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Abstract

In the paper, gridless particle techniques are presented in order to solve problems

involving electrostatic, collisionless plasmas. The method makes use of compu-

tational particles having the shape of spherical shells or of rings, and can be used

to study cases in which the plasma has spherical or axial symmetry, respectively.

As a computational grid is absent, the technique is particularly suitable when the

plasma occupies a rapidly changing space region.

1. Introduction

The work investigates the possibility of using gridless particle techniques [1,

2] in the study of plasmas which are produced by laser-matter interaction with

the purpose of accelerating positive ions. Avoiding to introduce a computational

grid is useful in situations (as for plasma expansions and explosions), in which

the physical domain occupied by the particles increases rapidly in time. In this

framework, in general situations one could employ a set of computational particles
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and directly calculate the electric Þeld acting on each of them, as the sum of the

contribution of the other particles. This requires an extremely high computational

e! ort, unless the problem under exam presents some symmetry. In the work,

the cases of spherical and axial symmetry are considered. In the Þrst case (Sect.

2), the problem is essentially one dimensional and computational particles are in

the shape of spherical shells. By using the GaussÕs formula, the electric Þeld is

readily evaluated. For the second case (Sect. 3), particles are modeled as thin

circular rings, which are characterized by their radii and their axial coordinates.

In this case, the evolution of the force acting on each particle requires necessarily

the calculation of the sum of contributions due to the other particles. Although

some advantages which are present in the spherical case are lost, the technique

here presented conserves interesting features also in this case. Results for both

cases are shown and they are compared with exact calculations (when available)

or with Particle-In-Cell simulations.

2. The shell method

This Section presents in a complete, rigorous way the method of the shells,

which was already introduced and employed with di! erent formulations by other

Authors (in particular, in refs. [1, 2, 3]).

2.1. First formulation

In its simplest formulation, a set ofN computational particles is considered.

After initializing their coordinatesxi and momentapi, the particle are ordered

according to their radial coordinatesri = |xi|, so thatr j > ri if j > i. Then the

2
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radial electric Þeld acting on each particle is evaluated simply as:

Ei =

!
""""""#

i! 1$

j=1

qj + 1
2qi

%
&&&&&&'

xi

r3
i

, (1)

by using the GaussÕs formula and taking advantage of the spherical symmetry of

the problem. The presence of the factor1
2 multiplying qi can be explained in a

simple way by considering that, forr = ri ! ! (! " 0+) qi does not contribute to

the electric Þeld, while forr = ri + ! the total charge to be evaluated is
( i

j=1 qj.

Thus, by supposing a linear behavior ofE at the interface, the factor12 provides

the correct value of the Þeld (a rigorous proof of the formula is presented in Sect.

2.4). Finally, after evaluatingE on each computational particle, the equations of

motion: )
*****+
*****,

dxi
dt = pi

mi
,

dpi
dt = qiEi(x1, x2, ...,xN),

(2)

can be solved by using a suitable numerical technique (e.g., the leapfrog or the

Runge-Kutta method), using a time step much smaller with respect to the inverse

of the plasma frequency.

2.2. Second formulation

The technique described above is very simple (for example, a MATLAB code

can be implemented in few lines of program), but it is excessively memory and

time consuming, as it does not take fully advantage of the symmetry of the prob-

lem. In fact, in a central Þeld of forces, the trajectory of each particle takes place

on a plane. Therefore, the motion is essentially a two-dimensional problem. This

fact suggests a new, simpler formulation of the method. After generating the ini-

tial 3D coordinatesxi and momentapi, a set of 2D coordinatesXi andPi is deÞned

3
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as )
*****+
*****,

Xi = (ri, 0), i = 1,2, ...,N,

Pi =
-
pi áxi

ri
,
....pi !

/
pi áxi

ri

0xi
ri

....
1
.

(3)

After that, the method is completely identical to the previous formulation, but it

uses only 2D vectors. More in detail, the particles are ordered according to the

radial positionRi = |Xi|, the electric Þeld is evaluated as

Ei =

!
""""""#

i! 1$

j=1

qj + 1
2qi

%
&&&&&&'

Xi

R3
i

, (4)

and the evolution of the system is governed by the equations
)
*****+
*****,

dXi
dt = Pi

mi
,

dPi
dt = qiEi(X1,X2, ...,XN).

(5)

2.3. Third formulation

Starting form the Lagrangian

L (r, ", úr, ú", t) =
m
2

/
úr2 + r2 ú" 2

0
! q" (r, t) , (6)

for a single particle in a central potential (" depends ont due to the interaction

with the other particles of the plasma), one can obtain the Hamiltonian

H
/
r, ", pr , p" , t

0
=

1
2m

!
""""#p2

r +
p2

"

r2

%
&&&&' + q" (r, t) , (7)

and the equations of the motion

)
*****+
*****,

dr
dt = pr

m, d"
dt =

p"

mr2
,

dpr
dt = ! q#"

#r +
p2

"

mr3
,

dp"

dt = 0.
(8)

4
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In other terms, as it is well known, for a central potential there is a constant of the

motion, p" , which corresponds to the axial angular momentum, and the motion

in radial direction is essentially one-dimensional. This suggests a third way of

studying the dynamics of these systems. Starting again from the set{xi, pi} one

can calculate

ri = |xi|, pr,i = pi á
xi

ri
, p", i = ri

.....pi ! pr,i
xi

ri

..... . (9)

Then, the radial electric Þeld is evaluated as

Er,i =

!
""""""#

i! 1$

j=1

qj + 1
2qi

%
&&&&&&'

1
r2

i

(10)

(of course, particles must be sorted according tori), and the equations of the

motion assume the form:
)
******+
******,

dri
dt =

pr,i
mi

,

dpr,i
dt = qiEr,i(r1, r2, ...,rN) +

p2
", i

mir3
i
,

(11)

in which the p", iÕs are constants of the motion and they are Þxed by the initial

conditions. This last formulation is the most convenient in terms of memory usage

and computational e! ort. However, the presence of the termp2
" / (mr3) in Eqs. (11)

require a special care whenr " 0. All things considered, the second formulation

represents a good compromise in terms of computational e# ciency and simplicity.

2.4. Interaction between shells

Due to symmetry, each computational particle can be regarded as a spheri-

cal surface (a ÒshellÓ) on which the electric charge is distributed uniformly. The

points on the surface move according to di! erent trajectories, all sharing the same

5
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radial coordinate,r(t), and the same angular momentump" . For simplicity, a sys-

tem made of only two shells (having chargeq1 andq2 and radiir1 andr2, with

r1 < r2) is considered now. As the electric Þeld is given by

E(r) =

)
********+
********,

0, r < r1,
q1

r2
, r1 < r < r2,

q1 + q2

r2
, r > r2,

(12)

the electrostatic energyU can be readily evaluated, as

U(r1, r2) =
2

R3

E2

8$
d3 x =

q2
1

2r1
+

q2
2 + 2q1q2

2r2
. (13)

If r1 is changed of%r1, the change! %U of the energy is equal to the workqE1 á%r1

of the Þeld on the shell itself. In other terms, one has:

E1 = !
1
q1

#U
#r1

=
1
2q1

r2
1

. (14)

Similarly, the Þeld acting on the second shell can be calculated as

E2 = !
1
q2

#U
#r2

=
q1 + 1

2q2

r2
2

. (15)

In both cases, the value of the electric Þeld is in agreement with the rule Ò
i! 1(

j=1
qj + 1

2qiÓ,

which was introduced previously.

Now the dynamics of the two shells is considered. If there is no crossing (i.e., no

collisions) between shells,r1 is always smaller thanr2 and one has

dp1

dt
= q1

1
2q1

r2
1

,
dp2

dt
= q2

q1 + 1
2q2

r2
2

. (16)

Here only radial motion is considered for simplicity (i.e.,p" = 0 for both shells).

The two equations (16) can be also written as
)
*******+
*******,

dp1

dt
= !

#
#r1

!
""""#

1
2q2

1

r1

%
&&&&' ,

dp2

dt
= !

#
#r2

!
""""#
q1q2 + 1

2q2
2

r2

%
&&&&' ,

(17)

6
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from which one immediately obtains
)
******+
******,

p2
1

2m1
+

1
2q2

1

r1
= Const,

p2
2

2m2
+

q1q2 + 1
2q2

2

r2
= Const.

(18)

As the two shells continue to expand, the asymptotic kinetic energy fort " +# ,

E(+# ), of the two shells can be readily evaluated, as
)
******+
******,

E1(+# ) = E1(0) +
1
2q2

1

r1(0)
,

E2(+# ) = E2(0) +
q1q2 + 1

2q2
2

r2(0)
.

(19)

Now, the case of collision is considered. Whent = tc one hasr1(tc) = r2(tc) = rc,

and fort > tc the shell #1 overtakes the shell #2. Therefore, Eqs. (16-18) are valid

only for t < tc. For t > tc, Eqs. (16) must be replaced by
)
*******+
*******,

dp1

dt
= q1

q2 + 1
2q1

r2
1

,

dp2

dt
= q2

1
2q2

r2
2

(20)

(they are obtained by simply exchanging indices 1 and 2), from which one Þnally

obtains )
******+
******,

p2
1

2m1
+

q1q2 + 1
2q2

1

r1
= Const,

p2
2

2m2
+

1
2q2

2

r2
= Const.

(21)

In the case of collision, in order to evaluate the new asymptotic energy,E$(+# ),

both Eqs. 18 (fort < tc) and Eqs. 21 must be considered:
)
***********+
***********,

E$
1(tc) = E1(0) +

1
2q2

1

r1
!

1
2q2

1

rc
= E1(+# ) !

1
2q2

1

rc
,

E$
2(tc) = E2(0) +

q1q2 + 1
2q2

2

r2
!

q1q2 + 1
2q2

2

rc
= E2(+# ) !

q1q2 + 1
2q2

2

rc
,

(22)

7
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and )
******+
******,

E$
1(+# ) = E$

1(tc) +
q1q2 + 1

2q2
1

rc
= E1(+# ) +

q1q2

rc
,

E$
2(+# ) = E$

2(tc) +
1
2q2

2

rc
= E2(+# ) !

q1q2

rc
.

(23)

In other terms, the collision produces an increase$E = q1q2/ rc in the energy

of the shell #1, and a corresponding decrease! $E for the shell #2. In a typical

plasma expansion, the energyE of a shell is of the order ofqQ/ R, beingQ the total

charge andR the initial plasma radius. Being$E %q2/ R for a single collision,

one can conclude that the Òplasma parameterÓ$E/ E for a set onN shells will

be of the order ofq/ Q = 1/N. In practice, for typical values of the number of

computational particles, the system can always be regarded as collisionless.

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

N
(r

<
R

)/
N

0

Figure 1: Time evolution of the fraction of electrons inside the ion sphere for two di! erent nor-

malized temperature,T = 0.0431,0.431. For each value ofT, ensemble averages (full black line)

and standard deviation ranges (dashed black lines) are reported forN = 103 shells and 300 sim-

ulations with di! erent initial conditions, together with reference results provided by a simulation

with N = 106 shells (dashed red line).
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Figure 2: Time evolution of the fraction of trapped electrons for the same case of Fig. 1.

2.5. Results

Some typical results are reported in the following. In all the calculations,

suitable normalization for the physical quantities has been used such that the total

charge, the total mass of the plasma and the initial radiusRare all equal to 1. Three

cases are considered: 1) the electron expansion in a spherical plasma [4]; 2) the

expansion of a plasma made of a mixture of two ion species [5]; 3) the formation

of shocks in Coulomb explosions [6]. Figures 1 and 2 refer to the early stage of the

electron expansion in a spherical plasma. It is assumed that electrons and positive

ions are initially distributed uniformly in a sphere of radiusR. Initially, electrons

have Maxwellian velocity distribution with temperatureT and positive ions are

considered at rest during all the transient. Calculations have been performed both

with a reduced (N & 103) and with a high number of shells (N & 106), in order

to obtain reference results. The initial phase-space distribution of the electrons

9
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was generated by using random numbers, so for a small number of particles the

results will depend on the particular choice of positions and velocities. For this

reason, the same calculation has been repeated for 300 times (with di! erent initial

conditions, all corresponding to the same physical situation) in order to obtain

the mean behavior and the distribution of the physical quantities (as performed in

[7]). In Figs. 1 and 2, the time evolution of the number of electrons inside the ion

sphere (i.e., withr ' R) and of the fraction of trapped electrons (i.e., with total

energy p2

2m ! e" (r) ' 0) are reported, respectively. As can be observed, the shell

method provides excellent results, even with a reduced set of particles.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

r

v

Figure 3: Phase-space distributions of a mixture withm1/ m2 = 2/ 3 andq1 = q2 at di! erent times

(t = 3 Ö31). Results obtained with the shell method (blue dots) are compared with the analytic

solution (red solid lines).

The second set of results (Figs. 3 and 4) refers to the acceleration of an ion

10
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0.6 0.7 0.8 0.9 1

0.7

0.8

0.9

1

1.1

1.2

1.3

r 0

E
(+

!
)/

m

Figure 4:E(t " +# )/ m of the light ions as a function of their initial radial coordinate,r0, for the

case of Fig. 3. Results obtained with the shell method (blue dots) are compared with the analytic

solution (red line).

plasma made of a mixture of two di! erent species. In this case, analytic solu-

tions for the problem exist [5] and can be used as a reference. The two species

(m1/ m2 = 2/ 3,q1 = q2) are initially at rest and the ions are accelerated by electro-

static repulsion. In Fig. 3 the phase-space distribution for the two species, calcu-

lated with the shell method and using 103 computational particles, is reported at

di! erent times and compared with analytic results. Figure 4 showsE(t " +# )/ m

of the light ions as a function of their initial radial coordinate,r = r0. This curve

is important in order to determine the asymptotic energy spectrum,dN
dE , of the ions

(considering that$E = dE
dr0

$r0 and$N = 4$r2
0n0$r0). The two Þgures show the

excellent agreement between numerical and analytic results.
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0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

r 0

r

Figure 5: Radial coordinate,r, at di! erent times (t = 0 Ö 1.47) as a function of their initial

position,r0, for a single-species ion plasma with a non uniform initial density distribution. In the

simulations,n(r, 0) = n1 whenr < R/ 3 andn2 whenr (
3

R
3 ,R

4
, with n1/ n2 = 8. Results for 104

shells (blue dots) are compared with those obtained with 106 shells (red line).

The third case here considered concerns the shock formation in a Coulomb ex-

plosion [4, 8]. The phenomenon arises when the initial ion distribution is not

uniform, in particular if the inner density is larger respect to the outer one. In fact,

in this case the electric Þeld has a maximum inside the plasma region (while it de-

pends linearly onr if the ion density is constant) and consequently inner particles

acquire higher kinetic energy with respect to the outer ones and can ÒovertakeÓ

them. In the situation considered in Figs. 5 and 6, an ion plasma made of only

one species presents two regions with di! erent density fort = 0. Figure 5 reports

the value of the radial coordinater(r0, t) of the ions as a function of their initial ra-

12






































