## POLITECNICO DI TORINO

Repository ISTITUZIONALE

## The Group Of The Fermat Numbers

Original
The Group Of The Fermat Numbers / Sparavigna, Amelia Carolina. - ELETTRONICO. - (2018). [10.5281/zenodo.1252422]

## Availability:

This version is available at: 11583/2708600 since: 2018-05-25T08:04:01Z
Publisher:
Zenodo

Published
DOI:10.5281/zenodo. 1252422

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
(Article begins on next page)

# The group of the Fermat Numbers 

Amelia Carolina Sparavigna<br>Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy


#### Abstract

In this work we are discussing the group that we can obtain if we consider the Fermat numbers with a generalized sum.


Keywords: generalized sum, groups, Abelian groups, transcendental functions, logarithmic and exponential functions, Fermat numbers.

Turin, 24 May 2018. DOI: 10.5281/zenodo. 1252422

In [1] we find that there are two definitions of the Fermat numbers. We have a less common definition giving a Fermat number as $F_{n}=2^{n}+1$, which is obtained by setting $x=1$ in a Fermat polynomial of $x$, and the commonly encounter definition $F_{n}=2^{2^{n}}+1$, which is a subset of the previous assembly of numbers. Here we will consider numbers $F_{n}=2^{n}+1$ and - as we have recently proposed in [2] for qintegers and Mersenne numbers - investigate the set of them to find its generalized sum which defines the operation of the group.

Let us remember that a group is a set $A$ having an operation $\cdot$ which is combining the elements of $A$. That is, the operation combines any two elements $a, b$ to form another element of the group denoted $a \bullet b$. To qualify $(A, \bullet)$ as a group, the set and operation must satisfy the following requirements. Closure: For all $a, b$ in $A$, the result of the operation $a \cdot b$ is also in $A$. Associativity: For all $a, b$ and $c$ in $A$, it holds $(a \cdot b) \cdot c=a \cdot(b \cdot c)$. Identity element: An element $e$ exists in $A$, such that for all elements $a$ in $A$, it is $e \cdot a=a \bullet e=a$. Inverse element: For each $a$ in $A$, there exists an element $b$ in $A$ such that $a \bullet b=$ $b \cdot a=e$, where $e$ is the identity (the notation is inherited from the multiplicative operation). A further requirement, is the commutativity: For all $a, b$ in $A, a \cdot b=b \cdot a$. In this case, the group is an Abelian group. For an Abelian group, one may choose to denote the operation by + , the identity element becomes the neutral element and the inverse element the opposite element. In this case, the group is called an additive group.

The generalized sum for the Fermat numbers $F_{n}=2^{n}+1$ is:

$$
\begin{equation*}
F_{m} \oplus F_{n}=2-F_{m}-F_{n}+F_{m} F_{n}=\left(1-F_{m}\right)+\left(1-F_{n}\right)+F_{m} F_{n} \tag{1}
\end{equation*}
$$

To have (1), let us evaluate:

$$
\begin{gathered}
F_{m+n}=2^{m+n}+1=F_{m} \oplus F_{n}=2-F_{m}-F_{n}+F_{m} F_{n}=2-\left(2^{m}+1\right)-\left(2^{n}+1\right)+\left(2^{m}+1\right)\left(2^{n}+1\right) \\
2^{m+n}+1=2-2^{m}-2^{n}-2+2^{m} 2^{n}+2^{n}+2^{m}+1
\end{gathered}
$$

This gives also the closure of the group.
We can provide a recurrence relation as: $F_{n+1}=2^{n+1}+1=F_{n} \oplus F_{1}$

From (1), we can see that the neutral element is not 0 . We have to use as a neutral element the integer 2, which is $F_{0}=2^{0}+1=2$ and then an element of the group. We have:

$$
F_{n} \oplus F_{0}=2-F_{n}-F_{0}+F_{n} F_{0}=F_{n}
$$

The opposite element is defined by $F_{n} \oplus \operatorname{Opposite}\left(F_{n}\right)=2$. We have:

$$
\begin{equation*}
\text { Opposite }\left(F_{n}\right)=\frac{F_{n}}{F_{n}-1}=1+2^{-n}=F_{-n} \tag{2}
\end{equation*}
$$

Then, to have a group we need to add numbers (2) to the set of the Fermat numbers. Therefore, we consider 2 as the neutral element, and the opposite element as given by (2).
Let us consider three Fermat numbers $F_{n}, F_{m}, F_{l}$; to have a group we need the associativity of the generalized sum, so that $\left(F_{m} \oplus F_{n}\right) \oplus F_{l}=F_{m} \oplus\left(F_{n} \oplus F_{l}\right)$. Let us call $x=F_{n}, y=F_{m}, z=F_{l}$ and evaluate:

$$
\begin{align*}
&(x \oplus y) \oplus z=2-(x \oplus y)-z+(x \oplus y) z=2-2+x+y-x y-z+2 z-x z-y z+x y z \\
&(x \oplus y) \oplus z=x+y+z-x y-x z-y z+x y z \tag{3}
\end{align*}
$$

And:

$$
\begin{gather*}
x \oplus(y \oplus z)=2-x-(y \oplus z)+x(y \oplus z)=2-x-(2-y-z+y z)+x(2-y-z+y z) \\
x \oplus(y \oplus z)=x+y+z-x y-x z-y z+x y z \tag{4}
\end{gather*}
$$

From (3) and (4), we have the associativity. The commutativity is evident.

We have already considered the generalized sum (1) in a recent work [3]. In [3], we consider some functions $G(x)$, having inverses so that $G^{-1}(G(x))=x$, which are generators of group law [4-6]:

$$
\Phi(x, y)=G\left(G^{-1}(x)+G^{-1}(y)\right)
$$

The group law is giving the generalized sum of the group $\quad x \oplus y=G\left(G^{-1}(x)+G^{-1}(y)\right)$.
In [3] we considered the following generator and inverse:

$$
\begin{equation*}
G(x)=\mathrm{e}^{-2 x}\left(\mathrm{e}^{2 x}+1\right) \quad G^{-1}(x)=\ln \left(\frac{1}{\sqrt{x-1}}\right) \tag{5}
\end{equation*}
$$

and investigate a possible group from them. The group law $\Phi(x, y)$ gives the generalized sum:

$$
\begin{gather*}
x \oplus y=G\left(G^{-1}(x)+G^{-1}(y)\right)=G\left(\ln \left(\frac{1}{\sqrt{x-1}}\right)+\ln \left(\frac{1}{\sqrt{y-1}}\right)\right)=G\left(\ln \left(\frac{1}{\sqrt{x-1}} \frac{1}{\sqrt{y-1}}\right)\right)=G\left(\ln \frac{1}{Z}\right) \\
G\left(\ln \frac{1}{Z}\right)=\mathrm{e}^{-2 \ln Z}\left(e^{2 \ln Z}+1\right)=(x-1)(y-1)\left(\frac{1}{(x-1)(y-1)}+1\right) \\
x \oplus y=2-x-y+x y=(1-x)+(1-y)+x y \tag{6}
\end{gather*}
$$

And (6) is the generalized sum (1) proposed for the Fermat numbers.

Let us also note that, if we use (5), we need $x>1$. And this is a condition satisfied by the Fermat numbers and their opposites (2).

## References

1. Weisstein, Eric W. "Fermat Number." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/FermatNumber.html
2. Sparavigna, A. C. (2018). The q-integers and the Mersenne numbers. Zenodo. DOI: 10.5281/zenodo. 1251833
3. Sparavigna, A. C. (2018). Generalized Sums Based on Transcendental Functions. Zenodo. DOI: 10.5281/zenodo. 1250020
4. Sicuro, G., \& Tempesta, P. (2016). Groups, information theory, and Einstein's likelihood principle. Phys. Rev. E 93, 040101(R).
5. Curado, E. M., Tempesta, P., \& Tsallis, C. (2016). A new entropy based on a group-theoretical structure. Annals of Physics, 366, 22-31.
