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Abstract

Current packet filters have a limited support for expressions based on protocol

encapsulation relationships and some constraints are not supported at all, such

as the value of the IP source address in the inner header of an IP-in-IP packet.

This limitation may be critical for a wide range of packet filtering applications,

as the number of possible encapsulations is steadily increasing and network op-

erators cannot define exactly which packets they are interested in. This paper

proposes a new formalism, called eXtended Finite State Automata with Predi-

cates (xpFSA), that provides an efficient implementation of filtering expressions,

supporting both constraints on protocol encapsulations and the composition of

multiple filtering expressions. Furthermore, it defines a novel algorithm that

can be used to automatically detect tunneled packets. Our algorithms are vali-

dated through a large set of tests assessing both the performance of the filtering

generation process and the efficiency of the actual packet filtering code when

dealing with real network packets.
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1. Introduction

While protocol encapsulations were rather simple in the past (e.g., TCP/UDP

in IP in Ethernet), new necessities, arising in particular from network virtualiza-

tion, are rapidly increasing the complexity of the protocol stack. This impacts

on the complexity of packet filters, which represent the basic building blocks5

for many applications such as firewalls and network monitors. In fact, while

on the one hand packet filters should be able to capture all the traffic of in-

terest (e.g., web traffic) independently from the actual encapsulations used at

the lower layers (e.g., plain Ethernet or a tunnel transporting IPv6 traffic over

IPv4 networks), on the other hand they should allow to finely select/filter only10

packets that include specific protocol encapsulations (e.g., PPP in GRE, TCP

in the second IP header instance of the packet).

Traditional packet filters, which are based on the existence of some protocol

and on the value of some protocol fields, do not allow such a precise selection

of traffic according to the encapsulations found in packets. For example, they15

cannot specify the value of the IP source address in the inner header of an

IP-in-IP packet.

The precise filtering of such traffic requires both a packet filtering language

that allows to express conditions on the encapsulation relationships between

protocols, and an efficient implementation of that language in order to cope with20

the speed of current networks. While the Network Packet Filtering Language

(NetPFL) [1] already addresses the first point, its implementation is still partial

and not optimized in case of complex protocol encapsulation rules [2].

Based on the above considerations, this paper brings the following contribu-

tions to packet filtering. First, it proposes the eXtended Finite State Automata25

with Predicates (xpFSA), a new formalism to represent filtering expressions and

that extends the pFSA (Finite State Automata with Predicates) packet filtering

model [3]. Like its ancestor, xpFSA guarantees the optimal number of checks on

packet fields in order to identify their possible match of the filtering expression,

even in case of composition of multiple filters. In addition, it introduces counters30
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and elementary operations that reduce the number of states of the automaton,

which results in a more efficient generation of the executable code implement-

ing the packet filter. Second, the paper defines an algorithm that transforms

filtering expressions (potentially including complex protocol encapsulation con-

straints) into xpFSA, which completely replaces the automaton building process35

defined for pFSA and that cannot be used in case of complex encapsulation pat-

terns. Third, it proposes a novel algorithm that can be used to automatically

assign protocols to network layers, which is exploited to detect tunneled encap-

sulations.

In order to evaluate our algorithms and the filtering code generated from a40

xpFSA, we implemented them into the NetBee library [4]. Notably, our imple-

mentation does not require a priori protocols definition; in fact, it exploits a

protocol database provided at run-time that can be easily extended or modified

in order to recognize any new protocol and/or encapsulation, according to the

properties of the NetPDL language [5]. In other words, our implementation45

can support both current and future protocols and encapsulations seamlessly,

provided that the proper description is included in the protocol database.

This paper is structured as follows. Section 2 discusses the related works,

while Section 3 summarizes the main characteristics of the NetPFL language and

the pFSA packet filtering model. Section 4 presents the xpFSA model, while the50

algorithm to transform a NetPFL filtering expression into a xpFSA is detailed

in Section 5. Section 6 shows the algorithm that automatically associates pro-

tocols to network layers. Section 7 provides an overview of the implementation;

experimental results are then shown in Section 8, while Section 9 concludes the

paper.55

2. Related Work

Despite the high number of publications on packet filters, at the best of our

knowledge none of them proposes a solution able to handle filtering conditions

with protocol encapsulation constraints. For example, neither libpcap [6], repre-
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senting the foundation of many packet filtering tools (e.g., tcpdump, Wireshark),60

nor the Wireshark display filters [7] (which replace the basic filtering capabil-

ities of libpcap when packets have to be shown on screen) support such filter-

ing expressions. Instead, the Network Packet Filtering Language (NetPFL) [1]

supports protocol encapsulation patterns in the language definition, but its im-

plementation is partial and limited to traditional packet filters with simple en-65

capsulation rules [2].

Traditional packet filters, such as the CMU/Standford Packet Filter [8],

the BPF [6] and BPF+ [9], PathFinder [10] and the Dynamic Packet Filter

(DPF) [11], focus more on the filtering architecture (a.k.a., virtual machine),

leaving less attention to the programming abstraction. Moreover, they do not70

support constraints on protocol encapsulation patterns and rely on ad hoc opti-

mizations often inspired by compiler-oriented techniques, which are then applied

to the code to be executed.

To support filtering expressions including protocol encapsulation constraints,

this paper proposes xpFSA, namely an extension of the pFSA packet filtering75

model that enables to reuse optimal composition rules and optimization tech-

niques defined in the automata theory [12]. In fact, the idea of extending an

FSA is not new when looking at the broader field of packet processing; for in-

stance, xpFSA takes some inspiring idea from the following proposals, although

none of them was designed (nor able) to satisfy our objectives, some not being80

able even to filter packets.

The eXtended Finite Automata (XFA) [13] formalism augments traditional

FSA with a finite memory and generic executable code to manipulate this mem-

ory, which is oriented to improve efficiency of signature matching in network

intrusion detection systems. Similar ideas can be found also in the Extended85

Finite State Automata (EFSA) [14], which extends traditional FSA with fi-

nite sets of variables in order to model fast intrusion detection and prevention

systems. However, its design goals are rather different, as EFSA is used to

monitor sequences of system calls, which also requires a completely different

algorithm to build the automaton. Similar considerations hold also for pfsr [15],90
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a predicate-augmented finite state recognizer that aims at simplifying the FSA

used in natural language processing. Ruler [16] is a packet rewriter designed to

anonimize traffic traces, which can also be used for packet filtering. It exploits

a generalization of the FSA model called Tagged DFA [17] and uses variables

to store the current position in the input string. FlowSifter [18] and COPY [19]95

extend context free grammars, regular grammars and automaton with predi-

cates on transitions, variables and actions. Particularly, they define Counting

Regular Grammars (CRG) [18] and Distinguishable Counting Regular Gram-

mars (DCRG) [19] as extensions of regular grammars that use counters; albeit

their theoretical degree of expressiveness is equivalent to our proposal, the im-100

plementation is rather different and targets a diverse use case. In fact, they

aim at efficiently parsing application layer protocols (e.g., Facebook, Youtube)

and extract fields of such protocols, while the goal of our work is to recognize

packets satisfying constraints expressed on protocol encapsulations, with strong

requirements in terms of real-time recomputation of the filtering code.105

The Stateless FSA-based Packet Filter (SPAF) [20] model for packet filter-

ing, which is the predecessor of pFSA and xpFSA, guarantees code optimality

and safety, and it could be used to represent filtering expressions that include

protocol encapsulation constraints. However, it is extremely slow in the au-

tomata generation phase because of the large number of generated states, and110

it is therefore suitable only for applications that can tolerate long filter genera-

tion time.

Finally, an early ancestor of the algorithm described in this paper has been

presented in [2]; however, that algorithm does not support filters including the

header indexing, the tunneling constraint and predicates on protocol fields (de-115

scribed in Section 3.1).
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3. Background

3.1. Network Packet Filtering Language (NetPFL)

The NetPFL [1] is a declarative high-level language aimed at describing the

conditions that a packet must satisfy in order to be accepted. Unlike other lan-120

guages for packet filtering, NetPFL does not define any protocol header and

encapsulation by itself, but it exploits definitions described externally, e.g.,

through the Network Packet Description Language (NetPDL) [5]. Moreover,

NetPFL filtering expressions, or header chains, extend the traditional condi-

tions based on the existence of some protocols and on the value of some pro-125

tocol fields with conditions based on protocol encapsulation patterns, such as a

specific chain of protocol headers.

This is achieved with the in and notin keywords, requiring respectively that,

within a packet, the left-hand protocol is directly encapsulated into the right-

hand one, or that the left-hand protocol is encapsulated in any protocol but130

the right-hand one. For instance, tcp in {ip,ipv6} matches packets having

TCP directly encapsulated in IP or IPv6, while tcp notin ip accepts packets

in which TCP is encapsulated in any protocol but IP. To define an encapsulation

in which any protocol is valid, the literal any can be used; as an example, tcp

in any in ppp is satisfied by packets having the TCP header encapsulated in135

any protocol, in turn encapsulated in PPP. Notably, the sequence of protocols

specified in the filtering expression could start anywhere in the packet, there-

fore it could be preceded and followed by any protocol repeated an unspecified

number of times.

Repetition operators describe conditions in which one or more protocols may140

occur a variable number of consecutive times in a certain position of the packet.

In particular, “+” means one or more occurrences of the given protocol, “∗”

corresponds to zero or more, while “?” means zero or one. For example, the

filter ip in vlan* in ethernet accepts the packets having IP encapsulated in

zero or more consecutive VLAN headers, preceded by an Ethernet header.145

More complex filters based on protocol encapsulations are available as well.
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For instance, tcp.sport==80 in (ip.src!=10.0.0.1)+ in ethernet matches

packets having the TCP protocol encapsulated in a sequence of one or more con-

secutive IP headers, in turn encapsulated in Ethernet; furthermore, the TCP

source port must be equal to 80, while the source address of each IP header150

must be different from 10.0.0.1.

The header indexing construct selects a particular occurrence of a protocol

header within the packet; for instance, tcp in ip%2.src==10.0.0.1 matches

all packets having TCP directly encapsulated in the second IP header of the

packet, whose source address must be 10.0.0.1. The tunneling constraint re-155

quires instead that a particular protocol is encapsulated in a tunnel (e.g., ipv6

tunneled); note that NetPFL does not indicate when a protocol is involved in

a tunnel, which is left to the protocol database language instead.

Finally, multiple conditions on packets can be defined using the Boolean

operators and and or. For instance, the filtering expression (ip.src==1.0.0.1160

tunneled) and (ip.dst==192.168.0.1 tunneled) and tcp.sport==2501 and

tcp.dport==80 identifies a TCP section encapsulated in a tunnel.

3.2. Finite State Automata with Predicates (pFSA)

A pFSA [3] is an augmented FSA in which a transition may depend on

the input symbols and on the value of a Boolean predicate associated with the165

transition itself; therefore it is called transition with predicates or p-transition.

Notably, for each p-transition exiting from a state and firing if a predicate p is

satisfied, there exists another p-transition exiting from the same state and that

is triggered in case such a predicate is not satisfied.

When the pFSA is used to model filtering expressions, each state is associ-170

ated with a network protocol and it is reached when that protocol is encountered

inside the packet under analysis1. Instead, predicates associated with transitions

1Two exceptions hold for this rule: (i) the starting state, which is associated with a

“dummy” protocol (called Startproto in the following) and representing the state of the au-

tomaton before starting the analysis; (ii) the state representing the non-accepting condition,

not associated with any protocol and reached if the processed packet does not satisfy the filter.
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consist of “basic blocks” in the form ‘‘protocol.field operator value’’,

possibly combined together with Boolean operators (e.g., tcp.sport==80 or

tcp.dport==80), which allow the transition to fire if the specified conditions175

are satisfied.

Pairs of p-transitions are modeled with another FSA, which sits on top of

the base automaton and is evaluated when a predicate is encountered during

the execution of the pFSA, in order to determine which of the two transitions

must be triggered.180

Figure 1 shows the pFSA representing the NetPFL filter ip.src==10.0.0.12,

which is matched if at least one of the IP headers of the packet satisfies the con-

dition, leading to the final accepting state (double-circled). When the base

pFSA reaches a pair of p-transitions, the control is transferred to the pFSA

sub-automaton implementing the associated predicate; the resulting value (true185

or false) is then returned to the main automaton in order to fire one and only

one transition (the transition associated with the label p in case the predicate

is satisfied, the one associated with the label !p otherwise).

The traditional algorithms and optimizations available for FSA have been ex-

tended for pFSA. Hence, if the filtering expression joins together multiple condi-190

tions through Boolean operators (e.g., tcp.sport==58018 and tcp.dport==80),

a different pFSA is created for each condition, which are then combined in a

single automaton representing the entire filter with optimality guarantees.

When a pFSA is used for packet filtering, the states of the automaton, its

transitions and its set of input symbols derive from the protocol encapsulation195

rules defined in an external protocol database. Those rules can be represented

with the Protocol Encapsulation Graph (PEG), a directed, potentially cyclic

graph that models the encapsulation relationships among protocols. As shown

in Figure 23, each node of the PEG corresponds to a different protocol, while

2Note that, for the sake of clarity, the final non-accepting state and all the transitions that

lead to it are omitted in Figure 1 and in any other automaton of the paper. Moreover, the

symbol ∗ is used to indicate transitions that fire for every input symbol.
3Unless otherwise specified, the PEG in Figure 2 is referenced in all the examples of the
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Start Eth
{start-eth} {eth-ip}/p

* 

IP

IP

{eth-ip}/!p

{ip-ip}/p

{ip-ip}/!p

src

*

OK

FAIL

*

10.0.0.1

!(10.0.0.1)

src==10.0.0.1

p:  ip.src == 10.0.0.1

predicate true

predicate 
false

Figure 1: pFSA representing the NetPFL filter ip.src==10.0.0.1.

the edge from X to Y means that, within a packet, protocol Y could be directly200

encapsulated into X. Each symbol of the pFSA alphabet represents a different

encapsulation rule and its name comes from the involved protocols: the name

of the originating one first, the target last (e.g., the symbol eth-ip represents

the encapsulation rule among Ethernet and IP).

Note that not all input symbols can be received while the control of the pFSA205

is in a given state. For instance, the symbol eth-ip can be only received when

the pFSA is in the state associated with Ethernet, while the symbol tcp-http

can be received only while the automaton is in the “TCP” state.

4. eXtended FSA with Predicates

An eXtended Finite State Automaton with Predicates (xpFSA)210

is an extension of the pFSA model that: (i) associates input symbols with

operations on counters; (ii) associates p-transitions with predicates that check

paper.
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Start Eth

IP

IPv6 TCP

UDP

VLAN

Figure 2: Example of Protocol Encapsulation Graph (PEG).

the value of such counters. This reduces the number of duplicate states and

hence the cost of composition algorithms, which often depends on the number

of states.215

Formally, an xpFSA is defined with the following seven-tuple:

Axpfsa = (Q,C, Ωc, Σo, δp, q0, F )

where:

Q is a finite set of states;

C is a finite set of counters;

Ωc is a finite set of operations on the counters defined in C;220

Σo is the set of input symbols, each one potentially associated with a set of

operations among those defined in Ωc;

δp is the transition function with predicates (p-transition), where possible

conditions can take into account also the counters defined in C;

q0 is the starting state, among those in Q ;225

F is a set of accepting states, among those in Q.

As in pFSA, each state Q of an xpFSA used for packet filtering is asso-

ciated with one network protocol (with the exceptions already mentioned in
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{eth-ip}

{ip-ip}/p

{ip-ip}/!p
{ipv6-ip}/!p

Start
{start-eth}

* 

IP

IP

IPv6

{eth-ipv6}

{ip-ipv6}

p:  ip.cntr == 3
{ipv6-ip}/p

Symbol Operation(s)

eth-ip ip.cntr++

ip-ip ip.cntr++

ipv6-ip ip.cntr++

vlan-ip ip.cntr++

Eth

VLAN

{eth-vlan}

{vlan-vlan}

{vlan-ip}

{vlan-ipv6}

Figure 3: xpFSA modeling the NetPFL filter ip%3.

footnote 1); instead, input symbols originate from the encapsulations available

in the PEG and can be potentially associated with a set of operations on coun-230

ters, among those defined in Ωc. When the control of the automaton receives

a symbol, it performs the required operation(s) before triggering the proper

transition(s).

An example of xpFSA using counters is depicted in Figure 3, which models

the NetPFL rule ip%3 and is built referring to the PEG of Figure 2. This235

automaton associates the operation ip.cntr++ with the symbols having IP as

a target protocol (i.e., all the symbols underlined in Figure 3); hence, each

time that one of these symbols is received, the variable ip.cntr is incremented.

Moreover, some p-transitions evaluate the value of this counter to determine

whether the final accepting state can be reached or not. Notably, the same240

xpFSA shown in the picture can be used to evaluate all filters ip%n by simply

changing the value of ip.cntr checked in predicate p.

4.1. Determinism and FSA-related algorithms

Being xpFSA derived from pFSA, most of the definitions and algorithms

presented in [3] are valid here as well. For instance, an xpFSA is deterministic245

if it does not include any ε transition (i.e., transitions that do not require any
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input symbol to fire) and, for each input symbol and for all possible values of the

Boolean predicates, there is exactly one enabled outgoing transition, which is

the same definition given in [3]. The same applies with the algorithms for com-

plementation, determinization and minimization; instead, the union algorithm250

requires a new definition as it is influenced by counters introduced in xpFSA.

Particularly, the union algorithm is extended as follows: the set of counters of

the automaton resulting from the union of two xpFSA, is the union of the sets

associated with the two contributing automata. Each of the input symbols of

the resulting automaton is then associated with the union of the sets of oper-255

ations associated with the same symbol in both the original xpFSA. Finally,

the intersection can be implemented through the complementation and union

algorithms according to the first De Morgan’s law, hence it is only indirectly

influenced by extensions defined in xpFSA.

5. Modeling filtering expressions through xpFSA260

The generation of the filtering code implementing a given filtering expression

is a complex process that requires the execution of several steps, which are

summarized in left side of Figure 4. As shown, the filtering expression is first

transformed into an automaton representing the filter itself (e.g., pFSA, xpFSA),

by taking into account all the possible encapsulations that may be found in265

analyzed packets and that are described through a PEG. After creating the

automaton, the corresponding code must be emitted, which implements the

behavior of the automaton itself. Such a code must then be optimized, in order

to finally obtain an efficient packet filter that can be exploited to analyze and

filter packets flowing in a given portion of the network.270

Particularly, this section focuses on the automaton generation step, which

corresponds to the first step in Figure 4, and presents our algorithm that, start-

ing from a protocol database modeled as a PEG and a filtering expressions

potentially including constraints on protocol encapsulations4, creates the corre-

4In fact, our algorithm can create automata modeling both traditional filters expressing
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sponding xpFSA, which is later used to generate the executable code actually275

implementing the packet filter.

filtering expression
(e.g., tcp.dport==80 in ip tunneled)

automaton
generation

packet filter

filtering code 
generation

filtering code 
optimization

xpFSA
ip

ethstart

ipv6

ip

e.g.:

PEG

filtering code implementing
the automaton

accept

reject

incoming packets

NetPFL to xpFSA skeleton
(Section 5.1)

defining input symbols and counters
(Section 5.2)

labeling transitions and managing 
predicates

(Section 5.3)

determinization of the automaton
(Section 5.4)

identification of states representing a 
single protocol
(Section 5.5)

expansion of states and transitions
(Section 5.6)

final xpFSA
(Section 5.7)

combination of multiple filters
(Section 5.8)

xpFSA generation

packet filter

xpFSA

PEGfiltering expression

Figure 4: From the filtering expression to the packet filter: an overall view of the process.

The proposed algorithm deeply differs from the one defined in [3] (Sec-

tion V-E) to build pFSA, which basically obtains the automaton by removing

all the useless edges from the PEG, and potentially enriches transitions with

sub-automata evaluating predicates expressed on protocol fields. As a matter of280

fact, although the pFSA formalism is able per se to model filters with protocol

encapsulation constraints (even if, in some cases, not optimized in the number

of states), the creation algorithm defined in [3] cannot create the automaton

constraints on protocol fields (e.g., tcp, ip.src==10.0.0.1 and ip.dst==10.0.0.2) and filters

that specify protocol encapsulation rules (e.g., tcp.sport==80 in ip, ip%2).
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actually representing such filters. As an example, the filter tcp in ip in ip

requires at least two consecutive instances of IP before TCP, and this cannot285

be modeled by just pruning the undesired edges from the PEG.

As shown in right of Figure 4 and detailed in the remainder of this section,

the new building algorithm is rather complex and has to follow a different ap-

proach to create the xpFSA: it first builds a basic automaton by considering

the filtering constraints, which is then enriched according to the information290

described in the PEG.

5.1. NetPFL to xpFSA skeleton

The goal of this step of the algorithm is to create a first automaton out of the

NetPFL filtering expression and then associate each state with one or more pro-

tocols. This automaton is created starting from the in/notin constructs, while295

the header indexing, the tunneling constraint and the predicates on protocol

fields will be considered later.

To convert the filtering expression into an automaton, the NetPFL statement

is split in a number of tokens, each one defined as:

[in|notin] {proto1,...} [repetitionOp]300

where the elements have the same meaning introduced in Section 3.1.

Each token, starting from the rightmost one, is then converted in a different

block of the automaton through the translation rules depicted in Figure 5, which

come from the automata theory [12]. All the blocks are then connected in order,

and the rightmost state represents the accepting state of the automaton. Since305

the header chain can be matched everywhere into the packet, a further state is

added at the beginning of the automaton5, which includes a self loop firing with

any input symbol; an identical self loop is then added over the accepting state.

The new leftmost state is associated with all the protocols of the PEG, as

each protocol is potentially allowed before those matching the header chain.310

5We can optimize filters having Startproto in the rightmost position: since this protocol

represents the beginning of the packet, this state is omitted.
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ε
ε

proto*proto proto?proto+

Figure 5: Building blocks of the automaton.

Each other state is instead associated with the protocols contained in the token

from which it derives in case of the keyword in, or with all the protocols of

the PEG excluding those listed explicitly in that token in case of the keyword

notin. If the state is reachable also through an ε transition, the above protocols

are integrated with those associated with the preceding state. In fact, whenever315

the automaton control is in the origin state of the ε transition, it is also in the

target state of such a transition; therefore, its destination state is reached also

when a protocol leading to its source state is encountered within the packet.

Figure 6 depicts the xpFSA skeleton built from the NetPFL filtering expres-

sion tcp.sport==80 in {ip,ipv6}+ in ethernet and from the PEG shown320

in Figure 2. Moreover, it shows the token from which each building block de-

rives (at the top), and the protocols represented by each state (in the boxes at

the bottom).

5.2. Defining input symbols and counters

Input symbols derive from the protocol encapsulation rules available in the325

PEG. For example, the edge (in the PEG) from IP to IPv6 originates the symbol

ip-ipv6, which will be received by the automaton if the IPv6 header is directly

encapsulated in IP within the analyzed packet. Each input symbol is then

associated with a (potentially empty) set of operations to be executed when

such a symbol is received, before triggering the proper transition(s).330

Particularly, to model filtering expressions it is enough to increment coun-

ters. As described in the following, the rules for defining counters and for asso-

ciating the operation(s) with the proper input symbols depend on whether the

filtering expression has to recognize a specific header instance (defined through

15



Startproto
Ethernet

VLAN
IP

IPv6
TCP
UDP

Ethernet TCP

ethernet {ip,ipv6}+ tcp

IP
IPv6

NetPFL:  tcp.sport==80 in {ip,ipv6}+ in ethernet

*
*

NetPFL:  tcp.sport==80 in {ip,ipv6}+ in ethernet

token 3 token 2 token 1

Figure 6: Skeleton of the xpFSA.

the header indexing construct) or it has to identify a protocol involved in a335

tunnel (specified through the tunneling constraint).

In fact, for each header indexing that refers to a different protocol, a new

counter is created, whose name is in the form proto.cntr. The increment

of this variable is then associated with those input symbols representing the

identification of an instance of proto inside a packet. Considering the filter340

ip%2, the variable ip.cntr is defined and the operation ip.cntr++ is associated

with input symbols leading to IP, such as eth-ip and ip-ip.

Instead, each tunneling constraint that refers to a protocol of a different

layer originates a counter whose name is in the form Ln.cntr, where n is a

number representing the network layer of the protocol that must be involved in345

the tunnel. The operation Ln.cntr++ is then associated with all symbols leading

to a protocol belonging to a layer greater than, or equal to n6. As an example,

consider the filter ip tunneled; IP belongs to layer 3, then the counter L3.cntr

is defined and the operation L3.cntr++ is associated with symbols leading to

6In fact, a protocol header is encapsulated in a tunnel if the layer of at least one of the

protocol headers preceding it in a packet is greater than, or equal to, the layer of the protocol

that is being considered.
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ε

{ip-ip,ipv6-ip}

IP
[IPv6]

IPv6

NetPFL: tcp in ip* in ipv6 in ethernet

{eth-ipv6} {ipv6-tcp,ip-tcp}

ε
Ethernet TCP
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IPv6
TCP
UDP

*

{start-eth}

Figure 7: Transitions labeling process.

protocols corresponding, at least, to layer 3 (e.g., eth-ip, ip-ipv6). It is worth350

noting that assigning a layer to each protocol may not be trivial; more details

will be presented in Section 6.

5.3. Labeling transitions and managing predicates

This step associates each non-ε transition with input symbols (defined ac-

cording to a specific PEG) and, potentially, with predicates.355

A transition is labeled with all the input symbols whose name satisfies the

following constraints: (i) the origin protocol is equal to one of the protocols

associated with the source state of the transition; (ii) the target protocol is

equal to one of the protocols specified by the NetPFL token from which the

destination state comes from. Hence, protocols associated with a state because360

of the ε transition cannot be target of the symbols leading to that state, as this

could cause the recognition of wrong packets.

For example, the dark state in Figure 7 is associated with IP and IPv6 but,

since the IPv6 association is due to the ε transition, IPv6 cannot be the target

protocol of the symbols on the self loop. This way, this automaton recognizes365

only sequences of protocols matching the filter (e.g., Ethernet - IPv6 - TCP,

Ethernet - IPv6 - IP - TCP, Ethernet - IPv6 - IP - IP - TCP). Instead, if IPv6

were the target of the symbols on the self loop, the automaton would also accept

sequences such as Ethernet - IPv6 - IP - IPv6 - IP - TCP, which does not satisfy

the filter to be modeled.370
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IPv6

{ipv6-ip}/p

IP

NetPFL: tcp in ip%2.src==10.0.0.1 in ipv6

p:  ip.cntr==2 && ip.src==10.0.0.1 

{vlan-ipv6,eth-ipv6,
ip-ipv6} {ip-tcp}

Startproto
Ethernet

VLAN
IP

IPv6
TCP
UDP

TCP

*

{ipv6-ip}/!p

*

IP

Symbol Operation(s)

eth-ip ip.cntr++

vlan-ip ip.cntr++

ip-ip ip.cntr++

ipv6-ip ip.cntr++

Figure 8: Managing predicates.

An exception to these labeling rules is represented by the self loop on the

accepting state, which fires with any input symbol regardless of the protocol

associated with the state itself.

Transitions that remain unlabeled (because no input symbol derived from

the PEG satisfies the above rules) are removed from the automaton, since they375

can never fire.

Constraints on protocol fields, the header indexing construct and the tunnel-

ing constraint originate predicates to be evaluated on transitions. For example,

the predicate p in Figure 8 derives from the requirements on the source IP ad-

dress and on the header indexing expressed on such a protocol. As shown, the380

predicate is assigned to the transition leading to the state associated with the

protocol involved in the predicate itself (IP in the example); moreover, a new

state is created in the automaton, which is associated with the same protocol

but that is reached through a transition firing if the predicate is not satisfied.

Another example is depicted in Figure 9, which shows how the automaton385

representing the filter ip tunneled requires a p-transition towards the right-

most state, which fires only if at least another protocol of layer greater than, or
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NetPFL: ip tunneled
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ipv6-ip,ip-ip}/!p

IP

Figure 9: Deriving p-transitions form the tunneling constraint.

equal to 3 has already been encountered within the packet. Again, a new state

associated with IP is added to the automaton and reached in case the predicate

is not satisfied.390

As described in [3], each predicate is actually modeled with a sub-automaton

built on top of the xpFSA/pFSA; then, all the sub-automata associated with

the same p-transition are combined using the traditional composition algorithms

defined in the automata theory, which enable to obtain optimized xpFSA even

in case of multiple filtering conditions expressed on the same protocol.395

The process described above labels the transitions of the automaton of Fig-

ure 6 as depicted in Figure 10; as shown, a predicate is associated with tran-

sitions originating in the third state, because of the requirement on the source

port of the TCP header.

5.4. Determinization of the automaton400

The automaton created so far is now determinized according to the rules

defined in [3]. As an example, the determinization process transforms the au-

tomaton of Figure 10 into the one depicted in Figure 11.

Unfortunately, not only states may be associated with multiple protocols, but
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{ip-ip,ip-ipv6,ipv6-ip}
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Figure 10: Automaton with labeled transitions.

1 32
{start-eth}

{eth-ip,eth-ipv6}

4

*-{start-eth} {start-eth}

*-{start-eth,eth-ip,eth-ipv6}

{ip-ip,ip-ipv6,ipv6-ip}

{ip-tcp,ipv6-tcp}/p

*

{ip-tcp,ipv6-tcp}/!p

p:  tcp.sport==80NetPFL:  tcp.sport==80 in {ip,ipv6}+ in ethernet

5{start-eth}

*-{start-eth}

{start-eth}

Figure 11: Deterministic automaton representing the filtering expression.
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the state-protocol association might have been lost during the determinization405

process, as evident from Figure 11, which does not show any correspondence

between protocols and states. Then, the next steps of the algorithm manipulate

the automaton until each state is associated with one and only one protocol, so

that reaching a certain state corresponds to reaching a specific protocol within

a packet. This is needed to translate the xpFSA into actual executable code410

that can analyze and filter network traffic.

5.5. Identifying states representing a single protocol

A state corresponds to a specific protocol if all the symbols on its incoming

transitions share the second part of their name, i.e. the target protocol of the

encapsulation rules they represent is the same. Two exceptions are: (i) the415

initial state, which can be associated with startproto only if it does not have

any incoming transition; (ii) the accepting state, whose self loop is (again) not

considered. Each state that can be unequivocally associated with one and only

one protocol is then labeled with the protocol it represents.

After that a state has been labeled, the symbols on its outgoing transitions420

are removed if their originating protocol differs from the one associated with the

state itself. This is possible because symbols represent protocol encapsulation

rules; hence, if the current state is associated with IP, only the symbols leading

to a protocol encapsulated into IP can be received while the xpFSA is in that

state. Obviously, transitions remaining without symbols, and states that cannot425

be reached from the starting state of the automaton or that do not lead to any

accepting state, are removed.

This step transforms the automaton of Figure 11 into that shown in Fig-

ure 12, where states 2, 4 and 5 are associated with a specific protocol.

5.6. Expanding states and transitions430

Each unlabeled state U is now expanded in multiple states, each one asso-

ciated with a different protocol among those that are the target of the symbols

on the transitions leading to U . To model the situation in which the analysis
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1 32-Eth
{start-eth}

{eth-ip,eth-ipv6}

4-TCP

*-{start-eth}

{eth-vlan}

{ip-ip,ip-ipv6,ipv6-ip}

{ip-tcp,ipv6-tcp}/p

*

{ip-tcp,ipv6-tcp}/!p

p:  tcp.sport==80NetPFL:  tcp.sport==80 in {ip,ipv6}+ in ethernet

5-TCP

{start-eth}

Figure 12: Automaton after the association of some states with a specific protocol.

of the packet has not started yet, the initial state also originates a new state

associated with startproto and representing the new initial state of the au-435

tomaton, although no input symbol actually leads to such a protocol. As an

example, the dark state in the left of Figure 13 originates two new states in the

right, respectively representing the protocols IP and IPv6.

Each transition exiting from an expanded state is replaced with a new tran-

sition for each one of its symbols. In particular, each new transition starts in440

the new state representing the origin protocol of its symbol, and terminates in

the same state of the original transition. For example, the transition exiting

from the dark state in the left of Figure 13 originates two new transitions: one

labeled with ip-ipv6 coming from the new state associated with IP, the other

firing with ipv6-tcp and originating in the new state representing IPv6.445

Similarly, the transitions entering into an expanded state are replaced based

on the target protocol of their symbols. This way, the transition labeled with

{eth-ip,eth-ipv6,vlan-ip,vlan-ipv6} originates two transitions: one firing

with eth-ip and vlan-ip and leading to the new state representing IP, the

other labeled with eth-ipv6 and vlan-ipv6 and entering into the new state450

associated with IPv6. Figure 13 also shows that the self loop on an expanded

state originates new transitions that start and terminate on the proper new

states, according to the origin and the target protocol of their symbols.

Figure 14 depicts the automaton of Figure 12 after this step of the algorithm,

where states 1 and 3 have been expanded into multiple states. The symbols on455

the new transitions are not specified for the sake of brevity, and they can be

22



{eth-ip,eth-ipv6,
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Figure 13: Expansion of a state and the related transitions.

p:  tcp.sport==80NetPFL:  tcp.sport==80 in {ip,ipv6}+ in ethernet
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IPv6
TCP

vlan

2-Eth
{start-eth} {eth-ip}

{eth-ipv6}

IP

IPv6

{ipv6-ip}

{ip-ip}

{ip-ipv6}

4-TCP

{ipv6-tcp}/p

5-TCP

{ip-tcp}/p

*

{ipv6-tcp}/!p

{ip-tcp}/!p

1 3

Figure 14: Automaton after the expansion of unlabeled states.

easily derived from the protocols labeling the states.

5.7. The final xpFSA representing the filtering expression

The xpFSA created so far may include some states that do not have a path

to any accepting state: consequently, they can be removed without any loss in460

the semantic of the automaton. In some cases, the result of predicates operating

on protocol counters may already be known a priory, i.e., before the generation

of the filtering code. Then, transitions associated with predicates that are never

verified are removed from the automaton, while predicates that are always ver-

ified are removed from the corresponding transitions in order to avoid useless465

checks.

After the pruning of the useless (dark) states and transitions, the automa-
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p:  tcp.sport==80NetPFL:  tcp.sport==80 in {ip,ipv6}+ in ethernet

Start Eth
{start-eth} {eth-ip}

{eth-ipv6}

IP

IPv6

{ipv6-ip}

{ip-ip}

{ip-ipv6}

TCP

{ipv6-tcp}/p

{ip-tcp}/p

*

Figure 15: Final xpFSA representing the NetPFL filtering expression.

ton of Figure 14 becomes as shown in Figure 15, which is the final xpFSA

representing the NetPFL filter tcp.sport==80 in {ip,ipv6}+ in ethernet.

5.8. Combining multiple filters470

In case the NetPFL filter is composed of multiple conditions combined

through Boolean operators, the algorithm presented so far is executed for each of

them and the resulting automata are joined using the composition algorithm(s)

discussed in Section 4.1.

An example is shown in Figure 16, which depicts the xpFSA modeling the fil-475

tering expression (tcp.sport==80 in {ip,ipv6}+ in ethernet) or ip%27.

Particularly, the automata representing the two parts of the filter are shown

in Figure 16(a) and Figure 16(b), while Figure 16(c) shows the xpFSA model-

ing the entire expression. The set of counters in the final xpFSA is given by

the union of the set of counters associated with the two contributing automata;480

then, it is associated only with ip.cntr, needed to count the number of IP

header instances found in the packet. Moreover, each input symbol is associ-

ated with the union of the sets of operations associated with the same symbol in

the original xpFSA; in fact, all the symbols with IP as a target protocol execute

7In order to get a more readable xpFSA, this automaton has been build referring to a PEG

similar to that of Figure 2, but without VLAN.
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Figure 16: Composition of xpFSA with protocol encapsulation constraints through the

Boolean or operation.

the operation ip.cntr++ in the automaton of Figure 16(c).485

6. Automatic detection of tunneled protocols

In case the filtering expression to be modeled with xpFSA includes tunneling

constraints (e.g., tcp in ip tunneled, matching packets with the TCP header

encapsulated in an IP header instance involved in a tunnel), the algorithm

presented in Section 5 requires that each protocol in the PEG is associated with490

a layer. In fact, a protocol header is encapsulated in a tunnel if the layer of

at least one of the protocol headers preceding it in a packet is greater than, or

equal to, the layer of the protocol that is being considered.
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At the first sight, the layer can be inferred from the traditional ISO/OSI

protocol stack. For example, Ethernet belongs to layer 2, IP and IPv6 to layer 3,495

while TCP and UDP belong to layer 4. However, there are protocols for which

it might be difficult to choose the “right” layer. A good example is MPLS,

which may be present between Ethernet and IP; hence, it can be considered as

belonging to layer 2, to layer 3, or to an intermediate layer. Therefore, labeling

each protocol with a number indicating its “natural” layer can be a complex500

operation. Furthermore, a previous labeling might not be valid anymore if a new

protocol is added to the database (e.g., VLAN, which may lead to the MPLS

in VLAN encapsulation), as this operation may require an update of the values

assigned to protocols already in the database.

Starting from the observation that, to recognize tunnels, the exact layer505

associated with each protocol is not important per se but only when compared

to layers of other protocols, we propose an algorithm based on the PEG that

provides a strict ordering based on network protocols. For example, to identify

a tunneled IP, it is necessary that both IP and IPv6 are associated with the

same layer, but it is not important the actual value of such a layer.510

The algorithm acts as follows: (i) the layer value for all nodes in the graph is

set to INF (infinite), except for Startproto, which gets the value 1; (ii) the recur-

sive procedure defined in Algorithm 1 is called on the graph, starting from the

node representing Startproto. Particularly, method GetMinSuccessor returns

the smallest layer among those of a protocol successors, while GetMaxPredecessor515

returns the greatest layer among those of a protocol predecessors. In both cases,

self loops are not considered. More in detail, according to lines 20-24 of Algo-

rithm 1, each successor of the considered node is associated with a layer that

is equal to the current layer plus one, in case this new value is lower than the

layer already associated with that node. Then, if a node gets a layer that is520

equal to, or greater than the smallest layer among those of its successors, the

layer value for the node is potentially updated according to lines 11-17. The

algorithm terminates when all the nodes of the PEG are associated with a layer,

and the outcome does not depend on the order in which the nodes of the PEG
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Figure 17: Layer assignment example.

have been visited.525

The example in Figure 17(a) depicts a PEG where all protocols (except Start-

proto) are not associated with any layer. First, the procedure assigns to the suc-

cessors of Startproto, in this case Ethernet, the value ceil(layer(startproto)+1),

i.e. 2. The procedure is then repeated for Ethernet: all its successors (MPLS,

IP, IPv6) get the value 3, as shown in Figure 17(b). When the procedure visits530

the node related to MPLS, it notices that the node’s layer, which is 3, is equal

to the lower layer among those of its successors. Therefore, the layer value

for MPLS is updated to prevlevel+((nextlevel-prevlevel)/2), i.e. 2.5 as

shown in Figure 17(c). Because of the check in line 21 of Algorithm 1, the

successors of MPLS are not updated. Finally, IP and IPv6 are considered but,535

since prevlevel = nextlevel = 3 for both of them, line 15 of the algorithm

is not executed and their layers remain unchanged (Figure 17(d)).

7. Implementation

The proposed algorithm that transforms filtering expressions with proto-

col encapsulation constraints into xpFSA has been integrated in the NetBee540

library [4], whose overall architecture is shown in Figure 18. User-level tools

(e.g., nbeedump) receive as input the NetPFL rule to be executed and the Net-

PDL [5] protocol database. This information is then processed by an high-level

compiler [21] that, after several optimizations, emits the final filtering code un-
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Algorithm 1 Classifying each protocol of the PEG.

1: Procedure AssignProtoLevels (node n)

2:

3: if n.Visited then

4: return

5: end if

6:

7: node.Visited = true

8: minSuccessor = GetMinSuccessor(n);

9: nextLevel = (minSuccessor ? minSuccessor.Level : INF)

10:

11: if nextLevel ≤ n.Level then

12: maxPredecessor = GetMaxPredecessor(n)

13: prevLevel = maxPredecessor.Level

14: if prevLevel < nextLevel then

15: n.Level = prevLevel + ((nextLevel-prevLevel)/2)

16: end if

17: end if

18:

19: level = ceil(n.Level+1)

20: for all s ∈ n.successors do

21: if level < s.Level then

22: s.Level = level

23: end if

24: end for

25:

26: for all s ∈ n.successors do

27: AssignProtoLevels(s)

28: end for
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Figure 18: Overview of the building blocks to generate filtering code.

der the form of NetIL instructions, i.e., the assembly for the NetVM [22] virtual545

machine. NetIL can be either interpreted by the NetVM or translated in na-

tive code for different architectures (e.g., x86, x64, Cavium Octeon) thanks to

a multi-target compiler [23].

The algorithm presented in Section 5 is implemented in the xpFSA builder

module, which takes both the PEG (dynamically extracted from the NetPDL550

database by the PEG builder module, which also associates each protocol with

a layer using the algorithm described in Section 6) and the NetPFL rule and

builds the corresponding xpFSA. Then, the xpFSA lowering module generates

the corresponding NetIL code by translating each state of the automaton ac-

cording to the NetPDL description of the protocol associated with the state555

itself. Although the input symbols for the automaton are generated by a logical

separated module (i.e., the protocol scanner), its operations are implemented

by the same assembly program implementing the xpFSA, hence the NetIL code

corresponding to an xpFSA state contains both the code that implements the

automaton and the one that handles the encapsulations. Finally, the NetIL560
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optimizer executes a set of data and control flow optimizations on such a rep-

resentation; the resulting code is given as an input to the NetVM and, possibly,

further translated into native code (e.g., x64).

8. Validation

The work of this paper has been evaluated through a number of tests, de-565

scribed in the remainder of this section.

8.1. The influence of the protocol database

Before going into detail of our evaluation, it is worth to point out that the

time needed to create the automaton, and the total time required to generate

efficient filtering code out of xpFSA depend on the complexity of the protocol570

database, and hence on the PEG of reference. In fact, the former time increases

with the size of the PEG, which influences both the number of states and the

number of transitions exiting from each state. In turn, more states cause the

generation of more executable code while, at runtime, the number of outgoing

transitions may influence the time needed to determine which is the next pro-575

tocol of the packet. The code generation time also depends on the format of

each protocol, as it grows with the number and the complexity of protocol fields

(e.g., variable length fields require the generation of more instructions than fixed

length fields).

In our evaluation campaign we use several PEGs, which will be detailed580

in each specific test. However, in all the cases we use the official protocols

description provided with the NetBee library [4].

8.2. xpFSA creation, filtering code generation and filtering throughput

This section evaluates the performance of our algorithm to generate the

xpFSA that model filtering expressions with constraints on protocol encapsula-585

tions (Section 5), and the total time required by the NetBee library to generate
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efficient filtering code from xpFSA. Moreover, since our final goal is the pre-

cise filtering of packets, we also report the runtime performance of such packet

filtering code.

Notably, at the best of our knowledge no packet filter supports filtering590

expressions with constraints on protocol encapsulations, then we do not compare

the results of this section with those obtained through other approaches.

The sample filters are shown in Table 1, while Figure 19 reports the PEG of

reference and shows the network layer associated with each protocol, calculated

through the algorithm presented in Section 6. This PEG is quite realistic, since595

it includes several encapsulations and protocols commonly encountered nowa-

days on the Internet. Finally, tests are executed on a workstation equipped

with 16 GB RAM, 1TB hard disk @ 7200 rpm, Intel i7-3770 @ 3.40 GHz CPU

and Ubuntu 14.04 OS, kernel 3.13.0-49-generic, 64 bits. All test processes were

bound to a single processor, with hot disk and processor caches, and the ma-600

chine was otherwise unloaded. Time measurements were performed using the

gettimeofday UNIX function.

8.2.1. Filtering code generation time

According to Figure 20, the time required by our algorithm to create the

xpFSA is at least one order of magnitude lower than the time needed (by the605

NetBee library) to generate the optimized NetIL code implementing the specific

NetPFL rule, for almost all the considered filters.

Moreover, the picture highlights how the code generation time decreases by

increasing the selectivity of the filter, while the time needed to create the xpFSA

follows the opposite trend. For instance, this can be observed by comparing the610

sequence of filters #1, #2 and #3, or the sequence #1, #5 and #6, which both

define filters with an increasing degree of selectivity for matching TCP packets.

Notably, the generation of the automaton is slower if there are less protocols that

could match the initial state in the xpFSA skeleton (Section 5.1). In fact, our

algorithm first expands this initial state in most of the protocols defined in the615

PEG, then it prunes those states that are not necessary. Hence, less protocols
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Table 1: Sample NetPFL filtering expressions with protocol encapsulation constraints, and

percentage of packets matched in the traffic trace used in the evaluation.

# Filtering expression
% of

acceptance

#accepted

packets

#expected

packets

1 tcp 100 14045400 14045400

2 tcp in ip 66 9363600 9363600

3 tcp in ip in ethernet 33 4681800 4681800

4 tcp in ip in ethernet in startproto 33 4681800 4681800

5 tcp in ip in ppp in gre in ip 33 4681800 4681800

6 tcp in ip in ppp in gre in ip in ethernet 33 4681800 4681800

7 tcp in ip in ppp in gre in ip in ethernet in startproto 33 4681800 4681800

8 tcp in ip notin ethernet 33 4681800 4681800

9 tcp in ip tunneled 33 4681800 4681800

10 tcp in ip%2 33 4681800 4681800

11 tcp in ipv6 33 4681800 4681800

12 tcp in ipv6 in ip 33 4681800 4681800

matching this state mean more cuts in the automaton, which results in more

time to create the xpFSA. Instead, filters that explicitly mention startproto

(#4 and #7) immediately generate very compact automata (they do not have

the initial state to be expanded, since it is only associated with Startproto), and620

represent the fastest case for our algorithm that builds the xpFSA representing

a filtering expression.

Scalability - Counters reduce the number of states of the xpFSA, hence

the time required to generate the final code implementing the NetPFL filter.

Figure 21 shows this reduction through filters that require an increasing number625

of IP headers within valid packets, by reporting the number of states and the

filtering code generation time both in case the associated automata use coun-

ters and in case counters are not used. To this purpose, we modified our xpFSA

builder module so that it can also implement the NetPFL header indexing con-
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Figure 21: Advantage of using counters in xpFSA.

struct without using counters. The automata have been built using a PEG that630

includes only the dark states shown Figure 19.

Without counters, the number of states grows steadily with the number

of required IP headers, since the automaton representing ip%n consists in the

automaton associated with ip%(n-1), enriched with all paths leading from IP to

IP. Instead, with counters, we can observe an increase in the number of states635

only between filters ip and ip%2, while, from ip%2 onwards, the state count

remains constant. Then, in terms of complexity of the automaton, counters

bring advantages for filters requiring that a specific protocol header appears at

least twice in the packet.

Regarding the total compilation time, counters are beneficial from filter ip%4640

forward, and such an advantage increases with the number of required IP head-

ers. Instead, in case of ip%2, the cost of managing counters exceeds that required

to compile a further state in the automaton. With filter ip%3, the cost of coun-

ters is equivalent to that of managing three additional states, resulting in the

same compilation time regardless of the fact that counters are used or not.645

As a final remark, even if the reduction in the number of states, and hence of

the compilation time, is minimal in our example, it could be substantial both in

case of more complex filters, and in other fields different from packet filtering.

In [13], the advantage of the reduction of the number of states through the

assignation of instructions to the automaton has been demonstrated using the650
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XFA model in the field of string matching.

8.2.2. Filtering throughput

In order to evaluate the quality of the filtering code generated by xpFSA,

namely the x64 assembly program that actually analyzes and filters packets,

we executed the filters of Table 1 on a synthetic traffic trace composed of655

three packets of 700B8 repeated as many times as needed to obtain about

9.15 GB of traffic. Those packets aim at reproducing some common encap-

sulations, namely ethernet-ip-tcp, ethernet-pppoe-ppp-ip-ipv6-tcp and

ethernet-ip-gre-ppp-ip-tcp. Particularly, the second packet can be observed

in an IPv4-only xDSL-based access network connecting to the Internet a client660

using IPv6 as a network protocol, while the last packet is used in a PPTP-based

VPN.

The percentage of packets accepted by each filter is reported in the third

column of Table 1, while the last two columns respectively show the number

of packets accepted by the filter and the number of packets expected to be665

accepted. Since these two numbers always coincide, the filtering code generated

from xpFSA is correct for each of the considered filters, and actually implements

the constraints expressed in the filtering expression. Consequently, being the

filtering code generated from xpFSA correct, it is also correct our algorithm

presented in Section 5, which transforms the filtering expression into an xpFSA.670

Figure 22 shows the number of packets per second analyzed by the sam-

ple NetPFL filters. Note that one-time computations (e.g., filter compilation)

do not affect the result of this test, while runtime overheads (e.g., per-packet

libpcap library call) are included in the results. As shown, performance in-

crease when the filter is more specific, i.e., when it leaves less freedom to the675

protocols that may appear in a given position of the packet. Notably, according

to the graph, encapsulation-aware filtering code can be applied on a 10 Gbps

link without any packet loss, if considering an average packet size of 700 bytes.

8This value roughly represents the average packet size on the Internet.
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Figure 22: Performance of the filtering code generated by xpFSA.

Table 2: Filtering throughput with respect to TCP session filters.

# TCP sessions Throughput (Mpps)

1 4.3

2 4.2

3 4.2

Scalability - In order to provide an insight of the scalability of the filtering

code generated out xpFSA, we also executed a number of filters that select an680

increasing number of TCP sessions encapsulated in a tunnel. A single TCP

session is represented by a filtering expression in the form ((ip.src==x.x.x.x

tunneled) and (ip.dst==y.y.y.y tunneled) and tcp.sport==X and tcp.dport==Y),

while the Boolean or operator is used to combine together filters matching dif-

ferent sessions.685

Filtering code have been executed on the synthetic traffic trace mentioned

before (each filter matched one third of packets), and results are reported in

Table 2. As shown, filtering code generated by xpFSA does not suffer any sig-

nificant runtime performance degradation when the number of filtered sessions

increases. This is due to the fact that the generated automaton grows wider,690

but not deeper; as the number of sessions increases, more and more states are

added in parallel to the old ones, but the average distance from the starting

state to the accepting states does not change.
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8.3. Support for traditional filters

The algorithm presented in Section 5 also creates xpFSA representing tradi-695

tional filters based on the existence of some protocols and on the value of some

protocol fields. Then, this section evaluates our algorithm when applied to

those filters, and compares it with the algorithm proposed in [3] (Section V-E),

which models (only) traditional filters with pFSA. It is worth mentioning that

we compare our proposal with [3] because both of them: (i) represent filtering700

expressions through augmented FSA; (ii) exploit an external protocol database

represented as a PEG. The comparison with other solutions for packet filtering

(e.g., SPAF, BPF) is not repeated in this paper, as [3] already compares them

with the algorithm defined for pFSA.

We repeated the same tests reported in [3] with the new algorithm; the sam-705

ple filters are shown in Table 3, using two different PEGs. The simple PEG

includes only the definitions for Ethernet, IPv4, TCP and UDP, without recur-

sive encapsulations. The complex PEG includes also the definitions for VLAN,

ARP, PPPoE and IPv6, together with the following tunnels: IPv4-in-IPv4,

IPv6-in-IPv4, IPv6-in-IPv4. Finally, as in [3] tests have been executed on a710

workstation equipped with an Intel E8400 Core 2 Duo dual-core processor with

4 GB of RAM, running a 64-bit version of Ubuntu 10.04.

Table 3: Sample traditional NetPFL filters.

# Filtering expression

1 ip

2 ip.src == 10.1.1.1

3 tcp

4 ip.src == 10.1.1.1 and ip.dst == 10.2.2.2 and tcp.sport == 20 and tcp.dport == 30

5 ip.src == 10.1.1.1 or ip.dst == 10.2.2.2 or tcp.sport == 20 or tcp.dport == 30

Figure 23 depicts, in logarithmic scale, the time needed by the algorithm

proposed in [3] to create the pFSA, and by the new algorithm to create the

xpFSA representing the filters of Table 3, both with simple and the complex715
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Figure 23: Comparison of the time needed by our algorithm and by that proposed in [3] to

create the automaton out of a filtering expression.

databases. According to the picture, although the new algorithm is considerably

more complex then its ancestor, it does not introduce considerable overhead

when used to model traditional filtering expressions, and it even performs better

in some cases.

Notably, since the filters in Table 3 do not include constraints on protocol720

encapsulations, the pFSA/xpFSA generated by the compared algorithm are

identical. Consequently, they originate the same filtering code, which obviously

provides the same performance (in terms of packets per second) when used to

analyze network traffic.

9. Conclusion725

Currently, no existing packet filter enables the precise filtering of network

packets based on constraints on protocol encapsulation relationships; this pre-

vents applications to finely select traffic they are interested in, e.g., in case of

complex protocol encapsulations and/or tunnels. To address this limitation,

this paper presents an algorithm that efficiently implements packets filters that730

include protocol encapsulation constraints.

The proposed algorithm supports filtering expressions that filter packets that

may include: (i) specific header sequences (e.g., tcp.sport==80 in ipv6, ipv6

notin vlan); (ii) a specific value for a field in a given header instance (e.g.,
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ip%2.src==10.0.0.1); (iii) a given protocol encapsulated in a tunnel (e.g.,735

ip.src==10.0.0.1 tunneled, ip tunneled).

Particularly, such an algorithm, starting from a filtering expression written

according to the Network Packet Filtering Language (NetPFL), and from a

protocol database modeled as a Protocol Encapsulation Graph, models the filter

by means of xpFSA, a novel formalism that extends the Finite State Automata740

with predicates (pFSA). xpFSA guarantees optimal composition of multiple

filtering expressions and efficient packet filtering code. Moreover, it defines

operations (i.e., the increment of counters) to be executed when specific input

symbols are received; this causes a reduction of the number of states of the

automaton and then a reduction of its complexity.745

Finally, the paper proposes an algorithm that can be used to automatically

recognize packets that include tunneled protocols, which is based on the dynamic

association of each protocol to its supposed network layer.

Evaluation shows the efficiency of the algorithm that transforms filtering

expressions into automata, the time required to generate filtering code out of750

xpFSA, and the runtime performance of the generated packet filtering code. We

also show how our algorithm does not penalize traditional filters only based on

constraints on protocol fields, as well as we evaluated scalability of the automa-

ton and of the generated packet filtering code.
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