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Delamination of plasters applied to historical masonry walls: 

analysis by acoustic emission technique and numerical model 
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1Department of Structural, Geotechnical and Building Engineering, Politecnico di 

Torino, Corso Duca degli Abruzzi 24, Turin, Italy 

E-mail: alessandro.grazzini@polito.it 

Abstract. Masonry walls of historical buildings are subject to rising damp effects due to 

capillary or rain infiltrations, which in the time produce decay and delamination of historical 

plasters. In the restoration of masonry buildings, the plaster detachment frequently occurs 

because of mechanical incompatibility in repair mortar. An innovative laboratory procedure is 

described for test mechanical adhesion of new repair mortars. Compression static tests were 

carried out on composite specimens stone block-repair mortar, which specific geometry can 

test the de-bonding process of mortar in adherence with a stone masonry structure. The 

acoustic emission (AE) technique was employed for estimating the amount of energy released 

from fracture propagation in adherence surface between mortar and stone. A numerical 

simulation was elaborated based on the cohesive crack model. The evolution of detachment 

process of mortar in a coupled stone brick–mortar system was analysed by triangulation of AE 

signals, which can improve the numerical model and predict the type of failure in the adhesion 

surface of repair plaster. Through the cohesive crack model, it was possible to interpret 

theoretically the de-bonding phenomena occurring at the interface between stone block and 

mortar. Therefore, the mechanical behaviour of the interface is characterized.  

1.  Introduction 

The historical masonry walls have original plasters often in phase of separation because of climatic 

conditions as rain infiltrations and damp capillary action. The restoration work needs the application 

of new dehumidified mortars. The great variety of historical masonry textures requires preliminary 

tests to assess the structural compatibility of the dehumidified mortars suitable for brick surfaces [1]. 

The authors have developed a new experimental methodology to assess the mechanical adhesion of 

new dehumidified mortars applied to historical masonry surfaces. This experimental methodology was 

carried out at the Politecnico Laboratory, and tested at the Sacro Monte di Varallo, one of the most 

famous UNESCO heritage site in Italy [2]. This historical site, whose construction has been extended 

from the 15th to the 18th century, contains 45 chapels that show the Christ’s life by particular frescoes 

and sculptures (figure 1). The main problem of historical plasters’ preservation is linked to the rain 

infiltrations and to the freezing-thawing cycles that compromise their adhesion to stone masonries. 

Through compression static tests on stone-mortar composite specimens, it was possible to prequalify 

the dehumidified mortar with greater durability guarantees. Sometime the long-term detachment 

determined the failure of the restoration work. The test validates the mechanical compatibility between 

the repair mortars and historical masonries stone, as a guarantee also for durability over time against 

atmospheric agents. The Acoustic Emission (AE) monitoring technique was employed during static 



 

 

 

 

 

 

tests for assessing damage evolution inside the adherence surface [3,4]. 

 

 

Figure 1. Chapel of the Christ at the court of Herod. 

2.  Materials and experimental setup 

For carrying out tests, a particular geometry of the composite specimen has been proposed. Four 

mixed specimens were made, applying a 40 mm mortar layer to both shorter faces of the stone brick 

suitably cut with the dimensions shown in figure 2(a). The mechanical characteristics of the repair 

mortar and the stone brick were chosen equivalent to those of the stone masonry at the Sacro Monte di 

Varallo. The hydraulic lime mortar was a pre-blended transpiring product, for dehumidifying repair 

work on historical masonry damaged by dampness. For this mortar the Young’s modulus was 7000 

MPa, the compressive strength was 33.8 MPa. 

 

 

Figure 2. Geometry of composite specimen (a) and test setup (b). 

Horizontal transducer 

a) b) 



 

 

 

 

 

 

The surface of the stone block has been treated specifically by means of a drill to facilitate the 

mortar’s adhesion. This treatment aimed to simulate the real discontinuities on the wall surface that 

favor the adhesion of the plaster. The application of the dehumidified mortar took place leaving 

specific and surface symmetrical discontinuities at the top and bottom of the specimen, as showed in 

figure 2(a). These notches favored the trigger and propagation of multiple cracks, in order to test the 

adhesion of two linked materials. An inductive horizontal displacement transducer was applied at the 

bottom of the specimen for the bulging displacements (figure 2(b)). The vertical displacements were 

recorded by the piston’s translation of the 250 kN servo controlled test machine. The composite 

specimens were tested by monotonous compression load by horizontal controlled opening. Static tests 

have been performed after 28 days of maturation. The composite specimen rested, through the side 

layers mortar, on a double system of steel wedges (figure 3). The wedges were coupled by a 1 mm 

thick Teflon layer for reducing the horizontal friction during the plaster’s expansion. The “SM” (Stone 

brick-Mortar) label has been associated with each specimen with its sequence number. 

 

Figure 3. The wedges’ geometry (a – c) and test setup (b). 

3.  Acoustic emission monitoring 

As regards the AE monitoring, the microcracks propagation generated AE signals that were detected 

by dedicated sensors applied to the external specimens surface. The AE waves were amplified with a 

gain of 60 dB before they have been analyzed, fixing the threshold level detection up to 2 mV. The AE 

sensors were attached to the specimens by means of a silicon glue. In this way it was possible to 

guarantee a good contact between the sensor and the specimen, also during the final crack phases. 

The AE measurement system was able to recorder each signal waveforms. Rise time and peak 

amplitude were the AE parameters used to classify active cracks. The shape of the AE waveforms 

distinguishes the fracture mode: typical shear events are usually characterized by long rise times and 

high amplitudes, instead low rise time are distinctive of tensile crack propagations. In particular the 

rise angle (RA), that shows these conditions, was calculated as the ratio of the rise time to the peak 

amplitude. The first is expressed in ms, the second one in V [3]. 

Moreover, in order to distinguish the cracking mode, the Average Frequency (AF) expressed in 

kHz was also used. The AE ringdown count is the number of crossings threshold along the duration 

time. The ratio between the AE ringdown count and the duration time of each signal gives the AF 

values. The change of the cracking mode from tensile to shear is followed by the shift from higher to 

lower values of AF [3]. Nevertheless, when large cracks (Mode I) are forming, the frequency 

attenuation could be a function of this discontinuity. The wavelength of the AE signals should be 

larger of these discontinuities to make the waves pass through, therefore the frequencies’ shift from 

higher to lower values could show also a dominant tensile cracking mode. 

For the sake of synthesis, the results of the AE monitoring were presented only for specimen SM4. 

c) 
a) 

b) 



 

 

 

 

 

 

 

 

Figure 5. Specimen SM4: Average Frequency 

(AF) vs time, and Rise Angle (RA) vs time. 

Figure 4. Specimen SM4: Load vs time diagram, 

Cumulated AE, and AE rate. 

 

 

The load vs. time diagram of the specimen SM4 is shown in figure 4, together with AE cumulated 

curve, and AE rate. During the first part of the test, when the load increases proportionally over time, 

there are few AE signals. However, a clear growth in the AE hits is obtained in the correspondence of 

each sharply decrease of the load vs. time curve. This supports the fact that the AE signals are mainly 

associated with the energy emitted by the specimen during the delamination of the mortar from the 

stone block (snap-back instabilities) [5]. 

Using the ordinary least squares method, the linear regression of the signal frequencies (AF) and 

the signals rise angles (RA) were traced during the whole test. Considerable variations from the mean 

trend were observed in particular immediately after 100 seconds from the beginning of the test, around 

200 seconds, and around 420 seconds towards the end of the test (figure 5). In the first phase, from 0 

to 120 seconds, rise angles with low values prevail, while the frequencies are oscillating with the 

higher values more distant from the average trend. This indicates a prevalent Mode I in the 

delamination process in the initial loading phase. In the second phase, the highest values of the RAs 

during the whole test were obtained, while the frequencies continue to oscillate with the lowest values 

more distant from the average. This behavior shows how the delamination process that leads to 

collapse develops with sudden stress drops and is mainly accompanied by the sliding of the mortar 

with respect to the stone block (Mode II). In the final phase, over 400 seconds, the frequencies are still 

lowered below the average line, while the RAs once again become low, so it can be said that there is 

no prevailing fracture mode before the specimen collapses definitively. 

4.  Numerical simulation  

The Barenblatt – Dugdale - Hillerborg model, also known as the cohesive crack model, is a good 

numerical approach to simulate the behaviour of quasi-brittle materials, as the stone-mortar 



 

 

 

 

 

 

delamination. The crack initiation criterion is assumed as: 
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where σ0 and τ0 are the stresses respectively orthogonal and tangential directions, ft and fs are the 

respective strengths. The fictional crack tip is the point where equation (1) is proved. The cohesive 

stresses present on the non-linear fracture process zone (FPZ) are decreasing functions of the effective 

value of the displacement discontinuity weff [6-11]. It was assumed: 
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where wn is the first component of the mutual-orthogonal displacement, and wt is the second one 

(tangential to the interface); the related critical values are wnc and wtc. If weff > 1 there is no stress 

transfer and the crack is stress free; otherwise, the stresses are decreasing functions of weff that follow 

a pre-defined softening law. The above mentioned law is assumed [12]: 
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where α = 5 is assumed. Real crack tip is called the point where weff = 1. Outside the FPZ the material 

had a linear-elastic behavior. The fracture process starts symmetrically, but loses this property 

afterwards [13-15] because of the propagation of the round-off errors. In this case the numerical 

simulation was controlled according a uniform downward velocity to the upper edge on the rock. This 

choice was able to prevent the growth of the round-off errors so that, from an engineering point of 

view, the propagation of the two cohesive cracks occurs symmetrically. The interface strength 

properties were assumed as shown in tables 1 and 2. The numerical analyses were performed using the 

ABAQUS [16] code. Figure 6 shows the deformed mesh of finite element model. 

 

Table 1. The interface strength properties. 

ft (N/mm2) fs (N/mm2) wnc (mm) wtc (mm) 

0.8 1.0 0,015 0,015 

 

Table 2. Mechanical characteristics of materials. 

 Young’s modulus (N/mm2) Poisson ratio 

Mortar 7000 0.15 

Rock 35000 0.20 

 
Figure 6. Finite element deformation during max displacement. 



 

 

 

 

 

 

5.  Numerical and experimental outcomes 

The adherence between the repair plaster and masonry stone was tested by the notch tips. The 

experimental procedure simulated the fatigue loads that can compromise the service-life of a 

dehumidified plaster. The experimental results shows four stress singularity points in the stone-mortar 

specimens: two notch tips at the top, and two at the bottom (see figure 2). These are the weakest points 

involved in the singular stress fields. During the tests, it was possible to observe that the cracks 

beginning from the bottom were faster than the cracks from the top, because of the wedges. The 

friction, reduced by the teflon sheet, is not taken into account in the numerical simulation and the 

materials are considered homogeneous. This is the reason why the response curve is continuous (see 

figure 7). On the contrary, the properties of the rock specimen can change from point to point. This is 

the reason why the experimental curve shows many discontinuities (see figure 7). The numerical 

model represents an ideal behaviour which, in particular in the early stages of loading, fit the average 

values of the experimental curves, but it is not able to identify the snap-back instabilities that 

experimentally occur during the delamination process. 

 

 

Figure 7. Load – horizontal displacement curves of the specimens vs. the numerical solution. 

6.  Conclusions 

⚫ The aim of this test was to pre-qualify the most durable dehumidified mortar which 

mechanical compatibility to the historical masonry can avoid delamination problems by 

dampness and hygrometric effects. 

⚫ The experimental procedure, performed by mixed specimens, allowed testing the adherence 

between the dehumidified repair plaster and the historical masonry stone. This procedure was 

able to produce in static tests the same interface stresses that caused by freeze and thaw 

actions.  

⚫ The AE signals were associated with the energy emitted by the specimens in the delamination 

phase between the mortar and the stone block. The variation of the AE parameters (AF and 

RA) depends strictly on the type of specimen damage. 

⚫ From the obtained results it was possible to identify a prevalent Mode I in the delamination 

process during the initial loading phases. As the test goes on, the delamination process 

develops with sudden load drops, mainly accompanied by the sliding of the mortar with 

respect to the stone block (Mode II). While, in the final loading phase, no prevalent fracture 

mode has emerged before the specimen definitively collapses.  

⚫ The non-linear phenomena that occur at the interface between mortar and stone during the de-

bonding process were theoretically interpret by means of the cohesive crack model.  
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