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 In [1] we find that there are two definitions of the Fermat numbers. We have a less common definition

giving a Fermat number as Fn=2
n+1 , which is obtained by setting x=1 in a Fermat polynomial of x,

and the commonly encounter definition Fn=2
2n+1 , which is a subset of the previous assembly of

numbers. Here we will consider numbers Fn=2
n+1  and - as we have recently proposed in [2] for q-

integers and Mersenne numbers - investigate the set of them to find its generalized sum which defines

the operation of the group.

Let us remember that a group is a set A having an operation • which is combining the elements of A.

That is, the operation combines any two elements  a,b  to form another element of the group denoted

a•b.   To  qualify  (A,•)  as  a  group,  the  set  and  operation  must  satisfy  the  following  requirements.

Closure: For all a,b in A, the result of the operation a•b is also in A. Associativity: For all a,b and c in

A, it holds (a•b)•c = a•(b•c). Identity element: An element e exists in A, such that for all elements a in

A, it is e•a = a•e = a. Inverse element: For each a in A, there exists an element b in A such that a•b =

b•a = e, where e is the identity (the notation is inherited from the multiplicative operation). A further

requirement, is the commutativity: For all  a,b in  A,  a•b  = b•a.  In this case, the group is an Abelian

group. For an Abelian group, one may choose to denote the  operation by + , the  identity element

becomes the  neutral element and the inverse element the  opposite element. In this case, the group is

called an additive group. 



 The generalized sum for the Fermat numbers Fn=2
n+1  is:

Fm⊕Fn=2−Fm−Fn+Fm Fn=(1−Fm)+(1−Fn)+FmFn (1)

To have (1), let us evaluate: 

Fm+n=2
m+n+1=Fm⊕Fn=2−Fm−Fn+Fm Fn=2−(2m+1)−(2n+1)+(2m+1)(2n+1)

2m+n+1=2−2m−2n−2+2m2n+2n+2m+1

This gives also the closure of the group.

We can provide a recurrence relation as: Fn+1=2
n+1+1=Fn⊕F1

From (1),  we can see that the neutral element is not 0. We have to use as a neutral element the integer

2, which is F0=2
0+1=2 and then an element of the group. We have:

Fn⊕F0=2−Fn−F0+FnF0=Fn

The opposite element  is defined by  Fn⊕Opposite(Fn)=2 . We have:

Opposite(Fn)=
Fn
Fn−1

=1+2−n=F−n (2)

Then, to have a group we need to add numbers (2) to the set of the Fermat numbers.

Therefore, we consider 2 as the neutral element , and the opposite element as given by (2).

Let us consider three Fermat numbers Fn , Fm , F l ; to have a group we need the associativity of the

generalized  sum,  so  that (Fm⊕Fn)⊕F l=Fm⊕(Fn⊕F l) .  Let  us  call x=Fn , y=Fm , z=F l  and

evaluate:

(x⊕ y )⊕z=2−(x⊕ y )−z+(x⊕ y )z=2−2+x+ y−xy−z+2 z−xz− yz+xyz

(x⊕ y )⊕z=x+ y+ z−xy−xz− yz+xyz (3)

And:

x⊕( y⊕z)=2−x−( y⊕z)+x ( y⊕z )=2−x−(2− y−z+ yz)+ x(2− y−z+ yz)

x⊕( y⊕z)=x+ y+z−xy−xz− yz+ xyz (4)

From (3) and (4), we have the associativity. The commutativity is evident.



We have already considered the generalized sum (1) in a recent work [3].

In  [3],  we  consider  some  functions G(x) ,  having  inverses  so  that G−1(G(x))=x ,  which  are

generators of group law  [4-6]:

Φ(x , y)=G(G−1(x)+G−1( y ))

The group law is giving the generalized sum of the group x⊕ y=G(G−1(x )+G−1( y)) .

In [3] we considered the following generator and inverse:  

    G(x)=e−2 x(e2x+1)        G
−1(x)=ln( 1

√x−1
)  (5)

and investigate a possible group from them. The group law Φ(x , y) gives the generalized sum:

 x⊕ y=G(G−1(x )+G−1( y))=G( ln( 1

√x−1
)+ ln( 1

√ y−1
))=G( ln( 1

√x−1
1

√ y−1
))=G( ln 1

Z
)

G(ln 1
Z

)=e−2 lnZ (e2 lnZ+1)=( x−1)( y−1)( 1
(x−1)( y−1)

+1)

x⊕ y=2−x− y+ xy=(1−x)+(1− y)+xy (6)

And (6) is the generalized sum (1) proposed for the Fermat numbers. 

Let us also note that, if we use (5), we need  x  >1. And this is a condition satisfied by the Fermat

numbers and their opposites (2).
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