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Abstract Here we will show that the q-integers, that we can find in the q-calculus, are forming
an additive group having a generalized sum, which is similar to sum of the Tsallis q-entropy of
two independent systems. 
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Introduction  Many mathematicians have contributed to the calculus that today is known as

the  q-calculus  [1-6].  As  a  consequence,  it  is  known  as  “quantum  calculus,”  “time-scale

calculus” or “calculus of partitions” too [5].  Moreover,  it  is expressed by means of different

notations or,  as told in  [5],  by different  “dialects”.  Here we will  use the approach and the

notation given in the book by Kac and Cheung [6]. 

The aim of this work is that of  showing the following.  The q-integers are forming a group

having a generalized sum, which is similar to sum of the Tsallis q-entropy of two independent

systems. Let us start from the definition of the q-integers. 

In the q-calculus, the q-difference is simply given by: 

dq f=f (qx )−f ( x )

From this difference, the q-derivative is given as:

Dq f=
f (qx )−f ( x )
qx−x

The q-derivative reduces to the Newton’s derivative in the limit q→1 . 

Let us consider the function f (x )=xn . If we calculate its q-derivative, we obtain:

(1) Dq x
n=

(qx )n−xn

qx−x
=q

n−1
q−1

xn−1



Comparing the ordinary  calculus,  which is  giving ( xn) '=nxn−1 ,  to  Equation (1),  we can

define the “q-integer” [n ]  by:

            

(2) [n]=q
n−1
q−1

=1+q+q2+.. .+qn−1

Therefore Equation (1) turns out to be:

Dq x
n=[n ] xn−1

As a consequence,  the  n-th q-derivative of  f (x )=xn ,  which is obtained by repeating  n

times the q-derivative, generates the  q-factorial:

[n ] !=[ n ][n−1 ]. . .[3 ] [2 ][ 1]

Form the q-factorials, we can define q-binomial coefficients:

  

[n ]!
[m ] ![ n−m ]!

This means that  we can use the usual  Taylor  formula,  replacing the derivatives by the q-

derivatives and the factorials by q-factorials (in a previous work, we have discussed the q-

exponential and q-trigonometric functions [7]). Then, in the q-calculus, the q-integer [n ] acts

as the integer in the ordinary calculus.

We known that the set of integers Z, which consists of the numbers ..., −4, −3, −2, −1, 0, 1, 2,

3, 4, ...,  having as operation the addition, is a group. Therefore, let  us consider the set of q-

integers given by (2) and investigate its group. In particular, we have to determine its operation

of addition.

Let us remember that a group is a set A having an operation • which is combining the elements

of  A. That is, the operation combines any two elements  a,b  to form another element of the

group denoted a•b.  To qualify (A,•) as a group, the set and operation must satisfy the following

requirements.  Closure:  For  all  a,b  in  A,  the  result  of  the  operation  a•b  is  also  in  A.

Associativity:  For all  a,b and c in A, it holds (a•b)•c = a•(b•c).  Identity element: An element e

exists in A, such that for all elements a in A, it is e•a = a•e = a. Inverse element: For each a in

A, there exists an element b in A such that a•b = b•a = e, where e is the identity (the notation is

inherited from the multiplicative operation).



A further requirement is the commutativity: For all a,b in A, a•b = b•a.  In this case, the group is

known as an Abelian group. 

Therefore, to qualify a group as an Abelian group,  the set and operation must  satisfy five

requirements  which  are  known  as  the  Abelian  group  axioms.  A  group  having  a  not

commutative operation is called a "non-abelian group" or "non-commutative group". For an

Abelian group, one may choose to denote the group operation by +  and the identity element

by 0 (neutral element) and the inverse element as −a  (opposite element). In this case, the

group is called an additive group. 

First, we have to define the operation of addition. It is not the sum that we use for the integers,

but it is a generalized sum which obeys the axioms of the group.

Let us start from the q-integer  [m+n ] :

[m+n ]=q
m+n−1
q−1

= 1
q−1

(qmqn−1+qm−qm)= 1
q−1

(qm(qn−1)+qm−1)

[m+n ]= 1
q−1

(qm(qn−1)+(qm−1)+(qn−1)+(1−qn))= 1
q−1

((qm−1)(qn−1)+(qm−1)+(qn−1))

Therefore, we have: 

(3) [m+n ]=[m ]+[n]+(q−1)[m ][n]

Then, we can define the generalized “sum” of the group as: 

(4) [m]⊕[n]=[m ]+[n ]+(q−1)[m] [n ]

(for other examples of generalized sums see [8]):

If we use (4) as the sum, we have the closure of it,  because the result of the sum is a q-

integer. Moreover, this sum is commutative. 

The neutral element is:

(5) [0]=q
0−1
q−1

=0

Let us determine the opposite element [o] , so that:

 [o]⊕[n]=0

0=[0]=[o]⊕[n]=[o ]+[n]+(q−1)[o ][n]



−[n]=[o ]+(q−1)[o] [n]

(6) [o]=−
[n]

1+(q−1)[n]
=− qn−1

(q−1)qn
=q

−n−1
q−1

=[−n]

The opposite element of q-integer [n] is the q-integer of  −n , that is [−n] .

Let us discuss the associativity of the sum.

It is necessary to have:

[m]⊕([n]⊕[l ])=([m ]⊕[n])⊕[l ]

Let us calculate:

[m]⊕([n]⊕[l ])=[m]⊕([n]+[l ]+(q−1) [n] [l ])

[m]⊕([n]⊕[l ])=[m]+[n]+[l ]+(q−1)[n ][ l]+(q−1)[m] [n ]+(q−1)[m] [l ]+(q−1)2[m ][n] [l ]

And also:

([m ]⊕[n])⊕[l ]=([m ]+[n]+(q−1)[m ][n])⊕[l ]

([m ]⊕[n])⊕[l ]=[m ]+[n]+(q−1)[m ][n]+[ l ]+(q−1)[m] [l ]+(q−1)[n ][ l]+(q−1)2[m ][n] [l ]

It is also easy to see that:

[m]⊕[n]⊕[ l ]=[m+n+ l ]

As we have shown, the five axioms of an Abelian group are satisfied. In this manner, using the

generalized sum given by (4), we have the Abelian group of the q-integers. Let us also note

that the generalized sum (4) is similar to the sum that we find in the approach to entropy

proposed by Constantino Tsallis. 

In 1948 [9], Claude  Shannon defined the entropy  S of a discrete random variable Ξ as the

expected  value  of  the  information  content: S=∑i
p i I i =−∑i

pi logb p i [10].  In  this

expression, I is the information content of Ξ, the probability of i-event is pi  and b is the base

of the used logarithm. Common values of the base are 2, the Euler’s number e, and 10. 

Constantino Tsallis generalized the Shannon entropy in the following manner [11]: 



Sq=
1
q−1(1−∑i pi

q)

Given two independent systems A and B, for which the joint probability density satisfies:

p(A ,B)=p(A) p(B)

the Tsallis entropy gives:

(7) Sq (A ,B)=Sq(A)+Sq(B)+(1−q)Sq (A)Sq (B)

The  parameter (1−q) ,  in  a  certain  manner,  measures  the  departure  from the  ordinary

additivity, which is recovered in the limit q→1 .

Actually the group on which is based the Tsallis entropy, and therefore Equation (7), is known

as the “multiplicative group” [6,12-13]. As stressed in [14], the use of a group structure allows

to determine a class of generalized entropies. Let us note the group of the q-integers, with

addition (4), can be considered a “multiplicative group” too. 

Let  us  conclude  telling  that  the  main  result  of  the  work  here  proposed  is  the  link  to  the

multiplicative group and the Tsallis entropy. The group of the n-integers had been studied in

[15,16] too, but in these articles, a quite different expression for the generalized sum had been

proposed.  It  is  given as the “quantum sum”  [x ]⊕[ y ]=[x ]+qx [ y ] ,  where the link to the

Tsallis calculus is less evident.
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