above is performed on the
entire Live dataset and on the BSDS test set (notice that fitting
coefficients were obtained considering the BSDS training set
only). This table shows that our method obtains relevant
savings even for large MSSIM values, and that the fitting
model is able to match the target MSSIM very accurately,
on average.

The Android screenshot example in Figure 9 highlights the
generality of our approach, which yields good results also
when applied to GUIs, despite not being expressively designed
for them. In particular, the icons and text are much more
contrasted and visible in Figure 9d than in Figure 9e, for iden-
tical power savings. In this experiment, the transformation has
been trained with natural pictures, typically characterized by
a bell-shaped luminance intensity histogram. The screenshot
of Figure 9 has a relatively similar histogram, hence we obtain
good results. Clearly, quality will worsen if the input GUI has
a strongly multimodal histogram, with few distinct intensity
values [23].

Even training LAPSE with GUI images, we do not expect
to obtain better results compared to approaches specifically
targeted at them, such as [4]–[7]. In fact, due to the continuous
nature of cubic polynomials, LAPSE affects ranges of pixel
intensities rather than single values, preserving fidelity and
avoiding artifacts. While this might reduce the power saving
opportunities on some GUIs, in which most consumption is
due to few histogram bars, it makes our strategy generally
applicable also to pictures and videos.

F. Performance on video sequences

The low overheads of LAPSE compared to previous so-
lutions allow real-time application to video sequences. Some
examples of transformed videos, put side by side with the
original input have been uploaded to [41] for visual inspection.
The sequences have been transformed using a fitted parameter
vector a, trained under a constraint of MSSIMmin = 0.80.
These examples show that, although a is adapted on a frame by
frame basis, this does not generate visible flickering artifacts
in the videos. Indeed, a is a function of the luminance mean
and variance of each frame, and frames belonging to the same

scene tend to have similar luminance. Thus, abrupt changes of
the transformation coefficients only occur in correspondence
of scene changes, and do not impact user experience.

Figure 10 shows the trend over time of power saving
(normalized to [0 : 1], where 0 means no saving) and MSSIM
for some of the uploaded sequences. Each plot also reports
the average MSSIM over the entire sequence, as well as the
total power saving i.e., 1− Pin,tot

Pout,tot
where Pin,tot and Pout,tot

are the total power consumptions over all frames, for the
original and transformed videos. Notice how the MSSIM stays
very close to the target value (0.80) throughout the videos.
Instantaneous power saving, instead, can vary significantly
over time, as in the case of the first and last videos, which
are both characterized by varying luminance. These examples
clearly show the effectiveness of LAPSE in limiting the
amount of image alteration allowed, and automatically tuning
the achievable saving accordingly.

G. Software implementation results

The software execution time of LAPSE, under the condi-
tions described in Section VII-A, is reported in Table VIII for
two different image sizes. Each cell reports the average time
and the corresponding standard deviation. For comparison, we
also implemented the PCCE algorithm [10] and the Noniter-
ative PCCE (NIPCCE) of [12] in C language, and computed
their execution times on the same platform. For PCCE, we
set the β = 1, whereas for NIPCCE, we used 8x8 local
windows and we set TPCR = 0.7, wcl = 0.05, and γ =
2.2. The last two table rows report execution times of color-
space conversions alone.

In all three algorithms, we minimized the number of image
scans grouping operations that can be performed in the same
loop (e.g. RGB to YCbCr conversion, and µ and σ2 com-
putation in LAPSE). Since these are single-thread programs,
operations are still executed sequentially. However, overheads
due to control operations and memory accesses are reduced.
Moreover, we did not make use of any advanced image
processing or mathematical library, nor of GPU acceleration.
This choice was made in order to build implementations that
(although tested on a high-end processor) could be easily
ported to less powerful embedded devices, i.e. the final targets
for LAPSE, which might not have these features available.

As shown in Table VIII the execution of LAPSE is domi-
nated by colors-space conversions, regardless of the size of the
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TABLE VIII
SOFTWARE EXECUTION TIME RESULTS. PCCE ACRONYMS: HIST =

LUMINANCE HISTOGRAM COMPUTATION, LHM = LOG-BASED
HISTOGRAM MODIFICATION, PCCE = MAIN OPTIMIZATION LOOP.

NIPCCE ACRONYMS: GA = GLOBAL ATTRIBUTE COMPUTATION, LA =
LOCAL ATTRIBUTE COMPUTATION, LT = LOCAL TRANSFORMATIONS

COMPUTATION, BI = BILINEAR INTERPOLATION, ADJ = FINAL IMAGE
ADJUSTMENT.

LAPSE
Task 512x512 [ms] 1280x1280 [ms]

RGB-YCbCr and µ, σ2 2.96± 0.35 15.19± 0.88

Compute a (3.23± 5.52)10−4 (5.98± 1.56)10−4

T () and YCbCr-RGB 3.53± 0.32 19.49± 1.05

Total 6.49± 0.49 34.68± 1.62

PCCE
Task 512x512 [ms] 1280x1280 [ms]

RGB-YCbCr and HIST 2.61± 0.35 13.68± 0.94

LHM and PCCE 13.3± 0.72 13.6± 0.76

T () and YCbCr-RGB 3.36± 0.31 13.62± 0.76

Total 19.29± 1.07 45.01± 2.48

NIPCCE
Task 512x512 [ms] 1280x1280 [ms]

RGB-YCbCr and GA 3.01± 0.33 13.96± 0.75

LT and LA 5.16± 0.29 31.67± 1.32

BI 4.58± 0.25 30.78± 1.11

ADJ and YCbCr-RGB 2.59± 0.13 15.48± 0.72

Total 15.35± 0.89 91.89± 3.15

Color Conversions Only
Task 512x512 [ms] 1280x1280 [ms]

RGB-YCbCr 2.31± 0.37 12.75± 0.95

YCbCr-RGB 2.34± 0.21 13.94± 1.17

Total 4.67± 0.48 26.69± 1.95

considered image. The largest overhead is the application of
T , which increases the duration of Phase 3, compared to the
pure YCbCr to RGB conversion. Overall, the transformation
requires ≈ 2ms more with respect to color conversions for a
512x512 image (6.49ms vs 4.67ms), and ≈ 8ms more for
a 1280x1280 image (34.68ms vs 26.69ms). Notice that the
execution time of LAPSE is independent of the considered
image, and only changes in response of variations in external
system conditions (e.g. CPU load).

On the contrary, the second phase of PCCE requires more
than 10ms, independently on the size of the image (it operates
on histogram bins). Moreover, while independent on size, the
duration of this phase is highly dependent on image content.
Results in the table refer to two scaled versions of Lena, but
the execution time could be even higher for other images 2.

Considering total execution times, LAPSE is approximately
3x faster than PCCE for 512x512 images, and 1.3x for
1280x1280 images. Taking into account only the additional
time with respect to color space conversions, performance
ratios become 8x and 2.3x respectively.

Noniterative PCCE [12] does not use the iterative opti-
mization loop present in standard PCCE. However, this algo-
rithm still includes complex operations (e.g. bilinear interpo-
lation, local image filtering for strucural sensitivity evaluation,
and internal power consumption estimation). Moreover, since
NIPCCE applies different transformations to different local
windows of the image, its complexity increases significantly

2The timing constraints imposed by the display refresh rate must be
respected in the worst case, i.e. for any image.

for large images. This is confirmed by the results in Table VIII,
which show that NIPCCE is faster than PCCE for 512x512
images, but significantly slower for 1280x1280 images. In
both cases, NIPCCE remains significantly slower than LAPSE
(2.3x times and 2.65x respectively). When excluding color
space conversions, these speed-ups become 5.87x and 8.16x.
Therefore, although this method improves the output image
quality with respect to PCCE, as shown in [12], it is still not
usable in a real-time setting.

Importantly, for the 1280x1280 image, even just the exe-
cution time of the two color-space conversions is too long
for real-time application, with the constraints mentioned in
Section I. An implementation that achieves the required perfor-
mance could be obtained resorting to parallelism (multi-thread
or GPU). However, this would require a high-end computing
device exclusively dedicated to the transformation of images,
with very large power and cost overheads. This confirms the
need for hardware acceleration, in order to obtain the desired
benefits from an energy-reducing image transformation. Soft-
ware results are still useful to compare LAPSE with PCCE
and NIPCCE, as no hardware acceleration for these methods
has been proposed.

Finally, notice that the execution time reduction achieved
by our method is mainly due to the fact that most of the
complexity is moved to the offline training phase. In general,
the time for running the algorithm of Figure 4 depends on the
chosen grid granularity, as well as on the size and number of
training images. As an example, we ran the algorithm with the
platform and settings described above and in Section VII-A,
on the biggest dataset considered in our experiments, i.e. the
BSDS training set, which contains 400 images. The execution
took about 102 minutes, or 1.7 hours, a perfectly acceptable
time for a one-time offline procedure.

H. Hardware implementation results

A breakdown of the main figures of merit of each hardware
component of the online transformation (Figures 5c-5g) is
reported in Table IX. Notice that, differently from software,
hardware blocks that belong to the same phase execute in a
fully parallel fashion. The energy consumption is assumed to
be zero when a block is not being used (e.g., the RGB to
YCbCr block does not consume during phases 2 and 3). This
simplification is quite accurate assuming power and/or clock
gating are used. The power consumption reported in the last
row is the average during the transformation of an image (i.e.,
the total energy divided by the execution time).

Hardware execution times are almost one order of mag-
nitude faster than software. Even for the higher resolution
image, execution completes in ≈ 3.3ms. This result is more
than sufficient for a real time implementation of the transfor-
mation on a HD OLED panel. Nonetheless, the total energy
consumption is still extremely low. For sake of comparison,
the datasheet of a 240x320 pixels AMOLED panel reports a
typical power consumption of 260 mW [42]. With a refresh
rate of 15 ms, this corresponds to an energy consumption per
frame of 0.26 · 0.015 = 3.9 · 10−3 J. Although the panel is
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even smaller than the minimum image considered in Table IX,
the energy consumption of the display is three orders of
magnitude higher than that of the additional hardware required
to implement LAPSE. This guarantees that the estimated
savings reported in Sections VII-D and VII-E are maintained
in a real implementation.

Table IX also helps in assessing the advantages of universal
LAPSE (Section VI). In this variant, the computations of µ, σ2

and a are not needed, and the corresponding hardware can be
removed. While the latter has practically no impact on energy
(being active in very few clock cycles), the former contributes
to the 22.3% of the total consumption. This is reported in
the last column of Table IX which shows a breakdown of the
energy consumption of the different blocks. Hence, universal
LAPSE is expected to consume ≈ 78% of the energy of the
adaptive version. Due to operation overlapping, the advantage
in latency is practically null. As explained in Section VII-B,
energy reduction comes at the cost of a loss in accuracy
in terms of MSSIM of the output image. Whether this is
acceptable depends on the system; adaptive LAPSE might be
preferable for high-end devices, e.g. smartphones, whereas the
universal solution could be interesting for low cost products
like smartwatches.

VIII. CONCLUSION

In this paper, we have presented a new method for OLED
displays power optimization, called LAPSE, that poses particu-
lar attention to the overheads of an online application. We have
detailed the theoretical foundations of LAPSE, as well as the
practical aspects of its implementation. In particular, we have
described the components of an ASIC hardware accelerator for
applying the proposed image transformation at runtime, with
high performance and low overheads. This accelerator could
be integrated in embedded System-on-Chips for devices that
leverage OLED technology.

We have demonstrated that the effectiveness of LAPSE
is comparable to that of previous state-of-the-art algorithms,
both in terms of power reduction and image quality, despite
the significant reduction in complexity. Moreover, we have
shown how different levels of power reduction can be obtained
accepting a proportional degree of image alteration. This
aspect, not present in previous solutions, allows runtime re-
configuration of power consumption and quality in the OLED
display, in response to environmental conditions.
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