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Abstract

Refined one-dimensional, 1D, models are used to carry out free vibration analysis of civil engineering
structures affected by local damages. The Carrera Unified Formulation (CUF) provides higher-order structural
models to be formulated in a compact and, eventually, hierarchical manner. In the domain of the CUF, refined
1D models characterized by three-dimensional capabilities can be realized by using various function expansions
of the generalized displacement field over the cross-section. Recently, a component-wise (CW) approach was
introduced by employing CUF. CW gives a detailed physical description of multi-component structures since
each component can be modeled with its geometrical and mechanical characteristics; namely, no reference
surfaces and axes as well as no homogenization techniques, are employed. In the present work, combinations
of quadratic Lagrange elements are used to describe the beam theory kinematics. This approach allows to
analyze with high accuracy complex civil structures, such as truss structures, industrial buildings and a multi-
floor building. In this context, damage scenarios are introduced with no loss of accuracy in the mathematical
formulation by deteriorating the single component of the structure. Effect of damages are, thus, evaluated by
free vibration analyses.
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1 Introduction

Stiffness, and consequently, the modal characteristics of structures are widely affected by the state of health
of each structural component. The earthquakes and common daily movements carry out an important role for
the structural integrity. Considerable theoretical and experimental advantages have been made in structural
civil control. In particular, over the last 30 years, various damage monitoring system have been introduced
to allow engineers to control the significant displacements of the structure, especially during catastrophic
events. In the early 1990’s, Wu et al. 1992 have introduced conceptual models for the sensor locations,
signal transmission, and central processing of information for simple structure systems. Doebling and Farrar
1997 and also Pirner and Fisher 1997, have shown premise for identification of system behaviour and critical
parameter benchmarking using laboratory and field experimentation with frame structures and bridges. In
the same years, Kiremidjian et al. 1997, have proposed various techniques used for the monitoring of civil
infrastructures.

For the past thirty years, the skills in various communication technologies, e.g. wireless communication and
global positioning system (GPS), coupled to sensors with higher tolerance and precision, and computational
unit with increased power, provided the tools for a potentially new solution to the civil monitoring problem.
Different strategies and systems can be used for monitoring the civil structures and identifying various critical
damage level without the use of experimental tests. The damage affects the vibration characteristics of the
structure, and this has been exploited in many works. The vibration response of a carbon-fiber-reinforced
polymer damaged beam was analyzed by Capozucca 2014. Pérez et al. 2014 have conducted an extensive ex-
perimental activity to investigate the effects of damages on the vibrations of composite laminates. Wang et al.
2014 have proposed a new approach based on the finite element method (FEM) for damage detection and
diagnosis of parts of the engine, wind turbine blades, concerning dynamic analysis and the effects on the
modal shape curvatures. Labib and Featherston 2014 have used the dynamic stiffness method to analyze the
free vibration of frames including multiple cracks by modeling the crack with rotational springs. Nguyen 2014
adopted three-dimensional (3-D) beam elements to determine the mode shapes for damage detection of broken
beam with a rectangular cross-section. Yu et al. 2002 introduced a method where each blade was modelled as
a beam based on geometrically nonlinear 3D elasticity theory and by applying variational asymptotic beam
sectional (VABS) analysis. The same method has been used recently by Pollayi and Yu 2014 to investigate the
effects of the first damage mode via matrix micro-cracking on the mechanical behavior in the helicopter rotor
and the wind turbine blades. Recently, Zhang et al. 2016 used a graphical technique to evaluate the position
and the hardness of delamination in composite structures by analyzing the frequency alterations introduced
by damages.

For damaged structures, the main step is to create a database where the information about natural fre-
quencies and mode shapes for a large spectrum of damage cases must be included. Various mathematical
modeling and modal analysis can be used to create databases for the structure under consideration. This
aspect, although being rather questionable due to the lack of repeatability of the experiments even under
very well controlled conditions, is out of the scope of this paper, and further details can be found in the
work of Pérez et al. 2014. In the case of damaged structures, computational models should be able to provide
enhanced accuracy in terms of displacements and stress fields. Accuracy is a limit for the classical beam
theories based on the one-dimensional approximations. The first 1D theories can be referred to as the Eu-
ler Bernoulli Beam Model (EBBM), Euler 1744, and the Timoshenko Beam Model (TBM). The scientific
community has continuously worked to develop 1D models able to enhance the classical theories and to ex-
tend these models to any geometry or boundary condition and mechanical complexity. The use of correction
factors is one of the standard methods adopted to remove some limitations, as in the books of Sokolnikoff
1956 and Timoshenko and Goodier 1970. For example, El Fatmi 2007a introduced a warping function ϕ to
improve the description of the normal and shear stresses over the cross-section. Schardt 1989 developed gen-
eralized beam theories (GBT), which were then widely used by Silvestre and Camotim 2002 for the analysis
of thin-walled structures. Other refined beam models can be found in work by Kapania and Raciti 1989a
and Kapania and Raciti 1989b, which focused on bending, vibration, wave propagations, buckling, and post-
buckling. In 1992 a new approach based on an asymptotic solution in which a characteristic parameter (e.g.,
the cross-section thickness of a beam) is utilized to build an asymptotic series by Berdichevsky et al. 1992
and Carrera et al. 2015b.

The present work exploits the Carrera Unified Formulation (CUF) for higher-order 1D models, see Carrera et al.
2011 and Carrera et al. 2014a. In the present 1D models, the displacement field above the cross-section is
modeled through expansion functions for which the order is a free parameter of the analysis. CUF first
appeared in the work of Carrera 1995 where it was used to derive a class of 2D theories using a compact
formulation. In the works of Carrera 2002 and Carrera 2003, CUF was applied to multi-layered, anisotropic,
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composite plates and shells. A few years later, Carrera and Giunta 2010a adopted the CUF for the anal-
ysis of 1D models. The most recent extension of the CUF models is the so-called Component-Wise (CW)
approach, according to a complex structure can be modeled by joining different components via 1D refined
approximation theories. Carrera et al. 2013b, Carrera et al. 2013a, Carrera et al. 2014b and Carrera et al.
2015a proposed the static and free vibration analyses of civil buildings and wing structures. Using the CW
approach, various complex space structures have been proposed by Carrera et al. 2015c for the free vibration
analysis of launchers. In the works of Carrera et al. 2016 and Petrolo et al. 2016, a new approach is used to
model damaged aerospace structures, by changing the local stiffness getting various damage configurations in
a simple manner. The free vibration analysis of aircraft structures was performed by Carrera and Zappino
2016. Inherently, Carrera et al. 2017 analyzed the effect of non-structural masses on the free vibration analysis
of a launcher. Cavallo et al. 2018 included the effect of the composite materials for the dynamic analysis of
space structures.

In the present paper, the CW approach is used to analyze the effect of damage on the free vibration
analysis of different civil structures, with particular emphasis to truss structures, industrial buildings and a
multi-floor building. The main novelty and advantage of the proposed CW methodology is that the modal
analysis of typical civil engineering structures with component-wise, intra- and inter-component damages
can be performed straightforwardly. In fact, because each components is modeled independently in this
formulation and the governing equations of CUF, per se, are invariant of the theory approximation order, no
ad-hoc techniques and mathematical artifices are needed in the construction of the model.

2 Refined one-dimensional models

The refined one-dimensional structural models used in the present work are based on the Carrera Unified
Formulation. In the book of Carrera et al. 2014a, more details about beam, shell and solid FE models can be
found. However, some details are outlined in the following for the sake of completeness.

2.1 Preliminary

3D Model LE Modeling

Beam Element

Beam Node

Lagrange Node

(3 DOFs per node)

Nine-Points 

Lagrange Element

y

x

Figure 1: 1D-Refined model using the nine-points Lagrange elements.

Figure 1 shows the reference system used in the one-dimensional formulation, where the y − axis is the
beam axis, while the cross-section is identified by the x and z − axes. The symbol Ω stands the surface for
the cross-section of the beam. The displacement vector can be written as:

u(x, y, z) =
{

ux uy uz
}T

(1)

The three components ux, uy and uz are the components of displacement vector u along the three directions x,
y and z. The superscript T denotes transposition. Dependence on the time variable is omitted for simplicity
purpose. The same form can be used for stress, σ, and strain, ǫ, vectors by using the following form:

σ =
{

σxx σyy σzz σxy σxz σyz

}T
(2)

ǫ =
{

ǫxx ǫyy ǫzz ǫxy ǫxz ǫyz
}T

(3)

A linear model can be used to get the strain components from the displacement field:

ǫ = Du = ([Dy] + [DΩ])u (4)
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D represents the differential operator and its explicit form can be found in Carrera et al. 2014a. Dy and DΩ

are the differential operators on the beam axis y and over the beam cross-section, respectively. Concerning
the constitutive relations, under the hypothesis of linear elastic materials materials, the Hooke’s law can be
written as:

σ = Cǫ (5)

2.1.1 Lagrange-Like polynomials for the refined 1D model

The advantage of the CUF is that low- to higher-order kinematics for 1D beam theories can be formulated
in an automatic and compact way by expressing the displacement field as an arbitrary expansion of the
generalized displacement unknowns (see Carrera and Giunta 2010b, Carrera et al. 2014a):

u(x, y, z) = Fτ (x, z)uτ (y) (6)

where the index τ ranges from 1 to the number of terms used in the cross-sectional approximation. In this
paper only the nine-point Lagrange Expansions (LE) are used, and they are:

Fτ = 1
4 (r

2 + r rτ )(s
2 + s sτ ) τ = 1, 3, 5, 7

Fτ = 1
2s

2
τ (s

2 − s sτ )(1− r2) + 1
2r

2
τ (r

2 − r rτ )(1 − s2) τ = 2, 4, 6, 8

Fτ = (1− r2)(1− s2) τ = 9

(7)

Where r and s range from −1 to +1. Figure 2 shows how the assembly of the LE polynomials over the

z

x

S

r

(-1,1)

(-1,0)

(-1,-1)

(0,1) (1,1)

(1,0)

(1,-1)

Figure 2: Cross-section discretization and assembly with the LE elements.

beam cross-section permits to describe a piece-wise refined kinematics able to deal with complex physics and
geometries. More details on refined beam models can be found in the book by Carrera et al. 2011. In this
work, nine-node Lagrange elements are mainly used to model each component. In fact, the accuracy of these
models have been verified in several works, such as Cavallo et al. 2017.

2.1.2 Finite Element (FE) Solution

Along the y − axis the generalized displacement vector, uτ (y), can be approximated adopting the Finite
Element Method (FEM) by using the classical beam shape functions. When a beam element with NNE nodes
along the axis is considered, the generalized displacement vector becomes:

uτ (y) = Ni(y)qiτ ; i = 1 . . .NNE (8)

The index i ranges from 1 to the number of nodes per element NNE . Therefore, the displacement field can
assume the following form:

u(x, y, z) = Fτ (x, z)Ni(y)qiτ (9)

In Eq. (9) the index i stands for the node of the element along the y-axis. Three- (B3 element) and four-nodes
(B4 element) refined beam elements are used in the present work.
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2.2 Governing equations

The governing equations can be derived using the Principle of Virtual Displacements (PVD). According to
dynamic case the PVD is:

δLint = δLext − δLine (10)

Where Lint stands for the internal work, Lext is the external work due to the external loading, and Line

stands the work of the inertial loadings. The virtual variation is expressed with the symbol δ. In the case of
free vibration analysis, where the external loads are equal to zero, Eq. (10) becomes:

δLint + δLine = 0 (11)

The internal work can be written as following:

δLint =

∫

V

δǫTσdV (12)

By using the constitutive equations (3) and the geometrical relations (2) and by adopting the displacement
field form proposed in the equation (9), the variation of the internal work becomes:

δLint = δqT
τi

∫

V

[

D
T (Ni(y)Fτ (x, z)) C D(Fs(x, z)Nj(y))

]

dV qsj = δqT
sjK

ijτsqτi (13)

The differential operator D works on Fτ , Fs, Ni and Nj. K
ijτs is the stiffness matrix expressed in form of

“fundamental nucleus” and is a 3 × 3 array. qτi is the vector of the nodal unknown and δqsj is its virtual
variation.

Similarly, for the work of the inertial loadings, the virtual variation becomes:

δLine =

∫

V

δuT ρ ü dV (14)

where ü is the acceleration vector and ρ stands the density of the material. Using Eq. (4), Eq. (14) can be
rewritten as following:

δLine = δqT
sj

∫

l

Ni(y)

{
∫

Ω

ρ [Fτ (x, z) Fs(x, z) I] dΩ

}

Nj(y)dzq̈τi = δqT
sj M

ijτs q̈τi (15)

Where the mass matrix M
ijτs is a 3× 3 fundamental nucleus. The explicit form of the fundamental nucleus

for both the stiffness and the mass matrices can be found in Carrera et al. 2014a.
In conclusion, the final form of the equations of motion is:

δqT
sj

(

K
ijτs qτi +M

ijτs q̈τi

)

= 0 (16)

The global stiffness and mass matrices are obtained using the classical FE assembling procedure, as shown
in Carrera et al. 2014a. The equation for a free undamped problem can be written as:

Mq̈+Kq = 0 (17)

Where q is the global unknowns vector. Due to linearity of the problem, according to harmonic solutions, the
natural frequencies, ωk, are obtained by solving the following eigenvalues problem:

(

−ωk
2
M+K

)

qk = 0 (18)

Where qk is the k-th eigenvector, and k ranges form 1 to total numbers of DOF of the structures.

3 Numerical results

This section investigates the effect of various damaged components of the free vibration analysis of civil
reinforced structures. In the damaged zone, the material characteristics are modified according to the formula
proposed in the work of Carrera et al. 2016:

Ed = d× E with 0 ≤ d ≤ 1 (19)
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Three different levels of damage are considered in the present work. For a high damage level, d is equal to
0.8 with a reduction of E of 80 %; for moderate damage, d is assumed to equal to 0.5 halving the value of E;
for small damage, a value of 0.2 is assigned to d. The notation used for the damaged structure concerns the
use of an acronym composed of the letter D and a number for the damage, followed by a letter S, M or H for
the intensity. To be specific, damage case 1 with d equal to 0.5 is called D1M . The aforementioned damage
scenarios are chosen for representative purposes to demonstrate the capability of the present approach to deal
with damaged structures in a component-wise sense.

The structures considered are civil structures already established and assessed in Carrera et al. 2014b,
where the results are compared to different Solid models studied using the commercial NASTRANr code.

3.1 Truss

The first structure considered is a classical truss component. Figure 3 shows the whole geometry of the present
reinforced model, and various information about the dimensions and the boundary conditions are highlighted.
In particular, the dimensions are a = b =0.2 [m], t = a/10, and L = 10 × a. t is the dimension of the sides
of the longitudinal and cross-sectional braces. Six hinged boundary conditions are applied on the external
nodes, where the cross-section is reinforced with diagonal braces. The material used is a classical aluminium
with a Young modulus, E, equal to 75 GPa, the Poisson ratio, ν, equal to 0.3 and the value of density, ρ,
equal to 2700 kg

m3 .

Y

Z

X
b

a

t

L

Figure 3: Truss structure.

Table 1 shows the results related to the first five frequencies between the undamaged structure (UND)
and the solid model (NAS3D) from the commercial NASTRANr code. The percentage different than the
refined solid model (NAS3D) is less than 5% for all the frequencies considered. In addition, the UND DOFs
are only 7% than the NAS3D DOFs.

Model NAS3D UND
DOFs 98730 7308

Mode 1 88.1 90.3(−2.5%)

Mode 2 93.3 96.4(+3.3%)

Mode 3 96.2 100.0(+3.9%)

Mode 4 98.5 103.8(+5.4%)

Mode 5 101.3 106.0(+4.6%)

Table 1: The first five frequency of the truss structure by the present 1D approach and a 3D Nastran model.

The effect on the free vibration analysis of the different levels of damage is considered in this section. Three
damage localized into various parts of the truss structure are taken into account including three intensities
of damage represented by the letter S, M and H , as proposed in Figure 4 for Damage 1. The location of
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damages 2 and 3 are proposed in Figure 5. For each damage case, the effect of damage intensity on the first
10 natural frequencies is further investigated in Figure6 and the results are shown in Table 2.

Mode 1 is firmly influenced by Damage 1, in fact for the medium and high level of intensity, D1M and
D1 H , there is a sensible reduction of the first two natural frequencies, about 5.5%, and 15.5 %, respectively.
In contrast Damage 2 does not produce a significant variation of mode 1 and 2. At the same way, the behavior
of the first ten modes is almost constant considering damage 3, for all the damage intensities assumed.

Ed=0.8E

Ed=0.5E

Ed=0.2E

(a) Small damage, D1 S

Ed=0.8E

Ed=0.5E

Ed=0.2E

(b) Intermediate damage, D1M

Ed=0.8E

Ed=0.5E

Ed=0.2E

(c) High damange, D1 H

Figure 4: Truss structure affected by Damage 1 with different intensities.

Damaged

Area 

(a) Location of Damage 2, D2

Damaged

Area 

(b) Location of Damage 3, D3

Figure 5: Truss structure affected by Damages 2 and 3.

The Modal Assurance Criterion (MAC), see Allemang and Brown 1982, is used to compare the mode
shapes between the undamaged and damaged configuration. The MAC is a scalar number that represents the
degree of consistency between two vectors:

MACij =
|{φAi

}T {φBj
}|

2

{φAi
}
T
{φAi

}{φBj
}{φBj

}
T

(20)

where, {φAi
} is the ith-eigenvector of model A, while

{

φBj

}

is the jth-eigenvector of model B. MAC ranges
from zero, when two modes are completely different, to 1,when the maximum correspondence between two
modes is achieved.

Figure 7 shows the MAC between the undamaged structure and the truss with D1 and different damage
levels. Figures 7b and c highlight the high sensitivity of the structure when damage 1 is considered with
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Undamaged Damage 1 Damage 2 Damage 3

Intensity S M H S M H S M H

f1 89.80 88.71 84.80 75.85 89.53 88.87 87.17 89.77 89.71 89.63
f2 95.34 94.06 88.79 78.38 94.96 94.09 92.63 95.28 95.17 95.02
f3 98.15 97.19 95.37 93.91 97.91 97.50 97.00 98.13 98.09 98.04
f4 101.41 100.91 98.48 97.56 101.15 100.57 99.70 101.40 101.39 101.37
f5 102.68 101.16 100.62 100.23 102.61 102.51 102.37 102.63 102.53 102.37
f6 102.78 102.35 101.96 101.82 102.76 102.73 102.66 102.75 102.70 102.65
f7 104.17 103.93 103.57 103.39 104.02 103.78 103.55 104.17 104.16 104.14
f8 105.28 104.58 104.35 104.28 105.25 105.20 105.09 105.21 105.09 104.94
f9 106.53 105.93 105.58 105.42 106.49 106.42 106.28 106.51 106.47 106.43
f10 107.77 107.41 107.07 106.92 107.75 107.70 107.62 107.77 107.75 107.73
f11 108.07 107.69 107.65 107.62 108.06 108.03 107.98 108.03 107.95 107.83
f12 109.01 108.91 108.86 108.83 108.98 108.92 108.85 109.00 108.99 108.98
f13 109.67 109.65 109.65 109.64 109.61 109.50 109.34 109.66 109.65 109.64
f14 110.55 110.54 110.54 110.54 110.53 110.49 110.44 110.54 110.52 110.50
f15 111.73 111.71 111.69 111.68 111.72 111.68 111.62 111.72 111.71 111.69

Table 2: First 15 natural frequencies in [Hz] of the truss structure for different damage cases.

(a) Damage 1 (b) Damage 2 (c) Damage 3

Figure 6: Effect of damage intensity on the first ten natural frequencies of the truss structure.
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high and medium damage intensities. In these cases, in fact, it is evident that the first three frequencies are
also affected by the damage. In the case of D1 but with small intensity (see Figure 7a) and for all the other
damages considered (Figures 8 and 9), the first three frequencies are not dependent on the damage.
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Figure 7: MAC matrices of the truss structure affected by Damage 1 and different intensities.
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Figure 8: MAC matrices of the truss structure affected by Damage 2 and different intensities.
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Figure 9: MAC matrices of the truss structure affected by Damage 3 and different intensities.

Figure 10 highlights the ability of the present 1D-model to perform the free vibration analysis of complex
civil reinforced structures subjected to damage. Figures 10b and c show the deformation of the longitudinal
braces as mode 1 of the structure undamaged.

3.2 Industrial building

A classical industrial building is shown in Figure 11 where various information about the dimensions and the
boundary conditions are included.

The geometrical dimensions are L = 14.00 [m], b = 13.80 [m], c = 4.50 [m], a1 = 7.00 [m], a2 = 3.00
[m]. Columns and frames have a square section with side 0.2 [m]. At the base of the columns, four clamped
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(a) fUND
1

= 89.80 [Hz] (b) fD1−H

1
= 75.85 [Hz] (c) fD1−H

3
= 93.91 [Hz]

Figure 10: Mode shapes of the undamaged and damaged truss structure.

! x
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z b
L

a1

a2

c

Figure 11: Industrial building.

boundary conditions are applied. For the sake of simplicity, the roof has the same thickness of the frame. All
components are made using a unique metallic material characterized by a Young modulus, E, equal to 210
GPa, the Poisson ratio, ν, equal to 0.28 and the value of density, ρ, equal to 7850 kg

m3 .
Three different damage levels are of damage is considered,as in the previous analysis case. Figure 12 shows

the areas where the damage is considered. Three are the components damaged in the whole structure, that
is, a column, the central frame and a portion of the roof.

The following analyses are conducted considering each damage alone highlighting the effect of various
levels of the damages considered on the first 15 frequencies in the case of free vibration analysis.

Undamaged Damage 1 Damage 2 Damage 3

Intensity S M H S M H S M H

f1 0.52 0.51 0.51 0.50 0.52 0.52 0.52 0.52 0.52 0.52
f2 0.53 0.53 0.52 0.51 0.53 0.53 0.53 0.53 0.53 0.53
f3 0.90 0.90 0.89 0.87 0.90 0.90 0.90 0.90 0.90 0.90
f4 4.33 4.33 4.32 4.30 4.33 4.33 4.32 4.29 4.19 4.05
f5 5.23 5.23 5.21 5.16 5.23 5.23 5.23 5.21 5.16 5.11
f6 9.83 9.82 9.76 9.54 9.83 9.83 9.83 9.81 9.78 9.71
f7 11.11 11.09 11.03 10.85 11.11 11.10 11.08 11.05 10.83 10.21
f8 11.60 11.59 11.57 11.53 11.59 11.58 11.54 11.51 11.39 11.32
f9 15.26 15.24 15.17 14.95 15.25 15.24 15.18 15.16 14.98 14.75
f10 17.87 17.86 17.84 17.37 17.86 17.83 17.72 17.68 17.25 16.30
f11 20.15 20.10 19.39 17.72 20.03 19.64 18.47 20.08 19.80 19.11
f12 20.76 20.61 20.09 18.16 20.74 20.69 20.49 20.63 20.46 20.37
f13 21.65 21.56 20.33 20.24 21.48 21.19 20.91 21.63 21.58 21.50
f14 22.26 21.73 21.17 20.80 22.25 22.21 22.09 22.24 22.19 22.10
f15 22.31 22.06 21.66 21.66 22.28 22.25 22.23 22.28 22.21 22.10

Table 3: First 15 natural frequencies in [Hz] of the industrial building for different damage cases and intensities.
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Figure 12: Damaged components of the industrial building.

Table 3 and Figure 13 show the natural frequencies behaviour for different damage scenarios. It is clear
that the damages considered do not afflict the first ten frequencies as shown in the Figures 14, 15 and 16.
When the roof is severely damaged, as shown in Figure16c, frequencies 7 and 8 suffer more than the other
frequencies because these are the mode of the roof, as depicted in Figure 17.

(a) Damage 1 (b) Damage 2 (c) Damage 3

Figure 13: Effect of damage intensity on the first ten natural frequencies of the industrial building.

3.3 Multi-floor building

The last structure considered is a simplified and a complete multi-floor building. The base of the building has
a square shape, with three floors, one of which has a total length of 3 [m].

On the ground floor, there is a door, and the second and third floors have two windows along two sides, as
shown in Figure18a. The four windows have the same dimensions, and they are equally located on both floors.
The four columns are clamped on the ground to simulate the supporting structure. Two different materials
are considered for the undamaged structure, in particular the columns are made of Material 1 characterized
by a Young modulus, E1, equal to 210 GPa, the Poisson ratio, ν1, equal to 0.28 and the value of density, ρ1,
equal to 7850 kg

m3 . The walls of the building are made of Material 2 with E2 equal to 48 GPa, ν2 equal to

0.28 and ρ2 is equal to 1570 kg
m3 . As in the previous case, three different intensity of damage are considered

in three components, as shown in Figure18b. The levels of damage are applied to the Young modulus of the

12
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Figure 14: MAC matrices of the industrial building affected by Damage 1 and different intensities.
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Figure 15: MAC matrices of the industrial building affected by Damage 2 and different intensities.
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Figure 16: MAC matrices of the industrial building affected by Damage 3 and different intensities.
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Figure 17: Representative mode shapes of the undamaged and damaged industrial building.
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Figure 18: Dimensions of the multi-floor building and the damaged areas.

correspondent element, for example, if the damaged component is a column, the young modulus considered
is E1.

Undamaged Damage 1 Damage 2 Damage 3

Intensity S M H S M H S M H

f1 32.43 32.14 31.48 30.43 32.42 32.41 32.37 31.36 31.02 30.40
f2 32.98 32.86 32.74 32.66 32.98 32.98 32.97 31.98 31.48 30.63
f3 57.42 57.26 57.02 56.66 57.33 57.30 57.23 55.45 50.83 41.49
f4 59.43 59.37 59.24 59.03 59.46 59.45 59.43 58.57 54.93 54.06
f5 62.69 62.60 62.43 62.18 62.70 62.69 62.69 60.96 59.56 59.31
f6 64.14 64.01 63.93 63.80 64.07 64.06 64.05 62.88 62.61 62.38
f7 65.76 65.69 65.60 65.48 65.82 65.80 65.73 64.89 64.24 63.93
f8 69.66 69.56 69.39 69.02 69.87 69.78 69.60 66.37 65.69 65.36
f9 72.29 72.17 71.99 71.72 72.29 72.28 72.25 70.24 69.63 68.96
f10 81.34 81.26 81.08 80.70 81.64 81.55 81.27 72.87 71.44 70.20
f11 86.81 86.15 85.68 85.02 86.18 86.15 86.10 81.50 81.31 80.12
f12 91.13 90.92 90.52 89.82 90.79 90.77 90.73 89.13 87.86 80.82
f13 91.30 91.06 90.79 90.40 91.18 91.15 91.10 90.23 88.77 84.01
f14 111.23 110.55 109.21 107.50 111.05 111.03 110.98 92.53 91.27 86.88
f15 112.80 112.62 112.54 112.46 112.64 112.63 112.62 106.29 101.07 88.41

Table 4: First 15 natural frequencies in [Hz] of the multi-floor building for different damage cases and inten-
sities.

The results in Table 4 show that the Damage 1 with small intensity does not afflict the first fifteen
frequencies, and similarly this is confirmed in Figure 20a. For Damage 1 with higher intensity, the first two
frequencies depend on the damage level, as depicted in Figures 20b and 20c. Figure 21 shows that the first
fifteen frequencies do not depend on Damage 2. In contrast, the first four frequencies, with Damage 3S , are
not dependent on the defect introduced, but the other frequencies depend on the wall status. For a high level
of Damage 3, the first frequencies modify the shape as proposed in Figure 23. The frequency 3 with Damage

3M is not present as shown in Figure 22b, on the contrary the present mode appears in the undamaged
structure.
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(a) Damage 1 (b) Damage 2 (c) Damage 3

Figure 19: Effect of damage intensity on the first ten natural frequencies of the multi-floor building.
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Figure 20: MAC matrices of the multi-floor building affected by Damage 1 and different intensities.
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Figure 21: MAC matrices of the multi-floor building affected by Damage 2 and different intensities.

15



32.43
32.98

57.42
59.43

62.69
64.14

65.76
69.66

72.29
81.34

Undamaged

31.36

31.98

55.45

58.57

60.96

62.88

64.89

66.37

70.24

72.87

D
3-

S

M
A

C

(a) Damage 3S

32.43
32.98

57.42
59.43

62.69
64.14

65.76
69.66

72.29
81.34

Undamaged

31.02

31.48

50.83

54.93

59.56

62.61

64.24

65.69

69.63

71.44

D
3-

M

M
A

C

(b) Damage 3M

32.43
32.98

57.42
59.43

62.69
64.14

65.76
69.66

72.29
81.34

Undamaged

30.40

30.63

41.49

54.06

59.31

62.38

63.93

65.36

68.96

70.20

D
3-

H

M
A

C

(c) Damage 3H

Figure 22: MAC matrices of the multi-floor building affected by Damage 3 and different intensities.
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Figure 23: Mode shapes of the undamaged and damaged multi-floor building.
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4 Concluding Remarks

The present work has proposed advanced 1D models for the free vibration analysis of damaged civil structures,
in particular, a truss component, an industrial structure and a multi-floor building. The analyses are carried
out through a component-wise formulation based on CUF. The advantage of using Lagrange polynomials on
the cross-section allows to the CW models to obtain complex multicomponent structures in an easy manner
and with a high degree of accuracy. As such, CW models are particular interesting for the modelling of
damaged structures. In fact, modern finite element methodologies can simulate damage and imperfections
within the structure by penalization of single elements or groups of elements. As a consequence, the size of
the mathematical model, i.e. the number of elements employed, is strictly related to the minimum dimensions
of the damage. In other words, the finite element size may be as small as the minimum dimensions of the
damage within the structure; thus, computational costs can increase considerably as analysts are interested in
the simulation of structures affected by small damages. On the other hand, the present CWmodel can simulate
multi-component, possibly in a multi-scale framework, within the single finite element. In this manner, the
mesh is completely independent of the damage size and intensity.

Many other conclusions can be extrapolated from the analysis of the proposed results:

• the refined 1D models allow to analyse complex civil structures like the 3D models overcoming the limits
of the classical one-dimensional models;

• the computational costs can be reduced using the CW approach including an accurate analysis of
damaged structure;

• the analyzed sectional distorsion, using beam models, is worsened by local damage;

• the intensity and the position of the damage affect frequencies and mode shapes;

In conclusion, the refined CUF models are very attractive for the analysis of damaged structure. Extension
to more complex cases, as well as multiple damages in civil and aerospace structures, could be a significant ex-
tension of the proposed investigation. Moreover, future analyses could be focussed the simulation of structures
affected by low levels of damage intensities in order to assess the sensitivity of vibration-based methodologies
for damage detection.
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