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We consider the problem of extracting a parameterized reduced-order model from a set of measurements
of some underlying LTI system with (unknown) transfer function Ȟ(s;ϑ) ∈ CP×P , where s is the
Laplace variable and ϑ ∈ Θ ⊂ Rρ is a vector of external parameters. The model is constructed
using a data-driven approach starting from frequency response samples Ȟk,m = Ȟ(jωk;ϑm) at discrete
frequency sk = jωk and parameter values ϑm for k = 1, . . . , k̄ and m = 1, . . . , m̄.
We adopt a Generalized Sanathanan-Koerner (GSK) framework [3] by representing the model as
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where Rn,` ∈ RP×P and rn,` ∈ R are the model coefficients, and where ϕn(s), ξ`(ϑ) are suitable
basis functions. In particular, we use partial fractions ϕn(s) = (s − qn)−1 associated to a set of
predermined stable poles qn (as in the well-known Vector Fitting scheme [2]) and tensor products of
Chebychev polynomials ξ`(ϑ) for frequency and parameter dependence, respectively. Model coefficients
are computed through a Sanathanan-Koerner iteration [3] by setting D0(jω, ϑ) = 1 and solving
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for µ = 1, 2, . . . (2)

Our main result is a sufficient condition and an associated algorithm for enforcing uniform stability of
the model H(s;ϑ) throughout the parameter domain ϑ ∈ Θ. This condition requires constraining the
model denominator D(s, ϑ) to be a Positive Real (PR) function (see [1] for the sketch of a proof).
Based on the model structure (1), the PR-ness of D(s, ϑ) is guaranteed when <{D(jω, ϑ)} ≥ 0, ∀ϑ ∈ Θ
and ∀ω ∈ R. This is achieved by an adaptive sampling process in the parameter space Θ. At GSK iter-
ation µ and for any given ϑ∗, the imaginary eigenvalues of the Hamiltonian matrix associated to a state-
space realization of Dµ−1 are used to determine the frequency bands where <{Dµ−1(jω, ϑ∗)} < 0, and
a first-order perturbation analysis of the non-imaginary Hamiltonian eigenvalues is used to determine
which directions need to be searched in the parameter space to find local minima of <{Dµ−1}. The re-
sult is an automatically determined set of discrete points (ωi, ϑi) where the constraint <{Dµ(jωi, ϑi)} >
0 is formulated and embedded in the GSK iteration (2). When the residual of (2) stabilizes, the model
poles pn(ϑ) (i.e., the zeros of D(s, ϑ)) result uniformly stable ∀ϑ ∈ Θ.
Several examples from Electronic Design Automation applications are provided, demonstrating the
robustness and the efficiency of proposed approach. For a preview of these examples, see [1].
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