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On the secrecy of compressive cryptosystems under
finite-precision representation of sensing matrices

Matteo Testa, Tiziano Bianchi and Enrico Magli
Department of Electronics and Telecommunications Engineering

Politecnico di Torino - Italy

Abstract—In recent years, the Compressed Sensing (CS)
framework has been shown to be an effective private key
cryptosystem. If infinite precision is available, then it has been
shown that spherical secrecy can be achieved. However, despite
its theoretically proven secrecy properties, the only practically
feasible implementations involve the use of Bernoulli sensing
matrices. In this work, we show that different distributions
employing a much larger finite alphabet can be considered. More
in detail, we consider the use of quantized Gaussian sensing
matrices and experimentally show that, besides being suitable
for practical implementation, they can achieve higher secrecy
with respect to Bernoulli sensing matrices. Furthermore, we show
that this approach can be used to tune the secrecy of the CS
cryptosystems based on the available machine precision.

I. INTRODUCTION

Compressed Sensing (CS) [1] has been extensively studied
over the last decade as an attractive way to perform dimen-
sionality reduction, and has recently gained popularity as an
effective way to encrypt data. Accordingly to CS theory, a
K-sparse signal, i.e. a signal with K non-zero entries, can
be exactly recovered with overwhelming probability from its
random measurements if some assumptions on the sensing
matrix are satisfied [1]. One of the underlying assumptions
is that the sensing matrix, i.e. the random projection matrix
which defines the undetermined CS problem, is known at
reconstruction stage. Conversely, the only knowledge of the
measurements, does not allow to recover the original signal.
Therefore, the CS framework can be seen as a private key
cryptosytem where the sensing matrix entries are the secret,
thus only shared among trusted parties, the original signal is
the plaintext and the measurements are the ciphertext. The
encryption is performed by means of CS acquisition while the
decryption corresponds to CS recovery.

The seminal study of Rachlin and Baron [2] was the first
effort in this direction. Further studies such as [3] focused on
the asymptotic secrecy properties of compressive encryption,
showing that measurements of equal energy signals becomes
indistinguishable as the size of the original signals tends to
infinity. Non-asymptotic analysis of the distinguishability of
measurements sampled from Gaussian i.i.d. sensing matrices
was carried out in [4]. In this latter work, the authors show that
normalizing the signal to unit energy leads to perfect secrecy
under the assumption of one time sensing (OTS) acquisition,
i.e. the sensing matrix is re-generated at each encryption. A
similar analysis was also extended to the case of circulant
sensing matrices in [5], where the authors characterize the
increased measurements’ information leakage due to the struc-
tured nature of the sensing matrix.

In fact, from all the above works, it has become evident
that, because of the linearity of the sensing process, the
measurements will always reveal at least the energy of the
original signal. The best case, in which only the original
signal’s energy is leaked in the non-asymptotic case, is that of
sensing matrices made of real-valued Gaussian i.i.d. entries. In
order to overcome this problem, proposed solutions consider
either to normalize the signal to unit energy as in [4] or to
obfuscate the energy as in [6]. In this latter work, the authors
propose a method to obfuscate the energy of the original
signal through scalar multiplication, avoiding the encryption
and transmission burden related to the energy of the plaintext.
Interestingly, the authors show that this method also allows
trusted parties to perform basic signal processing operations
in the encrypted domain, i.e. anomaly detection.

The vast majority of works we summarized up to this point
provide theoretical guarantees and solve practical problems
considering sensing matrices whose entries are sampled with
infinite precision. However, characterizing the properties of
finite precision cryptosystems is a problem of paramount
importance. In fact, practical systems such as IoT devices
which are power constrained and also need to cope with
data confidentiality can find in CS cryptosystems a good fit.
Indeed, this practical scenario was considered only in a few
works. As an example, in [3], [7], the authors also consider
practical Bernoulli sensing matrices and prove their asymp-
totical spherical secrecy. The same class of sensing matrices
was also considered in [8]. In this latter work, similarly
to standard private key cryptosystems, modes of operation
for compressive encryption are introduced which, along with
the use of Bernoulli sensing matrices, make the considered
scenario suitable for practical implementations.

It is important to note that, to the best of our knowledge,
the works which account for more practical scenarios make
use of Bernoulli sensing matrices, e.g. [3], [8]. Also in [9],
where the focus is put on practical and secure sensing matrix
generation schemes, the results are based on the assumption
of using sensing matrices for which the secrecy has already
been proven. While suitable for practical implementations, the
secrecy of Bernoulli sensing matrices has only been proved in
the asymptotic case [3]. This means that when the plaintext
is not sufficiently large, then more information, other than the
original signal’s energy, is leaked. Moreover, finite alphabets
larger than the Bernoulli one, have not been considered yet.
Intuitively, as the size of the finite alphabet for the sensing
matrix is increased, higher secrecy is expected. Based on this
intuition, and since there is still a gap between the practical
Bernoulli sensing approach and the more theoretical one based



on Gaussian random variables, we consider the case of sensing
matrices made of quantized entries drawn from truncated
Gaussian distributions.

In more detail, the scope of this paper is twofold: first,
we show that the use of sensing matrices with quantized and
truncated Gaussian entries not only is practically feasible,
but can achieve significantly higher secrecy than Bernoulli
distributed ones; second, we discuss how to choose the system
parameters in order to achieve the desired secrecy level.

II. METHODOLOGY

The main contribution of this work is to experimentally
show the relationships existing between the parameters of a
quantized Gaussian sensing matrix and the secrecy of the
related cryptosystem. In this section we start by introducing
some background and definitions related to the secrecy of
compressive cryptosystems. Next, we discuss and describe how
the employed metrics can be obtained under the considered
settings.

A. Background and definitions

At first, let us recall the CS acquisition process which can
be modeled as y = Φx, where x ∈ Rn×1 is the K-sparse
original signal (plaintext), Φ ∈ Rm×n is the sensing matrix,
and y ∈ Rm×1 is the measurements vector with m << n.

At this point, it is important to highlight that, since in this
work we are considering a finite precision representation, both
the sensing matrix entries Φ and the measurements y need to
be quantized. For what concerns the measurements, by the
data processing inequality [10], it is possible to show that
the measurements quantization does not decrease the system
secrecy. Conversely, as we will show in the remainder of
this work, if the quantization is performed on the sensing
matrix entries, the system secrecy can be reduced. It becomes
thus evident that the most critical aspect of employing finite
precision is related to the representation of sensing matrix
entries. For this reason, from now on we will focus on this
latter aspect.

Before proceeding with our discussion it is important to
underline another important aspect: the CS cryptosystem we
will consider from now on is based on the OTS assumption
and we assume that the plaintexts have been normalized to
unit energy. These two assumptions will allow us to exclude
known plaintext and ciphertext attacks as well as to decouple
the information leakage through the measurements due to non-
normalized signals as discussed in [5].

We start with the definition of the truncated and quantized
Gaussian distribution. This distribution can be defined over a
one-dimensional lattice Λ = {qz : q ∈ R, z ∈ Z}, where q
corresponds to the quantization bin width. Thus, the quantized
Gaussian distribution over a lattice Λ can be defined as

GΛ,σ(z) =

∫ z+q/2

z−q/2

1√
2πσ2

e−
t2

2σ2 dt with z ∈ Λ. (1)

It is important to note that we are taking into account the
physical limitations of a practical system which employs finite
precision representations. Since we obtain samples from a
quantized Gaussian distribution, these limitations also translate

into tails truncation. In more detail, given a fixed amount of
bits Nb we consider to truncate the tails at TR, then we have
that q = 2TR/2

Nb is a function of the number of available
bits. We can now define the truncated quantized Gaussian
distribution as GΛC ,σ(z) = vGΛC ,σ(z), where v = 1

1−gT is
a normalization factor to assure GΛC ,σ(z) to be a probability
density function, with gT = 2

∑+∞
z=TR

GΛC ,σ(z) z ∈ Λ.

Next, in order to measure the secrecy of the system we
introduce the metric we will use in the remainder of this
paper: the θ-distinguishability. As introduced in [5] this metric
is defined by means of a detection experiment. Given two
signals x1,x2 we consider a simple detection test in which
the attacker, by using a detector D(y), has to guess whether y
comes from p(y|x1) or p(y|x2). Therefore, we will say that
CS measurements are θ-indistinguishable if, for every possible
detector D(y), Pd−Pf ≤ θ, where Pd and Pf are the proba-
bility of detection and false alarm of the detector, respectively.
It is evident that θ = 0 corresponds to perfect secrecy, namely
no detector can distinguish the two signals. We now recall
that, with a slight abuse of notation, according to Lemma
4 in [5] and the Pinker’s inequality, CS measurements are
at least δKL(p(y|x1), p(y|x2))-indistinguishable w.r.t. x1,x2

given that Pd − Pf ≤
√

1/2 δKL(p(y|x1), p(y|x2)), where
δKL(·, ·) corresponds to the KL divergence.

B. Methods

Here we derive the probability distributions which are
needed to compute the θ-distinguishability.

The metric we will use to characterize the θ-
distinguishability is the KL divergence. In fact, as shown
above, it upper bounds the θ-distinguishability of any possible
detector. To proceed with this characterization, we need to
compute the conditional probability of having a specific
measurement given the signal x which we denote as p(yi|x).
In order to find p(yi|x), we can notice that yi is a linear
combination of n sensing matrix entries φ and thus, its
characteristic function can be written in product fashion as

φyi|x(t) =

n∏
k=1

φ̃(xkt), (2)

where φ̃(t) is the characteristic function of a truncated and
quantized Gaussian distribution. According to [11], the char-
acteristic function of a truncated Gaussian distribution whose
realizations are quantized through area sampling can be written
as φ̃(t) =

∑+∞
l=−∞ φT (t+ lΨ)sinc

(
q(t+lΨ)

2

)
, where Ψ = 2π

q ,
φT (t) is the characteristic function of a truncated Gaussian
distribution and q is the width of the quantization bin. Lastly,
we can write φT (t) = φG(t) ∗ sin(2TRt)

2TR
, where 2TR is the

truncation interval and φG(t) is the characteristic function
of a Gaussian distribution. At this point, we can compute
p(yi|x) for a given x1 and x2 by using (2) and performing
the inverse Fourier transform. Lastly, as done in [4], though
hard to be obtained analytically the value of Pd − Pf can be
upper bounded by the KL divergence between p(yi|x1) and
p(yi|x2) as

Pd−Pf ≤
√
m

2
min(δKL([Φx1]i, [Φx2]i), δKL([Φx2]i, [Φx1]i)),

(3)
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Fig. 1. Effects of the quantization bits Nb on the θ-distinguishability for
different values of TR
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Fig. 2. Effects of the quantization bits Nb and sparsity K on the θ-
distinguishability.

where the KL divergences can be evaluated numerically.

III. EXPERIMENTAL RESULTS

The experiments we perform aim to show the relationships
existing between the θ-distinguishability and the system pa-
rameters, namely truncation factor TR and quantization bits
Nb. We consider these parameters at first separately, then
jointly in order to correctly identify how their values affect
the system secrecy.

Before starting with our characterization of the system
parameters, it is important to underline that, despite being both
practical alternatives, quantized Gaussian sensing significantly
improves the secrecy with respect to Bernoulli sensing. This
can be seen in Fig. 2 where the curve which corresponds
to both 1-bit Gaussian and Bernoulli sensing is the one
which achieves highest θ-distinguishability (lowest secrecy).
This strongly motivates our interest to deeply investigate the
relationships existing between the quantization parameters and
the system secrecy.

In the first experiment we show the effects of the parameter
Nb at different truncation levels TR. The variance of the
Gaussian distribution is fixed to σ2 = 1, and we vary the
number of bits employed for the quantization. The quantization
bins are considered to be equally spaced in the truncation
interval. In more detail, we consider 1000 signals x1 and x2

uniformly distributed on a unit norm sphere of size n = 1000
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Fig. 3. Effects of the Gaussian truncation width TR on the θ-distinguishability
for different values of Nb.
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Fig. 4. Effects of the regime for both Nb and TR on the θ-distinguishability
for increasing values of Nb.

and K = 100 non-zero entries. This means that we consider
increasingly small quantization bins of width q = 2TR/2

Nb .
The metric we consider is the KL distance, in more detail we
show the value of the upper bound on the distinguishability as
defined in (3). The result is depicted in Figure 1.

The first and most important result which can be im-
mediately noted is that, as a general behavior, the θ-
distinguishability exponentially decreases as the number of
quantization bits Nb increases until a plateau is reached. This
behavior, can be seen in Fig. 1 and in a following experiment
in Fig. 2. This is an expected result since as the alphabet
becomes larger, the quantized distribution becomes closer to
continuous Gaussian distribution. Moreover, a linear increase
in the number of bits results in an exponential increase in
the alphabet size. Thus, according to the experimental results
in Fig. 1-2 we can conjucture that the relationship existing
between θ and Nb has the form θ ∝ 2−Nb . This result is also
confirmed by some preliminary theoretical findings which will
be revealed in a forthcoming paper. This is a very important
result, since it means that a limited number of bits, employed
for the quantization of the sensing matrix, can suffice to
achieve high secrecy. However, we need to consider that the
exponential behavior cannot completely describe the results.
As can be seen in Fig. 1 the parameters Nb and TR can affect
the θ-distinguishability in a joint fashion. When considering
larger truncation intervals, and the number of employed bits
is smaller, the value of θ is increased, namely the secrecy is



decreased. Conversely, even if the number of employed bits
is higher, a shorter truncation interval can indeed limit the
exponential decrease of θ which reaches a plateau. This can
be explained by the fact that even though Nb is increased
and thus the distribution of the measurements approaches the
continuous Gaussian one, in practice it is limited by a small
truncation interval. This joint effect will be explained more in
detail when considering the effects of TR.

In the next experiment, we jointly consider the effects of
Nb and the sparsity of the original signal K. While this latter
value is not a system parameter, it is interesting to consider
how an increased number of linear combinations in the sensing
process can affect the system secrecy. As for the previous
experiment, we keep all the parameters fixed except for Nb
and K. The KL divergence bound is shown in Figure 2.

Again, as in Fig. 1, it is possible to note that the value of θ
exponentially decreases with Nb. Furthermore, it can also be
noted that, as the sparsity K increases, the value of θ decreases.
However, in this case the existing relationship seems to be
a linear one as θ ∝ α/K. This behavior can be explained
through the central limit theorem. In fact, since the entries
of the sensing matrices are i.i.d., as the size of the linear
combination of i.i.d. elements increases, the result will tend
to a Gaussian distribution. In the case of the limit K → ∞,
two signals will result in equally distributed measurements and
thus they will become indistinguishable. However, while the
sparsity parameter K can directly affect the secrecy of the
system it is not a system design parameter, and its effects are
negligible with respect to those due to Nb. For these reasons,
the other experiments we performed consider a fixed value of
K = 100.

For the third experiment, we change our focus. In fact, we
consider the effects of the truncation width TR. In more detail,
we compute the KL divergence bound for different truncation
intervals when employing a different number of quantization
bits. The experiment settings are kept as described above: KL
divergences are averaged over 1000 realizations of K = 100
sparse signals lying on a unit sphere. As can be seen in Fig. 3
and already pointed out previously, the effects of the truncation
are paired with those due to the quantization. In fact, a larger
truncation interval favors the secrecy of cryptosystems which
make use of high Nb allowing to reach their optimal secrecy.
Conversely, larger truncation intervals worsen the secrecy of
those cryptosystems making use of coarse quantization. Thus,
also in the light of the previous results, we expect that θ can
be expressed as

θ ∝ f(Nb, TR,K) =
αT βR
K2Nb

, (4)

where α, β are hyper-parameters. This function is increasing
in TR for fixed values of Nb and, is exponentially decreasing
in Nb when TR is fixed. Moreover, it is easy to see that the
ratio between these two quantities must be carefully chosen
in order to maximize the secrecy of a cryptosystem given the
implementation constraints.

This lead us to conjecture that there exists a regime for Nb
and TR for which the value of θ achieves its minimum and
thus decreases exponentially. The regime implies a relationship
between Nb and TR which is expected to be in the form TR ∝

α1N
β1

b . The effect of this regime on the distinguishability is
shown in Fig. 4 where we considered a value of α1 = 1.25
and β1 = 1. The result is that, if these two parameters are
chosen accordingly, the value of θ decreases exponentially as
Nb increases.

IV. CONCLUSION

In this paper, we showed that the practical compressive
cryptosystems based on quantized Gaussian distributions can
achieve high secrecy levels and outperform those based on
Bernoulli sensing. We experimentally described how the quan-
tization parameters affect the secrecy of a cryptosystem and
showed that exists a regime which allows to exponentially
increase the secrecy of the cryptosystem linearly with the
number of employed bits. Our future works will prove, from a
theoretical perspective, the relationship between secrecy and
representation precision we experimentally demonstrated in
this paper.
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