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“The Silicon Infrastructure Opportunity”
“Economists have long argued that the key factor for the boom in interstate
automobile travel was not the mass production of the car as in Ford’s Model T
in the 1920s, but rather the highway infrastructure built near the end of World
War II and into the postwar growth era. Market analysts have argued that the
key factor for the adoption of semiconductor Intellectual Property (IP) was the
realization that no System-on-a-Chip (SoC) semiconductor design team could
develop every block of IP from scratch in a viable time-to-market window.
Despite all the announcements over SoCs in the trade press during the past
few years, the widespread deployment of SoCs has still not occurred (with the
exception of a few general-purpose, graphics, and game processor designs).
However, SoCs will come into their own at the 0.13-micron technology node, a
confluence of integrated complexity (Moore’s law) and process fungibles (having
memory and analog devices on a base-line digital process). Although both trends
are necessary, they will not be sufficient to drive widespread SoC adoption.
Unlike prior process generations, the nanometer era will need more than just
hardware-based tooling to realize production volumes. The mass production of
130-nm SoCs will require the commercial availability of Infrastructures (software-
assisted technologies that span the ramp from design tape-out to manufactur-
ing). Examples of software-assisted tooling include mask synthesis, embedded
test, process-yield simulation, automatic test generation and built-in reliabil-
ity. By 2005, SoC component revenues will grow to $35 billion (nearly 20%
of overall chip revenues, not including microprocessor units). The semicon-
ductor IP component market (licensing and royalties) will be at $2.6 billion.
The silicon infrastructure market will catapult to $3.4 billion. These bold pre-
dictions impinge on the ability of the emerging silicon infrastructure vendors
to extract fair value for value added, that is a business model predicated on
Time-To-Volume (TTV) royalty versus selling software seats as in the tradi-
tional electronic-design-automation model. The silicon infrastructure market
has already seen some early success stories on this front. Hindsight will deci-
sively prove that the most significant driver for the adoption of SoCs was the
emergence of the silicon infrastructure market. Only history will tell which
forward-looking innovators will have made the most of this opportunity, and
which will have been left behind in the dust of antiquated business models.”
[Erach Desai, DESAIsive Technology Research
IEEE Design & Test of Computer Systems
Guest Editor’s Introduction
May-June2002]
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Chapter 1

Infrastructures and Algorithms for
Testable and Dependable SoC

Every new node of semiconductor technologies provides further miniaturization and higher
performances, increasing the number of advanced functions that electronic products can
offer. Silicon area is now so cheap that industries can integrate in a single chip usually
referred to as System-on-Chip (SoC), all the components and functions that historically
were placed on a hardware board. Although adding such advanced functionality can
benefit users, the manufacturing process is becoming finer and denser, making chips more
susceptible to defects. Today’s very deep-submicron semiconductor technologies (0.13
micron and below) have reached susceptibility levels that put conventional semiconductor
manufacturing at an impasse. Being able to rapidly develop, manufacture, test, diagnose
and verify such complex new chips and products is crucial for the continued success of
our economy at-large. This trend is expected to continue at least for the next ten years
making possible the design and production of 100 million transistor chips [83] [86].

To speed up the research, the National Technology Roadmap for Semiconductors iden-
tified in 1997 a number of major hurdles to be overcome. Some of these hurdles are related
to test and dependability [37].

Test is one of the most critical tasks in the semiconductor production process where
Integrated Circuits (ICs) are tested several times starting from the wafer probing to the
end of production test. Test is not only necessary to assure fault free devices but it also
plays a key role in analyzing defects in the manufacturing process [84]. This last point
has high relevance since increasing time-to-market pressure on semiconductor fabrication
often forces foundries to start volume production on a given semiconductor technology
node before reaching the defect densities, and hence yield levels, traditionally obtained at
that stage. The feedback derived from test is the only way to analyze and isolate many
of the defects in today’s processes and to increase process’s yield.

With the increasing need of high quality electronic products, at each new physical
assembly level, such as board and system assembly, test is used for debugging, diagnosing
and repairing the sub-assemblies in their new environment. Similarly, the increasing re-
liability, availability and serviceability requirements, lead the users of high-end products
performing periodic tests in the field throughout the full life cycle.

1
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To allow advancements in each one of the above scaling trends, fundamental changes
are expected to emerge in different Integrated Circuits (ICs) realization disciplines such
as IC design, packaging and silicon process. These changes have a direct impact on test
methods, tools and equipment. Conventional test equipment and methodologies will be
inadequate to assure high quality levels. On chip specialized block dedicated to test,
usually referred to as Infrastructure IP (Intellectual Property), need to be developed and
included in the new complex designs to assure that new chips will be adequately tested,
diagnosed, measured, debugged and even sometimes repaired [85].

In the following of this introduction, some of the scaling trends in designing new
complex SoCs will be analyzed one at a time, observing their implications on test and
identifying the key hurdles/challenges to be addressed. The goal of the remaining of the
thesis is the presentation of possible solutions. It is not sufficient to address just one of
the challenges; all must be met at the same time to fulfill the market requirements.

1.1 High Performance SoC Test Diagnosis and Failure Anal-
ysis

The design of high performance SoCs requires increased performances of test equipments.
While semiconductor off-chips speeds have improved at 20% per year, tester speed has
improved at rate of 12% per year. Tester timing errors are approaching the cycle time
of the fastest devices. Furthermore the so called bandwidth-gap between external pin
and internal parts of a complex SoC denies the possibility of testing at operating speed
modern devices. It has been demonstrated that, most of the new types of defects can
only be detected if the device is tested at operating speed. The solution today is the
use of Built-In-Self-Test (BIST), which means the integration of test capability directly
on-chip [1]. Many solutions have been proposed in literature but the complexity of new
designs makes them difficult to implement. Usually, each component or function in a
SoC is now available as a pre-designed functional block, or embedded core, whose internal
structure is usually hidden to the core integrator. Moreover, cores may embed different test
architectures, like Full-Scan [1], Partial-Scan [1], or BIST, and may be reused in different
designs and integrated with other cores coming from different vendors. In addition, when
a certain combination of cores is often used together, the system integrator or the core
provider may decide to create a new core from that combination. Hence, today’s SoCs
may become tomorrow’s cores in more complex SoCs. This new design philosophy based
on a hierarchical reuse of cores, leads to a radical change in the test engineering process,
requiring the adoption of IP test infrastructure able to fully support core reuse, hierarchical
design, and multiple test strategies integration.

In addition, failure analysis and diagnosis in faulty chips is becoming a key prob-
lem. The traditional failure analysis comprises fault localization, silicon reprocessing and
physical characterization and inspection steps. The migration towards smaller geometries
severely challenges this analysis process. The only solution is gathering failure data by
using embedded diagnosis infrastructure IP, such as signature analyzers, dedicated test
vehicles or on-chip test processors, and then analyzing the obtained data by off-chip fault

2
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localization methodologies and tools.

1.2 Memory Dominance
There is a clear trend to integrate large quantities of memories on a chip. Memories
are designed with aggressive design rules and tend to be more prone to manufacturing
defects. Memories in complex SoC are deeply embedded in the circuits and are not easily
accessible from the outside to apply test program. New IP Infrastructures to embed the
test programs and to allow diagnosis and debug operation are required.

Furthermore the increasing scale of integration and the introduction of new manufac-
turing processes introduce new classes of defects not present in the previous technologies.
To efficiently deal with them, designers need to automate the process of memory test
program generation. This goal involves the realization of algorithms able to address the
problem of: (i) describing new fault models (ii) generating tests able to cover these new
fault models, (iii) verifying the effectiveness of the generated test programs.

Finally, embedded memories were traditionally testable but not reparable. Many ap-
plications today need to keep on working in case of fault. This is addressed in today’s
memories by introducing redundancy, i.e. spare elements. However, having redundancy
only does not solve the problem, it is necessary to find optimal solutions to detect the
defects and to allocate the redundant elements. This involves the realization of dedicate
infrastructure IPs to realize Self-Repairable Memories.

3



4



Part I

High Performance SoCs Test,
Diagnosis and Failure Analysis

5





Related publications
Portions of the material described in this part of the thesis has been subject of following
scientific publications: [6],[19], [18].

7



8



Chapter 2

Introduction

As mentioned in chapter 1 the new SoC design philosophy based on a hierarchical reuse of
already made cores, requires the adoption of IP test infrastructures able to fully support
core reuse, hierarchical design, and multiple test strategies integration.

The problem of testing already-made components bought from different vendors is a
well-known problem in the field of discrete components. Specifically, the test of boards
is based on the direct access to the component’s pins using bed-of-nails whose probes
contact the pads and the wire of the board under test. In SoC design, direct accessibility
to interconnections and cores’ boundaries is not possible, but test patterns have still
to be carried from their source, either a BIST-controller or an external Automatic Test
Equipment (ATE) [1], to the core and vice versa. The problem has to be solved by
designing an access-architecture, usually referred to as Test Access Mechanism (TAM),
to activate the test functions, possibly delivering test patterns, and gathering the results
of the test of any core in the overall SoC hierarchy. In general, a TAM has to guarantee
three main properties:

• Core accessibility: the test of the core has to be controllable by a limited set of SoC
boundary signals;

• Reusability: the access mechanism should be easily reconfigurable to allow the reuse
of cores with different test architectures;

• Lowest overhead: area, routing, and performance overheads must be kept at a min-
imum.

To worsen the situation, test execution in general, and BIST in particular, typically
result in a circuit activation-rate and power consumption higher than the one of the
normal operation mode, thus limiting the possibility of testing concurrently all the cores
embedded in a SoC. A SoC test strategy has therefore to be organized in several sessions,
each carefully planned to fulfill the required power dissipation constraints.

It is now clear how the SoC integration task would be simpler if core designs were
more test-friendly, and SoC designers would have more flexibility in choosing the best
overall test methodologies for their chips. For this purpose, the IEEE P1500 standard for

9



2 – Introduction

embedded-core test is under development. The P1500 standard strives to provide a "plug-
and-play" methodology of integrating core testability into a SoC. Its goal is to ensure test-
friendliness and interoperability of cores coming from diverse sources. P1500 concentrates
on a standardized, but configurable and scalable core interface or wrapper that allows easy
access to the internal test methods of the core. The Test Access Mechanism (TAM), which
has the task of managing the execution of the test of the overall chip, is out of the current
scope of P1500 and therefore must still be designed by the test engineer.

This part of the thesis proposes a possible solution to this problem. An innovative
TAM named Hierarchical-Distributed-Data BIST (HD2BIST), able to address several of
the most critical issues in SoC testing, will be presented. HD2BIST allows a smooth inte-
gration and management of cores with different test strategies (e.g., Full Scan [1], Partial
Scan [1], BIST-ready [1], or BISTed cores [1]) and built-in test access protocols, either
user-defined or automatically inserted using commercial BIST and Design-for-Testability
insertion tools. It is fully compatible with a hierarchical design methodology, allowing
accessing any core of the system independently from its hierarchical depth.

Being already addressed by the IEEE P1500 task force, HD2BIST does not focus on
the problem of core isolation. Nevertheless, although HD2BIST does not require the cores
of the system to be P1500 compliant, it assumes at least a simple wrapper to be placed
around each core in order to guarantee its isolation during the test execution. Obviously,
in the scenario of a P1500 compliant design, a significant part of the HD2BIST structures
would be merged with the P1500 wrapper to optimize performances and minimize the
area overhead.

To reduce the power consumption and therefore to overcome one of the main draw-
backs of the BIST methodology in SoCs, the HD2BIST approach allows defining the test
scheduling of the cores using sophisticated control flow mechanisms. A very low area over-
head is guaranteed by the fact that the HD2BIST architecture is fully customizable and
adaptable to the test requirements of the cores integrated in the system, and thus provides
a trade-off capability among routing, area, and test length.

10



Chapter 3

State-of-the-Art

As introduced in chapter 2 the two main issues to be targeted in SoC testing are core
isolation and core accessibility. [87] gives an overview on the current solutions to create
testable and diagnosable embedded core-based SoCs, and presents a generic conceptual
architecture consisting of three structural elements. It introduces the basic concepts of
test pattern source, test pattern sink, and the test access mechanism (TAM).

Several TAM architectures have been proposed in literature. Macro Test in [56] sep-
arates tests into protocols and test patterns. It introduces a dedicated test access mech-
anism but also takes advantage of existing on chip functionalities. [39] and [38] use the
functional transparent mode of the cores to propagate the test data through the system.
The approach requires low-test area but quite high-test application time since the test
data need to be propagated trough the cores. In [47] the core under test is directly and
parallel accessed from the IC pins, inserting additional wires connected to the core termi-
nal and multiplexed into the existing IC pins. As a main drawback, the approach is not
scalable and introduces high area costs and long test time. [75] and [76] access the core
under test from the IC pins using multiple test buses of different width shared by multiple
cores. Each test bus allows testing one single core at the time. In [41] a new architecture
template has been proposed for system level connection based on switching networks.

Alternative solutions reuse the approaches developed for board level interconnects
testing, through the JTAG IEEE 1149.1 Boundary Scan Architecture [61]. Some aspects
however limit the effectiveness of the approach: the Boundary Scan is optimized for testing
interconnections between components in a board and it does not allow at-speed testing.
In [65] the authors present a variation of the IEEE 1149.1 standard based on a partial
boundary scan ring around the core, whereas in [77] they suggest to provide each core of
an addressable Test Access Port (TAP) in order to directly address the core to be tested,
and to introduce a special hierarchical TAP to manage group of cores as a single one. To
test interconnections among cores, the method proposed in [24] requires the insertion of
test collar cells on the virtual core input and output pins, to create different connections
between the cells and the system data bus. In [55], the cores are wrapped by an ad-hoc
interface (TestShell), and connected by a proper test bus (TestRail), that delivers the test
data patterns and control signals.

To allow flexibility in test scheduling, [5] and [42] proposed a centralized controller
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to activate the BIST sessions one at a time, whereas [81] suggests distributing the test
management on different BIST Resource Controllers (BRCs).

The area overhead reduction was addressed in [62]: a local test controller is associ-
ated to each core, and a dedicated bus inserted to connect the controllers, deliver data
patterns, and link the controllers to the Unit Under Tests (UUT). More UUTs can share
the same controller, properly configuring the local test controller. A modular, generic and
re-configurable TAM architecture has been proposed in [58], based on a packet switch-
ing communication network. Finally, the concept of hierarchical distribution of the test
management is introduced in [22][21] and [23] with the Hierarchical and Distributed BIST
architecture, able to manage different hierarchical levels of BISTed blocks.

Concurrently with the development of proper testing architectures, some initiatives
started to standardize the cores embedding process. The Virtual Socket Interface Alliance
(VSIA) and the P1500 IEEE Standard Working Group are the most relevant ones. The VSI
Alliance intends to define, develop, ratify, test and promote open specifications relating to
data formats, test methodologies and interfaces, to help the reuse of intellectual property
blocks from different sources in the design and development of SoCs [67]. The P1500
IEEE Standard Working Group aims at defining a uniform but flexible hardware interface
between an embedded core and its environment, capable of delivering predefined test
patterns to and from the embedded cores [2][82][49].

Despite the novelty of the approaches, none of the proposed solutions efficiently fulfills
all the test requirement of new generation SoCs.
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Chapter 4

Architecture Overview

This chapter presents the general architecture of the HD2BIST test access mechanism.
For the sake of clarity, HD2BIST is here introduced as a flat architecture, but the reader
should keep in mind that it is a hierarchical structure, fully adaptable to the hierarchical
architecture of complex SoCs.

The main actor in the HD2BIST is a bus-based communication link, named Test BUS
(TBUS), which implements an effective solution to the problem of core access and reuse.
From a conceptual point of view, the data exchanged on the TBUS can be clustered into
two categories:

• Control Data, used to configure and control the HD2BIST test structures.

• Test Data, used to carry the test vectors needed to test the cores embedded into the
system. Test vectors can be generated on-chip by BIST controllers, or be applied
from the outside to the SoC Input/Output signals using Automatic Test Equipments
(ATE).

To reflect this logical classification, the TBUS is split into two sub-buses named Test
Control Bus (TCB) and Test Data Bus (TDB), respectively. Both test busses have a ring
structure (Figure 4.1), to guarantee a simple and technology independent approach, and
to offer a high degree of flexibility and dependability.

The difference of information exchanged on the two busses imposes the use of different
Communication Protocols. The amount of information exchanged over the TCB is usually
very low and it can be easily coded as a predefined set of commands, thereinafter referred
to as Test Primitives. A Token Based Protocol has been chosen as the most effective
solution for the TCB. On the contrary, data exchanged on the TDB is mainly composed
of a large amount of test patterns and test responses. This characteristic makes a Scan
Chain Based Protocol [1] the most suitable solution for data transmitted on the TDB
(Figure 4.2).

As detailed later, the scan chain approach allows a very flexible sharing mechanism of
the TDB to concurrently test different cores, or to reuse the same lines of the TDB to test
different cores in different times, thus minimizing the routing overhead.
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Figure 4.1. HD2BIST Ring

The TBUS structure implemented by HD2BIST provides a high degree of reliability.
Thanks to the Scan Chain protocol, the TDB itself can be easily tested using a standard
scan test approach [1]. The dependability of the TCB is guaranteed by implementing it as
a bi-directional link. The same information transmitted on a forward link is then sent back
on a backward link to verify its correctness. In case of a transmission error, a diagnosis
procedure can be executed to locate the fault.

The TBUS proves to be an efficient TAM only if an appropriate bus interface with
the cores under test and a bus manager are properly defined and implemented. In the
HD2BIST these rules are played by two special blocks named Test Block (TB) and Test
Processor (TP), respectively. Each TB/TP connected to the TBUS is identified by a
unique address defined at design time.

The Test Block (Figure 4.3) can be easily customized to support the specific test
solution implemented in the core. In particular, its internal structure is optimized for (1)
full and partial scan cores [1], using the TDB to apply test vectors and to gathered test
results, (2) BISTed cores [1], using the TCB to send BIST commands and to read BIST
results, and (3) BIST-ready cores [1], using the TDB to exchange test vectors between the
core under test and its BIST controller.

The Test Processor controls, through the TBUS, the HD2BIST structures inserted in
the chip, and schedules the execution of the test of each core in the chip itself. It is
interfaced to the TBUS through a Lower Level Interface (Figure 4.4) implemented either
as a Finite State Machine (FSM) or as a micro-programmed machine, and able to execute
a sequence of Test Primitives implementing a set of Test Programs defined by the core
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Figure 4.2. TCB (token bus) and TDB (scan bus)

Figure 4.3. Test Block and core wrapper

integrator. Each test primitive corresponds to one (or more) token(s) exchanged over the
TCB, and it can be either generated by the TP itself, or applied from the outside of the
SoC through a IEEE 1149.1 JTAG interface [61]. The JTAG defines a standard Test
Access Port (TAP) for board components. The use of a JTAG interface allows having
a standardized protocol to access the TP and the HD2BIST structure in general and to
control the execution of the Test Programs from an external ATE.
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Figure 4.4. Test Processor architecture

As explained in the Section 1, the design of a complex SoC usually follows a hierarchical
approach. To be compatible with this design philosophy, HD2BIST allows connecting
different TBUS to achieve a hierarchical structure. The element that allows the connection
of different busses is the TP. In this case, instead of being controlled by a JTAG interface,
the TP is interfaced to the second TBUS through a TB-like interface named Upper Level
Interface (Figure 4.5). Each TP manages the test of the cores connected to its TBUS,
only. The Upper Level Interface allows viewing each TP as a complex TB and therefore
managing it as a single Unit Under Test: a TP placed at the ith level1 will be considered by
the TP of level (i-1)th as a standard TB, and therefore dealt with as any other core under
test. Nevertheless, its task is to translate the test primitives coming from the (i-1)th level
in the execution of the appropriate Test Program for the blocks belonging to its TBUS.
Using this approach, TPs support a distributed approach in the execution of the system
test. The general idea is that each TP is able to resolve the commands coming from the
upper bus in all the operations needed on the lower bus (Figure 4.5).

As mentioned before each TB and TP is identified by a unique address defined at
design time. To extend this concept when the SoC is reused as an embedded core in a
more complex system, each TBUS is considered as a distinct address domain. In this way,
two cores belonging to different TBUS can share the same address without any conflict.
Using this approach, when a SoC is reused as an embedded core, the only part that has
to be modified is the Upper Level Interface of the most external TP, which, in the case of
a stand-alone SoC, is a JTAG interface, whereas in the case of a SoC used as a core it is

1i=0 is associated to the highest level, i.e. the chip level.
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Figure 4.5. Connecting two rings

a TB-like interface connecting the TP to the upper level TBUS.

17



18



Chapter 5

HD2BIST hierarchy configuration
and scheduling

The hardware architecture described in chapter 4 can be easily configured in different
operative modes to create a connection in the SoC hierarchy between a core and its
test patterns source/sink, to test or to perform diagnosis on faulty components and to
accurately schedule the test execution of the overall SoC.

Both the Test Structure Configuration and the Test Scheduling are possible thanks to
a set of Test Primitives implementing Test Programs. This mechanism defines a software
level that, to some extent, allows separating the task of designing the HD2BIST hardware
from the task of programming and configuring it.

A Test Programs is a set of Test Primitives issued as tokens to the blocks (TBs and
TPs) connected to the TCB. Conceptually, there are atomic and macro primitives. There
is no semantic difference between them, but the result of their execution depends on the
target block. Atomic primitives are commands received by a TB and used to configure the
wrapper of a core or to change the status of some signals at the core boundaries; macro
primitives are sent to those TPs that connect different hierarchical levels in the TBUS
tree. In this case, the execution of the test primitive results in the activation of another
test program used to manage the test of the lower hierarchical levels.

Using this software level, it is therefore possible to describe the test of a SoC as a
collection of Test Programs. The order in which the test programs are executed does
not necessarily have to be chosen at design time. In fact, HD2BIST provides two ways of
delivering a Test Primitive to the blocks under test. In external mode, the test instructions
are sent from the outside of the system through the top-level TP, possibly using an ATE
connected to the TP JTAG interface. In internal mode, the tokens are generated on-chip
by each TP and the JTAG interface is used only to select the desired test program. The
two modes are not mutually exclusive and can be integrated to add flexibility to the overall
test strategy. In particular, the internal mode is mostly used to activate BIST procedures
and to read their results. The external mode is instead exploited to create a direct data
path form the outside to the core under test to perform diagnosis or to apply test patterns
using an external ATE.

In order to exploit the external mode, the SETENV and UNSETENV macro primitives
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are used to configure the TCB and TDB lines to directly access, from the outside, any
core of the system, regardless its hierarchical depth. SETENV is sent to the TP blocks
to create a bypass connection between two adjacent hierarchical levels. After a SETENV
primitive, all the test instructions sent to level ith are directly forwarded to the (i+1)th

level. Resorting to a sequence of SETENV primitives it is therefore possible to reach, from
the outside, any level of the hierarchy. This operation is usually referred to as Environment
Setup. The UNSETENV primitive is used to restore the normal functionality of the TBUS.

In general, each Test Program requires a different configuration of the HD2BIST. In
this context, a configuration is defined as a connection scheme between the cores under
test and the TDB lines used to transmit test vectors; each connection scheme is referred
to as Configuration Mode. The set of Configuration Modes is fully customizable by the
test engineer, the only constraints being that each TB has to implement at least a Bypass
Mode, where each TDB line is not used and all the data coming into a TB is forwarded
to the next block on the bus (Figure 5.1).

Figure 5.1. TDB connections

From the user point of view, the configuration mode can be set using the Test Primitive
CONF. The possibility of setting different Configuration Modes allows sharing the TDB
lines between different blocks in a single test session (“Width” sharing) or reusing the same
data line to test different cores in different test sessions (“Time” sharing) thus obtaining
the maximum efficiency from the available test resources.

The last issue solved by the bus-based approach is the Test Scheduling problem. De-
spite some scheduling mechanisms are already addressed solving the Test Structure Config-
uration problem where the “Width” and “Time” sharing are intrinsic scheduling facilities,
four Test Primitives have been defined to manage the test session of BISTed and BIST-
ready blocks.
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The definition of a scheduling algorithm for BISTed and BIST-ready cores can be
translated into an appropriate sequence of configurations, activations and collections of
test results of the BIST routines. The following test primitives can efficiently code these
commands:

• START : starts the execution of a BIST routine;

• COLLECT : collects the results of a BIST routine.

The two primitives are useful to define simple sequential tests, but do not allow complex
scheduling algorithms where decisions should be taken depending on some test results. To
overcome this problem two additional test primitives have been defined:

• WAIT : suspends the execution of a Test Program until the BIST procedure or the
execution of the Test Program of one or more blocks is completed. This instruction
allows the test engineer to address possible power consumption issues raised by the
concurrent test of multiple blocks in the system.

• JUMP: depending on the result of the BIST (or Test Program) of one or more blocks,
the Test Program execution jumps to a certain label. This command improves the
flexibility in the test scheduling, allowing the test engineer to take decisions on-the-
fly as, for example, to skip testing additional parts of an already revealed faulty
component.
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Chapter 6

RT-level Implementation

After introducing the main features of the HD2BIST architecture, this paragraph details
how the test structures actually may appear at the RT level. The proposed implementation
can be seen as a sort of guideline for the test engineer, who can obviously customize it to
his target application, implementing the needed features, only.

6.1 Test Block Architecture
As explained in chapter 4, the TBUS is split in two busses: the TCB and TDB. Con-
sequently, each TB includes a Control Interface Block and a Data Interface Block (Fig-
ure 6.1).

The Control Interface Block is in charge of managing the information coming from the
TCB. Inside a Control Interface Block it is possible to identify a Token Transmission Unit,
which sends and receives tokens on the TCB using the transmission protocol described
in the sequel of this paragraph, and a Token Execution Unit. The execution of a token
is implemented as one or more read/write operations on a register file. The primitives
presented in chapter 5 are translated into elementary register operations.

The register file is organized in three different sections:

1. Test Control Registers: each bit of a Test Control Register is used to directly drive
one of the control pins of the core like a start BIST signal;

2. Test Status Registers: each bit of a Test Status Register is connected to a core output
and is used to read the core status during the test;

3. Test Mode Registers: they are usually used to set up configuration modes (see chap-
ter 5). The content of the Test Mode Registers therefore codes the connection schema
between the TDB lines and the core pins.

The number of registers and their size are customizable by the user depending on the
target application.

The Data Interface Block is in charge of correctly routing the information transmitted
on the TDB. Inside a Data Interface Block, each TDB line can assume two different states:
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1. Bypass: the data received on the line is directly forwarded to the next block of the
TBUS;

1. Connect: the data received on the line is forwarded to a core input and on the same
line a core output is forwarded to the next block.

Each Configuration Mode corresponds to a different TDB routing configuration. The
state of each line is obtained by properly decoding the contents of one of the Test Mode
Registers.

Figure 6.1. Test Block General Architecture

6.2 Test Processor Architecture

The main role of the TP is to execute Test Programs, each implemented as a sequence of
tokens. Tokens and Test Patterns are sent on the TBUS through the Lower Level Interface
(see chapter 4) using the same Control and Data Interface Blocks described in section 6.1.
Each TP can be implemented as either an FSM statically executing the test programs, or
a µ-programmed machine executing the test programs stored in a local memory.

The interface changes accordingly to the hierarchical level the TP belongs to. In
particular we can distinguish between the top level and all the other hierarchical levels. At
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the top level, the TP is interfaced to the SoC boundaries through an IEEE 1149.1 compliant
Test Access Port (TAP), which makes possible to access all the SoC test structures via an
external ATE using a standard protocol. In all the other cases, when the TP is used to
connect two different hierarchical levels, the interface to the upper TBUS is implemented
as in a normal TB, and a Routing Unit is used to directly connect the lines of the two
TDBs (if this is required by any of the Configuration Modes). The Test Control, Data,
and Configuration Registers are used to configure, control and read the test results form
the Lower Level Interface.

6.3 IEEE 1149.1 interface

Providing the HD2BIST with a JTAG IEEE 1149.1 Test Access Port (TAP) interface is
necessary to control the top level TP using a standard protocol and to simplify the use
of an external ATE to test full or partial scan cores. Mainly and IEEE 1149.1 compliant
TAP defines two signal named TDI and TDO used to access in a serial way a set of user
defined JTAG registers.

As mentioned in chapter 5, from the external user point of view, an HD2BIST SoC
can be used in two different functional modes:

• Internal Mode: tokens and test data in general are generated on-chip. The IEEE
1149.1 interface is only used to start the execution of the Test Programs and to read
out the test results. The test program can be selected by loading an appropriate
value in a JTAG register. At the end of the test, the results are loaded into a JTAG
Register in the form of a status word that can be scanned out through the TDO pin.

• External Mode: in this configuration mode the TCB is controlled using the TDI and
TDO signals. The tokens to be transmitted on the TCB are loaded into a JTAG
Register. In this situation the TDB is controlled using a set of dedicated input lines
usually referred to as scan-in and scan-out pins. Directly controlling the TBUS, the
Top Level TP is conceptually substituted by the external ATE. This configuration
mode is particularly useful for diagnosis and debugging phases.

The two functional modes are not mutually exclusive. They can be combined together
to improve flexibility.

6.4 Scan Chain Router

When the number of data lines needed to test a core is not compatible with the num-
ber of lines of the TDB, a Scan Chain Router can be placed between each TB and the
corresponding core. This block is able to merge a set of core lines into a single one, thus
reducing the number of TDB lines needed during the test. This block is particularly useful
to test full-scan cores [1]. Introducing a Scan Chain Router, the test engineer can trade
off between the routing, area overhead (number of TDB lines) and test time (long scan
chain). The Scan Chain Router configuration can be set using a dedicated Test Mode
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Register. The same approach can be adopted inside a TP connecting two hierarchical
levels with different TDB width.

6.5 Test Control Bus

While the data is transmitted on the TDB using a simple scan protocol, tokens exchanged
on the TCB require a more complex transmission protocol.

The Token Transmission Protocol is designed to make the transmission more tolerant
to hardware faults. The protocol is based on the implementation of the TCB as a bi-
directional link named Forward Bus and Backward Bus, respectively. The Forward Bus
is used to actually transmit the token, whereas the Backward Bus is used to send the
received data back to the sender in order to check its correctness and detect a wide range
of transmission errors. In case of inconsistency, the block enters an Error State and blocks
all future transmission. Using an appropriate diagnostic routine, the TP connected to
the faulty bus can locate the fault, save this information into an appropriate Test Status
Register, and make it accessible from the upper level of the hierarchy. In addition, an
optional CRC can be inserted in each token to improve the token transmission reliability.
On both the forward and the backward bus, tokens are transmitted in a serial way using
a start/stop bit protocol. Each sender can transmit only one token at a time and, after
the transmission, it has to wait for the token to come back before removing it form the
bus and sending a new one.

6.6 Token Format

The HD2BIST does not define a fixed token format, the only requirement being the im-
plementation of a set of token fields needed to support the HD2BIST basic functionalities.
The required fields are listed below:

• OP_CODE (Operative Code): it specifies the operation to be performed. The
number of possible operations is customizable. At least a Read and a Write operation
must be defined.

• DEST_ADDR (Destination Address): it specifies the address of the destination
block. It can specify also a broadcast or a group address.

• SOURCE_ADDR (Source Address): it specifies the address of the sender.

• REG_ADDR (Register Address): it identifies the register addressed by the op-code
(see Section 5.1).

• MASK : It is a bit mask. In the case of a WRITE operation, it specifies the value
to be written in the register; for a READ operation it carries the result of the read
operation. The length of this field depends on the maximum size of the registers
present in the TBs.
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• CRC (Circular Redundancy Code): It is an additional optional field for inserting a
CRC code (often a simple parity code) to improve the token transmission reliability.

27



28



Chapter 7

Using HD2BIST in SoC Testing

The HD2BIST architecture allows testing SoCs, which integrate IP cores characterized by
different test strategies. For each IP the HD2BIST architecture has to provide a way to
transport test patterns to the core, and test responses from the core itself to the pattern
sink. The solution offered by HD2BIST relies on the configuration features of the TBUS.
As explained before, the SETENV test primitive allows configuring the TDB lines in
order to create a direct path between any pair of blocks connected to a TBUS, even not
necessarily belonging to the same hierarchical level. The path configuration is executed
using the token-based protocol of the TCB.

In general, testing a complex SoC usually requires facing four different test scenarios:
BISTed or BIST-Ready cores, Scan-cores, and glue logic. The following sections explain
how each of them can be addressed using the HD2BIST architecture.

7.1 Testing BISTed and BIST-Ready Cores

The situation of a BISTed core, i.e., a core embedding all the logic needed to execute its
test and provide the test results can be addressed using the TCB only. The TP configures
the core wrapper to isolate the core under test, and write the proper values in the TB
registers to directly control the test pins of the core able to activate the BIST procedure.

In the simple case of a system embedding BISTed cores only, the HD2BIST may be
limited to a TCB, a TP and a TB for each core. Nevertheless, at the end of the test
session, BISTed cores often release not only a Boolean result, but in case of failure they
allow downloading a set of diagnosis data. In this case the TDB can be used to route this
information outside the SoC.

In a different way, a BIST-Ready core is not entirely self-testable; it requires an external
BIST Controller to generate and apply the test patterns and to verify the correctness of
the core responses. Typical examples of BIST-Ready cores are RAM memories, whose
BIST logic is usually implemented in a separate BIST Controller executing a March test
[69]. In this scenario, HD2BIST has to enable a direct path from the BIST Controller
outputs to the memory inputs and from the memory outputs to the BIST Controller
inputs (Figure 7.1-a). This task is achieved by defining a Test Program able to configure
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a direct connection over the TDB between the BIST Controller and the core I/Os. At this
point, the test can be executed at-speed without any modification in the test protocol, the
only test time overhead being the initial and final latency due to the bypass TBs on the
path.

When the SoC integrates more than one copy of the same core, it is possible to exploit
the HD2BIST to reuse the same BIST controller to test all the identical cores. With
two different Test Programs it is possible to configure the connection between the BIST
Controller and, one after the other, the different instances of the core.

7.2 Testing Scan Cores

Full scan cores need test patterns applied from external test equipment. They represent
the most difficult situation, especially when they are deeply inserted in the hierarchy
of the SoC. This is the scenario in which the hierarchical structure of the HD2BIST is
efficient to create a direct connection between the SoC boundaries and the cores I/O
(Figure 7.1-b). The Top Level TP is set in External Mode and acts as a TDB line router,
allowing the connection between TDB lines belonging to different hierarchical levels. After
a configuration phase, it is possible to test the core applying the patterns directly from
the SoC boundaries.

The original test patterns for the core do not need to be significantly modified, and
the only test time overhead introduced is caused by the latency required to traverse the
HD2BIST hierarchy.
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 Figure 7.1. Using of TDB to test different types of cores

7.3 Testing glue logic

It is not unusual that the chip integrator adds glue logic around the cores embedded in
the system. This logic is usually not localized and cannot be wrapped or considered as a
core. Glue logic is usually tested using a full-scan approach . If it is possible to split the
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glue logic into different domains, each referring to a certain TBUS hierarchical level, the
glue logic scan chains can be directly connected to a TP and considered as pseudo TDB
lines. In this way it is possible to test the glue logic with the same approach used to test
full-scan cores (Figure 7.2).

TB

TB
TB

TP

Figure 7.2. Pseudo TDB lines for testing the glue logic
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Chapter 8

Case study

To demonstrate the effectiveness of the proposed TAM, the HD2BIST architecture has
been implemented on an industrial case study. The example has been chosen to under-
line the flexibility of the proposed approach in terms of reusability of the test structures
in a hierarchical architecture, test patterns delivering for full-scan cores, scheduling of
BIST-ready blocks, and integration of the HD2BIST architecture with BIST structures
automatically generated using commercial tools.

The following sections analyze the case study, providing experimental results in terms
of area and test time overhead.

8.1 DacTOPplus Architecture

The case study, named DacTOPplus, is a LSI Logic® circuit used in transmission devices.
DacTOPplus is composed of four identical macro-cores (DacTOP) and two BISTed RAMs
(8192x8) (Figure 8.1).

Each DacTOP macro is composed of four sub-modules: one transmission macro-cell
NDS_TX, one receiving macro-cell NDS_RX and two identical NDS macro-cells.

The NDS_RX, NDS_TX macro-cells are full-scan modules with seven scan chains,
whereas the two NDS modules have been considered as glue-logic, and all their flip-flops
are connected through a single scan chain. The circuit is realized using the G11 LSI Logic®

library. Table 8.1 reports the area occupied by the test case in Synopsys® Equivalent Gates
[69].

In the sequel, we will focus first on the test structure implemented in the DacTOP
macros, and then on the complete test case, including the four DacTOP macros as well as
the two BISTed memory modules.

8.2 DacTOP Test Structure

The test structure implemented in each DacTOP macro is composed of a single HD2BIST
chain controlled by a TP. The NDS_TX and the NDS_RX macros, packaged by a P1500-
like wrapper, are controlled by two TBs, whereas the NDS modules are treated as glue
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Table 8.1. DacTOPplus dimensions in Synopsys® equivalent gates

CORE Equivalent Gates
NDS 99,801
NDS_RX 102,688
NDS_TX 102,802
DacTOP 430,356
BISTed RAM 163,694
DacTOPplus 2,048,814

BISTed
RAM

BISTed
RAM

DacTOP

NDS_RX NDS_TX

NDSNDS

DacTOP

NDS_RX NDS_TX

NDSNDS

DacTOP

NDS_RX NDS_TX

NDSNDS

DacTOP

NDS_RX NDS_TX

NDSNDS

 
 Figure 8.1. DacTOPplus schema

logic, and therefore directly controlled (or tested) by the TP. The HD2BIST structure
inserted in each DacTOP macro is therefore composed of (Figure 8.2):

• One Test Bus split into:

– One Test Control Bus 1-bit wide.
– One Test Data Bus. Since each module has 7 scan chains and the TDB has to

transmit the Scan Enable and the Reset signals, the TDB should be composed
of nine lines.

• Two Test Blocks (TBs). Each Test Block is able to implement three connection
modes:
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– Bypass mode, where the TDB is in bypass mode;
– Connect mode, where the TDB is connected to the scan chains and the scan

patterns can be delivered to the module;
– Glue mode, where the core wrapper is set to isolate the core and used trough

the TDB to apply test patterns to the glue logic placed at the core boundary.

• One Test Processor (TP) implementing three test programs PROG[1-3], used to
connect the NDS_RX, NDS_TX, and the two NDS macros respectively, to the Test
Data Bus. Each program sets a different target block in Connect mode and the
others in Bypass mode. The Test Processor implements three connection modes:

– Bypass mode where the upper TDB controlled by the TP is in bypass mode
(see chapter 5);

– Connect mode where the upper level TDB is connected with the lower one;
– Glue mode, where the TP creates a direct path from the outside to the scan

chain connecting the glue logic;

NDS_RXNDS_RX NDS_TXNDS_TX

NDSNDS NDSNDS

Test Bus

TBTB TBTB

TPTP

 
 

Figure 8.2. DacTOP HD2BIST schema
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Tables 8.2 and 8.3 report the area obtained synthesizing the DacTOP test case and
the HD2BIST architecture using the G11 LSI Logic® library.

Table 8.2. DacTOP area with wrapped modules

CORE Equivalent Gates
Glue Logic 199,602
Wrapped NDS_RX 112,049
Wrapped NDS_TX 110,976
DacTOP with wrappers 447,891

Table 8.3. HD2BISTed DacTOP area occupation

CORE Equivalent Gates
TB of NDS_RX 3,695
TB of NDS_TX 3,701
TP 6,145
HD2BISTed DacTOP 461,434

The area overhead of the HD2BIST structure w.r.t. the original DacTOP area is the
7.03%, whereas the overhead w.r.t. the DacTOP area including the wrappers is 2.97%.
We included the wrapped version of the DacTOPplus since we consider the wrappers a
test requirement independent from the HD2BIST structure.

8.3 DacTOPplus Test Structure

The test structure inserted in the DacTOPplus test case is composed of one HD2BIST
chain at the top level, and one HD2BIST chain for each DacTOP module. No modifications
are necessary to reuse the test architecture implemented in each DacTOP macro at the
top-level. The top level chain is built of the following blocks (Figure 8.3):

• One Test Bus split into:

– One Test Control Bus one line wide;
– One Test Data Bus 9 lines wide (each DacTOP module needs nine lines, whereas

the BISTed RAMs do not need any data line);

• One Test Block for each RAM;

• Four Test Processors, one for each DacTOP macro, as described in the previous
section;
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• One Top Level Test Processor with a IEEE 1149.1 interface. In the Test Processor
we implemented 13 different test programs, which can be executed in any desired
order:

– PROG[1]: it starts the BIST of the two RAMs, waits for the BIST to end, and
reads the test results;

– PROG[2-4]: they start respectively PROG[1-3] of the first DacTOP and they
wait for their end. They then connect the Scan In of the TAP interface with
the first DacTOP in order to scan out the test results;

– PROG[5-7]: the same as PROG[2-4] but with the second DacTOP module;
– PROG[8-10]: the same as PROG[2-4] but with the third DacTOP module;
– PROG[11-13]: the same as PROG[2-4] but with the fourth DacTOP module;

BISTed
RAM

TB6TB6

BISTed
RAM

TB5TB5

JTAGJTAG

TPTP

NDS_RXNDS_RX NDS_TXNDS_TX

NDSNDS NDSNDS

TBTB TBTB

TPTP33

NDS_RXNDS_RX NDS_TXNDS_TX

NDSNDS NDSNDS

TBTB TBTB

TPTP44

TPTP22

NDS_TXNDS_TX

NDSNDSNDSNDS

NDSNDS_RX_RX
TBTB TBTB

TPTP11

NDS_TXNDS_TX

NDSNDSNDSNDS

NDSNDS_RX_RX
TBTB TBTB

TAP

  
 Figure 8.3. DacTOPplus with HD2BIST

Table 8.4 reports the area obtained synthesizing the DacTOPplus using the G11 LSI
Logic® library.

The area overhead of the HD2BIST structure w.r.t. the original DacTOPplus area
is 6.61%, whereas the overhead w.r.t. the DacTOPplus area including the wrappers is
3.06%.

8.3.1 Running a test program

To show how it is possible to actually exploit the HD2BIST architecture to run the system
test, we detail three different test programs that target the BISTed RAMs, one DacTOP
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Table 8.4. Area result of DacTOPplus

CORE Equivalent Gates
HD2BISTed DacTOP 461,434
TB of RAM 2,956
TP_TAP 5,958
HD2BISTed DacTOPplus 2,184,997

NDS_RX module, and the glue logic. Each program can be run loading the corresponding
code into a dedicated JTAG register.

Figure 8.4 presents PROG[1] of the top-level DacTOP, which activates the test of the
two BISTed RAMs. The program activates the BIST procedures of the two BISTed RAMs
and then starts polling the two Test Blocks waiting for the end of the test. Test programs
allows a very flexible implementation of any test scheduling: PROG[1] executes the BIST
of the two memories in parallel, but, by simply exchanging instruction #3 and #4, it is
possible to test the two memories sequentially.

Program PROG[1]
{
Conf ALL,BYPASS /* Configure all the TP/TB in BYPASS
mode since the TDB is not used during BIST
phase */
Start TB5 /* Start the first RAM BIST by sending a
start primitive to TB1*/
Start TB6 /* Start the second RAM BIST */
Wait ALL /* Wait for the end of all the BIST.
This primitive is Implemented using a
polling mechanism */
Collect ALL /* Read the BIST results contained in the RAM
TBs and store them in The Top Level TP.
In case of fault the faulty Block can
be located using the external mode to
have Direct access to the TBs and BIST
controllers. */
}

Figure 8.4. Test program PROG[1] of the Top Level TP

The second example is PROG[2] of the top-level TP (Figure 8.5), which creates a path
on the TDB to directly connect the top-level TP to the NDS_RX module of the first
DacTOP. After properly configuring the top-level chain, the TDB of the first DacTOP
module is connected to the top-level TDB to allow the top-level TP to start the execution
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of PROG[1] in the first DacTOP (Figure 8.6). PROG[1] of the DacTOP macro, creates a
path from the scan chains of NDS_RX to the Test Data Bus lines. As soon as PROG[1] is
completed a path has been set from the top-level to the addressed block in the hierarchy,
and the test patterns can be applied using the scan signals.

Program PROG[2]
{
Conf ALL,BYPASS /* Configure all the TB/TP in BYPASS mode */
Conf TP1,Connect /* The TP of the first DacTOP macro is set
in Connect mode, to connect its TDBus to
the top level TDB */
Start TP1,PROG[1]/* Start the execution of PROG[1] of TP1 */
Wait TP1 /* Wait for the end of PROG[1] of TP1.
From this moment the NDS_RX block of the
first DactTop is accessible from the top
level.*/
}

Figure 8.5. Test program PROG[2] of the TLTP

Program PROG[2]
{
Conf ALL,BYPASS /* Configure all the TB/TP in BYPASS mode */
Conf TB1_1,Connect /* The first TB of the chain is set in
Connect mode, to connect the scan chains of
NDS_RX to the TDB */
}

Figure 8.6. Test program PROG[1] of the DacTOP macro

In the last example we detail PROG[4] of the top-level TP (Figure 8.7), which enable
the test of the first DacTOP glue logic (the two NDS macros) and interconnections. After
configuring the top-level chain, the TP of the first DacTOP macro is configured to directly
control the scan-chain connecting the glue-logic of the module. Moreover, PROG[3] of the
DacTOP macro (Figure 8.8) is executed to set all the wrappers of the macro in ExtTest
mode, so that the values scanned in their scan chains can be applied to the input of he
glue logic.
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Program PROG[4]
{
Conf ALL,BYPASS /* Configure all the TB/TP in BYPASS mode */
Conf TP1,glue /* TP1 is set in Glue mode, i.e., it is
configured to directly control the glue logic
scan chain. In particular, the first two lines
of the top-level TDB are connected to the Scan
In/Scan Out signals of the glue logic chain,
and the third line is connected to the first
line of the lower Test Data Bus to create
a scan path through the wrappers, necessary to
apply test patterns to the glue logic
boundaries */
Start TP1,PROG[3]/* Start the execution of PROG[3] of TP1 */
Wait TP1 /* Wait for the end of PROG[3] of TP1. From
this moment the patterns to test glue logic
can be applied.*/
}

Figure 8.7. Test program PROG[4] of the Top Level TP

Program PROG[3]
{
Conf ALL,Glue /* Configure all the TB in glue mode
allowing to apply test patterns trough
the core wrappers*/
}

Figure 8.8. Test program PROG[3] of the DacTOP macro
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Chapter 9

Conclusions

In this part of the thesis the problem of test and diagnosis of complex SoC designed using
embedded cores has been addressed. The proposed solution HD2BIST, is a complete
hierarchical framework to support the definition of the scheduling strategies and data
patterns delivering mechanisms of the embedded cores of a complex system. The main
goal of the HD2BIST architecture is to maximize and simplify the reuse of the built-in test
architectures giving the chip designer the highest flexibility in planning the overall SoC
test strategy. HD2BIST defines a TAM able to provide a direct “virtual” access to each
core of the system, and can be conceptually considered on a higher level w.r.t. the P1500
standard, whose main target is to make the test interface of each core independent from
the vendor. A complex case study has been presented to demonstrate the effectiveness of
the approach in terms of complexity and area overhead.
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Chapter 10

Introduction

SRAMs are nowadays widely used as embedded memories in a plenty of SoCs. As an
example, Mlti-port SRAMs are basic elements of telecommunications or multiprocessor
systems. They allow to speed-up the system, in particular when the memory has to serve
many concurrent requests. Today’s technologies allow the design and manufacturing of
memory chips up to 11 ports, and Multi-port RAM generators are commonly available in
many vendor libraries as LSI-Logic, Texas Instruments and ST Microelectronics.

Memory-BIST is today a pressing issue. The test engineer has to define test strategies
for complex SoCs including several multi-port SRAMs of different size (number of bits,
number of words), access protocol (asynchronous, synchronous), and timing. Apart from
the required design time, there are several issues to be solved, including minimizing BIST
area and routing overhead, selecting the proper number of BIST controllers, fulfilling power
budget constraints, supporting diagnostic capabilities and defining the best test algorithm
with respect to the target technology and application. Among the different types of
algorithms proposed to test random access memories (RAM), March Tests have proven to
be faster, simpler, regularly structured and linear in complexity [69]. March Tests are able
to cover a wide range of memory faults, but due to the technology advance, new types
of faults arise and should be tested. Different March Tests of variable complexity have
been proposed in literature, each optimally covering a different set of memory faults. All
of them have been manually generated, a task that requires a lot of time, expertise, that
does not always allow to obtain an optimal solution, and that sometimes does not succeed
in covering particularly complex memory faults. An automatic approach to generate
test algorithms to be used in memory-BIST architectures is a pressing issue in complex
SoC design and test. These new algorithms have to be always validated. Memory fault
simulation is therefore necessary to compute the Fault Coverage of a test sequence every
time a new defect is discovered and the corresponding fault model defined. Computing and
limiting the test application power consumption is also another important issue, especially
when the memory test is implemented as a BIST procedure.

An emerging trend in memory design is to have not only testable memory but also
repairable memories. The emerging field of Self-Repair Computing is expected to have a
major impact on deployable systems for space missions and defense applications, where
high reliability, availability, and serviceability are needed; but also on new commercial
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applications were high level of availability is a must.
In the following of this chapter, each of the proposed issues will be analyzed and a set

of solutions will be presented.
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Chapter 11

An introduction to memory Test

This chapter introduces the basic concepts and background on memory testing. It is a
short overview to help the reader understanding the following chapters.

11.1 The fault model

Memories are usually tested using a functional approach. The functional model of a simple
SRAM is made of the following units: (i) the memory cell array, (ii) the address decoder
and (iii) the read/write logic. Memory faults can be classified depending on their location.

11.1.1 Memory Cell Faults

Memory cell faults can be split in two categories: single cell faults and multiple cell faults.
Single cell faults are restricted to a single cell of the memory array and are classified as
follow:

• Stuck-at faults (SAF): the logic value of a cell is always fixed to a certain value. It
can be a stuck-at zero (SAF-0) if the fixed value is ‘0’ or stuck-at one (SAF-1) if the
fixed value is ‘1’;

• Transition faults (TF): a cell fails to perform a transition from ‘0’ to ‘1’ or vice versa.

In multiple cell faults the logic value of one or more cells is influenced by the logic value
of one or more others cells. The former is called the coupled cell(s) whereas the latter
is called the coupling cell(s). Coupling faults occur due to capacitive linkage of storage
cells. It should be noted that these faults are not bi-directional. Some of the commonly
occurring coupling faults are:

• Idempotent coupling faults (CFid): they occur when a transition in one cell forces
the logic value of the coupled cell to a fixed value;

• Inversion coupling fault (CFin): a transition in the coupling cell inverts the logic
value of the coupled cell.
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11.1.2 Address decoder fault

Faults in the decoder circuitry of a memory chip manifest as follows:

• The decoder may not access the addressed cell;

• The decoder accesses a non-addressed cell;

• Multiple cells may be accessed with the same address;

• A cell is accessed by multiple addresses.

It is always possible to map address faults into one or more memory cell array faults.

11.1.3 Read/Write logic faults

The R/W logic may have stuck at 1/0 faults that are mapped into the cell array. These
faults may arise when one or more of the I/O pins of the memory array are stuck-at or
stuck-open.

11.2 Memory test Algorithms
Among the different types of algorithms proposed to test random access memories (RAM),
March Tests have proven to be faster, simpler, regularly structured and linear in complexity
[69]. A March Test consists of a sequence of March Elements, each composed of a sequence
of basic operations to be performed on each cell of the memory, in either ascending (⇑) or
descending order (⇓), before proceeding to the next cell. The possible memory operations
are:

• w0: write the logic value ‘0’ in the target cell;

• w1: write the logic value ‘1’ in the target cell;

• r0 : read the content of the target cell and verify that it is equal to ‘0’;

• r1 : read the content of the target cell and verify that it is equal to ‘1’.

A march-element is usually represented by the sequence of operations in brackets. An
example of March Test able to detect SAF composed by three march element is {(⇑ w1)(⇓
r1w0)(⇓ r0)}.
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Memory BIST

Commercial tools are nowadays available for the automatic insertion of memory-BIST in
complex SoCs [52], [57]. Nevertheless, they are not able to efficiently deal with complex
situations where Multi-port SRAMs of different sizes (number of bits, number of words),
access protocol (asynchronous, synchronous), and timing coexist in the same design. This
paragraph proposes a new memory-BIST architecture characterized by a single BIST
Processor, in charge of testing all (or a subset of) the SRAMs of the SoC. It is based on a
µ-programmable architecture, executing elementary test primitives stored in a dedicated
memory and a set of Wrappers placed around each memory (Figure 12.1).

Each wrapper is composed of a set of Port-Wrappers (one per memory port) and a
Dispatcher. The Port-Wrapper contains the standard blocks to perform a memory-BIST
(i.e., an address generator, a pattern generator, and a comparator), and an interface block
designed to manage the communications between the SRAM and the BIST Processor, re-
gardless the memory access protocol. The Dispatcher is a simple Finite State Machine used
to serially collect the test primitives and to deliver them to the various Port-Wrappers. A
minimal set of communication signals allows the BIST Processor to execute and synchro-
nize the test algorithm of all the memories under test, whereas a scan chain connecting
all the Port-Wrappers allows full diagnosis capabilities.

The proposed schema presents several advantages. Among the others, it allows running
concurrently the BIST of a set of SRAMs with different number of ports, size, accessing
protocol and timing and it allows to freely select the set of memories to be tested, using
either ad-hoc-test primitives stored in the test program, or a dedicated scan chain to
properly set an ad-hoc status bit in each memory.

The use of a single BIST controller and a minimum set of communication signals allows
minimizing the BIST area overhead and the connectivity around each SRAMs whereas the
µ-programmable architecture of the BIST Processor provides the test engineer a flexible
and reusable block, that can be used to manage the BIST of any number of memories
regardless the used test algorithm.
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Figure 12.1. Basic memory-BIST Architecture

12.1 The BIST Processor

As introduced in the previous section, the proposed memory-BIST uses a single BIST
Processor to test all the memories of the system. To increase flexibility, it is implemented
as µ-programmable machine. The test algorithm (a March Algorithm [69][44]) is stored
in a dedicated µProgram-Memory and it is coded through a set of test primitives. The
µProgram-Memory can be either a ROM or an In-System Programmable module. In the
former case, the test program is fixed at design time, whereas in the latter one a custom
and appropriate test algorithm can be loaded into the memory at test time.

The BIST Processor reads from the µProgram-Memory one test primitive at a time,
forwards it to all the Wrappers of the SRAMs under test, and waits until its completion
in all the target memories.

When the test program is completed (i.e., all the test primitives have been applied),
the BIST Processor reads the test results from each RAM. If a fault is detected, the faulty
RAM is located resorting to a set of diagnostic facilities explained in the following sections.

The BIST processor and the µProgram-Memory architectures are optimized for the
characteristics of March Tests used in multi-ports memory test. The main characteristic
of these algorithms is the access to the ports of the memories using nested cycles:

{⇑A (⇑A−1
B=0 (⇑n

C=B+1 . . .))} (12.1)

where ⇑A−1
B=0⇑n

C=B+1 denotes a nested addressing sequence [59].
Table 12.1 summarizes the set of test primitives needed to implement such a March
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Algorithm.

Table 12.1. March Algorithm Test Primitives

Primitive Description
W0 Write pattern
W1 Write a not pattern
R0 Read and verify a pattern
R1 Read and verify a not(pattern)
Inc Increment the address generator and define the end of a March Element
Dec Decrement the address generator and define the end of a March Element
IncCond Conditionally increment the address generator
DecCond Conditionally decrement the address generator
Sub Increment the address generator
Add Decrement the address generator
Load Load a value in the address generator
Nme New March Element
NOP No Operation
NextBP Next Background Pattern
Conf Define the set of SRAM under test
End End of test

Each test-program step is coded in the µProgram-memory as a sequence of test prim-
itives, one for each memory port. As an example, let’s consider the following March
Algorithm used to test an 8-bit dual port SRAM (the convention for the operation is
(portA:portB)):

{
⇑ (w0 : w0);

M0

Downarrow(r0 : r0; w1 : w1);
M1

⇑ (r1 : r1);
M2

⇕ (wBP 0 : wBP 0, rBP 0 : rBP 0, . . . , wBP 7 : wBP 7, rBP 7 : rBP 7);
M3

⇕ (w0 : −);
M4

⇕n−1
v=0 (⇕v−1

a=0 (w1a : r0v , w0a : r0v , n : r0v ));
M5

⇕n−1
v=0 (⇕n−1

a=v+1 (w1a : r0v , w0a : r0v , n : r0v ));
M6

⇕ (w1 : −);
M7

⇕n−1
v=0 (⇕v−1

a=0 (w0a : r1v , w1a : r1v , n : r1v ));
M8

⇕n−1
v=0 (⇕n−1

a=v+1 (w0a : r1v , w1a : r1v , n : r1v ));
M9

}

(12.2)

The March elements M0-M3 realize the MATS algorithm [69] , properly expanded
as proposed in [68] to cover intra-word CFsts faults. The pattern used during the test
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(BP0-BP7), are taken from the set of Background Patterns in Table 12.2.

Table 12.2. 8 bits Background patterns BPj for CFsts

J Background Pattern
0 00000000
1 11111111
2 00001111
3 11110000
4 00110011
5 11001100
6 01010101
7 10101010

The March elements M4-M9 represent the March 2PF2,2 proposed in [44] to test
wCFi&wCFi. The algorithm can be coded using the set of primitives shown in Table 12.3.

An important issue to be faced when running concurrently the BIST of several mod-
ules is fulfilling power budget constraints. In fact, BIST typically results in a circuit
activation rate higher than the normal one [81], and an over-dissipation of power may
seriously damage the devices. Moreover, the variety of SRAMs that can be found in a
complex architecture may require different test algorithms. To address these two issues,
the proposed approach implements a very flexible scheduling mechanism. In particular, it
is possible to select the set of memories to be tested using either a special test primitive
in the µProgram-Memory, as part of the test algorithm, or setting a dedicated flag into
the memory Wrapper through a scan chain. Only the Wrappers of the selected memories
will execute the test primitives received from the BIST Processor. In this way, several test
algorithms may be stored in the µProgram-Memory and may be applied sequentially to
different sets of memories.

12.2 Wrapper Structure

The Wrapper placed around each memory has to execute the test primitives broadcasted
by the BIST Processor, regardless the memory access protocol. Moreover, the Wrapper is
the only element in the architecture taking care of the number of ports, the size and the
access protocol of the memory it is placed around (See Figure 12.2). It is composed of two
types of blocks: one Dispatcher to receive the test primitives from the BIST Processor
and distribute them to the ports of the memories and a Port-Wrapper for each RAM port.
The Port-wrapper generates the test patterns (address and data) and verifies the correct
behavior of the memory according to the command received from the Dispatcher. The
result of each primitive is signaled via an output line.

Two kinds of Port Wrappers are available: one for the first port of each memory (FPW,
First Port Wrapper) and one for the other ports (OPW, Others Port Wrapper). The main
difference between the two lays in the fact that each OPW receives as an input the address
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Figure 12.2. Wrapper architecture

value generated by the previous port wrapper.

12.2.1 Dispatcher

The dispatcher receives from the BIST Processor the test primitives for all the port wrap-
pers. The BIST Processor sends a test command per clock cycle to all dispatchers (the first
command is sent to the FPWs, the second one to the first OPWs, etc.). The dispatcher
saves all the commands in a temporary register. Since each wrapper has no information
about the size of the other wrappers, a run signal is sent after all the commands to start
the execution.

As an example, the execution of the (W0:R0) instruction for a dual port memory is
shown in Figure 12.3.

12.2.2 Port Wrapper

Figure 12.4 shows the internal structure of a FPW. The Address Generator (AG) is in
charge of generating the address where the test pattern, provided by the Background
Pattern Generator (BPG), has to be written or verified. Several BPGs are available to
target different fault type [68]. The correctness of the content of a memory cell is evaluated
through a simple Comparator.

Two Status Bits are used to set the memory in transparent or in test mode (the
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between the two lays in the fact that each OPW receives as an input the address value gener-
ated by the previous port wrapper. 

3.2.1. Dispatcher 

The dispatcher receives from the BIST Processor the test primitives for all the port wrap-
pers. The BIST Processor sends a test command per clock cycle to all the dispatcher (the first 
command is sent to the FPWs, the second one to the first OPWs,etc.). The dispatcher saves all 
the commands in a temporary register. Since each wrapper has no information about the oth-
ers wrappers’ size, a run signal is sent after all the commands to start the execution.  

 As an example, the execution of the (W0:R0) instruction for a dual port memory is shown 
in Figure 3. 
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Figure 3: Test Instruction execution diagram 

3.2.2. Port Wrapper  

Figure 4 shows the internal structure of a FPW. The Address Generator (AG) is in charge of 
generating the address where the test pattern, provided by the Background Pattern Generator 

(BPG), has to be written or verified. Several BPGs are available, to target different fault type 
[6]. The correctness of the content of a memory cell is evaluated through a simple Comparator. 

Figure 12.3. Test Instruction execution diagram

Mode_Status_Bit) and to store the test results at the end of the test algorithm (the
Result_Status_ Bit). The status bits of all Wrappers are connected by two scan chains,
respectively called NormTest_Scan_Chain and Results_Scan_Chain.

Finally, each FPW includes an Interface Block able to receive the test primitives from
the Dispatcher and a synchronization signal from the previous port wrapper. It produces
the output synchronization signals needed by the BIST Processor to schedule the next test
primitive to be executed. The output synchronization signal assumes different meaning
depending on the received test primitive (See Table 12.4).

The structure of the OPW is similar to the FPW. In order to execute the class of
March algorithm explained in section 12.1, this wrapper includes some additional blocks,
since it has to generate a subset of the entire addressing space, depending on the address
generated by the previous port wrapper.

12.2.3 Multiplexing

To minimize the routing overhead, the signals exchanged between the BIST Processor and
the memory Wrappers (command signals, synchronization signal and scan chain signals)
are multiplexed. In particular, these signals are multiplexed at the port-wrapper level. All
the information is routed using 6 signals only (4 command signals and 2 synchronization
signals).
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12.3 Diagnosis
When a fault is detected, the proposed approach allows collecting diagnostic information
concerning the location of the faulty SRAM, the port where the fault has been detected,
the address of the faulty cell and the detecting pattern. This information is stored into
the Result_Status_Bit, the Address Generator, and the Background Pattern Generator of
each Port-Wrapper and can be scanned-out via the Results_Scan_Chain. In particular,
depending on the result of the test (Result_Status_Bit), each Port-Wrapper configures its
portion of the Results_Scan_Chain in one of the following two ways (Figure 12.5):

• Result_Status_Bit=’1’ : the RAM is not faulty; only the Result_Status_Bit is
placed on the scan chain.

• Result_Status_Bit=’0’ : the RAM is faulty; the Result_Status_Bit is chained to
the content of the Address Generator and the Background Pattern Generator.

12.4 Further optimizations

12.4.1 Sharing Wrappers among SRAMs clusters

To further reduce the BIST area overhead, the designer can share a single Wrapper for a
cluster of identical SRAMs (same type, width, and addressing space).
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This optimization is made at the Port-Wrapper level. For each Port-Wrapper only
one Address Generator and one Background Pattern generator are needed. The only
difference with the previously described Port-Wrapper structure is that a shared Port-
Wrapper contains a pair of Status Bits and a comparator for each RAM. In this way,
when a fault is detected, the Result Status Bit of the faulty memory is set, the RAM is
disconnected, and the Wrapper continues the test of the remaining memories of the cluster.
Obviously, in this case, the status of the Address Generator and the BPG of the faulty
RAM are not preserved. To collect diagnostic information, the test must be re-executed
targeting the faulty RAM, only.

12.4.2 Using a Topological approach for complex coupling fault testing

The approach proposed in this paper is useful to describe March Algorithms for multi-
port RAMs with complexity of O(nm) where n is the number of cells and m the number of
ports. For practical applications, these algorithms result in very long test sequences. It is
possible, as proposed in [59], to optimize the address generator of each OPW to generate
the address for a Topological Approach. The approach consists in detecting all coupling
faults between adjacent cells only. Using this optimization the test complexity can be
reduced to O(n) without significant fault coverage reduction.

12.5 Case study
A case study has been used to evaluate the effectiveness of the proposed memory-BIST and
to gather experimental results. The circuit, named VC12AD, is a part of a telecommuni-
cation ASIC designed by Italtel SpA. The same circuit has also been used by both Italtel
SpA and Siemens ICN as a benchmark for the evaluation of commercial BIST Insertion
Tools.

The target circuit has been described in VHDL and synthesized using the G10 LSI-
Logic™ library, which provides a set of SRAMs of different sizes.

The VC12AD counts up to 860K Synopsys™ equivalent gates (excluding RAMs), plus
36 small-sized SRAMs, for a total of 14,704 bits (Figure 12.6).

The case study aims at evaluating the BIST architecture complexity when applied to
a set of SRAMs with very different characteristics and the area overhead after the BIST
insertion.
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12.5.1 Case Study Architecture

Figure 12.6 and Figure 12.7 show a conceptual view of the VC12AD organization and its
actual floor plan. The 36 SRAMs of the circuit are grouped in four distinct macro-areas
whose characteristics are listed below
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Figure 12.6. VC12AD memories organization

• C12A : it contains 7 RAMs1:

n. of instances Type Size(Number of words) x (bits per word)
2 tpa 21x8
2 spa* 21x26
1 dpa 21x25
1 spa 21x59
1 tpa 336x8

• C12D : it contains 6 RAMs:

1spa: single port asynchronous RAM; spa*: single port asynchronous RAM with 1 write enable for each
data bit; dpa: dual port asynchronous RAM (one port dedicated to write and one dedicated to read); tpa:
triple port asynchronous RAM (one port dedicated to write and two ports dedicated to read);
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Figure 12.7. VC12AD floorplan

n. of instances Type Size
1 dpa 32x8
1 tpa 42x8
2 spa 21x34
2 spa* 21x19

• PDH INT : it contains 2 RAMs:

n. of instances Type Size
1 spa 21x34
1 spa 21x51

• SYNDES : It consists of 21 identical blocks. Each of them contains one instance of
a qda32x9 (asynchronous quadruple port RAM with two ports dedicated to write
and two dedicated to read).

12.5.2 Case Study BISTArchitecture

The number of wrappers is minimized resorting, whenever possible, to clusters of SRAMs.
As a consequence:

• Within C12A, the 2 modules tpa21x8 and the 2 modules spa*21x26 are treated as
two clusters;
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• Within C12D, the 2 modules spa21x34 and the 2 modules spa* are treated as two
clusters

• Within SYNDES, the memories are organized as four clusters of 7, 7, 6, and 1
element, respectively.

The design of the BIST architecture has been strongly influenced by the actual floor
plan, where, for example, the 3 spa21x34 SRAMs (2 located inside C12D and 1 in
PDH_INT) are too far to be included in a single cluster.

The overall VC12AD structure after the BIST insertion is in Figure 12.8.
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Figure 8: VC12AD BIST Architecture Figure 12.8. VC12AD BIST Architecture

12.5.3 Case Study BIST Scheduling

Due to the different characteristics of the VC12AD SRAMs (read/write ports, read-only
ports, and write-only ports are present), it is not possible to adopt a unique March Algo-
rithm for the overall circuit. The BIST has been therefore organized in four sessions, each
one using an appropriate March algorithm:

• Session 1: All single port RAMs are tested concurrently;

• Session 2: All dual port RAMs are tested concurrently;

• Session 3: All triple port RAMs are tested concurrently;

61



12 – Memory BIST

• Session 4: All quadruple port RAMS are tested concurrently.

12.5.4 Experimental results

The area occupation of each memory and its Wrapper is in Table 12.5, whereas Figure 12.9
shows the contributions of the functional blocks of each Wrapper.
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Figure 9: Wrappers area 

Figure 12.9. Wrappers area

The total area overhead including the Wrappers and the BIST Processor is in Ta-
ble 12.5.

As shown in Table 12.5, the BIST processor and the µProgram-memory area overhead
is a fix contribution and it is not influenced by the number of SRAMs in the system.
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Table 12.3. March Algorithm Representation

March Element Primitive
Port A Port B

⇑ (w0 : w0) NME NME
INC INC
W0 W0

⇑ (r0 : r0, w1 : w1 NME NME
R0 R0
W1 W1
DEC DEC

⇑ (r1 : r1) NME NME
R1 R1
INC INC

⇕ (wBP 0 : wBP 0, rBP 0 : rBP 0, · · · , wBP 7 : wBP 7, rBP 7 : rBP 7) NME NME
W0 W0
R0 R0
W1 W1
R1 R1
NEXTBP NEXTBP
INC INC

⇕ (w : 0 : −) NME NOP
W0 NOP
INC NOP

⇕n−1
v=0 (⇕v−1

a=0 (w1a : r0v , w0a : r0v , n : r0v )) NME NME
W1 R0
W0 R0
NOP R0
NOP INCCOND
INC NOP

⇕n−1
v=0 (⇕n−1

a=v+1 (w0a : r1v , w1a : r1v , n : r1v )) NME NOP
NOP LOAD
NOP ADD
NOP NME
W0 R1
W1 R1
NOP R1
NOP INC
INC COND

. . .
END END
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Table 12.4. Meanings of the Output Synchronization signal

Received Prim-
itive

Output syn-
chronization
signal meaning

Rationale

Write / Read End of
Instruction
(EOIN)

Set to ‘1’when the instruction is finished and the
input synchronization signal is equal to ‘1’. In this
way the BIST Processor receives the logic-AND of
the output signals generated by the memories under
test and the input EOIN signal of the BIST
Processor switches to ‘1’ only when all the EOIN
signals of the memories under test have been set to
‘1’, i.e., all the memory Wrappers has completed the
execution of the instruction

Inc/Dec
CondInc/CondDec

End of Address
(EOAD)

Set to ‘1’ when the whole addressing space has been
visited by the AG

NextBP End of Back-
ground Pattern
(EOBP)

Set to ‘1’ when all the background patterns have been
used

End Results Set to the logic AND among the result start bit and
the synchronization signal of the preceding port wrap-
per

During Diagnosis ScanResult Set to the results status bits in order to form the Re-
sults_Scan_Chain

During schedul-
ing configuration

ScanSched Set to the mode status bits in order to form the
NormTest_Scan_Chain
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Table 12.5. Memory Wrapper overhead

RAM Wrapper Area
2*[tpa21x8] 4,574
2*[spa*21x26] 2,165
dpa21x25 4,470
spa21x59 3,148
tpa336x8 5,169
dpa32x8 2,829
tpa42x8 4,509
2*[spa21x34] 2,870
2*[spa*21x19] 1,925
spa21x34 2,162
spa21x51 2,989
7*[qpa32x9] 8,543
7*[qpa32x9] 8,543
6*[qpa32x9] 8,084
qpa32x9 5,924

Table 12.6. Total area overhead

Glue Logic area 862,347
Total RAM area 380,503
Total Wrapper area 68,177
BIST processor area 5,431
µProgram memory area 4,459
Total 1,320,917
Total area overhead 6,28%
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Chapter 13

Automatic Test Generation

As mentioned in the Introduction, automatic generation of memory test algorithms is a
pressing issue in testing complex SoC. This chapter presents a methodology to automat-
ically generate March Tests. A general representation is used to model known memory
faults, and to possibly add new user-defined faults. With respect to previously proposed
approaches, which exhaustively generate all the possible March Tests and then select the
optimal one, the proposed approach allows generating the optimal March Tests in a very
low computation time without exhaustive searches. In particular, the automatic March
Test generation process is performed in the following steps: (i) the target memory fault
list is modeled into a set of Finite State Machines (FSMs) representing the faulty memory
behaviors; (ii) a weighted graph is generated, which represent all the possible test patterns
able to cover each target fault model; (iii) an optimal test sequence is generated finding an
optimal path connecting all the nodes of the graph; (iv) from the defined optimal sequence,
a minimal March Test is derived applying a set of linear complexity transformations.

13.1 State of the Art
The problem of the automatic generation of March Tests has been already faced and
several publications can be found in literature. [74, 72, 73] present an algorithm for
March Test Generation exploiting a transition tree. The transition tree is generated in
such a way that each path from the root node to a leaf represents a March Test. The
March Test able to address the selected fault list is searched into the tree. The main
problem of this approach is that the transition tree is unbounded. In order to limit the
size of the tree, an upper bound on the number of nodes in a path is used. This can
cause a high number of reiterations to find a solution making the algorithm inefficient and
time consuming. Furthermore, when dealing with undetectable faults, the computation
time becomes infinite. In addition, this method performs an exhaustive search to find
the shortest path on the transition tree. As the size of the transition tree increases, the
algorithm becomes more and more inefficient.

In [80] the authors present a branch and bound method that limits the search process
to the parts of the tree where a solution exists and therefore a solution is found much
faster and more efficiently.
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An approach able to cover additional faults is presented in [60]. It mainly targets the
diagnosis of memory faults and uses a fault description that allows modeling all possible
single cell and two cells faults that occur in memory arrays. This approach still uses
exhaustive search and is affected by the same problems of [74, 72, 73].

13.2 Memory Model

The problem of the automatic generation of March Tests requires, first of all, the definition
of a formal model able to represent the behavior of both the good and the faulty memory.
In [29] and [28] the problem has been solved proposing a memory behavioral model based
on Finite State Machines (FSM). An n one-bit cells memory can be represented using a
deterministic Mealy Automata:

M = (Q, X, Y, δ, λ) (13.1)

where:

• Q = {(0,1, −)n} is the set of the possible memory states where the symbol represents
the value of a non initialized memory cell;

• X = {ri, wi
0, wi

1|0 ≤ i ≤ n − 1} ∪ {T}. This alphabet is composed of all the possible
memory operations. In particular:

– ri corresponds to a read operation performed on the cell i;
– wi

d corresponds to a write operation of the value performed on the cell i;
– T corresponds to a wait operation for a defined period of time. This additional

element is needed to deal with Data Retention Faults [74].

• Y = {0,1, −} is the output alphabet;

• δ = Q × X → Q is the state transition function;

• λ = Q × X → Y is the output function.

Using the proposed model, a fault free two cells RAM is represented by the FSM shown
in Figure 13.1, conventionally named M0 in the reminder of this section. In M0, the letters
i and j are used to identify the first and the second cell, respectively.

The proposed model is not manageable when used to represent large memories; nev-
ertheless, the model of a two-cell memory is general enough to model memory faults.
Therefore, the behavior of a faulty memory is modeled using a deterministic Mealy Au-
tomata:

Mi = (Qi, X, Yi, δi, λi) (13.2)

where:
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Figure 10: M0 FSM representing a fault free RAM 

Figure 13.1. M0 FSM representing a fault free RAM

• Qi ⊆ Q is the set of states;

• Yi ⊆ Y is the output alphabet;

• δi = Qi × X → Qi is the state transition function

• λi = Qi × X → Yi is the output function.

The set of states used to represent a faulty memory is a subset of the whole set Q
(See Equation 13.2) since only the cells involved in the fault should be represented. This
consideration makes possible the use of the proposed model for very large memories as
well. Moreover, the given representation for faulty memories is general enough to be used
to model most of the known faults.

Considering as an example the Idempotent Coupling Fault ⟨↑ ,0⟩ [70] (where the no-
tation ⟨S, F ⟩ denotes a fault involving two cells; S describes the condition of the first cell
to sensitize the fault in the second cell denoted by F), we obtain the FSM shown in Fig-
ure 13.2. From now on, we will assume that the address of cell i is lower then the address
of cell j.

As previously mentioned, since the fault involves two cells only, the cardinality of Qi
is four. The difference between the M0 and M1 machine is in the δ function, as pointed
out by the two-bolded edges shown in Figure 13.2.

Looking at the M1 machine it is possible to split each fault into a set of Basic Fault
Effect (BFE) [60][80]. A BFE can be described by a Mi FSM with a δi function that differs

69



13 – Automatic Test Generation

60 

00

01

10

11

(w0
i, w0

j, T) / -
w1

i / -

w1
j / -

w1
i / -

w0
j / -

w0
i / -

w1
j / -w0

j / -
w0

i / -

(ri, rj) / 0
(w1

i, w0
j, T) / -

rj / 0
ri / 1

(w1
i, w1

j, T) / -
(ri, rj) / 1

(w0
i, w1

j, T) / -
rj / 1
ri / 0

 
Figure 11: M1: 0,­ Idempotent Coupling Fault Representation 
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Figure 12: BFE model for 0,­ Coupling Fault 

Each BFE can be covered generating a Test Pattern (TP) defined as a triplet: 
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Figure 13.2. M1: ⟨↑ ,0⟩ Idempotent Coupling Fault Representation

from δ0 by one transition only, or with a λi function that differs from λ0 by one output
value only. Considering the example proposed in Figure 13.2, it is possible to identify two
different BFEs modeled by the two FSM shown in Figure 13.3. For the sake of simplicity
only the relevant edges are represented.
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Figure 13.3. BFE model for ⟨↑ ,0⟩ Coupling Fault

Each BFE can be covered generating a Test Pattern (TP) defined as a triplet:

TP = (I, E, O) (13.3)
where:

• I = {(0,1)k | 0 ≤ k ≤ n − 1} is the initialization state;
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• E = {e | e ∈ X} is the operation needed to excite the BFE;

• O = {rk
d | d ∈ (0,1), 0 ≤ k ≤ n − 1} is the operation needed to observe the fault

effect. The notation ri
d means “read the content of the cell i and verify that its value

is equal to d”.

For the proposed example the two BFEs can be tested by the following two TPs:

• TP1 = (01, wi
1, rj

1))

• TP2 = (10, wj
1, ri

1))

13.3 March Test Generation Algorithm

In this section the generation algorithm will be presented. It exploits the possibility
of automatically generating March Tests without exhaustive searches. The algorithm,
starting from an unconstrained list of target BFEs, generates a non-redundant march test
to cover all of them.

In a first phase, the algorithm analyzes the set of test patterns needed to cover each
target BFE, and generates a weighted graph named Test Pattern Graph (TPG). Each TPG
node is associated to a TP. The graph is strongly connected, i.e., each node is connected
to all the others.

The weight of each edge represents the number of memory operations needed to reach
the initialization state of the target node (ST), starting from the observation state of the
source node (SS). In a formal way it can be defined as [45]:

weigh = hamming − distance(SS , ST ) (13.4)

Lets consider as an example the FaultList = {⟨↑ ,1⟩⟨↑ ,0⟩} [70]. The faults are modeled
by four different BFEs, respectively tested by the following set of TPs:

• TP1 = (01, wi
1, rj

1))

• TP2 = (10, wj
1, ri

1))

• TP3 = (00, wi
1, rj

0))

• TP4 = (00, wj
1, ri

0))

The proposed set of test patterns generates the TPG shown in Figure 13.4.
Starting from the TPG the algorithm extracts a so-called Global Test Sequence (GTS).

A GTS is a set of memory operations able to detect the target BFEs. Different GTSs can
be obtained by simply concatenating all the different TPs in multiple ways, i.e., to make
different visits of the TPG. Since the TPG is strongly connected, the total number of
possible GTS can be computed as follow:

#GTS = V ! (13.5)
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Figure 13: TPG for { }0,,1, ­­  
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where V is the number of nodes in the TPG.
In a fault-list containing a large amount of BFEs, the space of all the possible GTS

becomes unmanageable. It is therefore necessary to identify a particular subset of GTSs
able to generate non-redundant March Tests. A possible solution is to consider TPG
visits with minimum weight only. Thanks to the function used to weight the TPG edges,
these visits generate GTSs with minimum number of test operation (see Equation 13.4).
Considering two nodes connected by a 0 weight edge, the test sequences obtained by their
concatenation does not need the initialization part of the second TP.

The use of GTSs with minimum number of operations seems a good choice since there
is a strict correlation between the GTS length and the March test complexity.

The generation of minimum length GTSs is a typical instance of the Asymmetric
Traveling Salesman Problem (ATSP) [40]. The ATSP is probably the most well known
member of the wider field of the combinatorial optimization problems. In a general instance
of the ATSP, one is given V nodes and a matrix di,j storing the distance or cost function
to go from node i to node j . A “tour” consists of a list of V nodes, (tour[i]) where each
node appears once and only once. The ATSP tries to find the tour with the minimum
length, where the length is defined to be the sum of the lengths along each step of the
tour:

length =
V −1∑
k=0

dtour[k],tour[k+1] (13.6)

and tour[V] is identified with tour[0] to make it periodic.
The main difference with respect to our problem is that the solution of the ATSP is a
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cycle whereas a GTS is identified by a non-cyclic path (i.e., the first and last node do not
need to be the same). To solve the problem two dummy nodes used to close the cycle are
introduced. Despite the ATSP is a NP-hard problem, several algorithms able to give an
exact solution with very low computation time in problems with low number of nodes (50
nodes), can be found in literature [30].

The GTSs obtained by solving the ATSP problem are able to test all the addressed
BFE but are not yet March Tests. A March Test is a particular Test Sequence respecting a
set of conditions [69]. It is therefore necessary to apply a set of modifications to transform
a GTS into an equivalent March Test.

Before applying the modifications, it is possible to perform a further optimization. The
use of GTSs starting with a “00” or “11” initialization state allows obtaining March Tests
of the lowest possible complexity. This optimization, which allows reaching a minimal
solution considering all the minimum length GTSs, can be expressed as an additional
constraint in the ATSP:

length =
V −1∑
k=0

dtour[k],tour[k+1] (13.7)

s.t.
TPtour[0] = (00,11, . . . , . . .) (13.8)

Looking at the example of Figure 13.4, a possible ATSP solution is the following GTS:

GTS = wi
0, wj

0, wi
1, rj

0, wj
1, ri

1, wi
0, wj

0, wj
1, ri

0, wi
1, rj

1 (13.9)

The process of March Test generation from a GTS passes through three different steps:

• GTS reordering

• GTS minimization

• March Test Generation

Each step corresponds to a different set of Rewrite Rules [36]. Since a GTS can be
considered as a string where each symbol is a memory operation, the rewrite rules can be
effectively represented resorting to the Regular Expression formalism [3]. All the possible
memory operations are defined by the X alphabet defined in Equation 13.2.

For the sake of simplicity we define two subsets of instructions:

• w = {wi
d, wj

d} is the set of possible memory write operations;

• r = {ri
d, rj

d} is the set of possible memory read operations.

The regular expression formalism is extended introducing three new operators:

• End Symbol Operator: ŝ marks the symbols as not further modifiable (terminal
symbol);

• Red Operator: [S]R marks the symbols with the red color;
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• Blue Operator: [S]B marks the symbols with the blue color.

The use of colored symbols is useful during the March Test generation phase to identify
the boundaries of the different March Elements. The next subsections summarize the
rewrite rules used during the three different phases.

13.3.1 GTS Reordering

The reordering phase reorders the GTS memory instructions taking into account the con-
straints needed to obtain a March Test [69]. In this phase each modification is defined
by a Pattern and by a Rewrite Rule (see Table 13.1). The pattern is a regular expression
that identifies all the strings on which the rewrite rule must be applied. The reordering
process stops when all the GTS symbols are modified into terminal ones.

Table 13.1. Reordering Rewrite Rules

Pattern Rewrite Rule

(ŵ|r̂)∗wi
dwj

d(w|r)∗ wi
dwj

d
M1−−→ ŵi

dŵj
d

(ŵ|r̂)∗wi
dwi

d(w|r)∗ wi
dwi

d
M2−−→ ŵi

dwi
d

(ŵ|r̂)∗wi
dwj

d
(w|r)∗ wi

dwj

d

M3−−→ ŵi
dwj

d

(ŵ|r̂)∗r̂i
d (ŵi

d|ŵj
d|ŵj

d
)∗  

s1

(ŵj
d|ŵj

d
)∗  

s2

ri
d(w|r)∗ r̂i

dS1S2ri
d

M4−−→ r̂i
d[r̂i

d]R[S1S2]B

Applying the reordering rules on the GTS in Equation 13.9 it is possible to obtain the
following reordered sequence:

GTSR = ŵi
0, ŵj

0, [r̂i
0]R, [ŵi

1]B, ŵj
1, r̂i

1, ŵi
0, ŵj

0, [r̂j
0]R, [ŵj

1]B, ŵi
1, r̂j

1 (13.10)

13.3.2 GTS minimization

The minimization phase deletes redundant subsequences in order to reduce the sequence
to the minimum set of absolutely necessary operations only. The rewrite rules applied
in this phase consider the GTS starting from left to right (see Table 13.2). This phase
is repeated until no further minimization can be applied. In this context the $ symbol
is used to denote the end of the GTS and the color of the symbols does not affect the
application of the rules.

Applying the minimization rewrite rules on the reordered GTSR of Equation 13.10 it
is possible to obtain the following minimal sequence:

GTSM = ŵi
0, [r̂i

0]R, [ŵi
1]B, r̂i

1, ŵi
0, [r̂j

0]R, [ŵj
1]B, r̂j

1 (13.11)
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Table 13.2. Reordering Rewrite Rules

Rewrite Rules

ŵi
dŵj

d
R1−−→ ŵi

d r̂i
dr̂j

d
R1−−→ r̂i

d

ŵi
dŵi

d
R1−−→ ŵi

d r̂i
dr̂i

d
R1−−→ r̂i

d

r̂i
dŵi

d
ŵi

dr̂j
dŵj

d
ŵj

d
R3−−→ r̂i

dŵi
d
ŵi

dr̂j
d

r̂i
dŵi

d
ŵi

dr̂j
dŵj

d
$ R3bis−−−→ r̂i

dŵi
d
ŵi

dr̂j
d$

13.3.3 March Test Generation

This last phase uses the minimized GTS to generate a March Test. The input sequences
are analyzed from left to right and the March Elements are generated according to the
following rules:

• Rule 1: subsequences identified by (ŵi
d|r̂j

d)(ŵj
d|r̂j

d) regular expression close a March
Element and open a new one;

• Rule 2: subsequences identified by [r̂]R([ŵ]B∗) regular expression are joined in a
single March Element despite they are executed on i or on j. The last blue marked
operation closes the March Element.

The addressing order is generated using the following rules:

• Rule 3: March Elements starting with colored operation performed on i cells have
addressing order ⇑;

• Rule 4: March Elements starting with colored operation performed on j cells have
addressing order ⇓;

• Rule 5: March Elements starting with non-colored operations have addressing order
⇕.

Applying the generation rules on the GTSM of Equation 13.11 it is possible to obtain
the following 8n non-redundant March Test:

M =⇑ w0 ⇑ r0w1 ⇑ r1w0 ⇓ r0w1 ⇓ r1 (13.12)

13.4 BFEs equivalence
In some cases it is possible to obtain a BFE modeling a fault already covered by another
BFE. A typical case is the Inversion Coupling Fault ⟨↑, ↕⟩ [69]. It can be split into two
BFEs tested by the following TPs:

• TP1 = (00, wi
1, rj

0)
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• TP2 = (01, wi
1, rj

1)

Although two TPs are generated, only one of them is necessary to cover the fault.
Therefore, the ATSP problem must be modified to take into account only the necessary
test patterns. This goal can be achieved grouping the TPG nodes into equivalence classes
(Ci).

In case of a TPG with k equivalence classes, using the |Ci| notation to indicate the
cardinality of the Ci class, it is possible to generate E = ∏k−1

i=0 |Ci| different TPG. On each
one of the obtained graphs the ATSP problem must be solved identifying E possible GTS.
The minimum length GTS is considered as the best one.

13.4.1 Experimental Results

This section reports some experimental results obtained applying the proposed algorithm
to automatically generate March Tests to cover different sets of faults.

The algorithm has been implemented in about 5000 lines of C code. The ATSP has
been solved using a Fortran code able to give exact solutions to the problem [30]. For each
March Test, it is reported the computation time needed for the generation process, the
complexity, and the complexity of an equivalent March Test found in literature. All the
experiments have been performed on a Compaq Presario 17XL370, PIII 650Mhz based
Laptop with 128 MB of RAM. The source code has been compiled with the gcc C compiler
and the g77 Fortran compiler (http://www.gnu.org).

Table 13.3 shows the March tests obtained to cover some combinations of Stuck-At
Faults (SAF), Transition Faults (TF), Address Decoder Faults (ADF), and Inversion and
Idempotent Coupling Faults (CFin and CFid).

Table 13.3. Experimental Results

Fault List Generated March Tests CPU Equivalent Known
and their complexity Time March Test

SAF {⇑ w1 ⇓ r1w0 ⇓ r0} (4n) 0.49 MATS (4n)
SAF,ADF {⇑ w1 ⇑ r1w0 ⇓ r0w1} (5n) 0.53 MATS+ (5n)
SAF,TF,ADF {⇑ w0 ⇑ r0w1 ⇓ r1w1 ⇑ r0} (6n) 0.61 MATS++ (6n)
SAF,TF,ADF, CFin {⇑ w0 ⇓ w1 ⇓ r1w0 ⇑ r0w1} (6n) 0.69 MarchX (6n)
SAF,TF,ADF, CFin, {⇑ w1 ⇑ r1w0 ⇑ r0w1 ⇓ r1w0} 0.85 MarchC- (10n)
CFid ⇓ r0w1 ⇓ r1} (10n)
CFin {⇑ w0 ⇑ R0w1w0 ⇓ r0} (5n) 0.57 Not found
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Chapter 14

Memory Test Algorithms
Verification

Due to the complexity of both fault models and memory architectures, manual analysis
[69] of the memory fault coverage is not anymore possible. In [35], a memory simulator
(Memory Animation Package Plus, MAP+) has been proposed. This tool, developed
at the Delft University of Technology, has been employed as a simulation tool for the
evaluation of new and known test algorithms in presence of different faults. Although
very interesting especially from an academic point of view, this tool does not allow a very
detailed fault simulation.

In this section the architecture of a new flexible memory fault simulator, designed
to address all the most critical issues in today’s memories test generation and validation
will be presented. Besides the fault coverage computation, already addressed by other
similar tools, [79] the proposed simulator supports the test engineer in optimizing the test
algorithm and in addressing power consumption constraints. The tool is in fact able to
compute the power consumption generated by the test input sequence, and to suggest a
modification of the test algorithm in case its application does not fulfill a user-defined
power consumption constraint.

14.1 The Fault Simulator Architecture

Figure 14.1 presents the simulator overall architecture. The Object Oriented Memory
Simulator reads two main input files containing the memory functional and electrical
models and the input test sequences, and simulates the execution of the input test sequence
storing, for each memory cell, the logical and electrical temporal evolution. After the
simulation, a Test Analysis module reads the target Fault Model files and computes their
coverage w.r.t. the input test sequence. It generates two output files storing a detailed
test report, and, whenever possible, an optimized input test sequence able to provide the
same results of the original one.

The memory model is split in two parts:

• a functional model, represented as a Finite State Machine (see section 13.2);
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• an electrical and physical model, storing all the operating, technological, and topo-
logical characteristics of the memory (see section 14.2);

The Fault Model files, formalized as collections of Basic Fault Effects (see section 13.2),
describe the faulty behavior that the input test sequence is designed to detect.

The Test Sequence files describe the sequence of operations applied to test the memory
array. Using a proprietary language, it is possible to describe complex test algorithms as
well as simple sequences of input patterns.

The Test Report file contains detailed information about:

• the Fault Coverage for each fault class and, when necessary, diagnostic information
about the cells where the fault is not covered;

• the total power consumption caused by the application of the test sequences;

• if the computed power consumption is higher than the allowed limit, if possible, the
simulator provides the suggested maximum clock frequency that allows to meet the
power requirements;
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Finally, the Test Analysis module outputs an optimized test sequence, where redundant
elementary operations not affecting the final fault coverage are removed.

14.2 The Electrical and Physical Model
Besides the memory behavior, the user can specify a set of electrical parameters that
constitute the memory electrical and physical model. In particular, it is possible to specify:

1. the typical operating conditions (e.g., supply voltage, operating temperature, etc.):
this part is included in the simulator for future developments, to take into account
not only the functional behavior of the memory but also its operating conditions;

2. the actual row/column topological organization of the memory array: this informa-
tion is necessary to compute the coverage of faults involving adjacent cells;

3. the timing and electrical characteristics (e.g., access time, operating and stand-by
current, etc.): these characteristics allow the simulator to compute different param-
eters like the average power dissipation caused by the application of a given test
algorithm.

14.3 Input Test Sequences
The memory input test sequences are defined using a language able to describe complex
test algorithms as well as simple sequences of input patterns.

In particular, the language constructs have been defined to help the description of:

• Simple Read or Write operations scheduled at a given time;

• March elements: set of instructions repeated on all the cells of the memory array
[69];

• Burst cycles: a single instruction to be executed on consecutive memory cells;

• Neighborhood cells: a set of neighborhood cells on which executing a given set of
operations;

• Transparent Tests: write operations where the written value is a function of the
memory cell content;

• Background patterns: the set of patterns to be used to test word-oriented memories;

• C-like statements: for loops, if-then-else constructs, and evaluation of simple Boolean
expressions that allow the definition of complex test algorithms;

• Changes in the operating conditions: operations that, for example, simulate a change
of the operating temperature of the memory. These operations have been introduced
to allow, in the future, the modeling of fault depending on the memory operating
conditions..
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Figure 14.2 presents an example of part of the Walking 1/0 algorithm described using
the proposed language.
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Figure 15: Example of test algorithm including Neighborhood cells and a cycle statement 

// Walking 1/0 (first part) 

walking10:: any ( w 0 ); 

for ( i = 0; i < words_in_array; i = i + 1 ) 

{ 

   w [i] 1; 

 neigh array any [i] ( r 0 ); 

 r [i] 1; 

 w[i] 0; 

} 

 

Figure 14.2. Example of test algorithm including Neighborhood cells and a cycle statement

14.4 Simulator Engine

The proposed memory fault simulator has been designed using a layered object oriented
approach. The models describing the memory, the faults, and the test input sequences are
classes with a predefined set of methods and properties.

The simulator engine is designed using an onion skin-like approach (Figure 14.3), where
each layer targets a different functionality of the simulation: access to the memory array,
the electrical behavior, the temporal behavior, and the I/O behavior. This approach allows
designing an efficient, modular, and very easily upgradeable tool. The only constraint of
each layer is its interface; any layer internal behavior or structure can be redesigned,
modified, or upgraded without redesigning the whole simulator.
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The Graphical User Interface (GUI) of the simulator is completely web-enabled. This
feature allows to have a user-platform-independent tool, which is always up-to-date with
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the most recent version, and does not require any installation process. The user does not
require a high computational power on its machine, and can easily access the tool from
any internet connection point. This characteristic is particularly useful in an academic
environment, where students always outnumber the available workstations.

The I/O Layer implements the possible I/O operations on the memory. The allowed
operations, with their temporal constraints, are read from the memory model. In this
way, the simulator is also able to check if all the operations executed by the test algorithm
are legal for the target memory chip. The I/O Layer is also in charge of reading and
applying the input test sequence defined in one of the input files. In order to optimize
the simulation time, the simulator computes from the Fault Model files and the input
test files, the smallest number of memory cells that guarantee the ability of computing the
final result for the real memory size. The Electrical Layer computes and logs the temporal
evolution of the electrical and physical characteristics of each cell during the application
of the input sequence. At each instant, the state of a cell is defined as the voltage level
of the cell plus a timeout, after which the voltage of the cell has to be re-evaluated even
if the value of the cell is not changed by an external operation. A transition to another
state is triggered by an event. Possible events are: a read or write operation on a cell, the
expiration of the timeout of the cell, or the variation of the memory operating conditions.
The user can define the behavior of the memory cells when a transition is triggered. For
example, it is possible to define the function that computes the voltage level of a cell upon
the expiration of a timeout. This layer can be made transparent (and therefore disabled)
if the electrical evolution of the memory is not required by the user.

Finally, the Memory Array Layer is used to log the logical evolution of the memory
content only. This layer considers the memory as a matrix of words as defined by the
memory model.

14.4.1 Test Analysis Module

For each Fault Model, the Test Analysis Module considers each set of Test Patterns defining
a BFE, and verifies, using a pattern matching algorithm, if it has been executed during
the simulation of the input test sequence. If all the Test Patterns belonging to a Fault
Model have been executed on a cell, then, for that cell, the fault is covered. Besides fault
coverage, the Test Analysis module also computes the total power consumption caused by
the application of the input test sequences.

An interesting feature of the Test Analysis Module is its ability to suggest optimizations
to the input test algorithm. In particular, it is able to:

• check the non-redundancy of each elementary operation in the input test sequence,
and suggest a possible optimization;

• suggest a possible modification of the test sequence in order to fulfill the power
consumption constraints.

To check the non-redundancy of each elementary operation, the Test Analysis Mod-
ule builds a Coverage Matrix (CF) where each row represents the elementary operations
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whereas the columns the target fault models. A matrix cell is set to the value one if the
corresponding elementary operation contributes to the coverage of the fault represented by
the column. An input sequence is able to detect all the target faults if for each CF column
exist at least one row containing a cell set to one. The test sequence is non-redundant if
all the matrix rows are needed to cover the target faults. If this is not the case, the module
outputs a new test sequence trimmed of all the redundant elementary operations. This
is a typical instance of the Set Covering problem applied on the Coverage Matrix. The
Set Covering finds the minimum number of rows needed to cover all the columns. This
approach has been successfully applied on many known March Tests, where redundant
blocks have never been found.

Finally, to address power consumption, the Test Analysis Module is able to compute
either the maximum clock frequency that allows to meet the power constraints, or, if the
clock is not modifiable, it inserts delay instructions in the input test sequence.
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Chapter 15

Self Repair

The last point to address is the possibility of having not only testable RAM but also to
have repair capability. The emerging field of Self-Repair Computing is expected to have a
major impact on deployable systems for space missions and defense applications that need
to survive and perform at optimal functionality during long duration in unknown, harsh
and/or changing environments. Examples of such applications include outer solar system
exploration, missions to comets and planets with severe environmental conditions, long
lasting space-borne surveillance platforms, defensive counter-measures, long-term nuclear
waste and other hazardous environment monitoring and control. Self-Repair Computing
is also expected to greatly enrich the area of commercial applications in which high avail-
ability and serviceability is needed; such applications range from biomedical devices to
automotive applications.

The process of repairing a RAM is divided into several steps. In a first phase, a test
algorithm is executed on the memory array. If a fault is detected, it is necessary to locate
it (diagnosis) and to allocate redundant memory space to replace the faulty cell. When
these operations are built-in into the RAM architecture, the steps are named respectively
BIST (Built-In Self-Test), BISD (Built-In Self-Diagnosis), BIRA (Built-In Redundancy-
Allocation) and BISR (Built-In Self-Repair).

There are different possible solutions to insert redundant space into a memory array:

• Row/column only: The memory contains spare rows or columns. When a fault has
to be repaired, the row/column containing the fault is replaced with one of the
spare ones. This solution allows the manufacturer to easily repair faulty cells, but it
does not allow optimal use of redundant space since repairing a single fault requires
allocating a whole spare row or column.

• Row-column: The memory contains both spare rows and columns. Each fault can
be repaired either by using a spare row or a spare column. When multiple faults
are detected, this technique allows a more efficiently repair by selecting the best
combination of spare rows/columns.

• Cell-only: Instead of repairing an entire row or column, when a fault is detected,
only the address of the faulty cell is re-mapped on to a new cell, thus allowing an
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optimal allocation of the redundant space.

This paragraph proposes an innovative architecture for SRAMs, characterized by BISR
capabilities based on Cell-only redundant space allocation at the user level. The memory
is not electrically repaired, but spare cells replace faulty ones using an on-line address
re-mapping scheme. The repair process is transparent to the user, and is independent
from the memory physical implementation.

In the proposed approach, the self-repair architecture is coupled with an ad-hoc defined
on-line transparent BIST algorithm. The on-line BIST is therefore executed concurrently
with the memory normal behavior, and is able to detect the appearance of a wide range
of faults, including coupling faults usually not detectable during end-of-production (EOP)
or power-up tests. These faults have in fact a higher probability to appear in very high-
density RAMs only when the circuit reaches high temperatures. Since this condition can
not be guaranteed except after a long period of usage, EOP or power-up tests usually do
not provide a good coverage.

The mentioned on-line BIST algorithm allows also implementing a very efficient Built-
In Self-Diagnosis and Redundancy-Allocation strategy.

To assess the quality of the proposed architecture, a simulation-based fault injection
environment has been set up to emulate the appearance of different faults in the memory
module. Experiments were performed to validate the detection capability of the BIST
circuitry first, and then the functionality of the BISR logic.

15.1 State of the art

So far, most of the research activities on self repair techniques focused on FPGAs [54, 51,
78, 64], and [26]. Built-in Self-Test and Built-in Self-Repair schemes have been proposed as
potential solutions to the problem of repairing memories mainly at the manufacturer level
(i.e., at the end-of-production) [63, 66, 31, 34, 43, 46, 25]. The scheme proposed in [63]
actually limits self-repair only to field failures. To remove manufacturing defects, it em-
ploys the traditional row-column repair approach, based on an on-chip micro-programmed
BIST scheme and self-repair logic block, with a spare memory block. In [66] the authors
employ an elaborate on-chip RISC processor to collect and analyze full failure bitmaps to
figure out a repair solution. Besides the complexity of the RISC processor, the method
also requires that a large enough fault-free block of the RAM under test must be avail-
able to store the failure bitmap. In [31], ultra-large capacity single-chip memories are
considered. The proposed architecture uses a hierarchical organization to achieve optimal
conditions for memory access time. [34, 43, 46, 25] analyze algorithms that optimize the
repair solution for a given bit failure pattern in a redundant RAM.

All these solutions are typically adopted for stand-alone memories, where it is possi-
ble (at the end of production) to carry out a hardware repairing through anti-fuse/laser
techniques. Nevertheless, in today’s high integrated circuits that embed large memories,
the very low if not null physical accessibility to the cores makes hardware repairing not
anymore feasible or cost effective.
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Recently, new techniques have been introduced to perform a soft memory repair of
memories through self-reconfiguration of the addressing space [4, 48, 50]. In the first two
approaches, a Built-In Self-Test and Repair architecture is inserted into the RAM. The
self-test is started at the system power up and the information on the faulty cells is stored
and used thereinafter to reconfigure the memory. In the self-repair circuit, two registers
are inserted for each redundant row or column. The first register stores the address of
a faulty row (or column) whereas the second register stores the addresses of the row (or
column) that replace the faulty one. When a faulty cell is addressed from the external,
the circuit reacts changing the address value with the correct one. This solution is very
expensive in terms of routing overhead. In fact, for each redundant row or column, a set
of signals (for addressing the memory) is routed from the BISR circuits to the memory. In
[48], to simplify the spare allocation procedure a column-only repair strategy is considered.

15.2 The conceptual architecture

The conceptual idea underlying the proposed approach is to couple an on-line transparent
BIST algorithm with a functional self-repair architecture in the same Built-In-Self-Test-
and-Repair (BISTAR) logic.

Functional self-repair means that a faulty cell must be replaced by a spare one using
an address re-mapping scheme. The BIST part of the logic executes an on-line test, based
on a linear algorithm, to detect single stuck-at, transition, coupling, and address faults.

A conceptual view of the BISTAR architecture is presented in Figure 15.1. The actual
implementation of the BISTAR logic aiming at minimizing critical paths is presented in
section 15.3. The self-repair logic is based on a Content Addressable Memory (CAM) used
to re-map the address of the faulty cells. The BISTAR controller is in charge of executing
the test algorithm and controlling the repair procedures.
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Figure 17: BISTAR conceptual architecture 

In order to make the approach more general, and to allow the user to fulfill power budget 

constraints and to perform diagnosis from the outside, the core has two possible functional 

modes, selected via the input signal BISTAR/SR_only: 

• SR_only: the BIST algorithm is disabled, but the self-repair capability is active. 

Despite new faults are not detected, the re-mapping addressing mechanism is still 

active for previously detected faulty cells. 

• BISTAR: both self-test and self-repair capabilities are enabled. The BISTAR control-

ler continuously executes the test algorithm and possibly repairs faulty cells. 

The self-repair capability is exploited during the self-test of the memory array in order to 

guarantee the transparency from the user point of view. The proposed methodology mainly 

includes three phases executed sequentially: isolation, test execution, and repairing or restoring. 

Each cell cx under test is isolated by functionally replacing it with one of the available spare 

cells si: the content of cx is copied into si and its address is stored into the CAM. During the 

test, any external operation on cx is actually performed on si. The cell cx is then tested on-line 

executing the algorithm described in Section 6.2.2. Not to degrade the memory performance, 

the test execution is temporary suspended to serve any external memory access. At the test 

completion, if no fault has been detected, the content of cx is restored and its address erased 

from the CAM; otherwise, si is thereinafter used as a repair cell for cx.  

Figure 15.1. BISTAR conceptual architecture
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In order to make the approach more general, and to allow the user to fulfill power
budget constraints and to perform diagnosis from the outside, the core has two possible
functional modes, selected via the input signal BISTAR/SR_only:

• SR_only: the BIST algorithm is disabled, but the self-repair capability is active.
Despite new faults are not detected, the re-mapping addressing mechanism is still
active for previously detected faulty cells.

• BISTAR: both self-test and self-repair capabilities are enabled. The BISTAR con-
troller continuously executes the test algorithm and possibly repairs faulty cells.

The self-repair capability is exploited during the self-test of the memory array in order
to guarantee the transparency from the user point of view. The proposed methodology
mainly includes three phases executed sequentially: isolation, test execution, and repairing
or restoring. Each cell cx under test is isolated by functionally replacing it with one of
the available spare cells si: the content of cx is copied into si and its address is stored
into the CAM. During the test, any external operation on cx is actually performed on si.
The cell cx is then tested on-line executing the algorithm described in subsection 15.2.2.
To prevent the degradation of the memory performance, the test execution is temporary
suspended to serve any external memory access. At the test completion, if no fault has
been detected, the content of cx is restored and its address erased from the CAM; otherwise,
si is thereinafter used as a repair cell for cx.

15.2.1 Memory Built In Self Repairing

The proposed BISR strategy aims at keeping constant the memory storing capability seen
by the user. Faulty cells are functionally replaced by spare ones via a dynamic on-the-fly
reconfiguration of the memory addressing space.

From an external user point of view, the memory has a nominal addressing space of
N cells, of m-bits each. The actual memory module, instead, has an effective storage
capacitance of N +K cells, K being the number of spare cells added for self-repairing.

To optimize the allocation of the redundant memory space, the approach is based on a
cell-only repair strategy. Therefore, when a fault is detected in a cell, instead of repairing
an entire row or column, only the faulty cell is re-mapped on a spare one.

Address re-mapping is achieved by a K -lines Content Addressable Memory (CAM),
each line li corresponding to a spare cell si. In particular, the line li, 0 ≤ i ≤ K, of
the CAM stores the address of a faulty cell cj, 0 ≤ j ≤ K + N . In this way cell cj is
functionally replaced by the spare cell si. This solution allows reducing the area and the
routing overhead. Instead of using an additional register into the CAM in which to store
the address of the redundant cell (as proposed in [4] and [48]) the association between the
line position and the redundant cell is hardwired. Note that the repairable memory array
space includes all the N+K cells of the memory, thus allowing us to repair spare cells as
well.

Whenever a cell cx of the memory is accessed, its address is first looked up in the
CAM. Two cases can occur. On one hand, if cx has been previously detected faulty (or
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is currently a cell under test), its address has been stored into the CAM. In such a case,
when accessed, the CAM reacts with a hit and outputs the address of the replace cell si,
and a proper mux routes it to the memory array. Any operation on the faulty cell cx is
thus performed on its replace cell si. On the other hand, if a spare cell does not currently
replace the target cell x, its address, not being stored in the CAM, is directly transferred
to the memory array.

15.2.2 Memory Built In Self Testing

The proposed On-line self-test logic implements a custom transparent memory test algo-
rithm, which does not therefore affect the memory content.

To achieve high dependability, the memory has to be repaired guaranteeing very low
fault latency. Moreover, a significant variety of faults need to be targeted. A custom test
algorithm has thus been adopted, optimized to best exploit the knowledge of the memory
layout. The algorithm has linear complexity and addresses faults both occurring inside a
memory cell and involving pairs of physically adjacent cells. The assumption of knowing
the memory layout does not limit the applicability of the method, since foundries usually
provide details about the internal memory structure, and tools are available to extract
this information (e.g., FlexStream by LSI Logic [53]). Anyhow, if this is not feasible, it
is always possible to implement a quadratic algorithm targeting the same faults without
requiring such an internal knowledge.

As shown in Figure 15.2, the memory is tiled by a group of non-overlapping neigh-
borhoods. As far as the cardinality of the neighborhood set is concerned, the Type-2
neighborhood choice of [69] has been done. In the sequel, cx and nj (0 ≤ j ≤ 7) will
denote the base cell and the 8 neighborhood cells, respectively.
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Figure 18: Memory layout 

The implemented test algorithm targets the following faults: 

• Stuck-at faults on the base cell; 

• Transition faults on the base cell; 

• Intra-word coupling faults (CFs) on the base cell for word oriented RAMs; 

Figure 15.2. Memory layout
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The implemented test algorithm targets the following faults:

• Stuck-at faults on the base cell;

• Transition faults on the base cell;

• Intra-word coupling faults (CFs) on the base cell for word oriented RAMs;

• Inter-word coupling faults between the base cell and its 8 neighborhoods.

• In particular, for both Intra- and Inter-word coupling faults, idempotent CFs (CFid)
and inversion CFs (CFin) are covered [69].

The detection of Intra-word CFs is accomplished resorting to the Walking 1/0 inter-
mixed complement Data Background Sequence proposed in [71].

To detect Inter-word coupling faults, the following test is executed on each pair of
adjacent cells cx, nj:

{
wD(cx), wD(nj), rD(cx), wnotD(nj), rd(cx).wd(nj), rD(cx), wnotD,

(cx), wDnj , rnotD(cx), wnotD(nj), rnotD(cx), wD(nj), rnotD(cx)
}

(15.1)

where:

• r and w represent read and write operations, respectively;

• D and notD represent any background pattern and its complement, respectively.

The read/write operation on the base cell of both a value D and its complement notD
covers stuck-at faults, whereas the transition fault on the base cell cx are covered by the
sequence:

{wD(cx), r/w(n1), rD(cx), r/w(n1), wnotD(cx), r/w(n1), rnotD(cx)},

{wD(cx), r/w(n2), rD(cx)}
(15.2)

To minimize the test time, Intra-word and Inter-word testing are properly interleaved.
In fact, for any pair of adjacent cells cx, nj, a different background pattern is used. When-
ever the number of needed patterns and the number of neighborhoods differ, the back-
ground patterns or the test of neighborhood pairs are repeated accordingly, to fill up the
gap.

The adopted algorithm does not specifically target Address decoder faults. Neverthe-
less, the following address faults are covered:

• cx is not addressable because there is no link between the address decoder and the
enable signal of the cell;
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• cx is not addressable, and address(cx) accesses nj;

• cx is not addressed by address(cx), and both nj and cx are reached by address(nj);

• cx is addressed by address(cx), but both nj and cx are reached by address(nj).

According to FlexStream tool, the memory is considered organized by columns: cells
that are adjacent inside a column have consecutive address into the memory. The func-
tional address of the neighborhoods nj can be easily computed based on the address of cx,
as follows:

{address(nj)|0 ≤ j ≤ 7 =

⎧⎪⎪⎨⎪⎪⎩
address(cx) ± #Rows±, j ∈ {0,2,4,6}
addres(cx) ± 1, j ∈ 1,5
address(cx) ± #Rows, j ∈ {3,7}

(15.3)

To reduce the complexity of the BIST controller, the memory is conceptually considered
as a toroid, thus assuming the most left-hand and the most right-hand columns being
adjacent as well as the top and the bottom rows. In such a way the test length is slightly
increased (coupling faults with a very low occurrence probability are tested), but the
controller size is significantly reduced.

The proposed algorithm has a complexity of (8*14) N = 112 N, being N the num-
ber of memory cells, and 14 the number of memory accesses performed on each pair of
neighborhood cells.

During testing, the cell under test cx and one of its neighborhood cells nj are isolated by
replacing them with two spare ones: their original content is copied into the spare cells and
the CAM content updated for address re-mapping. The test algorithm is then executed
on the pair cx, nj. If no faults are detected, the original content of nj is restored and its
re-mapping address in the CAM removed. Then, the next neighborhood cell is considered.
If the test is successful for all the eight pairs cx, nj, then cx is restored and the next cell of
the memory is set under test. Otherwise, if cx is found faulty, the test is repeated on the
same pair of cells to distinguish between permanent and transient faults. If the repeated
test fails as well, cx is considered as a permanent faulty cell and its functional replacement
by the spare cell is not removed. In this way, cx is no longer accessible, and the memory
functionally repaired.

15.3 Actual Implementation
To minimize the address critical path of Figure 15.1, the CAM structure has been imple-
mented using a register array and a proper encoding logic, thus allowing obtaining the
actual implementation of Figure 15.3. There is no a-priori constraint about the type of
CAM one can use. Using a non-volatile memory would keep the addressing space recon-
figuration status when the system is powered-down. The combinational logic has been
therefore synthesized fixing as a constraint the minimum propagation delay. The only
performance degradation introduced w.r.t. the original memory protocol is a constant
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increase of the set up time of the memory corresponding to the time required to propagate
the address.

Three output signals (Faulty_Data, Stop_Reparing, and Repaired) are provided to
further increase the dependability properties of the core:

• Faulty_Data is asserted to point out that the data read by the user are potentially
corrupted. After a permanent repair, the signal is asserted whenever the user read
the content of a spare cell without having written it previously. In such a case, in
fact, the content of the cell can be faulty. The signal is reset by the first writing
operation on the replacing cell.

• Stop_Reparing is asserted whenever no additional spare cells are available to execute
the test. Thereinafter the SR_only functional mode (see section 15.1) is entered.

• Repaired is asserted whenever the addressed cell has been previously found faulty
and replaced by a spare one. The signal can be helpful, for instance, for diagnosis
purposes. To perform the diagnosis of the memory the user can:

– force the module to enter the SR_only mode;

– perform a read operation on any cell of the module;

– for each address, check whether the Repaired is asserted or not. If asserted,
the target cell is faulty.
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Figure 19: Minimization of the address critical path 

6.4. BISTAR validation 

To validate the proposed BISTAR architecture, it is necessary to demonstrate that faults 
appearing into the memory are detected by the BIST circuitry, and that the BISR logic ade-
quately reconfigures the memory address space. The adopted methodology consists in the 
following three steps: 

1. One or more faults are injected into both the memory cells and addressing logic; 
2. An interval time is waited, until the BISTAR architecture localizes and repairs the fault; 
3. The memory is exercised to verify its correct behavior after the repairing process. 

To emulate a faulty memory, an ad-hoc memory wrapper has been designed able to inter-
cept data and address flows coming in and out of the memory, and to modify them according 
to a predefined fault model. The proposed approach is extremely flexible, since the wrapper 
functionality is customizable to each specific experiment, defining, at simulation time, the 
type and the number of faults to be injected into the memory. 

The Fault Injector is described in VHDL as a set of modular blocks, each allowing the in-
sertion of a particular fault.  

To verify the correct memory behavior after each fault injection and the consequent repair 
process, a MATS+ March Test algorithm [1] is performed.  

Figure 15.3. Minimization of the address critical path
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15.4 BISTAR validation

To validate the proposed BISTAR architecture, it is necessary to demonstrate that faults
appearing into the memory are detected by the BIST circuitry, and that the BISR logic
adequately reconfigures the memory address space. The adopted methodology consists in
the following three steps:

1. One or more faults are injected into both the memory cells and addressing logic;

2. An interval time is waited, until the BISTAR architecture localizes and repairs the
fault;

3. The memory is exercised to verify its correct behavior after the repairing process.

To emulate a faulty memory, an ad-hoc memory wrapper has been designed able
to intercept data and address flows coming in and out of the memory, and to modify
them according to a predefined fault model. The proposed approach is extremely flexible,
since the wrapper functionality is customizable to each specific experiment, defining, at
simulation time, the type and the number of faults to be injected into the memory.

The Fault Injector is described in VHDL as a set of modular blocks, each allowing the
insertion of a particular fault.

To verify the correct memory behavior after each fault injection and the consequent
repair process, a MATS+ March Test algorithm [69] is performed.

15.5 Experimental results

The experimental results presented in this section have been gathered on several implemen-
tations of various-sized BISTAR architectures built around a static RAM m10p111hab,
included in the LSI LogicTM G10 library. In particular, to deeply analyze the impact
in terms of area overhead, all the possible combinations of the following cores have been
synthesized by SynopsysTM using the above-mentioned G10 library:

• 8, 16, and 32 bits word;

• 1k, 2k, 4k and 8k words;

• 16, 32 and 64 spare cells.

15.5.1 Area overhead

Table 15.1 collects the synthesis results concerning the area overhead, expressed as per-
centage of the area added to achieve BISR and BIST functionality’s w.r.t. the area of
the original memory module. Spare cells are considered as part of the BISR logic and
therefore contribute to the area overhead.
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Table 15.1. Percentage of Area overhead introduced by the BISTAR Architecture

Spare Cells
Number of Bits word Words 16 32 64
8-bits word 1K 36.52% 68.45% 134.26%

2K 22.81% 42.82% 83.98%
4K 13.28% 24.98% 48.99%
8K 7.47% 13.94% 27.34%

16-bits word 1K 22.47% 41.08% 79.48%
2K 14.25% 26.14% 50.62%
4K 8.38% 15.43% 29.90%
8K 4.86% 8.89% 17.24%

32-bits word 1K 12.85% 22.74% 43.06%
2K 8.39% 14.93% 28.32%
4K 4.66% 8.32% 15.82%
8K 2.62% 4.66% 8.87%

To provide the designer with a quick (although approximate) estimation of the area
overhead, let’s consider a memory of N words, K spare cells and D bits word. The
percentage of area overhead introduced by the BISR and BIST circuitry is:

AreaOverhead% =
(

AreaBISRandBIST
AreaRAM

· 100
)

% ≈
≈

(
Areaspare+AreaCAM +AreaBIST AR+Arearouting

AreaRAM
· 100

)
%

(15.4)

where: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
AreaRAM = O(N · D)
Areaspare = O(K · D)
AreaCAM = O(K · log2N)
AreaBIST AR = O(log2N)(assumingN > D)

(15.5)

Taking into account Equation 15.4, the expression Equation 15.5 can be reduced to:

AreaOverhead% =
{(

D + c · log2N

D · N

)
· K · 100

}
% (15.6)

For a given memory, the term in rounded parenthesis is a constant, N and D being
fixed. As expected, Equation 15.6 states that the area overhead is proportional to the
number of spare cells K. The constant parameter c in Equation 15.5 strongly depends on
the target synthesis library. When dealing with the LSI Logic G10 library it has been
experimentally proved to be about 22.
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15.5.2 BISR Logic Fault Coverage

In order to evaluate the repair capabilities of the BISR logic the following experiment
consisting in three steps has been setup:

1. One fault is injected in the BISR logic using the Sunrise tool;

2. An interval time is waited, to allow the BISR architecture to localize the fault and
consequently reconfigure the memory:

3. The memory is tested using a March test in order to verify its correct behavior after
the reconfiguration.

Although, the RAM core has not been explicitly designed to cover faults located in
the BISR logic, the module was able to repair the 92.7% of the faults inserted in the BISR
Controller and the 89.16% of the faults inserted in the remaining part of the BISR logic
(Table 15.2).

Table 15.2. BISR Logic Fault Coverage

Module Total repaired
BISR Controller 972 92.7%
BISR Logic (CAM, etc.) 2224 89.16%
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Chapter 16

Conclusions

In this part of the thesis the problem of massive use of memories in complex SoCs has been
analyzed. Four major problems have been addressed: (i) memory-BIST, (ii) Automatic
Test Generation, (iii) Test Verification, (iv) Automatic Repair. For each of the above
mentioned problems a possible solution has been proposed giving experimental results to
demonstrate the effectiveness of the solutions.
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