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Abstract

In the paper, gridless particle techniques are presented in order to solve problems

involving electrostatic, collisionless plasmas. The method makes use of compu-

tational particles having the shape of spherical shells or of rings, and can be used

to study cases in which the plasma has spherical or axial symmetry, respectively.

As a computational grid is absent, the technique is particularly suitable when the

plasma occupies a rapidly changing space region.

1. Introduction

The work investigates the possibility of using gridless particle techniques [1,

2] in the study of plasmas which are produced by laser-matter interaction with

the purpose of accelerating positive ions. Avoiding to introduce a computational

grid is useful in situations (as for plasma expansions and explosions), in which

the physical domain occupied by the particles increases rapidly in time. In this

framework, in general situations one could employ a set of computational particles
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and directly calculate the electric field acting on each of them, as the sum of the

contribution of the other particles. This requires an extremely high computational

e↵ort, unless the problem under exam presents some symmetry. In the work,

the cases of spherical and axial symmetry are considered. In the first case (Sect.

2), the problem is essentially one dimensional and computational particles are in

the shape of spherical shells. By using the Gauss’s formula, the electric field is

readily evaluated. For the second case (Sect. 3), particles are modeled as thin

circular rings, which are characterized by their radii and their axial coordinates.

In this case, the evolution of the force acting on each particle requires necessarily

the calculation of the sum of contributions due to the other particles. Although

some advantages which are present in the spherical case are lost, the technique

here presented conserves interesting features also in this case. Results for both

cases are shown and they are compared with exact calculations (when available)

or with Particle-In-Cell simulations.

2. The shell method

This Section presents in a complete, rigorous way the method of the shells,

which was already introduced and employed with di↵erent formulations by other

Authors (in particular, in refs. [1, 2, 3]).

2.1. First formulation

In its simplest formulation, a set of N computational particles is considered.

After initializing their coordinates xi and momenta pi, the particle are ordered

according to their radial coordinates ri = |xi|, so that r j > ri if j > i. Then the

2
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radial electric field acting on each particle is evaluated simply as:

Ei =

0
BBBBBB@

i�1X

j=1

qj +
1
2qi

1
CCCCCCA

xi

r
3
i

, (1)

by using the Gauss’s formula and taking advantage of the spherical symmetry of

the problem. The presence of the factor 1
2 multiplying qi can be explained in a

simple way by considering that, for r = ri � ✏ (✏ ! 0+) qi does not contribute to

the electric field, while for r = ri + ✏ the total charge to be evaluated is
P

i

j=1 qj.

Thus, by supposing a linear behavior of E at the interface, the factor 1
2 provides

the correct value of the field (a rigorous proof of the formula is presented in Sect.

2.4). Finally, after evaluating E on each computational particle, the equations of

motion: 8>>>>><
>>>>>:

dxi

dt
=

pi

mi
,

dpi

dt
= qiEi(x1, x2, ..., xN),

(2)

can be solved by using a suitable numerical technique (e.g., the leapfrog or the

Runge-Kutta method), using a time step much smaller with respect to the inverse

of the plasma frequency.

2.2. Second formulation

The technique described above is very simple (for example, a MATLAB code

can be implemented in few lines of program), but it is excessively memory and

time consuming, as it does not take fully advantage of the symmetry of the prob-

lem. In fact, in a central field of forces, the trajectory of each particle takes place

on a plane. Therefore, the motion is essentially a two-dimensional problem. This

fact suggests a new, simpler formulation of the method. After generating the ini-

tial 3D coordinates xi and momenta pi, a set of 2D coordinates Xi and Pi is defined

3
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as 8>>>>><
>>>>>:

Xi = (ri, 0), i = 1, 2, ...,N,

Pi =
✓
pi · xi

ri
,
����pi �

⇣
pi · xi

ri

⌘ xi

ri

����
◆
.

(3)

After that, the method is completely identical to the previous formulation, but it

uses only 2D vectors. More in detail, the particles are ordered according to the

radial position Ri = |Xi|, the electric field is evaluated as

Ei =

0
BBBBBB@

i�1X

j=1

qj +
1
2qi

1
CCCCCCA

Xi

R
3
i

, (4)

and the evolution of the system is governed by the equations
8>>>>><
>>>>>:

dXi

dt
=

Pi

mi
,

dPi

dt
= qiEi(X1,X2, ...,XN).

(5)

2.3. Third formulation

Starting form the Lagrangian

L (r,', ṙ, '̇, t) =
m

2

⇣
ṙ

2 + r
2'̇2
⌘
� q� (r, t) , (6)

for a single particle in a central potential (� depends on t due to the interaction

with the other particles of the plasma), one can obtain the Hamiltonian

H

⇣
r,', pr, p', t

⌘
=

1
2m

0
BBBB@p2

r
+

p
2
'

r2

1
CCCCA + q� (r, t) , (7)

and the equations of the motion
8>>>>><
>>>>>:

dr

dt
=

pr

m
,

d'
dt
=

p'

mr
2 ,

dpr

dt
= �q

@�
@r
+

p
2
'

mr
3 ,

dp'

dt
= 0.

(8)

4
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In other terms, as it is well known, for a central potential there is a constant of the

motion, p', which corresponds to the axial angular momentum, and the motion

in radial direction is essentially one-dimensional. This suggests a third way of

studying the dynamics of these systems. Starting again from the set {xi,pi} one

can calculate

ri = |xi|, pr,i = pi ·
xi

ri

, p',i = ri

�����pi � pr,i
xi

ri

����� . (9)

Then, the radial electric field is evaluated as

Er,i =

0
BBBBBB@

i�1X

j=1

qj +
1
2qi

1
CCCCCCA

1
r

2
i

(10)

(of course, particles must be sorted according to ri), and the equations of the

motion assume the form:
8>>>>>><
>>>>>>:

dri

dt
=

pr,i
mi
,

dpr,i

dt
= qiEr,i(r1, r2, ..., rN) +

p
2
',i

mir
3
i

,
(11)

in which the p',i’s are constants of the motion and they are fixed by the initial

conditions. This last formulation is the most convenient in terms of memory usage

and computational e↵ort. However, the presence of the term p
2
'/(mr

3) in Eqs. (11)

require a special care when r ! 0. All things considered, the second formulation

represents a good compromise in terms of computational e�ciency and simplicity.

2.4. Interaction between shells

Due to symmetry, each computational particle can be regarded as a spheri-

cal surface (a “shell”) on which the electric charge is distributed uniformly. The

points on the surface move according to di↵erent trajectories, all sharing the same

5
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radial coordinate, r(t), and the same angular momentum p'. For simplicity, a sys-

tem made of only two shells (having charge q1 and q2 and radii r1 and r2, with

r1 < r2) is considered now. As the electric field is given by

E(r) =

8>>>>>>>><
>>>>>>>>:

0, r < r1,
q1

r2 , r1 < r < r2,
q1 + q2

r2 , r > r2,

(12)

the electrostatic energy U can be readily evaluated, as

U(r1, r2) =
Z

R3

E
2

8⇡
d3 x =

q
2
1

2r1
+

q
2
2 + 2q1q2

2r2
. (13)

If r1 is changed of �r1, the change ��U of the energy is equal to the work qE1 · �r1

of the field on the shell itself. In other terms, one has:

E1 = �
1
q1

@U

@r1
=

1
2q1

r
2
1
. (14)

Similarly, the field acting on the second shell can be calculated as

E2 = �
1
q2

@U

@r2
=

q1 +
1
2q2

r
2
2
. (15)

In both cases, the value of the electric field is in agreement with the rule “
i�1P
j=1

qj +
1
2qi”,

which was introduced previously.

Now the dynamics of the two shells is considered. If there is no crossing (i.e., no

collisions) between shells, r1 is always smaller than r2 and one has

dp1

dt
= q1

1
2q1

r
2
1
,

dp2

dt
= q2

q1 +
1
2q2

r
2
2
. (16)

Here only radial motion is considered for simplicity (i.e., p' = 0 for both shells).

The two equations (16) can be also written as
8>>>>>>><
>>>>>>>:

dp1

dt
= � @
@r1

0
BBBB@

1
2q

2
1

r1

1
CCCCA ,

dp2

dt
= � @
@r2

0
BBBB@

q1q2 +
1
2q

2
2

r2

1
CCCCA ,

(17)

6
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from which one immediately obtains
8>>>>>><
>>>>>>:

p
2
1

2m1
+

1
2q

2
1

r1
= Const,

p
2
2

2m2
+

q1q2 +
1
2q

2
2

r2
= Const.

(18)

As the two shells continue to expand, the asymptotic kinetic energy for t ! +1,

E(+1), of the two shells can be readily evaluated, as
8>>>>>><
>>>>>>:

E1(+1) = E1(0) +
1
2q

2
1

r1(0)
,

E2(+1) = E2(0) +
q1q2 +

1
2q

2
2

r2(0)
.

(19)

Now, the case of collision is considered. When t = tc one has r1(tc) = r2(tc) = rc,

and for t > tc the shell #1 overtakes the shell #2. Therefore, Eqs. (16-18) are valid

only for t < tc. For t > tc, Eqs. (16) must be replaced by
8>>>>>>><
>>>>>>>:

dp1

dt
= q1

q2 +
1
2q1

r
2
1
,

dp2

dt
= q2

1
2q2

r
2
2

(20)

(they are obtained by simply exchanging indices 1 and 2), from which one finally

obtains 8>>>>>><
>>>>>>:

p
2
1

2m1
+

q1q2 +
1
2q

2
1

r1
= Const,

p
2
2

2m2
+

1
2q

2
2

r2
= Const.

(21)

In the case of collision, in order to evaluate the new asymptotic energy, E0(+1),

both Eqs. 18 (for t < tc) and Eqs. 21 must be considered:
8>>>>>>>>>>><
>>>>>>>>>>>:

E01(tc) = E1(0) +
1
2q

2
1

r1
�

1
2q

2
1

rc

= E1(+1) �
1
2q

2
1

rc

,

E02(tc) = E2(0) +
q1q2 +

1
2q

2
2

r2
�

q1q2 +
1
2q

2
2

rc

= E2(+1) �
q1q2 +

1
2q

2
2

rc

,

(22)

7
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and 8>>>>>><
>>>>>>:

E01(+1) = E01(tc) +
q1q2 +

1
2q

2
1

rc

= E1(+1) +
q1q2

rc

,

E02(+1) = E02(tc) +
1
2q

2
2

rc

= E2(+1) � q1q2

rc

.

(23)

In other terms, the collision produces an increase �E = q1q2/rc in the energy

of the shell #1, and a corresponding decrease ��E for the shell #2. In a typical

plasma expansion, the energy E of a shell is of the order of qQ/R, being Q the total

charge and R the initial plasma radius. Being �E ⇠ q
2/R for a single collision,

one can conclude that the “plasma parameter” �E/E for a set on N shells will

be of the order of q/Q = 1/N. In practice, for typical values of the number of

computational particles, the system can always be regarded as collisionless.

0 2 4 6 8 10 12 140

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

N
(r

<
R
)/

N
0

Figure 1: Time evolution of the fraction of electrons inside the ion sphere for two di↵erent nor-

malized temperature, T = 0.0431, 0.431. For each value of T , ensemble averages (full black line)

and standard deviation ranges (dashed black lines) are reported for N = 103 shells and 300 sim-

ulations with di↵erent initial conditions, together with reference results provided by a simulation

with N = 106 shells (dashed red line).
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

N
(E

<
0
)/
N

0

Figure 2: Time evolution of the fraction of trapped electrons for the same case of Fig. 1.

2.5. Results

Some typical results are reported in the following. In all the calculations,

suitable normalization for the physical quantities has been used such that the total

charge, the total mass of the plasma and the initial radius R are all equal to 1. Three

cases are considered: 1) the electron expansion in a spherical plasma [4]; 2) the

expansion of a plasma made of a mixture of two ion species [5]; 3) the formation

of shocks in Coulomb explosions [6]. Figures 1 and 2 refer to the early stage of the

electron expansion in a spherical plasma. It is assumed that electrons and positive

ions are initially distributed uniformly in a sphere of radius R. Initially, electrons

have Maxwellian velocity distribution with temperature T and positive ions are

considered at rest during all the transient. Calculations have been performed both

with a reduced (N ' 103) and with a high number of shells (N ' 106), in order

to obtain reference results. The initial phase-space distribution of the electrons

9
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was generated by using random numbers, so for a small number of particles the

results will depend on the particular choice of positions and velocities. For this

reason, the same calculation has been repeated for 300 times (with di↵erent initial

conditions, all corresponding to the same physical situation) in order to obtain

the mean behavior and the distribution of the physical quantities (as performed in

[7]). In Figs. 1 and 2, the time evolution of the number of electrons inside the ion

sphere (i.e., with r  R) and of the fraction of trapped electrons (i.e., with total

energy p
2

2m
� e�(r)  0) are reported, respectively. As can be observed, the shell

method provides excellent results, even with a reduced set of particles.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

r

v

Figure 3: Phase-space distributions of a mixture with m1/m2 = 2/3 and q1 = q2 at di↵erent times

(t = 3 ÷ 31). Results obtained with the shell method (blue dots) are compared with the analytic

solution (red solid lines).

The second set of results (Figs. 3 and 4) refers to the acceleration of an ion

10
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0.6 0.7 0.8 0.9 1

0.7

0.8

0.9

1

1.1

1.2

1.3

r 0

E
(+

∞
)/

m

Figure 4: E(t ! +1)/m of the light ions as a function of their initial radial coordinate, r0, for the

case of Fig. 3. Results obtained with the shell method (blue dots) are compared with the analytic

solution (red line).

plasma made of a mixture of two di↵erent species. In this case, analytic solu-

tions for the problem exist [5] and can be used as a reference. The two species

(m1/m2 = 2/3, q1 = q2) are initially at rest and the ions are accelerated by electro-

static repulsion. In Fig. 3 the phase-space distribution for the two species, calcu-

lated with the shell method and using 103 computational particles, is reported at

di↵erent times and compared with analytic results. Figure 4 shows E(t ! +1)/m

of the light ions as a function of their initial radial coordinate, r = r0. This curve

is important in order to determine the asymptotic energy spectrum, d N

dE , of the ions

(considering that �E = dE
d r0
�r0 and �N = 4⇡r2

0n0�r0). The two figures show the

excellent agreement between numerical and analytic results.
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0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

r 0

r

Figure 5: Radial coordinate, r, at di↵erent times (t = 0 ÷ 1.47) as a function of their initial

position, r0, for a single-species ion plasma with a non uniform initial density distribution. In the

simulations, n(r, 0) = n1 when r < R/3 and n2 when r 2
h

R

3 ,R
i
, with n1/n2 = 8. Results for 104

shells (blue dots) are compared with those obtained with 106 shells (red line).

The third case here considered concerns the shock formation in a Coulomb ex-

plosion [4, 8]. The phenomenon arises when the initial ion distribution is not

uniform, in particular if the inner density is larger respect to the outer one. In fact,

in this case the electric field has a maximum inside the plasma region (while it de-

pends linearly on r if the ion density is constant) and consequently inner particles

acquire higher kinetic energy with respect to the outer ones and can “overtake”

them. In the situation considered in Figs. 5 and 6, an ion plasma made of only

one species presents two regions with di↵erent density for t = 0. Figure 5 reports

the value of the radial coordinate r(r0, t) of the ions as a function of their initial ra-

12
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Figure 6: Ion phase-space distribution at di↵erent times (t = 0 ÷ 1.47) for the same case of Fig. 5.

Results for 104 shells (blue dots) are compared with those obtained with 106 shells (red line).

dius, r0, for di↵erent times, while in Fig. 6 the phase-space distribution is plotted.

The results here reported show the ability of the shell method to analyze cases in

which the density, in theory, may become infinite in some point; in fact, results

obtained with a relative low (104) and with a very large (106) number of shells are

in perfect agreement.

3. The ring method

In the case of axial symmetry the fundamental “brick” for a N-body tech-

nique is a ring. More precisely, tori having circular cross section (of radius a) are

considered here. The tori shares the same axis of symmetry (the z axis) and are

13
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characterized by their radii, Ri, and axial coordinates, zi (as in Fig. 7). When N

tori are considered, the electrostatic energy of the system can be written as:

U = 1
2
X

i, j

qiq j'ring(Ri,Rj, zi � z j) +
NX

i=1

q
2
i
Utorus(Ri, a), (24)

where 'ring(R,R0, z0) is the potential generated by a unit charge distributed on a

ring (i.e., a torus with a = 0) of radius R laying on the xy plane in a point of polar

coordinates (R0, z0), while Utorus(R, a) is the potential energy of a torus of unitary

charge. The potential 'ring(R; R
0, z0) can be evaluated1 in terms of the complete

elliptic integral of the first kind [9]:

K[x] =
Z ⇡/2

0

d↵
(1 � x sin2 ↵)1/2

, (27)

as

'ring(R; R
0, z0) =

2K[⇠]
⇡s
, (28)

being

s = [(R + R
0)2 + z

02]1/2, ⇠ =
4RR

0

s2 . (29)

1As a generic point of the ring has coordinates (R cos(#),R sin(#), 0) and the point where the

potential has to be evaluated has coordinates (R0, 0, z0), the potential 'ring can be written as

'ring =
1

2⇡

Z 2⇡

0

1
(R2 + R02 + z02 � 2RR0 cos ✓)1/2 d ✓, (25)

By introducing the new integration variable ↵ = ✓2 � ⇡2 , the formula for 'ring becomes:

'ring =
2q

⇡

Z ⇡/2

0

1
h
(R + R0)2 + z02 � 4RR0 sin2 ↵

i1/2 d↵, (26)

from which Eq. (28) immediately follows.

14
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z = zi 

Figure 7: Scheme of a torus.

The calculation of Utorus(R, a) is reported in detail in the Appendix. For the

case of interest in which a ⌧ R, one has:

Utorus(R, a)⇠� 1
2⇡R

"
log
✓

a

8R

◆
� 1

4

#
. (30)

From Eq. (30), it can be noticed that Utorus diverges for a ! 0, and this is the

reason why tori are considered and not simply rings. Instead, in calculating the

interaction energy between tori, the value of 'ring is employed, as it is supposed

that when a ⌧ R the energy of two tori or two rings is essentially the same.

Now, the equations of the motion for the set of rings are derived. In order to write

the Lagrangian of the system, the kinetic energy

NX

i=1

mi

2

⇣
Ṙ

2
i
+ ż

2
i
+ R

2
i
'̇2

i

⌘
(31)

must be considered. By introducing the momenta pR,i, pz,i, and p',i:

pR,i = miṘi, pz,i = miżi, p',i = miR
2
i
'̇i, (32)

15
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one finally obtains the Hamiltonian H of the N interacting rings as:

H =

NX

i=1

1
2mi

0
BBBBB@p

2
R,i + p

2
z,i +

p
2
',i

R
2
i

1
CCCCCA+1

2
X

i, j

qiq j'ring(Ri,Rj, zi�z j)+
NX

i=1

q
2
i
Utorus(Ri, a),

(33)

and the equations of the motion:
8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

d R↵

d t
=

pR,↵

m↵
,

d z↵

d t
=

pz,↵

m↵
,

d pR,↵

d t
=

p
2
',↵

m↵R
3
↵

� P
�,↵

q↵q�
@

@R↵
'ring(R↵,R�, z↵ � z�) � q

2
↵

@

@R↵
Utorus(R↵; a),

d pz,↵

d t
= � P

�,↵
q↵q�

@

@z↵
'ring(R↵,R�, z↵ � z�).

(34)

The angular momenta p',↵ are constants of the motion. The partial derivatives of

'ring can be readily evaluated considering that:

d K[x]
d x

=
E[x] � (1 � x)K[x]

2x(1 � x)
, (35)

being E[x] =
R ⇡/2

0 (1 � x sin2 ↵)1/2d↵ the complete elliptic integral of the second

kind [9]. Equations (34) have been deduced by considering only electrostatic in-

teraction in non relativistic limit. In principle, the method can be readily extended

to include relativistic particles and magnetic field (with axial symmetry). To test

its accuracy, the ring method has been employed to simulate the expansion of an

ion sphere of uniform density, for which a simple analytic solution exists. The

same normalizaion of the physical quantities of Sect. 2.5 is used here. The initial

ring distribution {Ri, zi} has been generated in two di↵erent ways: 1) by divid-

ing the initial [R, z] domain (i.e., a half circle of radius R0) into a number N of

16
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small squares, each corresponding to the cross section of a ring; 2) by suitably

taking a set of {Ri, zi} in a random way in order to obtain a uniform charge den-

sity. The radius ai of the section of each ring has been chosen as proportional

to Ri, i.e., ai = k · Ri. The constant k has been determined by requiring the po-

tential energy of the set of the rings to be equal to the exact value of the energy

of the sphere. Figures 8, 9 and 10, 11 refer to method 1 and method 2, for ring

loading, respectively. In Figs. 8 and 9 the time evolution of the phase-space dis-

tribution, as obtained with the ring method, is shown and it is compared with its

analytical behavior. Figures 10 and 11 show the total kinetic energy of the ions,

E = PN

i=1
mi

2 v2
i
(t), as a function of t; moreover, the behavior of [E(t) � Er(t)]/E,

where Er(t) =
P

N

i=1
mi

2

h
v2

i
(t) · er,i(t)

i
is the kinetic energy due to the motion in ra-

dial direction, is also presented. Obviously, in the exact solution Er(t) ⌘ E(t), so a

value of
���E�Er(t)
E
���⌧ 1 is expected. All the numerical results presented in Figs. 8, 9,

10, 11 are in excellent agreement with the theory.

The second group of results here presented concerns the Coulomb explosion

of an ion plasma having initially a cylindrical form. These are cases of practical

interest, as they simulate the ion acceleration of the positive ions of a thin solid

target after interaction with a ultra intense laser pulse. Two cases are considered,

in which the cylinder has di↵erent aspect ratio. Figures 12 and 13 show the trajec-

tories of the ions and the angular distribution of the kinetic energies for the first

case. The same physical quantities are presented in Figs. 14 and 15 for the second

case. In the Figures, the results of the ring method are compared with those ob-

tained by using a PIC code developed by the Authors 2. The agreement between

2The code makes use of an (R, z) uniform grid that is expanding in order to follow the motion of

the particles. Moreover, the electrostatic potential is calculated at the border of the computational

17
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Figure 8: Phase-space distribution at di↵erent times (t = 4 ÷ 36) of a spherical ion plasma in

the case of ring loading with method 1. Results obtained with the ring method (blue dots) are

compared with the analytic solution (red lines).
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Figure 9: Same as Fig. 8 in the case of ring loading with method 2 (t = 4 ÷ 36). Results obtained

with the ring method (blue dots) are compared with the analytic solutions (red lines).
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Figure 10: Time evolution of the total kinetic energy of the ions (blue line) and of the fraction

of the perpendicular kinetic energy (red line) obtained with the ring method for the same case of

Fig. 8 (method 1 for ring loading). Results obtained with the ring method are compared with the

analytic solutions (black stars).
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Figure 11: Same as Fig. 10, using method 2 for ring loading.
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Figure 12: Particle trajectories for the Coulomb explosion of an ion plasma having initially a

cylindrical shape (the ratio between initial radius R and height H is equal to 0.1) for t = 0 ÷ 4.

Results obtained with the ring method (blue lines) are compared with those obtained with the PIC

method (red dotted lines).
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Figure 13: Angular distribution of E/m for the case of Fig. 12 for t = 0÷ 4. Results obtained with

the ring method (blue lines) are compared with those obtained with the PIC method (red dotted

lines).
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Figure 14: Same as Fig. 12, but for a cylinder with H/R = 1 for t = 0 ÷ 10. Results obtained with

the ring method (blue lines) are compared with those obtained with the PIC method (red dotted

lines).
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Figure 15: Same as Fig. 13, but for a cylinder with H/R = 1 for t = 0 ÷ 10.
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the two techniques is excellent.

4. Final considerations

The results presented in the paper and all the tests that have been performed

prove the e↵ectiveness of the numerical technique here proposed. The interac-

tion between computational particles is not mediated by a grid and, as shown in

Sects. 2 and 3, the method can be deduced by using a Hamiltonian approach.

Consequently, all the physical quantities of interest (e.g., momentum, energy and

angular momentum) are conserved exactly by the method, and the only errors are

due to time discretization. This properly represents an important feature of the

method. When the problem has the required degree of symmetry, the methods

of shells and of rings can be usefully employed in two cases: 1) to obtain results

making use of a simple, easy-to-implement code; 2) to have reference results to

test more complex codes, in particular when the physical region occupied by the

plasma grows dramatically during the simulation. For these reasons, in the Au-

thors’ opinion the method can be regarded as a useful tool, in particular in the

study of laser-plasma interaction.

Appendix A. Electrostatic energy of a torus with a ⌧ R

With reference to Figure A.16, the electrostatic energy of a torus can be cal-

culated by dividing the cross section S in a large number of subdomains. Each

of them generates an electrostatic potential that can be approximated as the one

domain by summing the contributions due to all the rings; in this way, “exact” boundary conditions

are provided for the solver of the Poisson’s equation.
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of a ring. Indicating by �qi the charge of the i-th subdomain and by 'ring(xi; x j)

the potential in xi due to a unitary charge in x j, the energy of the torus can be

approximated by

Figure A.16: Cross section of a torus and coordinates employed in the calculation.

U ' 1
2

X

i, j

�qi�qj'ring(xi, x j). (A.1)

In the limit when the size of the subdomains tends to zero, one obtains

U =

Z

S

d2
xQ

Z

S

d2
xP�(xQ)�(xP)'ring(xP, xQ), (A.2)

where �(x) is the charge density for a unit cross section. If the torus is uniformly

charged and if a ⌧ R, one can assume

� ' q

⇡a2 = Const. (A.3)

In order to evaluate 'ring(xP, xQ), the parameters s and ⇠, defined in Eq. (29), must

be evaluated. One has:

⇠ =
4(R + x1,P)(R + x1,Q)

s2 , s =
h
(R + x1,P + R + x1,Q)2 + (x2,P � x2,Q)2

i1/2
.

(A.4)
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It turns out useful to introduce the quantity ⌘ = R +
x1,P+x1,Q

2 , such that R + x1,P =

⌘ +
x1,P�x1,Q

2 , R + x1,Q = ⌘ � x1,P�x1,Q
2 . In this way, ⇠ can be written as:

⇠ =
1 �
⇣

x1,P�x1,Q
2⌘

⌘2

1 +
⇣

x2,P�x2,Q
2⌘

⌘2 ' 1 �
✓
rPQ

2R

◆2
, (A.5)

with r
2
PQ
=
�
xP � xQ

�2. In fact, ⌘ is much larger with respect to |x2,P � x2,Q|  a, so

the approximation 1
1+✏ ' 1 � ✏ can be used; moreover, ⌘ can be approximated by

R. Making use of the asymptotic behavior of K[⇠] for ⇠ ! 1:

K[⇠]⇠
⇠!1
�1

2
log(1 � ⇠) + log 4, (A.6)

and assuming that s ' 2R, the following expression for 'ring(xP, xQ) is obtained:

'ring(xP, xQ) = � 1
⇡R

log
✓
rPQ

8R

◆
. (A.7)

Equation (A.7) can be employed in Eq. (A.1), which can be rewritten as

U =
�2

2

Z

S

d2
xQ'torus(xQ), (A.8)

being

'torus(xQ) = � 1
⇡R

Z

S

d2
xP log

✓
rPQ

8R

◆
. (A.9)

For xQ = 0, 'torus is readily evaluated:

'torus(0) = � 1
⇡R

Z
a

0
2⇡rdr log

✓
r

8R

◆
= �a

2

R

"
log
✓

a

8R

◆
� 1

2

#
. (A.10)

To calculate 'torus for a generic xQ 2 S , one can start by noticing that log(rPQ) is

proportional to the Green function for the two-dimensional Poisson’s equation:

r2
Q

log rPQ = 2⇡�
�
xQ � xP

�
. (A.11)
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So, by applying the Laplacian operator r2
Q

to Eq. (A.9), one obtains

r2
Q
'torus = �

1
⇡R

Z

S

d2
xP · 2⇡�

�
xP � xQ

�
= � 2

R
. (A.12)

Due to the symmetry of the problem, 'torus is a function of rQ = |xQ|, and the

Laplacian operator can be written as r2
Q
= 1

rQ

d
d rQ

rQ

d
d rQ

. Therefore, Eq. (A.12) can

be immediately solved, so obtaining

'torus(rQ) = 'torus(0) �
r

2
Q

2R
. (A.13)

Finally, the energy of the torus can be calculated by using Eq. (A.8):

U =
q

2

2⇡2a4 · 2⇡
Z

a

0
rQdrQ

2
666664'torus(0) �

r
2
Q

2R

3
777775 = �

q
2

2⇡R

"
log
✓

a

8R

◆
� 1

4

#
. (A.14)

Formula (A.14) is very accurate for a ⌧ R. If compared with the value of U

obtained from numerical integration of Eq. (A.1), the relative error is less than

0.5% for a/R < 0.2. A similar formula (without the term -1/4) has been deduced

in a concise, brilliant way in [10] by using the technique of asymptotic matching.
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