Data-driven parameterized modeling of LTI systems with guaranteed stability

S. Grivet-Talocia, T. Bradde, M. De Stefano, and A. Zanco

Dept. Electronics and Telecommunications, Politecnico di Torino, Italy

We consider the problem of extracting a parameterized reduced-order model from a set of measurements of some underlying LTI system with (unknown) transfer function $\check{H}(s;\vartheta) \in \mathbb{C}^{P \times P}$, where s is the Laplace variable and $\vartheta \in \Theta \subset \mathbb{R}^{\rho}$ is a vector of external parameters. The model is constructed using a data-driven approach starting from frequency response samples $\check{H}_{k,m} = \check{H}(j\omega_k;\vartheta_m)$ at discrete frequency $s_k = j\omega_k$ and parameter values ϑ_m for $k = 1, \ldots, \bar{k}$ and $m = 1, \ldots, \bar{m}$.

We adopt a Generalized Sanathanan-Koerner (GSK) framework [3] by representing the model as

$$H(s;\vartheta) = \frac{\mathsf{N}(s,\vartheta)}{\mathsf{D}(s,\vartheta)} = \frac{\sum_{n=0}^{\bar{n}} \sum_{\ell=1}^{\ell} R_{n,\ell} \,\xi_{\ell}(\vartheta) \,\varphi_n(s)}{\sum_{n=0}^{\bar{n}} \sum_{\ell=1}^{\bar{\ell}} r_{n,\ell} \,\xi_{\ell}(\vartheta) \,\varphi_n(s)},\tag{1}$$

where $R_{n,\ell} \in \mathbb{R}^{P \times P}$ and $r_{n,\ell} \in \mathbb{R}$ are the model coefficients, and where $\varphi_n(s)$, $\xi_\ell(\vartheta)$ are suitable basis functions. In particular, we use partial fractions $\varphi_n(s) = (s - q_n)^{-1}$ associated to a set of predermined stable poles q_n (as in the well-known Vector Fitting scheme [2]) and tensor products of Chebychev polynomials $\xi_\ell(\vartheta)$ for frequency and parameter dependence, respectively. Model coefficients are computed through a Sanathanan-Koerner iteration [3] by setting $D^0(j\omega, \vartheta) = 1$ and solving

$$\min \sum_{k,m} |\mathsf{D}^{\mu-1}(j\omega_k,\vartheta_m)|^{-1} \left\| \mathsf{N}^{\mu}(j\omega_k,\vartheta_m) - \mathsf{D}^{\mu}(j\omega_k,\vartheta_m) \,\check{H}_{k,m} \right\|_F^2 \quad \text{for} \quad \mu = 1, 2, \dots$$
(2)

Our main result is a sufficient condition and an associated algorithm for enforcing uniform stability of the model $H(s; \vartheta)$ throughout the parameter domain $\vartheta \in \Theta$. This condition requires constraining the model denominator $\mathsf{D}(s, \vartheta)$ to be a Positive Real (PR) function (see [1] for the sketch of a proof). Based on the model structure (1), the PR-ness of $\mathsf{D}(s, \vartheta)$ is guaranteed when $\Re\{\mathsf{D}(j\omega, \vartheta)\} \ge 0, \forall \vartheta \in \Theta$ and $\forall \omega \in \mathbb{R}$. This is achieved by an adaptive sampling process in the parameter space Θ . At GSK iteration μ and for any given ϑ_* , the imaginary eigenvalues of the Hamiltonian matrix associated to a statespace realization of $\mathsf{D}^{\mu-1}$ are used to determine the frequency bands where $\Re\{\mathsf{D}^{\mu-1}(j\omega, \vartheta_*)\} < 0$, and a first-order perturbation analysis of the non-imaginary Hamiltonian eigenvalues is used to determine which directions need to be searched in the parameter space to find local minima of $\Re\{\mathsf{D}^{\mu-1}\}$. The result is an automatically determined set of discrete points (ω_i, ϑ_i) where the constraint $\Re\{\mathsf{D}^{\mu}(j\omega_i, \vartheta_i)\} > 0$ is formulated and embedded in the GSK iteration (2). When the residual of (2) stabilizes, the model poles $p_n(\vartheta)$ (i.e., the zeros of $\mathsf{D}(s, \vartheta)$) result uniformly stable $\forall \vartheta \in \Theta$.

Several examples from Electronic Design Automation applications are provided, demonstrating the robustness and the efficiency of proposed approach. For a preview of these examples, see [1].

References

- [1] S. Grivet-Talocia and R. Trinchero. Behavioral, parameterized, and broadband modeling of wired interconnects with internal discontinuities. *IEEE Trans. EMC*, 60(1):77–85, Feb 2018.
- [2] B. Gustavsen and A. Semlyen. Rational approximation of frequency domain responses by vector fitting. *IEEE Trans. Power Delivery*, 14(3):1052–1061, Jul 1999.
- [3] C. Sanathanan and J. Koerner. Transfer function synthesis as a ratio of two complex polynomials. *IEEE Trans. Automatic Control*, 8(1):56–58, Jan 1963.